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EDITOR'S NOTE -- 
In t h i s  Issue, you win find the Chapter Reports from 24 of our 

270+ Pi Mu Epsilon Chapters. These reports announce 97 papers and tall& - 

given t o  the Chapter meetings (mostly by widergpaduates) during 1981-82. 

Even when th i s  number i s  added t o  the 22 papers given a t  the Swmer 

Pi Mu Epsilon Meeting i n  Toronto, the 87 papers that can be counted a t  

Regional MAA Meetings, the 19 given a t  the Ohio Pi Mu Epsilon Meeting 

plus many more a t  other Regional Meetings, we see only part of the 

mathematical act iv i ty  by undergmduates and beginning graduate students. 

The purpose of th i s  'Fraternity i s  to promote mathematics, and the 

sole purpose o f  th i s  Journal i s  t o  present papers by and for i t s  members. 

A large number o f  papers are presented but never sent t o  the Journal for 

possible publication. Write them up and send them in!  A publication i n  

a national refereed g'ournal w i l l  be very impressive on yow veswne, and 

even i f  it i s  not published, having written a paper and having tried to 
publish it means a lo t  t o  potential employers and graduate schools. Any 
papers should be sent t o  Dr. David Ballew, Department of Mathematical 

Sciences, South Dakota School of Mines and Technology, Rapid City, SD 

57701 

Diving 1982-83, we w i l l  continue our National Paper Competition. 

Every paper written by an undergraduate or a graduate student who has not 

received a Master's Degree a t  the time of submission i s  eligible.  The 

dnners  for 1980-81 ewe: 

F I R S T  PRIZE ($200) M e y  St /wnd ,  "Vs-ato1 S u b 6 p a c . e ~  06 
Magic S ~ L W L U " ,  VemvUme.nt 06 Ma-tfce- 
m o A i c ~ ,  CaAJUon Coi te .ge ,  Nolth&Letd 
MM, 55057 [ S e e  -tfnA I A A U ~  06 the. J o u A ~ O ~ )  

SECOND PRIZE 

THIRD P R I Z E  

($100) Kmen Cunninghum, " A S-unpLe Model  6 0 1  
Two I n t e r l a c i n g  SpecLeA and  the. PIWtlC-tple 
Compe-t^fccve. Ex&.ionti, U h .  06 T e x f l ~  
at W n g - t o n  ( S e e  the SpIU.ng 1983 U ^ U e )  

$50) Ra1j.i S a i g h ,  " v o h e  06 an. N-~Jumen&.ionaJi 
U n i t  Sphere" ,  L o y o l a  Un^vm-t-tyICfctcogo, A 

( S e e  the. SfUwig 1983 ~ A A U ~ )  



FIRST PRIZE PAPER 
1981-82 Papm Competition 

VECTOR SUBSPACES OF MAGIC SQUARES 

An n
th 

order magic square is an n x n array of real numbers such 

that the sum along each of the square's rows, columns, and main diagon- 

als is a constant (called 1, the line-sum). Consider the set of all 

n
th 

order magic squares whose line-sum is zero, designated M(n). It 

is easy to see that this set is closed, commutative, and associative 

under addition and real scalar multiplication, contains additive inver- 

ses, and in short, satisfies all the conditions necessary for it to be 

a vector space. Ward [1] has shown the dimension of this vector space 
2 to be n -2n-1. In this paper, simple techniques of linear algebra will 

be used to determine the dimension of a certain subspace ofMfi). 

An n
th 

order magic square is said to be skew-symmetric if a11 pairs 

of cells symmetric about the square's center have a constant sum, S, 

called the skew-symmetric sum. Equivalently, (i, j)(n+l-i ,n+l-j = S 
for all l%,j'Ln, where m (i,ji represents the entry in the ith row and 

jth column of M, a general element of M(n). 

Tft~o4effl 7 .  The subset of M (n) consisting of all skew-symmetric 
0 

zero-sum magic squares of order n, designated SM(n), is a vector sub- 

space of M(n). 

Proof. It suffices to show that SM(n) is closed under addition 

and real scalar multiplication. It is clear that if we have M,, M2 

â‚¬SM( with Sly S2 as their respective skew-symmetric sums, then 

(M+M2) â SM(n) with skew-symmetric sum (Sl+Sn). Thus, SM(n) is closed 

under addition. It is also clear that if we have Mâ‚¬SMo( with skew- 

symmetric sum S, and kâ‚¬ then kMeSM(n) with skew-symmetric sum kS. 

(n) is closed under real scalar multiplication, and hence is a 

subspace of M(n). 

We now focus our attention on the problem of determining the di- 

mension of this vector subspace. 

Lemma 7 .  If n is odd, and if Mâ‚¬SM( with S=0, then M has a - 

zero in its center cell. 

Proof. Since n is odd, n=2k+l for some non-negative integer k. 

Consider the (k+l)st column in M. Since S=O ' m(l,k+l)Tn,k+l)' O -  ' - 
Similarly, each of the first k entries in the (k+l)st column can be 

paired with its skew-symmetric partner to form a zero-sum pair. There 

are k such pairs, and since the column-sum is zero (as MESM (n)) we get 
0 

the equation k0-m ,+.,,)= 0. Thus, the center cell must contain a 
-- 

zero. 2 2 

Lemma 1 is now used to prove the following theorem. 

The-OM 2 .  If n is odd, and MESM (n), then M has a zero in its 
0 

center cell. 

Proof. Using Lemma 1, it suffices to show the skew-symmetric sum 

is zero for anyelement of SM(n). Assume we have an n x n array of 

empty cells in which we will describe a general element of SM(n). 

Start in cell (1,l) and enter random numbers across the top row, ending 

in cell (la-1). Call these entries a;,, x2, ..., x - ~ .  Since we are 

considering a general element of SMo(n), the row-sums must be zero. 

n-1 
This implies cell (1p) must contain the entry - xi. Since the 

i=l 

square is to be skew-symmetric, call its skew-symmetric sum S. Thus, 

the entry in cell (n,n) is S-x,, the entry in cell (n7 n-1) is S-x?, 
- 

and so on across the bottom row until we get to cell (n,l), whose entry 
n-1 

is S + >  ̂ xi. Taking the sum across the bottom row yields the equa- 

i=1 

tion &=O, since all the xi 's neatly cancel. Thus, S=07 and the proof 

is complete. 

The implication is clear. Not only do all members of SM (n) with 
0 

odd n have a zero in the center cell, but all skew-symmetric pairs of 

cells in all elements of SM (n) contain additive inverses. 
0 

Tht~04effl 3. Let n be even and Mâ‚¬SMo(n If two perpendicular 
bisecting segments each n units long are allowed to divide M into four 

square n/2 x n/2 "quadrants" as shown in Figure 1, then the sum of the 

entries in each of the four quadrants must be zero. 



2 
Figure 1 

Proof. We can, without l o s s  of gen- 

e ra l i t y ,  consider the en t r i e s  i n  

quadrant I. Assume the ent r ies  i n  

quadrant I have sum A. Since 

MCSM (n), the  skew-symmetry property 
0 

and Theorem 2 t e l l  us the  en t r i e s  i n  

quadrant I V  have sum -A. We a l so  

know tha t  i f  we add the  en t r i e s  i n  

quadrants I and 11, i . e .  the top half 

of M, we must ge t  zero f o r a  sum, 

since each individual row has sum 

zero. But since we know the  en t r i e s  i n  quadrant 1 have sum A ,  t he  en- 

t r i e s  i n  quadrant I1 must have sum -A. Now we add the en t r i e s  i n  quad- 

ran t s  I1 and IVY which must equal zero, and ge t  t he  equation -24~0.  

Thus, A=0. 

This l a s t  r e s u l t  implies t h a t  when we a r e  constructing even order 
2 members of S M  (n) ,  we may choose no more than (n /4)-1 en t r i e s  per quad- 

0 
r an t  freely.  

This leads t o  thd main conclusion of t h i s  paper. 

2 The.ohw 4. The dimension of SM (n)  i s  (n-1) /2 i f  n is  odd, and 
0 

is n(n-2)/2 if n is  even. 

Proof. (Odd case) i f  n is odd, and Mâ‚¬SM(n then each of M ' s  

2n+2 line-sums a r e  zero (n row-sums, n column-sums, and 2 diagonal-sums). 

Moreover, since a l l  skew-symmetric pa i r s  have sum zero (Theorem 2) and 

since t he  center  square contains a zero (again, Theorem 21, we have 
2 (n +1)/2 addi t ional  equations which have sum zero. Thus, we have a 

2 system of (n +1)/2 + 2n + 2 homogeneous equations i n  t he  n2 unknowns 

m . .  ( 1  5 t, j 5 n).  w 
Write these equations i n  the  following order, ca l led  the  standard - 

odd order: first the  (nZ+l)/2 skew-symmetric sums, beginning with 
m ( l , ~ + ~ ( n , n ) ^ ~  m(1,2)m(n,n-1)=0y' ' ' ym(2,1)m(n-1yn)=0y " ""(n+l n+i)=O -- 

2 '  2 
then the  n row-sums, i n  order; followed by the  n column-sums, i n  order; 

and f i n a l l y  the  two diagonals NW-SE, and SW-SE . The resul t ing  coeffi- 
2 2 c i en t  matrix i s  an ( ( (n  +1)/2 + 2% + 2) x n ) matrix of 0 's  and 1's. 

In t he  n=3 case, it is the  13  x 9 matrix shown i n  Figure 2, where the 

elements i n  t he  column a r e  coeff ic ients  of the  j h  variable i n  the  

100 000 001 
010 000 010 
001 000 100 
000 101 000 
000 010 000 
Ill 000 000 
000 111 000 
000 000 111 
100 100 100 
010 010 010 
001 001 001 
100 010 001 

list mil, m12s ml3> m 2 i ,  " 2 2 ~  " '23~ "'31~ m32s 

m .  It is c l ea r  t h a t  the  f i r s t  (n2+1)/2 rows 

of t he  coeff ic ient  matrix a re  l i nea r ly  independ- 

ent  s ince they a r e  i n  row-echelon form. Consi- 

der t he  next row, which corresponds t o  the  equ- * 

at ion  t h a t  spec i f ies  the  f i r s t  row must have sum 

zero, and consists  of n 1's followed by n(n-1) 

0 's .  Using elementary row operations t o  put 

001 010 100 t h i s  vector i n t o  row-echelon form, we get,, i n  

general, n(n-1) 0 's  followed by n 1 ' s .  Thus, 

it i s  l i nea r ly  independent of a l l  previous rows. 
Figure 2 The next row, corresponding t o  t h e  equation 

specifying the second row have sum zero, gives us, upon reduction t o  

row-echelon form, n(n-2) O ' s ,  followed by n l l s ,  followed by n more 0's. 

For n > 3 t h i s  row is  a l so  l i nea r ly  independent of a l l  previous rows. 

This process continues s imi lar ly  u n t i l  we reach the  ( n + l ) / 2  row vec- 
2 

t o r ,  i . e . ,  row (n +n+2)/2 of the  coefficient  matrix. This is c l ea r ly  
2 2 2 a l i nea r  combination of rows (n  +1)/2 + ( (n  +1)/2 - 1 )  + . . . + ( (n  +1)/2 

- (n-l) /2)  of t he  coeff ic ient  matrix, and hence i s  not l i nea r ly  independ- 
2 

ent  . Likewise, each of the  remaining row vectors, i. e., rows ( (n  +n+2) 
2 

/2  + l ) ,  ((n +n+2)/2 + 2) ,  . . . , ((n2+n+2)/2 + (n-l) /2)  of the  coeff ic ient  

matrix, is l i nea r ly  dependent, a s  each is the row-echelon form of rows 

((n2+n)/2), ((n2+n)/2 - 11,. . . ,((n2+1)/2 + 1 )  respectively.  

Now consider the  vectors correponding t o  t he  column-sum equations, 

beginning with row (n2 +1)/2 + n + 1 of the  coeff ic ient  matrix. When 

put i n  row-echelon form, t he  f i r s t  non-zero entry occurs i n  column 

(n2+n)/2. Thus, t h i s  row is  l i n e a r i l y  independent of a l l  previous VeC- 

to r s .  The next column-sum vector, when put i n  row-echelon form, has i ts  
2 f i r s t  non-zero entry i n  column ( ( n  +n)/2 - 1 ) .  For a l l  n > 3, t h i s ,  

too, is l i nea r ly  independent. This pa t te rn  continues u n t i l  we reach 
2 

the  ( n + l ) / 2  column vector, o r  row (n  +1)/2 + n + (n+l)/2 i n  our co- 

e f f i c i en t  matrix. This row is l i nea r ly  dependent, being the  sum of rows 
2 

(n+l)/2, ( (n+l ) /2  *),...,(?I +1)/2 of the  coeff ic ient  matrix. Similarly, 

t he  remaining (n-l)/2 column-sum vectors a r e  sca lar  multiples of the ; 

previous column-sum vectors ( a f t e r  they have been reduced t o  row-echelon 

form. ) 

Finally,  we must consider the  diagonals, but only b r i e f ly ,  fo r  



they a r e  always l i n e a r  combinations of  t h e  l s ,  (n+2 I n ,  (%+3 )rd,. . . , 
2 ( ~ ~ ~ + 1 ) / 2 ~ ~ a n d  of t h e  n

th
, (221-list. (3n-2)nd,. . . , (n +l)/2nd rows of  t h e  

c o e f f i c i e n t  matr ix f o r  t h e  NW-SE and SW-NE diagonals respec t ive ly .  Thus, 
2 

t h e  matrix has a t o t a l  of  (n + 2n - 1 ) / 2  l i n e a r l y  independent rows, 
2 and hence has rank (n + 2n - 1)/2.  By t h e  rank and n u l l i t y  theorem [2], 

t h e  dimension of S M  (n )  f o r  odd n ,  which i s  t h e  n u l l i t y  of  t h e  coef f i -  
2O 2 2 2 c i e n t  matrix, i s  n -(n + 2n - 1 ) / 2  = (n -2n+l)/2 = (n-1) /2. 

2 (Even case) .  Here we have n /2 p a i r s  of skew-symmetric c e l l s  which 

have sum zero,  a s  wel l  a s  t h e  2n+2 row, column, and diagonal sums. I n  

add i t ion ,  Theorem 3 gives us  four  more homogeneous equations, s ince  we 

know each of t h e  four  "quadrant-sums" must be zero. Thus, we have a sys- 
2 tern of n /2 + 2n + 6 homogeneous equations i n  t h e  n2 unknowns m 

i j  
( 1  5 i , j  5"). 

Write t h e s e  equat ions i n  t h e  following order ,  c a l l e d  t h e  s tandard 
2 even order: f i r s t ,  t h e  n /2 skew-symmetric sums beginning with 

m ( ~ , ~ ) + m ( n , n ) = 0 y m ( ~ , 2 ) + m ( n , n - ~ ) = 0 y ~ ~ ~ ~ m  (n/2,n/2 )+m(n/2+1,n/2+1)=0; 

then t h e  four  "quadrant-sums," first t h e  upper- lef t  quadrant, followed 

by t h e  upper- right,  loiÃ§er-left and lower- right; then t h e  2nt2 row, 

column, and diagonal  sums, i n  exact ly t h e  same order  a s  i n  t h e  odd case. 
2 2 The r e s u l t i n g  c o e f f i c i e n t  matrix i s  an ( ( n  /2 + 2n + 6)  x n  ) matrix of  

0 ' s  and 1's. 

In  t h e  n=4 case,  it i s  t h e  22 x 16 matrix 

shown i n  Figure 3, where t h e  elements i n  

t h e  jth column a r e  t h e  c o e f f i c i e n t s  of 

t h e  j h  var iab le  i n  t h e  l i s t  m 
11' "'12' 

T O , . . . ,  mQ3, mu4. Again, it i s  c l e a r  

t h a t  t h e  f i r s t  n2/2 rows of t h e  coef f i-  

c i e n t  matrix a r e  l i n e a r l y  independent 

s ince  they a r e  i n  row-echelon form. Now 

we consider t h e  next ,  i . e .  (n2/2 + 1 I s t  
0000 1111 0000 0000 row of t h e  c o e f f i c i e n t  matrix. which 

- - -  

0000 0000 1111 0000 
0000 0000 0000 1111 corresponds t o  t h e  equation specifying 

~ - - --  

1000 1000 1000 1000 t h e  upper- lef t  quadrant-sum be zero,  
0100 0100 0100 0100 
0010 0010 0010 0010 and which c o n s i s t s  of n/2 consecutive 

0001 0001 0001 0001 groups of n/2 1's followed by n/2 O f s ,  
1000 0100 0010 0001 2 
0001 0010 0100 1000 with t h e  l a s t  n /2 e n t r i e s  being 0 ' s .  

2 
In  row-echelon form, t h i s  reduces t o  a row with n 11 0 ' s  followed by 

n/2 consecutive groups of n/2 0 ' s  followed by n/2 1's. I n  o ther  words, 

t h e  row has been r e f l e c t e d  le f t- to- r igh t .  This row has i t s  first non- 
2 2 

zero e n t r y  i n  t h e  n /2 + n/2 + l = ( ( n  + n + 2 ) / 2  column, and hence is  Id%-- 

e a r l y  independent of a l l  previous vectors .  The next row t o  consider  is  - 
2 

t h e  (n 11 + 2Ind row of  t h e  c o e f f i c i e n t  matrix, t h e  one corresponding 

t o  t h e  equation specifying t h e  e n t r i e s  i n  t h e  upper- right quadrant t o  

have sum zero. This row c o n s i s t s  of  n/2 consecutive groups of n/2 0 ' s  
2 

followed by n/2 Vs. followed by n / 2  0 ' s .  Reducing t o  row-echelon form 
2 y i e l d s  n /2 O ' s ,  followed by n/2 consecutive groups of n/2 1's followed 

2 
by n/2 0 's .  This row has i t s  f i r s t  non-zero en t ry  i n  t h e  (n 11 + 1 )  

st 

column, and hence it, too ,  is  l i n e a r l y  independent of a l l  previous 

vectors .  

The next  two rows of  t h e  c o e f f i c i e n t  matr ix,  those corresponding 

t o  t h e  equat ions specifying t h e  lower- lef t  and lower- right quadrants 

have sum zero a r e  c l e a r l y  mult iples  of t h e  previous two rows. O f  course, 

t h i s  i s  not  surpr i s ing  when we r e c a l l  t h a t  M e S U ( n ) ,  and hence, t h e  

skew-symmetry property implies  t h a t  specifying t h e  upper- lef t  and upper- 

r i g h t  quadrants completely determines t h e  e n t r i e s  of t h e  lower- right and 

lower- lef t  quadrants respec t ive ly .  

Now we consider t h e  n rows corresponding t o  t h e  equations specify-  

ing t h e  row-sums of  M be zero. The f i r s t  row-sum vector  contains  n 1's 

followed by n(n-1) 0 ' s .  Reducing t o  row-echelon form, we g e t  another 

l e f t- t o- r i g h t  r e f l e c t i o n .  Now we have n(n-1) 0 ' s  preceding t h e  n 1's. 

Since t h e  f irst  non-zero e n t r y  i n  t h e  row is  i n  t h e  n(n-l)st column, we 

now have another  l i n e a r l y  independent v e c t o r .  

Things ge t  a l i t t l e  more complex, though, when we consider  t h e  

next  row, which cons i s t s  of  n O ' s ,  followed by n l 's ,  followed by 

n(n-2) more 0 ' s .  When reducing t h i s  vec tor ,  we see  it has i ts first 
2 

non-zero e n t r y  i n  column n -2n+l. But n o t i c e  i n  t h e  n=4 case, t h a t  
2 2 

n -2n+l=n /2 + 1. Thus, s ince  t h e  vector  associated with t h e  equation 

specifying t h e  upper- right quadrant-sum be zero has, i n  row echelon 
2 

form, i ts first non-zero e n t r y  i n  column n /2 + 1, we know t h a t  we must 

reduce t h e  vector  f u r t h e r .  When t h i s  is  done, we f i n d  t h a t  t h e  row i n  ; 

quest ion i s  n o t  l i n e a r l y  independent. In  general ,  t h i s  process cont in-  

ues u n t i l  we reach t h e  n/2nd row-sum vector .  ( I n  t h e  n=4 case, we have 

j u s t  considered t h i s  vec tor ) .  The n/znd row-sum vec tor  i s  always equal  

Figure 3 



2 t o  t he  sum of rows $ - n + 1 through n /2 of t he  coeff ic ient  matrix, 

minus t he  row-echelon forms of the upper- left and upper-right quadrant- 

sum vectors y plus t he  row-echelon forms of the f i r s t  77.12 - 1 row-sum 

vectors. 

It is  c l ea r  t h a t  t he  next n/2 row-sum vectors a r e  not l i nea r ly  

independent, since by skew-symmetry they a r e  simply the  opposite of the  

f i r s t  n/2 row-sum vectors. Thusy of the  n row-sum vectors y only the  

f i r s t  n/2 - 1 a r e  l inear ly  independent of one another and a l l  previous 

vectors . 
We must now consider the  n column-sum vectors. It is lengthy, but 

not d i f f i c u l t  t o  show t h a t  only t he  f i r s t  n/2 - 1 of the  n column-sum 

vectors a r e  l i nea r ly  independent of one another and a l l  previous vectors. 
2 The (n/21nd is  a l i nea r  combination of t he  sum of rows (n 12 - 72/21, 

2 
(n 12 - 3n/2)1...1 (n/2) of the  coeff ic ient  matrixy plus the  (n/2 - 1 )  st  

column-sum vector, minus the  row-echelon form of the  upper- left quadrant- 

sum vector. The l a s t  n/2 column-sum vectors a r e  l i n e m l y  dependent 

s ince skew-symmetry t e l l s  us  they a r e  t he  opposites of the  first n/2 

column-sum vectors. Thusy l i k e  t he  row-sum vectors, the  column-sum vec- 

t o r s  give us  an addit ional  n/2 - 1 l inea r ly  independent vectors. 

I tTs  a l so  c l e a r  t h a t  both diagonal-sum vectors a r e  l i nea r  combina- 
st  t i o n s  of previous vectors. The NW-SEdiagonal i s  the  sum of the 1 , 

2 (n+2 lnd (2?1+3)~~,  . . . (n /21nd rows of t h e  coeff ic ient  matrix, while 

t he  SW-NE diagonal is the  sum of the  n
thy ( 2 ~ ~ - 1 ) ~ ~ ,  (3n-'i')ndy. . . , (n2/2 lnd 

vec to r so f the  coeff ic ient  matrix. 
2 Thus, we have the f i r s t  n 12 skew-symmetric vec tmsy  two quadrant- 

sum vectors, (n/2 - 1 )  row-sum vectors y and (n/2 - 1 )  column-sum vectors 
2 which a r e  l inear ly  independent. Thus* there  a r e  i n  a l l y  n 12 + n l inear-  

l y  independent vectors i n  the  or ig ina l  coef f ic ient  matrix. By the  rank 

and n u l l i t y  theorem [2Iy the dimension of SM (n)  f o r  even n is 
2 0 

n2-(n 12 +n)=n(n-2 112. 

This r e s u l t  seems t o  correspond nicely t o  our i n tu i t i ve  geometric 

in terpre ta t ion  of t he  system. In t he  odd order case, we can divide t he  

square ar ray  of c e l l s  i n t o  four (n-1112 x (n-1112 squares surrounding 

a "central  crossll region one c e l l  thick.  (See Figure 4) .  If we choose 

the  en t r i e s  i n  any two adjacent quadrantsy skew-symmetry determines t he  

ent r ies  i n  t he  other two quadrants. The cen t r a l  cross regions a r e  used 

t o  make the  appropriate row and column-sums zero, and skew-symmetry 

Figure 4 Figure 5 

prevents any contradictions. Thusy we a r e  f r e e  t o  choose the  en t r i e s  
2 

i n  exactly two quadrants, o r  2((n-1)/2?= (n-1) 12 c e l l s ,  which is  ex- 

a c t l y  what we expect. 

In  t he  even case, we divide the  square array i n t o  quabants .  (See 

Figure 5). If we start f i l l i n g  the  c e l l s ,  say i n  quadrant I, a t  random, 

we f ind  we must choose t h e  l a s t  c e l l ,  labelled d ,  so tha t  it makes the  

quadrant-sum zero (Theorem 3). Thisy by skew-synmetry, completely de- 

termines the  en t r i e s  i n  quadrant I V .  We may a l s o  f i l l  any of the  c e l l s  

i n  the  region labelled I1 a t  random, but t h a t  is a l l .  The c e l l s  i n  the 

regions marked R, C, and L a r e  now pegged so a s  t o  make the  row and 

columns-sums zero. But square L seems somehow l1strong1y pegged,ll s ince 

it must s a t i s f y  both row conditions and column conditions. Can t h i s  

lead t o  a contradiction? No! Taking the  sum i n  the quadrant y ie lds  t h e  

equationL= - (R+C+II). (Note, t h e  c a p i t a l  l e t t e r s  stand f o r  the  sum of 

t he  en t r i e s  i n  t h a t  pa r t i cu l a r  region). Adding horizontal ly,  we ge t  the  

equation L+C = -(I+II+R)y which implies L = l(I+II+R+C). Adding ve r t i-  

c a l l y  we ge t  t he  equation L+R = -(IV+II+C), which imples L= -(IV+II+R+C). 

Thus, we have L = -  (R+C+II) = - ( I  + I1 +R+C) = -(IV+II+R+C). Are these 

equations always consistent? We see t h a t  they a r e  when we remember t h a t  

I a I V = O y  and so  a l l  t h e  equations reduce t o  L = -(II+R+C). Thusy we can 
2 choose (n/212 - 1 + (7212 - 1 )  = n(n-2112 c e l l s  f r ee ly y which again 

comesponds t o  t he  dimension of t he  subspace. 

We can use t h i s  r e s u l t  t o  ge t  an upper bound of the number of reg-. 

u l a r ,  i .e .  consist ing of t he  numbers ll 2, 3,. . . n
2
,  skew-symmetric 

2 
magic squares of order n. We know the  sum of the  f i r s t  n integers is 

2 2 2 n (n + 1)/2* and hence any regular  magic square has line-sum 1 =n(n +1)/2.  



A s  a r e s u l t ,  we can flzeroff any regula r  skew-symmetric magic square by 

sub t rac t ing  l / n  from each e n t r y  i n  t h e  array.  Since choosing t h e  appro- 

p r i a t e  (n-1)~/2 (odd case)  o r  n(n-2112 (even case)  c e l l s  completely de- 

termines t h e  magic square, we know t h a t  t h e  number of r e g u l a r  n
th 

order  

skew-symmetric magic squares cannot exceed t h e  number of  d i s t i n c t  ways 
2 

t h e  i t e g e r s  1, 2Â 3 Â ¶  . . , n2 can be put  i n t o  (n-1) 12 (odd case)  o r  

n(n-2112 (even case)  c e l l s .  The number o f  permutations of  s i z e  k t h a t  

can be chosen from a s e t  of n elements is (:)k! = n! k!(n-k)! k! - - n! m!' 
Hence, when we t a k e  i n t o  account t h e  e i g h t  symmetries of  t h e  square, our 

(?I2)! upper bounds a r e  f o r  odd n ,  and 
(n2 )! f o r  

8(n - ( ~ 2 - 1 ) ~ / 2 ) !  8(n -n (n-2/21! 

even n. We g e t  some idea  of how crude t h i s  upper bound is, howevery 

when we examine t h e  n=3 case. Our formula suggests  t h a t  t h e r e  e x i s t  

no more than n ine  regu la r  skew-symmetric magic squares of  o rder  3 y  when, 

i n  f a c t ,  it is  easy t o  show t h e r e  i s  only one. 

The theorems presented i n  t h i s  paper can be e a s i l y  extended t o  

magic f i g u r e s  of t h r e e  and more dimensions. Indeedy t h e  proof t h a t  t h e  

subspace of odd order  skew-symmetric zero-sum magic k-boxes has dimen- 
k s i o n  (n-1) 12 i s  e s p e c i a l l y  s t raightforwardy following almost d i r e c t l y  

from simple genera l iza t ions  of  Theorems 1, 2Â and 4. 

I c lose  with a question. In  t h i s  paper I have s tudied but  one sub- 

space of Mo(n). What is  t h e  dimension of t h e  subspace spanned by t h e  

s e t  of  lfpandiagonallf zero-sum magic squares? (Pandiagonal squares have 

t h e  property t h a t  a l l  t h e  broken diagonals a l s o  have t h e  magic sum). 

And what about t h e  subspace of squares t h a t  a r e  both skew-symmetric and 

pandiagonal? 
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A GEOMETRIC INTERPRETATION 
OF SYMMETRIC MATRICES 

bq Utv~L6 R. Fbqd  

The purpose of t h i s  note  is t o  g ive  a geometric i n t e r p r e t a t i o n  of  

r e a l  symmetric matr ices  which might be used t o  motivate t h e  study of 

t h i s  subject  i n  l i n e a r  algebra courses .  

N o M o n  and P k w y  Rm~cV~fzb. Let # denote Euclidean n-space. 

If B =  {bl,b2y.. . ,bn 1 is  an or thonomal  b a s i s  f o p  #, then f o r  each i, 

t h e  one-dimensional subspace Rb. w i l l  be c a l l e d  an ax is .  The statement 
2 

t h a t  vec tors  vl and v a r e  symmetric with respec t  t o  one of  t h e  axes, 2 
say  Rbl w i l l  mean t h a t  t h e  coordinates  o f  v1 and v2 a r e  o f  t h e  form 

(xl,x2, . . . ,x  ) and (xl -x2 -x3 . . . , -x 1, respec t ive ly .  n n 
The following is  t h e  key def in i t ion .  

Ue~im%on 7 .  A l i n e a r  t ransformation T from # t o  i t s e l f  w i l l  be 

c a l l e d  symmetric i f  t h e r e  e x i s t s  an or thonomal  basis B such t h a t  i f  two 

vec tors  v and v a r e  symmetric with respec t  t o  one of t h e  axes,  then 1 2 
t h e  images T(v1) and T(v2) a r e  a l s o  symmetric with respec t  t o  t h e  same 

'&xis. 

The d e f i n i t i o n  is  i l l u s t r a t e d  i n  t h e  diagram below f o r  t h e  two- 

dimensional case. 



The following well-known f a c t  is  c r u c i a l  i n  t h e  theorem which 

follows. 

Lemma, LetA be a r e a l  symmetric matrix ( i . e . y  m . .  = m..  f o r  a l l  - 2J t7-L 

<? j). Then t h e r e  e x i s t s  r e a l  orthogonal matr ix U such t h a t  U - ~ A U  is 

diagonal.  

P r o o f .  Seey f o r  exampley [ l I y  page 243, Theorem 8.25. 

We now s t a t e  t h e  main r e s u l t .  

Theohem. A l i n e a r  t ransformation T from f l  t o  9 is symmetric i f  

and only if T is representable  by a symmetric matr ix with respec t  t o  some 

orthonormal b a s i s  B. 

P r o o f .  Let T be symmetricy with corresponding orthonormal b a s i s  

B = {bi 1 .  For each iy t h e  choice v1=v2=bi, Defini t ion 1 implies t h a t  

T(b;)=aib:, f o r  some s c a l a r  a.. Thus, t h e  matrix of  T with respec t  t o  B 

is diagonal,  hence symmetric. Conversely, suppose T has symmetric mat- 

r i x  A with respec t  t o  orthonormal b a s i s  B. By t h e  lemmay t h e r e  e x i s t s  

r e a l  orthogonal matr ix U such t h a t  LI = U-'AU is  diagonal.  Now D i s  t h e  

matr ix of T with respecr  t o  a n  orthonormal b a s i s  C. I t  is  then easy t o  

see  t h a t  T i s  symmetric, with C t h e  associated orthonormal bas i s .  This 

concludes t h e  proof. 
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Technology 

L INES AND PARABOLAS 
I N  TAXICAB GEOMETRY 

In  [ l ]  Reynolds discusses  various conic sec t ions  i n  taxicab'geome- 

t r y .  She leaves open quest ions o f  t h e  meaning of  t h e  s h o r t e s t  d i s tance  

from a po in t  t o  a l i n e  and parabolas. 

It  i s  t h e  purpose of t h i s  paper t o  answer these  questions. To t h i s  

end, we s t a t e  and prove two theorems. 

Theohm 1 .  The s h o r t e s t  d i s tance  from a po in t  (xl,yl) s o  a l i n e  

AZ + By + C = 0 i n  Taxi-cab Geometry is t h e  hor izon ta l  d i s tance  from t h e  

po in t  t o  t h e  l i n e  i f  1 < -A/B <- o r  --<-A/B < -1 and t h e  v e r t i c a l  d i s tance  

from t h e  point  t o  t h e  l i n e  i f  0 < -A/B c 1 o r  -1 < -A/B < 0. If 1 -A/B 1 = 1, 

e i t h e r  d i s tance  w i l l  do. The s lope o f  t h e  l i n e  i s  -A/B. 

P r o o f .  Case 1. 1 <-A/B < + - o r  0 <-A/B < l .  Figure 1 i n d i c a t e s  

that fils 1 < -A/B <+ and g2 has t h e  property t h a t  0 < -A/B <I. con- 
- 

s i d e r  t1. We wish t o  show t h a t  k + g < q  + k y  o r  g < q .  Since a <45OY it 

is obvious t h a t  k + g <e + c + r. Again s ince  a .<4SoY g < q ,  a s  we wished 

t o  show. If fi is considered, t h e  same arguments apply i n  showing t h e  2 
e . + c  < e  + b .  I n  t h i s  case  a t  is used. 

Case 2. -- < -LIB<-1 o r  -I<-A/B<O. Figure 2 i n d i c a t e s  

t h a t  f o r  kly - -<-A/B < -1 and fi2 has t h e  property t h a t  -1 <-A/B < 0, The 

arguments a r e  s i m i l a r  t o  Case 1. 

The next  problem is t o  descr ibe  a parabola i n  t'taxicabt' geometry. 

A parabola is  t h e  s e t  of  po in t s  equ id i s tan t  from a given po in t  (xoyyo) 

c a l l e d  t h e  focus and a given l i n e  y = ax + b c a l l e d  t h e  d i r e c t r i x .  

Since tax icab  d i s tances  a r e  i n v a r i a n t  under t r a n s l a t i o n s ,  we can assume 

t h e  d i r e c t r i x  passes  through t h e  o r i g i n y  t h a t  is  b = 0. a 

There a r e  e s s e n t i a l l y  f o u r  cases  we have t o  consider: 



Note that we really only need to solve case (i). For cases (ii) - (iv) 
we can apply the following transformations to redefine the problem as a 

case (i) problem in a newu- v coordinate system, use the case (i) solu- 

tionÂ and apply the inverse transformation to get the solution defined 

in terms of the original coordinates. The required transformations are: 

case (ii) )l=xY v = - y  

case (iii) = yy v = -x 

case (iv) u = -yy v = -x 

Theomn 2. 

The parabola in 'ltaxicabll geometry with focus (xoyyo) and 

directrix y = axy with y > axo and la1 < ly is as described in Figure I. 
0 

Proof. Note that although Figure I is drawn with a > O y  the solu- 

tion does not depend on this fact. Note alsoy that because la1 < 1, 

the taxicab distance between any point (xyy) and the line is just ly - m\, 
that isy the distance is parallel to the y-axis. 

First it is clear that the parabola must be on the same side of the 

line as the point. So since y > axOÂ the parabola must be above the 

line y = m. 

Howevery the parabola cannot be described by a single equation as 

in the Euclidean case. Thereforey the derivation is done for various 

regions of the plane (above y = my of course). 

It is clear that the point on the parabola at x = x must lie half- 

way between the directrix* y = ax and the focus (xoy yo) vertically. If 

we let d represent the distance between (xyy) and the point (xoy yo) 
P 

and dE the distance between (xyy) and the line y = axy we have 



and 

= lye- yl + lxo xol s ince r = x  

= Y o -  Y s ince y > y; 

dL = ly - ax1 

= I Y  - axel 
= y - a x  since y > . 

The point (x,y) is on the  parabola i f  and only i f  d = dL. That is, i f f  
P 

2.  x > x n  and ax  c y 2 yo 

In t h i s  case we have 

and d k = y - a x .  

so d = d  
P 

i f f  yo - y +  x - xo = y - a x  

This is the  equation of  a l i n e  with posi t ive slope. It is par t  of 

t he  parabola only a s  long a s  it is l e s s  than o r  equal t o  yo. To f ind  the  

l a rges t  x such t h a t  t h i s  holds3 we solve f o r  x :  

and ge t  
yo + x = -  

l + a  

In  t h i s  case, 

dP = I Y ~ - Y I  +I-xol 

and 

is  on the  parabola, 

We a l so  have3 y - yo 5 [yo - ~ 1 .  

yo + xo ( yOl++x~)< x - since and -a X - - 

yo + xo 
c 1 and x - - l i a  > 0. 

Therefore i n  t h i s  region we have 

dL c d 
P. 

Hence, no points belong t o  t he  parabola. 

4. xCxo and ax < y 5 y 

Here we have 

= y o - y + x o - x  

and d,,, = y - ax. 

so 
dp = dE 



This is  a l i n e  with negative slope and is pa r t  of the  parabola 

a s  long a s  it is  l e s s  than o r  equal t o  yo. To f ind  the  smallest x such 

t h a t  t h i s  holds, we solve f o r  a; i n  

. . 
and get  

Yo - Xo 
x = a-1 

In  t h i s  case, 

= Iy0 - ~1 +b0 - 4 

and 

is  on the  parabola, 

yo - x o - x = y - -  
a - 1  c:::) a ,  

Therefore, i n  t h i s  region we have 

and no points  belong t o  the  parabola. 

In  t h i s  case, 

and 

i f f  

i f f  

So the points on the parabola i n  t h i s  region a re  the  half- line 

yo - xo x =  - 
a - 1  f o r  y > yo. 

yo + Â¥" 
7. x < x < -  1 + a  and y > y 

In t h i s  case 

= y - y  + x - x .  
0 '  

and 

d = y - a x .  
k 

So , 
d = a ,  
P 

G 
y - y  + x - x  = y - a x  

So, the  points on the  parabola i n  t h i s  region a re  the ha l f l i ne  



yo + =o a ; = -  f o r  y > y . 
1 +a 

Special Case a = 1 

The taxicab geometry parabola has a d i f f e r en t  configuration when . 
t he  d i r e c t r i x  y = ax is  such t h a t  l a ]  = 1. The descript ion again depends 

on whether y > a x  o r  yo < a x .  These cases can ea s i l y  be derived a s  

l imi t ing  s i t ua t i on  o f  the  cases considered above. Figure 2 i l l u s t r a t e s  

t he  case with yo > a x  and a > 0. 
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A GUIDE FOR TEACHING MATHEMATICS 

Author. Unknown 

It  i s  t he  respons ib i l i ty  of t he  teacher t o  ac t i ve ly  involve h i s  

or  her  s tudents  i n  t he  learning process. The most important thing he o r  

she should do is  t o  avoid giving c l ea r ,  concise, organized lec tures .  I f  

t he  presentat ion of a lesson is  too  easy t o  follow, most of the  c l a s s  

w i l l  not need t o  l e a rn  the  new material  on t h e i r  own. They w i l l  have a 

ce r t a in  degree of confidence i n  t h e i r  new knowledge, and t h i s  w i l l  tend 

t o  s t i f l e  t h e i r  i n t e l l e c t u a l  pursuits .  I f ,  on t he  other  hand, the  lec-  

t u r e  is  vague, rambling and disorganized, t he  students w i l l  leave with 

t h e i r  heads f u l l  of  questions. In  f a c t ,  they w i l l  be s o  f i l l e d  with 

cur ios i ty  t h a t  they w i l l  t r y  t o  expand t h e i r  knowledge on t h e i r  own. 

There a r e  many ways t o  present a thought provoking lec ture .  One 

of t he  eas ies t  techniques t o  use is a foreign accent. I f  the  accent is  

th ick  enough, even a well organized l ec tu r e  w i l l  produce expressions of 

i n t e l l e c t u a l  wonder among the  students. Effect ive accents can be acquir-  

ed i n  Alabama, China, India,  Latin America, New York City, Germany, o r  

any foreign country. 

For nat ives of Kansas, t h a t  is, f o r  individuals  who cannot speak 

anything but per fec t  Midwestern English, t h i s  technique may o f f e r  d i f f i -  

cu l t i e s .  'There a r e  two possible solut ions:  (1)  One can teach i n  a for-  

eign country, or a t  l e a s t  i n  New York or  Texas; or  ( 2 )  One can incorpor- 

a t e  a new sy l l ab l e  i n t o  one's language. Two very e f f ec t i ve  sy l lab les  t o  

use a r e  "urn" and "uh". The chosen sy l lab le  should be u t te red  every sec- 

ond o r  t h i r d  word. This reduces t he  pos s ib i l i t y  t h a t  any coherent con- 

cept  w i l l  be given t o  t he  c lass .  For example, one can say, "Dm, today,u..  

rn, we w i l l  be, um, discussing, um....um, determinants." After a couple 

of sentences, most of t he  c l a s s  w i l l  be s t a r i ng  a t  t h e i r  watches o r  out 

the  windows. Very quickly, they w i l l  become very anxious t o  go out and 

learn  the  material  on t h e i r  own. a 

In  addit ion,  t o  being aware of  one's own speech pat terns,  the  

teacher should a l s o  pay close a t t en t i on  t o  t he  wri t ten word. Effect ive 



use of t h e  blackboard should be considered almost a necessi ty .  I l l e g i -  

b l e  handwriting can s t imula te  a s tudent ' s  i n t e r e s t  i n  new mater ia l  almost 

a s  e f f e c t i v e l y  a s  incoherent l e c t u r e s .  Often s tudents  w i l l  meet ou ts ide  

of c l a s s  t o  exchange i n t e r p r e t a t i o n s  of  l e c t u r e  notes .  Thus i l l e g i b l e  

handwriting encourages s tudents  t o  work toge ther  and share ideas.  

Writing i l l e g i b l y  requ i res  a g r e a t  d e a l  of p rac t ice  t o  be e f fec-  

t ive.  I f  one does not have s a t i s f a c t o r y  handwriting ( t h a t  is t o  say, i f  

one's handwriting i s  s u i t a b l e  only f o r  formal i n v i t a t i o n s  and eye c h a r t s ) ,  

c e r t a i n  " t r icks"  can be learned:  

1. Write small.  For s tudents  i n  t h e  back rows, t h i s  is almost a s  e f fec-  

t i v e  a s  wr i t ing  i l l e g i b l y .  The disadvantage i s  t h a t  s tudents  i n  t h e  

f r o n t  rows w i l l  probably be ab le  t o  read t h e  board and may possibly l e a r n  

something without having t o  spend hours i n t e r p r e t i n g  t h e i r  notes. Also, 

t h e  professor  who wr i tes  small  may f i n d  t h a t  most of h i s  o r  her  c l a s s  

w i l l  t r y  t o  sit near t h e  f r o n t  of t h e  room, which may be too  c lose  f o r  

comfort, e s p e c i a l l y  on hot days during summer sessions.  

2. Write f a s t .  The f a s t e r  t h e  teacher  wr i tes ,  t h e  f a s t e r  t h e  s tudents  

w i l l  have t o  t a k e  notes .  Often t h e  teacher  can move on t o  a new subjec t  

while h i s  o r  her  studen;s a r e  s t i l l  t r y i n g  t o  copy what is on t h e  board. 

Students w i l l  be s o  busy during c l a s s  t h a t  they w i l l  wait u n t i l  a f t e r  

c l a s s  t o  t r y  t o  understand t h e  lesson. In  add i t ion  t o  spurr ing s tudents  

t o  l e a r n  on t h e i r  own, wr i t ing  f a s t  allows t h e  professor  t o  cover more 

mate r ia l  i n  a given c l a s s  period. 

3. Write something while saying something d i f f e r e n t .  For example, a f t e r  

working out a lengthy problem t h e  i n s t r u c t o r  t e l l s  t h e  c l a s s  t h e  answer 

is  2 + y while wr i t ing  on t h e  board y 2  + x. This fo rces  s tudents  t o  r e-  

th ink  t h e  problem i n  order  t o  decide which a l t e r n a t i v e  is  c o r r e c t .  Stu- 

dents  a r e  thus  a c t i v e l y  involved i n  problem solving even a f t e r  t h e  prob- 

lem is  f inished.  

4. Erase quickly. This technique p r a c t i c a l l y  fo rces  those members of 

t h e  c l a s s  who take  notes  t o  pay constant  a t t e n t i o n  t o  t h e  l e c t u r e s .  Those 

who doze o f f  f o r  a few moments w i l l  awaken t o  f i n d  nothing t o  record i n  

t h e i r  notes  on t h e  t o p i c s  they missed. This technique i s  e s p e c i a l l y  

e f f e c t i v e  i f  one uses both hands t o  wr i te  and e rase  simultaneously. 

5. If a l l  e l s e  f a i l s ,  s tand i n  f r o n t  of  what has j u s t  been wr i t t en .  By 

blocking any c l e a r  view of  t h e  blackboard, t h e  teacher  w i l l  help improve 

s tudents '  speculat ive and psychic a b i l i t i e s .  Those i n s t r u c t o r s  who a r e  

s h o r t  o r  underweight may f i n d  t h i s  procedure extremely d i f f i c u l t .  

The above " t r icks"  may be used separa te ly  o r  combined. It is a 

good idea t o  change them occasional ly i n  order  t o  add some v a r i e t y  t o  

t h e  classroom rou t ine .  - - .- 
It is very important t h a t  t h e  professor  l e c t u r e  t o  t h e  blackboard- 

when using it. This he lps  demonstrate t o  s tudents  how involved t h e  teach-  

e r  i s  with t h e  sub jec t .  This enthusiasm w i l l  most assuredly rub o f f  on 

t h e  c l a s s .  Also, by facing t h e  blackboard, one cannot f a c e  t h e  c l a s s .  

It i s  there fore  e a s i e r  t o  ignore s t u d e n t s t  quest ions which tend t o  i n t e r -  

r u p t  t h e  p resen ta t ion  of t o p i c s  and make t h e  c l a s s  period seem t o  l a s t  

forever .  

There is one l a s t  point  on teaching technique. It is  important 

t h a t  one does not overprepare f o r  l e c t u r e s .  Generally, one should a r r i v e  

at c l a s s  a few minutes ea r ly ,  open t h e  book, and glance a t  t h e  t o p i c  f o r  

t h a t  p a r t i c u l a r  day. Lectures prepared i n  t h i s  manner have a c e r t a i n  

f reshness  and spontanei ty t h a t  is  o f t e n  missing from those which a r e  more 

c a r e f u l l y  organized. In  add i t ion ,  s tudents  w i l l  gain a g r e a t e r  appreci-  

a t i o n  f o r  a c o r r e c t  proof i f  they see  how much time can be spent  on a 

wrong approach. 

The f i r s t  s e c t i o n  of t h i s  guide has d e a l t  with a c t u a l  teaching. 

concentrat ing on l e c t u r i n g  " t r icks" ,  techniques, and preparat ion.  The 

sub jec t  o f  t h e  l a s t  p a r t  w i l l  be genera l  appearances. 

Students tend t o  have more confidence i n  an i n s t r u c t o r  i f  they 

be l ieve  he o r  she has a thorough understanding of h i s  o r  her  f i e l d .  To 

show a c l a s s  t h a t  one has a thorough understanding of  mathematics. it is 

necessary t o  appear 'tspaced-out.tt Being "spaced-out" implies  one is s o  

involved with a b s t r a c t  mathematics t h a t  one has l o s t  touch with t h e  r e a l  

world. There a r e  severa l  ways t o  p r o j e c t  such an image. 

1. Dress funny. Old s u i t s ,  baggy pants ,  narrow t i e s ,  and h a i r y  sweaters 

a r e  a l l  e f f e c t i v e  and even more so,  when worn together .  

2.  Don't wash your swea tsh i r t s .  Albert E ins te in  is b e s t  remembered f o r  

two th ings  -- being a genius and wearing d i r t y  swea tsh i r t s .  Even i f  you 

a r e  not a genius, you can s t i l l  wear t h e  swea tsh i r t s .  I n  a matter  of 

weeks, you w i l l  gain such a repu ta t ion  t h a t  no one w i l l  come near  enough. 

t o  challenge it. 

3 .  Don't comb your h a i r  with anything f i n e r  than your l e f t  hand. 

4. Walk i n t o  t h e  wrong room and begin t o  l e c t u r e  t o  whatever c l a s s  is i n  



it. (This w i l l  help spread your reputat ion beyond your own students). 

5. Walk i n t o  t he  correct  classroom and begin lecturing on whatever hap- 

pens t o  be l e f t  on the  blackboard from the  previous class.  

6. Acquire a f a c i a l  twitch. 

7. Pretend you a re  deaf i f  someone asks a question or  the  b e l l  r ings  

while you are  lecturing.  Try t o  keep ta lk ing  a f t e r  everyone has l e f t  the 

room. 

8. Follow a l l  the  guidelines f o r  teaching given above. 

By being properly "spaced-outrf, one w i l l  gain t he  confidence and 

respect  of one's students. This w i l l  make it eas ier  t o  help inspi re  them 

i n  t h e i r  study of mathematics. Being properly "spaced-out" w i l l  a l so  

help one t o  acquire tenure a t  t h i s  o r  any other reputable college or  uni- 

vers i ty .  
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SEVENTH CONFERENCE ON UNDERGRADUATE MATHEMATICS 

April 15-16, 1983 

Oklahoma Beta Chapter of P i  Mu Epsilon w i l l  a s s i s t  the  Mathe- 
matics Department a t  Oklahoma S ta t e  University and the  Journal 
of  Undergraduate Mathematics i n  sponsoring a Conference on 
Undergraduate Mathematics. Fif teen minute presentations are  
so l i c i t ed  from undergraduates regarding t h e i r  mathematical 
i n t e r e s t s :  expository papers, discussions of applicat ions of 
mathematics, repor ts  on t h e i r  mathematical research. In  add- 
i t i on ,  the  conference w i l l  f ea ture  a s  invited speakers: George 
Piranian of the  University of Michigan, C. H. Edwards, Jr. of 
the  University of Georgia, Lynn 0. Wilson of Bell  Laboratories, 
Reuben Hersh of the  University of New Mexico. Inquiries o r  
abs t rac ts  should be sent  t o  Tim Koster, President of Okla. Beta 
Pi Mu Epsilon, Department of  Mathematics, Oklahoma Sta te  Univ. 
S t i l lwater ,  OK, 74078 

BOW-TIE POLYGONS 
A SEQUEL TO THE EQUILIC QUADRILATERAL 

by Clayton M. Dodge, UnLvrn'Lty 06 M a k e .  
and Jock Gm6linkii, Que.e.ntb Coue.ge., N. Y. 

I n  the  January 1981 i ssue  of The Mathematical Monthly, the  follow- 

ing problem (E 2866) appeared: Let AKL, AMS, be equ i l a t e r a l  t r iangles .  

Prove t h a t  the  equ i l a t e r a l  t r iangles  LMX, NKY a re  concentric**(if Y is 

chosen on the  proper side of NK). Drawing the  f igure  described by the  

above problem, led us t o  defining a quadri lateral .  Because of i ts  

appearance, we decided t o  c a l l  t h i s  quadr i la te ra l  the  Bow-Tie quadri lat-  

e ra l .  

De.K^.n-t.fri.on 7 :  A quadr i la te ra l  ABCD is  sa id  t o  be a Bow-Tie quad- 

r i l a t e r a l  i f  there  ex i s t s  a point P (not necessari ly ins ide  the quadri- 

l a t e r a l )  such t h a t  PBC and PDA a re  s imi lar ly  oriented equ i l a t e r a l  tri- 

angles, whose in t e r io r s  do not i n t e r sec t .  See Figure 1. 

Figure 1 . 
We prove some basic theorems about t h i s  quadr i la te ra l  and then A 

invest igate some in teres t ing  generalizations. 

** Two t r iangles  a re  concentric i f  they have the  same circumcenter. 



Theohm 1 .  The equilateral triangles PBC and PDA are congruent 

i f  and only i f  the  bow-tie quadrilateral ABCD i s  an isosceles trapezoid. 

Proof. I f  the  triangles are congruent, we have AD = BC and angle 

DAB = angle CBA because triangle PAB i s  isosceles. See Figure 1. Be- 

cause the  sides AD and BC are equal and the  base angles a t  A and B are 

equal, it follows that the opposite sides AB and DC are parallel. The 

converse follows readily from the  symmetry o f  an isosceles trapezoid. 

Theohem 2 .  The diagonals o f  a bow-tie quadrilateral are equal and 

meet at  an angle o f  ir/3. 

Proof. Since PB =PC and PD = PA, a rotation about P through 

angle ir/3 carries triangle PBD t o  PCA. See Figure 2 .  The theorem 

follows . 

Figure 2 

Thfc~hm 3.  I f  similarly-oriented equilateral triangles QBD and 

RCA are erected on the diagonals BD and AC o f  bow-tie quadrilateral 

ABCD , then PQR i s  an equilateral triangle. 

Proof. The rotation about P through angle ir/3 carries BD t o  AC, 

so it carries triangle QBD t o  RCA, as shown i n  Figure 2. Since it also 

maps PB t o  PC, it maps trianglePBQto PCR. Hence, PQ =PR and angle 

QPR = ir/3, so triangle PQR i s  equilateral. .. - -  -- 

The0^em 4.  Point P ,  along with the  midpoints M o f  diagonal DB 

and S o f  diagonal AC, form an equilateral triangle. 

Proof. Triangle PMS i s  equilateral because the  rotation about P 

through angle ir/3 carries BD t o  AC; hence it carries M t o  S. See Figure2. 

T h ~ o h m  5. I f  M I ,  M 2 ,  M ,  and M are the midpoints o f  the sides 

AB, BC, CD, and DA o f  bow-tie quadrilateral ABCD, then triangles MlM2M3 

and M 3 4 1  M M are congruent equilateral triangles. 

J. 

Figure 3 

Proof. Refer t o  Figure 3. From triangle DAC we see that M4M3 i s  

half  o f  and parallel t o  AC. Similarly, Mpl i s  half  o f  and parallel t o  

BD, so that  M , + M  = M 4 M  and angle M3M& = ir/3. 

Theohem 6 .  Erect similarly-oriented triangles RAC and QAB on d i -  

agonal AC and side AB of  bow-tie quadrilateral ABCD . Then DQR i s  an 

equilateral triangle congruent t o  PBC. 

Proof. The rotation about point A through angle ir/3 carries tri- 

angle ABC t o  AQR and triangle APB t o  ADQ. Thus it carries triangle PBC? 

t o  DQR, as shown i n  Figure 4. 



Figure 4 

Thtoiem 7. If counterclockwise equi la tera l  t r iangles  ABQ, CDR, 

and DSA a re  constructed on s ides& CD, and DA of counterclockwise bow- 

t i e  quadr i la te ra l  ABCD, then t r i ang le  QSR is  equi la tera l .  Furthermore, 

t r i ang le  QSR i s  homothetic* t o  t r i ang le  M4M1M3 of theorem 5, with r a t i o  

2:1 and center  P. 

Proof. The ro ta t ion  about D through angle m / 3  ca r r i e s  t r i ang le  

DAR t o  DPC, so AH =PC . See Figure 5. It follows t h a t  AR and PB a r e  

equal and para l le l .  Hence, PR and AB bisec t  one another a t  Mi. Similar- 

ly ,  PQ and DC bisec t  each other a t  M3. Because APDS is a rhombus, 

PS and DA b isec t  each other a t  M4. Thus P is  the  center  of the  homothety 

of r a t i o  2 : l  t h a t  ca r r i e s  MlM3M4 t o  RQS. 

* If corresponding s ides  of 2 s imilar  polygons a r e  pa ra l l e l ,  t he  2 poly- 

gons a r e  said t o  be s imi lar ly  placed o r  homothetic. 

Figure 5 

T h e o m  S. If counterclockwise equi la tera l  t r iangles  GAB and FCD 

a r e  erected on s i d e s  AB and CD of counterclockwise bow-tie quadr i la te ra l  

ABCD , then these t r iangles  have t h e  same circumcenter.* 

Proof. We use complex coordinates, a s  G i n  Figure 6. Taking t h e  

Figure 6 v 
* This theorem i s  problem E 2866, f 



or ig in  a t  P, point D with a f f i x  d, point B with a f f i x  b, and l e t t i n g  

u = c i s ( d 3 ) .  Then, a = du and a = bu. Now g = a  + (b  -a)u = du + 
(b - dub, and f = c + (d  - c )u  = bu + (d  - bu) u .  The centroid of 
t r i ang le  ABG has a f f i x  

since (11 - uL = 1. The centroid of triangleCDFhas the  a f f i x  

and the  theorem is  established. 

We have by no means exhausted t h e  propert ies of the bow-tie quad- 

r i l a t e r a l .  Surely, t he  reader w i l l  be able t o  add a few of h i s  own. Be- 
fore  leaving t h i s  quadr i la te ra l ,  it is in teres t ing  t o  note t ha t  i f  the  

2 equ i l a t e r a l  t r iangles ,  PBC,PDA a r e  drawn so  t h e i r  i n t e r io r s  in tersec t ,  

we have a "western s ty l e v  bow t i e ,  the  simple quadr i la te ra l  DACE . See 
Figure 7. The previously proved theorems w i l l  hold f o r  t h i s  quadri lat-  

eral .* Thus, f o r  example, where before we had the  diagonals equal, we 

now have equal s ides  AC = BD. 

Of the  many possible generalizations, we out l ine  the case of s i m i -  

l a r  isosceles t r iangles  PBC and PDA. Thus we replace " equi la tera l  tri- 

angles" by " s i m i l a r  isosceles t r iangles  having t h e i r  apex angles a t  P" 
i n  Definition 1 and the  theorems t h a t  follow. Theorem 1 and i ts  proof 

a r e  still valid.  

Theorem 2 generalizes thus: A simple quadr i la te ra l  ABCD has equal 

diagonals i f  and only i f  there  is a point P such tha t  t r iangles  PBC and 

PDA ace d i r ec t ly  s i m i l a r  and isosceles.  I f   ID/^ i s  replaced by the mea- 

sure of the  apex angle of t r i ang le  PDA , the  s ta ted  proof of theorem 2 

holds fo r  t h i s  generalization, so we need only prove the  converse part .  

So, assume t h a t  t he  diagonals AC and BD a r e  equal and l e t  the perpendicu- 

l a r  b isec tors  of s ides  AD and BC meet a t  a point P. Draw PA, PB, PC, 

and PD. Then t r i ang le  APC is congruent t o  DPB by s.s.s., so angle APC = 
angle DPB and angle APD = angle CPB. Hence the  isosceles t r iangles  APD 

and BPC a re  s i m i l a r .  

For Theorem 3 general izat ion we require only t h a t  t r iangles  QBD 

and RCA be d i r ec t ly  s i m i l a r .  Then, l e t t i n g  the  ro t a t i on  be through the  

apex angle of t r i ang le  PDA, the  s t a t ed  proof then shows t h a t  t r i ang le  

PQR is d i r ec t ly  s imi lar  t o  PDA. 

Generalized Theorem 4 has t he  conclusion tha t  t r i ang le  PUS i s  

P similar  t o  PDA. 

The conclusion t o  generalized Theorem 5 is tha t  t r iangles  M,M,U3 
and M2M3M1 are d i r ec t ly  similar t o  t r i ang le  PDA. 

For t he  Theorem 6 general izat ion we l e t  RAC and @B be d i r ec t ly  

s i m i l a r  t o  PBC. The proof then shows t r i ang le  DQR d i r ec t ly  s i m i l a r  t o  

PBC when the  ro ta t ions  a r e  changed t o  rotation-homotheties through the  

base angle of t r i ang le  PDA and of r a t i o  PA/DA. 

The res ta ted  Theorem 7 requires t ha t  t r i ang le s  RCD, QAB, and SAD 

be d i r ec t ly  similar  t o  t r iangle  PDA. Then t r i ang le  SRQ is  homothetic 

t o  MJSlM3 with r a t i o  2: l  and center  P and d i r ec t ly  s i m i l a r  t o  PDA. 

An appropriate general izat ion f o r  Theorem 8 s t a t e s :  I f  PDA and 

PBC a r e  d i r ec t ly  s i m i l a r  isosceles t r iangles  with apex angles a t  P and 
A of measure u, then the  d i r ec t ly  s i m i l a r  isosceles t r iangles  of apex 

angle I T- I D ,  erected on AB and CD and oriented the  same a s  PDA share a 

common apex vertex. A 

The theorem is seen t o  be self- inverse and Theorem 8 is  the  spe- 
Figure 7 

c i a 1  case where u = r/3. To prove the  theorem, note t h a t  t he  ro t a t i on  
* See "The Equilic Quadri lateral" ,  Jack Garfunkel, Pi Mu Epsilon Journal, 
V0l. 7, No. 5, Fa l l  1981. 



about P through angle ID maps t r i ang le  PBD t o  PCA, a s  i n  Theorem 2. Let 

Q be the  point of in tersec t ion  of t he  perpendicular b isec tors  of s ides  

AB and CD. Then QA = QB, QC = QD, and, a s  we have seen already, A C = B D ,  

so  t r iangles  QCA and QDB a r e  d i r ec t ly  congruent. We a l s o  see t h a t  t he  

ro ta t ion  about Q through angle IT-ID maps t r i ang le  QCA t o  QDB. Hence, 

i sosce les  t r iangles  QAB and QCD have apex angles of measure IT-u . 
For a d i f f e r en t  general izat ion we now replace the  two equi la tera l  

t r iangles  hinged a t  t he  point P with two squares a l so  hinged a t  point P ,  

obtaining the  hexagon of Figure 8. It is in teres t ing  t o  see what proper- 

t i e s  of the  bow-tie quadr i la te ra l  car ry  over. 

'Oe<{-inition 2. I f  ABCD and AEFG a r e  s imi lar ly  oriented squares, 

then BCDEPG w i l l  be ca l led  a -. 
Theokem 9. Diagonals EB and DG of bow-tie hexagon BCDEPG a r e  

equal and perpendicular. The proof of t h i s  theorem is l e f t  t o  the  reader. 

D 

Figure 9 

It is  easy t o  check t h a t  the t h i rd  row is the  sum of the  f i r s t  two rows 

so  t h a t  M = 0, and the  theorem follows. 

Figure 8 

The0ke.m 10. The three main diagonals FC, EB, and DG of bow-tie 

hexagon BCDEFG a re  concurrent. 

Proof. Take t h e  or ig in  of t he  complex plane a t  A ,  a s  i n  Figure 9. 

Let G have the  a f f ix  g and D have the  a f f i x  d. Then e = fll, f = g  +g< 

b = di, and c = d  + d i .  Line DG has the  parametric equation 

3 = (g - d ) t  + d, BE has z = (g - d ) i t  + di ,  and PC has z = 

( g + g i  - d -  d i ) t  + d + d i =  (1A) [ ( g -  d ) t  + d l .  Nowthree l i n e s  

z = a k t  + b (k = 1,2,3) a r e  concurrent o r  a l l  pa ra l l e l  i f f  k 

Theo/iem 11. I f  i n  the  clockwise bow-tie hexagon BCDEFG, clockwise 

squares DESK and GBML are  dwawn, then these two squares have the  same 

center .  

? 
Proof. See Figure 10. Consider t he  bow-tie quadr i la te ra l  GEDB 

and apply the  Theorem 8 generalization. 

Theokm 1 2 .  The centers  of the squares ABCD and AGE'E and the 

midpoints of t he  s ides  ED and BG a r e  ver t ices  of a square. a 

Proof. See Figure 11. Theorem 5 generalized applied t o  GEDB 

establishes t h i s  r e su l t .  



Figure 1 1  

Theof i~ l  13. The centers G I ,  F' , and E' of similarly oriented 

squares GDUV, FCYZ, and EBWX erected on the diagonals GD, FC, and EB of 

bow-tie hexagon BCDEFG, together with point A ,  are vertices of a square. . .. - .  - 

Figure 12 

P r o o f .  See Figwe 12. That triangle A G v E f  is similar to AGE 

I follows from the Theorem 3 generalization. Now take the origin of the . 
complex plane at A. Let G and D have affixes g and d .  Then e = gi, 

b = d i ,  so that f =  g + g i ,  and a = d + d i .  Now, 

f - a =  f = k ( f  + y )  = h ( g  + g i  + d + d i  + i [ ( d  + d i )  - ( g  + gi)] 
= k ( g + g i + d + d i , + d i - d - g i i g )  = g + d i .  

Since the squares EBWX and DUVG are congruent and parallel, 

g' - e' = d - e = d  - g i  = - i f i d  + g )  = - i ( f f  -a). 

Thus AF' and E'G' are equal and perpendicular, completing the proof that 

AG'F'E' is a square. Of course, if the orientation of the erected squares 



were reversed,  then t h e  diagonal GIE1 would have length equal  t o  BG, 

r a t h e r  than t o  ED. 

T h ~ ~ / i e m  14 .  The midpoints F1, E', and G1 of  t h e  t h r e e  main di-  

agonals FC, EB, and DG together  with po in t  A a r e  v e r t i c e s  of a square. 

Figure 13 

Proof. See Figure 13. This proof p a r a l l e l s  t h a t  of  Theorem 13  

a n d  is l e f t  f o r  t h e  pleasure of  t h e  reader .  

No attempt has been made t o  exhaust t h e  p roper t i es  of t h e  bow-tie 

hexagon. Furthermore t h e  reader  i s  i n v i t e d  t o  examine bow-tie polygons 

of more than 6 s ides .  Thus, f o r  example, i f  ins tead  of squares we use 

r e g u l a r  pentagons hinged a t  one po in t ,  a most i n t e r e s t i n g  octagon w i l l  

r e s u l t .  

We a r e  f u l l y  aware t h a t  t h e  theorems proved here can be general-  

ized  even f u r t h e r .  J u s t  a s  we need not  have e q u i l a t e r a l  t r i a n g l e s  i n  t h e  

bow-tie q u a d r i l a t e r a l ,  it is not  necessary t o  have squares i n  t h e  bow- 

t i e  hexagon. We could use s i m i l a r  rhombiinstead. Since t h i s  a r t i c l e  is 

intended a s  a sequel  t o  t h e  Equi l i c  Quadr i la te ra l ,  we have emphasized 

t h e  e q u i l a t e r a l  t r i a n g l e s  and squares. We have, however, included an ex- 

plana t ion  of how some of t h e  more general  theorems can be t rea ted .  

VARIATIONS ON THE AM-GM INEQUALITY 

Let xl, a ; ,  ... , xk  be p o s i t i v e  and not  a l l  equal. 

There a r e  two well-known ways of in te rpo la t ing  means between t h e  

a r i thmet ic  mean A = ( x  + ... + x )/k and t h e  geometric mean 
1 k 

G = ( x l x .  . . xk )'Ik. The l a t t e r  is  known t o  be l e s s  than t h e  former 

(G c A). The first i n t e r p o l a t i o n  is by power means, M , P r e a l ,  de- 

f i n e d  by M = [(a:: + . . . + X Z ) / ~ ] ~ ~ ~  . The number M increases with r P 
r [1] , and M = A ;  a l s o  l i m  ,^M = G. (This l a s t  r e s u l t  can be 

proved using c a l c u l u s . .  The M. c l e a r l y  c o n s t i t u t e  a continuous s e t  of r 
means, homogeneous of  degree 1. 

Another s e t  of  means t h a t  i n t e r p o l a t e s  between A and G is t h e  s e t  

of Maclaurin means. These a r e  A = L 
1' 

The i n e q u a l i t i e s  L > L2 > ... > Lk ( k > l )  a r e  proved i n  [l]; 
2 2 t h e  f i r s t  one can be proved by showing t h a t  Ll - L2 is a sum o f  squares. 

( S t a r t  with t h e  cases  k = 2,3.) 

The Maclaurin means a r e  based on t h e  elementary symmetric func- 

t ions ;  c l e a r l y  they a r e  defined only f o r  i n t e g r a l  values of  t h e  para- 

meter r. 
Can we i n t e r p o l a t e  means continuously between Ll and L2 ? O f  

course we can! Linear i n t e r p o l a t i o n  w i l l  work; but is t h e r e  something 

more d e l i c a t e ?  To i n t e r p o l a t e  between L (which is  based on t h e  first 
1 

elementary symmetric func t ion)  and L2 ( which is  based on x1x2 + xlx3 + 
... 1, l e t  u s  t r y  



L1+â takes t he  value Ll when E = 0, and the  value L when e = 1. Also 2 

L, ( l i k e  a l l  the  other  means) takes the  value x when x, = x2 = ... = 

xk = x, and f i na l l y ,  because of  the  exponent l / ( l + e ) ,  L, i s  homogen- 

eous of degree 1: 

( I  have t o  remark t h a t  i f  two "means" a re  homogeneous of d i f f e r en t  de- 

grees, they cannot be comparable--an inequali ty between them cannot 

subsist :  t h e i r  r a t i o  is  >l a s  the  var iab les  approach 0, - .) 
You can probably i n f e r  t h a t  we a r e  going t o  define L2+â (0  <â‚¬-& 

by means of the  formula 

Now t h e  t e s t :  have we interpolated? It  can be proved [2] t h a t  i f  

0 < e <  1 , these  newly invented means do s a t i s f y  L > L  
1 1+eY '2 > L2+e5 

. , Lk_- > It is  even t rue  t h a t  > Lk = G. But alas!  

i f  k >2,  t he  inequal i ty  Ll+â > L2 is  not va l i d  f o r  every choice of xl,x2, 

. . . , xk : t he  means L1+â‚ L2 a r e  n s  comparable i f  k > 2. I n  pa r t i cu l a r ,  

i f  E = 1/2, x = x = 1, x = 0.25, then L = 0.721, LltE - - LlS5 = 0.698, 

L = 0.707, L = 0.64, L = G = 0.63. 
2.5 3 

Herman P. Robinson, a r e t i r e d  phys ic i s t  with a home computer, cal-  

culated L1+â‚ L2+â , f o r  a range of values of {x l and of e . H i s  calcu- 1 
la t i ons  suggest t h a t  t he  inequali ty L > L2+â always holds. I think 

I can prove t h i s  when e > 0. This suggests t h a t  many na tura l ,  in te res t-  

ing inequal i t ies  remain t o  be discovered by you, the  reader. The ed i tor  

helped me t o  discover the l a s t  one, by questioning one of my asser t ions .  

Ed-L-to~'b Note.: The. JOWLMJL w o u M  be. -t.n-tefl.fc~-ted i n  6uAthe~ fifcAaU& 

along t h u e  tmu, Â¥~i-tude.iv me. encowaged t o  bend thWi thoughtfi, 

conjeatu.nu and p a p w .  
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PUZZLE S E C T I O N  

Edi ted by 

Oav-td B&w 

This Department i s  for the enjoyment o f those  readers who are 
addicted t o  working crossword puzzIss or who find an occasional mathe- 
matical puzzle attractive. We consider mathematical puzzles t o  be prob- 
lems whose solutions consist of answers immediately recognizable as 
coweot by simple observation and requiring l i t t l e  formal proof. Materid 
submitted and not used here w i l l  be sent to the Problems Editor i f  deemed 
appvoppiate for that Department. 

Address a l l  proposed puzzles and puzzle solutions t o  David Ballm, 
Editor o f  the P i  Mu Epsilon Journal, Department of Mathematical Sciences, 
South Dakota School of Mines and Technology, Rapid City, South Dakota, 
57701. Deadlines for puzzles appearing i n  the Fail issue will be the 
next February 15, and for puzzles appearing i n  the Spring Issue will be 
the next September 15. 

Mathacrostic No. 15 

SubmLU.ed by Jobeph V .  E,  Konhouhm 

Macu.teb-tm CokYege., S t .  P a d ,  H i n n u o t a  

Like the  preceding puzzles, t h i s  puzzle (on the  following two 

pages) is a keyed anagram. The 267 l e t t e r s  t o  be entered i n  the  diagram 

i n  the  numbered spaces w i l l  be i den t i ca l  with those i n  the  29 keyed words 

a t  matching numbers, and t he  key numbers have been entered i n  the  diagram 

t o  a s s i s t  i n  construct ing your solut ion.  When completed, the  i n i t i a l  

l e t t e r s  w i l l  give a famous author and t he  t i t l e  of h i s  book; the  diagram 

w i l l  be a quotation from t h a t  book. (See an example solut ion i n  t he  

solut ions sec t ion  of  t h i s  Department.) 



Definitions 

A. American mathematician (1773-1838), 
title hero of Horatio Alger's "Nat 
the Navigator" 

B. black lustrous asphalt occurring 
especially in Utah 

C- "wild" structure equivalent to the 
surface of a ball but not bounding 
a simply-connected region (2 wds.) 

D. Walter Winchell's wish to his 
listeners, * - of love. " 

E. show high spirits 

F. movement of an organism in response 
to the flow of a current 

G. folk epigraph 

H. antiquated synonym for proper 
divisor (2 wds.) 

I. ointment 

K. North American tree with aromatic 
bark 

L. slender and pointed 

M. in 1819 he (1781-1848) published a 
treatise on the kaleidoscope 

N. enzyme catalyst in conversion of 
sucrose to glucose and fructose 

0. reciprocal of the cube 

P. one interpretation of Einstein's 
statement " ~ o t t  wiirfelt nicht" to 
Bohrwhen rejecting quantum theory 

Words 

(5 was.) ------ 
255 136 10 205 225 194 

Q. inflammation of the nasal mucous 
membranes 251 19 107 173 200 155 81 53 

R. throwback - - - - - - - 
133 86 66 207 235 29 120 

S. a of E , W s  1960 lithograph f R ? /- c T d L fft -a- 
Ascending and Descending" and 1 0 162 78 127 211 199 39 148 5 169 61 16 

1961 lithograph "Waterfall" 
(2 wds.) 1 lL^- 

258 223 182 267 
T. now extinct grouse of the north- 

eastern United States (2 wds.) 254 191126 217 51 102 156 176 

U. of a mapping if distinct elements 
map into distinct elements 160 76 116 189 139 28 129 202 248 

v. most eminent 19th century Russian c 1 $ < 4 % v 
mathematician (1821-1894) 241 1 93 210 171 108 213 150 38 

W. otEioStes, "watcher of the bear" - - - - - - - - 
15 192 177 229 57 84 159 237 

X. "Contemporary theory of measure 
still dances to s (1875- 142 184 49 103 32 222 131 115 
1941) tunes," M. z, 1965 

Y. finite in area, infinite in length, 
nowhere differentiable (2 wds.) 105 27 13 149 228 132 43 97 252 193 265 168 

2 .  fundamental entity in the universe 
of Roger Penrose 201 238 111 249 167 37 69 -- 

74 261 
a. constellation between the hunting 

dogs, Canis Minor and Canis Major 24 224 166 71 100 54 244 
b. trash can (British) ------- 

174 117 138 212 33 52 243 
c. abominable snowman ---- 

50 215 186 70 



SOLUTIONS 

Ma-tfiac~ob-tLc No. 14. (See Spring 1982 issue) (Pmpobed by Jo~eph V. E. 

Konhaub er.1 

Definitions and Key: 

A. Inchworm H.  synkaryon 0. Arrows theorem V. Throwing s t i ck  
B. Lily-white I. Polya P. Null W. Aida 
C. Athwart J. Rin-tin-tin Q. Dichotomy X. The two eyes 
D. Klein Bott le  K. Otherwise R. Rarnanujan Y. Id io t  savant 
E. Analytic L. Out-of-the-way S. En s u i t e  Z. Odyssey 
F. Thorny M. Funicular T. F i f ty- f i f ty  a.  Nightshade 
G. Obnubilate N. Swatch U. Union s u i t  b. Shroud 

F i r s t  Letters  : I. Lakatos Proofs and Refutations 

Quotation: 1fi you want to know the. nofund heoAtfiy body, AW it when 

Jit 164 abnowot, h e n  Jit 164 WL. lf, you want t o  know ((unc-tcon~, AMY 
A%& AingutetL-fct .~.  I f ,  you wnt t o  know o/icLinaAU po&heduo., b&.dy A%& 
.toia-fccc ((hinge. Tfcc6 164 how one can c w  Ãˆna^ie.ma-tta anaiÂ£y~16 'w to  

-the v e ~ y  him/it of,  -the. bubject. 

S0f.ve.d by: Jeanette Bickley , Webster Groves High School, Missouri; Pat 

Coil i e r  and Bob Priel  ipp, University of Wisconsin-Oshkosh; Victor Feser, 

Mary College, Bismark; Robert Gebhardt, New Jersey; Theodor Kaufman, 

Brooklyn; Roger Kuehl, Kansas City; Henry S. Lieberman, John Hancock 

Mutual; 0. C. Pfaff ,  University of Nevada, Reno; S i s t e r  Stephanie Sloyan, 

Georgian Court College; Pa t r ic ia  and Allan Tuchman, University of I l l i n o i s ;  

The Proposer and The Editor. 

THE 1982 MEETING 

IN TORONTO 

The Program fo r  the 1982 Meeting of the PI MU EPSILON FRATERNIT 

was held a t  the University of Toronto on August 21 through 26 of 1982. 

Schu.eJU.er. 
Ohio Xt. 

The program included: 

Fowca'd and Backward Eigenvalues 

YoungA.toWn State Unive~~ . tA /  

App?ication of the Golden Number 
t o  Fibonacci Algebra 

The Influence of the Math Meet on 
Recruiting 

The Volume of the N-Dimensional 
Sphere 

A Mathematical Model for Paired- 
Associate teaming 

An Analysis of Monopoly Strategies 

Population Competition and Crop 
Yield 

Approximating Partial Sums of 
the Harmonic Series 

Application of Stochastic Contrd 
t o  Battle field Replacements 

Effects of A i r  Pollution on 
Pulmonary Functions of Childpen 

Duane Cooper. 
Geohgh 'Delta. 
A-ttenta u n i v m m  Ceder. 

MoA-ca spe-t&eAAA 
South Cm~oLuw. Gamma 
CoU.v.ge of, ChcUttuton 

VOJN Ann CeJS.e.wtano 
Nw JWiey Ep-t^on 
S t .  Pe-Cer. '~ CoUege 

Thorn C h n i e r .  and Cathif VancUoml 
No& C m L i n a .  'Delta. 
E a t  CahoLina UiwwiiAy 

Donna. Foftd 
OK0 D&Ua. 
WiomL uwwWJity 

KOAAJM K .  Ca/ttm 
A/tkanAaA G m  
Univuili-ity o fi h k a n h a ,  Pine Bf.uG 

An&w Stump f i  f, 
M.iAA0uA-t. BeAl 
Wahi.ngton UnivwiJity 

'Debonah Penned 
Mowtana. Alpha 
UluMwi-Lty of, Montana 

A Geometric Analysis of the Relative A&UA W .  Hit.(?f,Lin 
Sizes of Classical Orthogonal lWLno164 ViUa. 
Polynomials Southem IUJLno164 U n i v ~ i i & i  at 

CatbondcLie 



The Stone - Cecil Compactification CfeALA-Copheh W t a W n  
i n  the Structure Space of a C ~ o t n L a  Ep~-t-Â£o 
Distributive Lattice Pomona C o U e g e  

A Mathematical Approach t o  Improving Joan H a h t  
!ow Backgammon Sk i l l s  Ohio Del ta .  

MOUIM. Univm-tA/  

Estimating the Inclusion Radius of WUJLuvm S o m k y  
Polynomial Zeros Iowa M p h a  

Iowa. S t a t e  u n i v m m  

Creating Kaleidoscopes 

A Derivation o f  a Fifth Order 
Predictor - Corrector Method 

Computer Graphics i n  Numerical 
Analysis 

Peppermint Patty's Dilemma -- 
Math Anxiety 

Love and Psycho-Mathematics 

Investigations o f  Maxfieldrs 
Theorem 

Alternative Tic-Tac-Toes 

M m y  Anne BAorneATieLe~ 
Ohio velta. 
VJiemL U m u m ^ y  

El-ec V .  S-tu-tz 
N e w  J m e y  Gamma 
R u - t g m  U n i v m - L t y ,  Camden 

VanieJL John P i m e  
1SUm.no-ik EpHJLon 
N o v t h m  W n o h  U w i v m U y  

V.ch0A.d PovteA 
New J m e y  BeAl 
Voug^A6b CoUe-ge 

L a m  Soudh.md 
Okf-ahom Alpha. 
U n i v m ' u t y  06 Oklahoma. 

The J. Sutherland Frame Lecture was given by P t o d e i b o t  1bh~e-C 

H@&n and entitled "The Changing Face of Mathematicsv. 

This publication 
is available in microform. 

University Microfilms International 
Ol'tttfl&rtBa*d r-f"PÃ t w Â ¥ Ã § r ^ W  "&A 

CHAPTER REPORTS 

ARKANSAS BETA (Hendrix College) The Undergraduate Research Program was 

again very active; the members attended the Mid-South Mathematics Colloq- 

uium at Memphis State, The Oklahoma/Arkansas MAA Meeting, and the Annual" 

Hendrix-Sewanee-Southwester Math Symposium. 

The McHenry-Lane Freshman Award was given to K h  W e y ;  The Hogan 

Senior Mathematics Award was shared by J m y   coke^ and C w l !  Smi th;  The 

Phil l ip Parker Undergraduate Research Award was presented to CaAot Sm^th. 

The Chapter heard the following papers: "A Report on the Summer 

Meetings i n  Pittsburg", b y  Ccuiol Smi th;  "Logic out of Topology I f ,  b y  V t .  

Zeev BCUtd; "Some Ways t o  Finesse a Computer, Though Not a t  Bridgen, b y  

Paan John M U ;  "Mathematics i n  the His toq of Philosophy", b y  V t .  John 

ChuJufluJUL; "The Anatomy of Computer Science", b y  V t .  C a ~ o l !  Z i e g l a ,  Univ. 

of Arkansas at Little Rock; IrHidden Musical Numbers and. the Music of the 

Spheres: The Relationship Between Mathematics and Music i n  the R e m i s s-  

once", b y  V t .  David Tag&& "Program HIPLOT: High Resolution Plotting on 

the Comdore Printer", b y  T h  Be&; "Mathematical Modeling and the Wine 

Cellar", b y  V& UeAiLdLLth; '"The Evaluation of Travel Time: An Example 

i n  the Application of Queuing Theory", b y  Wade. Nixon; ''Taxicab Relativity", 

b y  Ben Schwnache~;  "The Past and Present Employment and Graduate School 

Status for Hendrix Mathematics Graduates", b y  V t .  C e c i l  M c V ~ o t t ;  "Econo- 

mist or Computers?", 'On.. Thomas Fomby, Southern Methodist University; 

"The Axioms for a Group", Vh.  B v w a t d  MadJukon, University of Arkansas; 

"Computer Simulation of a Markov Chain", b y  JeWiy CokeA; "Geodesics on 

Surfaces; A BASIC Approachrr, b y  Benjamin S c h m c h e A ;  "Lines i n  a Metric 

Space", b y  Civiol Smi th .  

FLORIDA EPSILON (University of South Florida) The Chapter paper present- 

ations included: rrEgyptian Fractions", b y  ' O ~ b ~ / i a h  uo f̂ccA; "Information 

Theory for Those Who Don't Knew Any", b y  V t .  Jacob WoUoMJ^tz; "Circles, 

Squares and Lattics", b y  V t .  F u n k  C h v e A  (Chapter Advisor) ; "Some 

Algebras of Differential Operators--From Euclidean Geometry t o  Electro- 

magnetism", b y  V t .  E t n U t  ThLeJLekeA; "Doing Calculus with I n f i n i t e s i d s " ,  

b y  V t .  R o w  P d k h  of Boston University; "Maya Arithmetic", b y  V^.U%A 

hean, "Age Dependent Population Models", b y  V t .  G lenn  Webb of Vanderbilt 

University; "Environmental Mathematics", b y  Vh.  Ben FUAOAO of the Univ. 



of Florida in Gainesville; "Voyager I Views Saturn", b y  Dll. Jobeph C c W i ;  
3 "The Integration of See x dx", b y  l i l ichael  WaUoga; "The QR Algorithm for 

Finding Eigenvalues", b y  hkV~k B&eh of the University of Florida; "Buff- 

man Enfolding", b y  Van  S h a p e  of Valdosta State College; "Perfect and 
Duffinian Numbers", b y  Jobe  S&ote; "Creativity i n  Mathematics", b y  Vh .  

W g h t  Benjamin Goodness "Some Aspects of Fibonacci Numbers" b y  CAfl-cg 

Hubbahd; and "Stonehenge and the Views of Saturn" b y  Jobeph C W .  

The Chapter attended the Mathematical Association of America Meeting 

at Bethune-Cookman College. 

CAAcg Hubbahd won the Award as The Outstanding Scholar o f  P i  Mu 

Epsilon f o r  1981. 

ILLINOIS ALPHA (Universi ty  o f  I 1  1 i n o i s )  heard "Pegboard Solitairetf  b y  

PhO{^. Hugh L. Montgommj of the University of Michigan and "The Vibrating 

String Controversy" b y  Ph06. H e h i  H d b e ~ ~ h m .  

IOWA ALPHA (Iowa State  Universi ty)  presented The Pi  Mu Epsilon Scholar- 
ship Award to lUAk P h u h  and Michael  Kaba^a, The Outstanding Achievement 

Award to WWLLam Som&ky, and The Dio Lewis Awards to B a b m  Ru^ and 

Stwen S i d a .  Other Departmental awards were: The Gertrude Herr  Adamson 

Awards f o r  Demonstrated Ingenuity i n  Mathematics were given to W-UUL-Lam 
S o m k y ,  Pam& Shiuui, A U e n  F q u h a h ,  Ku/itL& Ruby, NazanLn ImanL, Fhed 

A d a m ,  and P M p  McKinley; The Marian Daniels Memorial Scholarships were 

presented to W i k X a m  So-, S t w w  Seda,  NazanLn Imam., Bonnie. W&eh ,  
Fhed A d a m ,  U n d a  P a t k u  and S t e v e n  h e e d .  

The Chapter heard the following papers: "Group Theory and the Size 
of Animals" b y  Phil{^. Jame.4 MuAdock and "The History and Strategy of Mono- 

polyM b y  P /w f .  I h v h  H W t z e l .  

MINNESOTA EPSILON (S t .  Cloud Sta te  Universi ty)  had programs consisting 

of: "'Problem Solving Strategies i n  Mathematics" b y  PA. Rob& EaAi.w 
"Some Ideas about Metric Spaces" and "Son-standard Metrics on the Cantor 

Setv  b y  Vh.  Haloid MaAtin; "Job Placement i n  the Mathematical Sciencesv 

b y  WOU.VA. L m o n ;  "The Alabama Paradox: A Serious Game of  Musical Chairs" 

b y  R d p h  Ciwi;  %wnds i n  the Information Sciences" b y  S u b i e  B. K g & ;  

"What i s  an Actuary?" b y  Vh .  Lo& F-UedLm of the College of St. Scholas- 
tics; Wcroprocessor Based Product Design" b y  Oh. Rob& W .  Johnlion; 

"Continued Fractions" b y  M a k  A n d w o n ;  and several students spoke about 

their experiences interning in the twin cities area. Further, the Chapter 

sponsored an area high school mathematics contest that attracted 1600 

high school students. 

MINNESOTA DELTA (Sa in t  John's Unversity) sponsored a Regional Pi Mu 

Epsilon Conference in April of 1982. This coincided with the Spring 

Meeting of the North Central Section of the MAA. The featured speaker 

was Vh .  A. B. W . ~ & O X  who presented "Mathematics: Where i s  it Going?". 

MINNESOTA ZETA (Sa in t  Mary's College) heard V h .  Richahd J a v h e n  speak 

on "What i s  the Future of Core Mathematics? Where i s  the Balance Between 

Traditional flathematics and the N e w  Areas?"; B a h b m  Buhn discuss "An 

Introduction t o  Stabili ty Theory"; and R o n d d  Kanuio&U. on "Mathematical 

Models of Epidemics". 

MONTANA BETA (Montana State  Universi ty)  held three meetings at which were 

given the following talks: "The Less Well-Known Metlwds (Legal and IZ- 

legal) to do Operations and t o  Solve Equations i n  Arithmetic and Algebra", 

b y  AdMien Hub; "Women i n  Mathematics" b y  Vh .  Byhon M c m - t e A ;  and 

"Mathematical Magicv b y  Oh. J ean  Abe l .  

NEW JERSEY EPSILON (Sa in t  Pe ter 's  Col 1 ege) sponsored a panel discussion 

on careers: "What Can You Do With a Major i n  Mathematics and/or Computer 

Science?", with participants VomJLd Bunda, VawLsJL Cue, Thomas Muhphy and 
Jan& Seaman SuLLivan.  Other presentations included: "A Mathematical 

Model, for Paired-Associate Learningrr b y  Vohe  Ann Ce^.enta.no; "Simpson's 

'Paradox" b y  Pho<. P u p  AmbAobhzL; and "Some Remarkable M e w  Sphere 

Packings" b y  Vh .  M e ^ Â  .%bane of Bell Laboratories. 

NEW JERSEY THETA (Trenton State  College) heard PA. Ec&uoAd Conjtuia and 

heard Vh.  Ŝ .eĝ /u.ed H a d c h  on "A History of the Organization" at the 

Annual Induction Ceremony. 

NEW YORK OMEGA (Sa in t  Bonaventure Universi ty)  The Chapter held six btis- 

iness meetings and presented the following three programs: "Can Ckrysler 

Survive? -- With the Help of Calculusrr b y  P/w{^. PluJUp Chuhch of Syracuse 



University; "Infinite Cardinal Numbers -- Hm t o  Count Past Infinity r

f 

b y  
Pko i ( e . 4~0~  Voug&iA Cafc-cng; and presented The P i  Mu Epsilon Award t o  

VaJLoJULe HeeXeh. 

NEW YORK PHI (SUNY a t  Potsdam) had a very ac t ive  year with a fund-raising 

r a f f l e ,  several  open houses, pa r t i e s  and other events. The Chapter heard 

PA.. S t e p h a  speak on "A Successful Mathematics Frogram" and presented 

The Pi  Mu Epsilon Awards t o  Nancy O(^ ia .ge~  and L y c h  H m f g .  

PENNSYLVANIA NU ( Edi nboro State  Col 1 ege) sponsored Open Houses, pa r t i e s  

and the  program "Fibonacci Numbers" b y  VA. R-cckahd R e a e .  

NEW YORK ALPHA ALPHA (CUNY-Queen ' s College) heard "The Sometimes Terrible 

Consequences o f  Being a Math Major" b y  Vh. W n  Btaun; "Professional 

Gpportunities i n  Actuariaz Mathematics

f

r b y  PA. Oh& Ltnden of t he  Home 

Insurance Company; and "Euclid Revisited: A N e w  Look a t  Some Simple 
Geometric Constructions". S idney  G o t t a m a n  was the rec ip ient  of The P i  
Mu Epsilon P r i z e  For Excellence i n  Mathematics. 

OHIO DELTA (Miami Universi ty)  began i ts  a c t i v i t i e s  with the  P i  Mu Epsilon 

Eight Annual Student Conference. Nineteen students including ten Miami 

students contributed papers t o  t he  Conference. During the remainder of 

the  year the  Chapter heard the  following papers and ta lks :  flfSultipZe 

Comparisons and Model Selection" b y  Vh.  Bababhcu. Pcutel; "Fowier Series 
and Boundcay Value 'Problems" b y  PA. Thorn Beng-t&on; "Games for the Holiday 

Season" b y  Vh .  Richaitd Laatlich; and "Issues and Trends i n  School Mathe- 

m t i o s  (1890-1980) b y  VA. Ron Hfl~ fe - tWi .  Further, the Chapter sponsored 

a panel discussion on "What One Can Expect In Graduate School" with 

panel i s t s  V t ,  Edward Bolgek,  DR. Thoma Beng-taon, Vh. Rob& Schae@~,  
VA. Don& ByAfefc-fct, Michael Sermon, Be/tfi S n y d a  and Vh. Huneke. 

The Chapter sponsored the  Annual P i  Mu Epsilon Sophomore Mathematics 
Exami n a t i  On, an examination composed of ten calculus and l i nea r  algebra 

problems. The winners were Jann Cook and Lee Ann S h o t i e n b e h g e ~ .  The 

Chapter sponsored several  other a c t i v i t i e s  including f i lms and t a lk s  by 

former students who a re  now i n  industry. 

OHIO NU (Universi ty  o f  Akron) presented The Samuel Selby Mathematics Award 
t o  Sue Smith,  Yvonne Zubov.Lc, Tim Vav-cA, BAenda K m g m  and RohO^e HiebeÂ£ 
Other a c t i v i t i e s  included an award a t  the  Arkon Regional Science Fair ,  

help with the Ohio Council of Teachers of Mathematics Math Contest, W i e s  

and picnics.  The Chapter heard a panel discussion "Mathematics Beyond the 

Classroom II" and the  following t a lk s :  lfCryptography" b y  V I .  V .  FAadehkk 

Rickey  and "Some Historical Tibits" b y  PA. Kennvth. C d n & .  

The 1982-83 winners of the  Samuel Selby Mathematics Award w i l l  be 

Thoma Batafc-ck, Ken G o t i  and WWUwa L e n z o t t i .  Other t a l k s  included: 

Ifstalking the Gerryman&rU b y  D l .  PklUL Schim.dt; "History o f  ~athe&tics" 

b y  VA. Rob& C m o n ;  "Patterns & Mathematics" b y  VA. W k o  3egU.c. of 

the  University of Notre Dame; and "Research i n  Biomedical En&neeringfl 

b y  VA. Rob& H m o n .  

OHIO X I  (Youngstown State)  has t he  goal of a t  l e a s t  one speaker per 

quarter  and, hopefully, one per month. The Chapter has an ac t ive  program 

tutoring area high school students f o r  the  National MAA Mathematics Exam. 

OKLAHOMA GAMMA (Cameron Universi ty)  sponsored s i x  students i n  a Collegiate 

Mathematics Examination a t  t he  University of Texas a t  Arlington. The 

Chapter heard Judy T h o m ~ o n  on frChisombop: The Art of  Korean Finger 

Counting". 

SOUTH CAROLINA BETA (Clemson Universi ty)  sponsored a intramural so f tba l l  

team, a ski ing t r i p ,  a student delegate t o  t he  Southeast Regional Meeting 

of the  MAA, and a Science Day f o r  high school students. In  addit ion,  the  

Chapter heard: "The Boom i n  Micro- and. Mini- Computers" b y  VA. Ed Page; 

"Amazing MAZES" b y  VA. Doug S h h ;  "Job Interviews and Resumes" b y  LUCY 

Redclick; and "The Gamblerfs Ruin" b y  DR. JoeÂ ^ f iow i i y .  

SOUTH CAROLINA GAMMA (Col 1 ege o f  Char1 eston) sponsored the  programs : 

"Games an Graph" b y  J o e l  ^luawtey; "The Buffon Needle" b y  Fled MoAgm and 

J h  Reneke of Clemson University; and "A Modal of 'Probability

f

r b y  D l .  
Rob& NoA-ton. The Chapter fur ther  sponsored the  Fi f th  Annual Mathematics 

Meet, compiled a book of old departmental calculus f i n a l s  f o r  s a l e  t o  

students, and l o s t  t o  the  faculty i n  the  Annual Sof tba l l  Game. 



SOUTH DAKOTA BETA (South Dakota School o f  Mines and Technology) had a 
great year due to its fine Faculty Advisor. The Chapter heard talks by 

Dh. Ron (itegeh on "Extending Newton's Method": Jan& Po-fctA and Linda. P l o ~ e ~  
on llSununer Employment Opportunities", Debbie WentzvJL on "Algebra and 

Energy", CoUeen 2Uatieh on "Why Should a Mathematician Worry About 

CopywTi,te P ~ l i c y ? ~ ~ ;  Dean Mogck on "Newton's Method For Complex Variables": 

and B^ton B u n ~ n u 6  on "Programming the Khachiyan Algorithmrr. Further, 
the Chapter the Annual South Dakota Collegiate Mathematics Contest, helped 

sponsor the Western South Dakota High School Mathematics Contest, several 

open houses, picnics and parties. 

TEXAS BETA (Lamar Universi ty)  announces that Ghegoky V y u ~ ,  Gtemi Loupe, 
SaMsh Gu. idU and Chau Hinh Va,ng were winners in The Annual Homer Dennis 

Freshman Mathematics Contest. 

TEXAS DELTA (Stephen F. Austin State  Universi ty)  heard the following 

speakers: "Card Tricks and Latin Squares" by HamLd Bunch; "The Geometric 
Solution t o  the Quadratic Equation" by Doyle Aiexandeh; "Generalization 

i n  Mathematics" by R .  G. Dean; "What Numerical Analysts Do" by Thoma 
A-tc.feiCAon; rfSii)iss Cheese and Other Thingsr1 by Vh. W .  T. Guy of the Univer- 
sity of Texas; and "Inequaliti.es -- Some Methods of Attack, Fighting i n  

the Trenches, and Graceful Retreat". 

VIRGINIA GAMMA (James Madison Universi ty)  sponsored C m o l  N w i u M  who 
spoke on "Job Searching and Careers Related t o  Mathematicsw and three 

statistics talks given by Dh. HahoLd R d e h  of the University of North 
Carolina at Charlotte, Vh. Rob& m b e h  of North Carolina State University, 
and Dh. John. Made&? of the National Bureau of Standards. The Chapter 
presented The Outstanding Senior Mathematics Award to Steve  C o n t q .  

Is your Chapter's Report here? Why not? Send 

Chapter Reports to Dr. Richard Good, Dept. of 

Mathematics, University of Maryland, College 

Park, Maryland and to Dr. David Ballew, Dept. 

of Mathematical Sciences, SDSM&T, Rapid City, 
South Dakota 57701 

PROBLEM DEPARTMENT 

EcUted by Clayton hi. Dodge 
Univm' i t i f  0 6  Maine 

This department welcomes problems believed t o  be new and a t  a 

level  appropriate for the readers of th i s  journal. Old problems dis- 

playing novel and elegant methods of solution are also invited.  Pro- 

posals should be accompanied by solutions i f  available and by any in- 

formation that will ass i s t  the editor. An asterisk (*) preceding a 

problem number indicates that the proposer did not submit a solution. 

A l l  communications should be addressed t o  C. W.  Dodge, Math Dept., 

University of Maine, Orono, ME 04469. Please submit each proposal and 

solution on a separate sheet (one side onlg) properly identi f ied with 

name and address. Solutions t o  problems i n  t h i s  issue should be mailed 

by July 15, 1983. 

Problems f o r  Solution 

522. Phopo~ed by Ch& U .  T d g g ,  San Viego,  Ca.LL6ohMM.. 

Arrange nine consecutive digits in a 3-by-3 array so that each of 

the six three-digit integers in the columns (read downward) and rows is 

divisible by 17. 

523. Phopo~ed by Sta-nLey RabhwwJitt, Vig-c-taÂ EquLpment Cohp., 

M&ack, New Hmp~luAe .  
Let ABCD be a parallelogram. Erect directly similar right tri- 

angles ADE and FBA outwardly on sides AB and DA (so that angles ADE and 

FBA are right angles). Prove that CE and CF are perpendicular. 

524. Phopo~ed by M o d  Ko-tz, Macuiahoc, Maine. 
Solve this holiday alphametric for a real prime XMAS. 

MERRY 
m s  

DODGE 



obed by John M .  HoweJUL, L L W . e ~ v c k ,  CaLLfiowwt. 
An e q u i l a t e r a l  t r i a n g u l a r  prism is used a s  a d i e .  What must t h e  

r a t i o  of  s i d e s  be so  t h a t  t h e  p robabi l i ty  of  f a l l i n g  on a t r i a n g l e  i s  

t h e  same a s  f a l l i n g  on a rectangle? 

Solve t h i s  alphametric i n  base twelve, with apologies t o  J . A . H .  

Hunter. 

SUE 
EIGHT 
PUTTY 

Find t h e  volume o f  t h e  l a r g e s t  rectangular  para l le lep iped  with 

upper v e r t i c e s  on t h e  sur face  and lower v e r t i c e s  on t h e  xy-plane t h a t  
2  can be inscr ibed i n  t h e  e l l i p t i c  paraboloid 2 i~ = 2h - 2z .  

a2 b2 

528. Pkopobed b y  Aian Wayne, Pmco-He~.nando CommuniLty CoUege ,  
FtoiUda. 

In  the  s e t  of n a t u r a l  t r i a n g l e s ~ t h a t  is, t h e  s e t  of  t r i a n g l e s  

with s i d e  lengths t h a t  a r e  i n t e g e r s ~ c o n s i d e r ,  f o r  instance,  t h e  t r i o :  

(19. 24, 35). (15, 29, 34) and (14, 31, 33). Ca l l  t h i s  t r i o  a " size 

t r i p l e t " ,  because t h e  t h r e e  t r i a n g l e s  have t h e  same perimeter and t h e  

same a rea .  Since t h e  common a r e a  is  l e a s t ,  t h i s  is  t h e  smallest  s i z e  

t r i p l e t .  What is  t h e  next  l a r g e r  s i z e  t r i p l e t ?  

529. Piopobed by  Sto.nÂ£e Rahinouiitz, OigJUtsJf. EquLifiment Cowp., 
MwuJnack, New HampbluJte. 

Show t h a t  t h e r e  is no "universal f i e l d"  t h a t  contains  an isomor- 

phic image of  every f i n i t e  f i e l d .  

530. Plopobed by  Lean Bunko^, Lob Ang&teA, Ca^t.({owÃˆna 
In  t h e  accompanying diagram, AB f= 2 r )  i s  t h e  diameter of  c i r c l e  

( 0 )  and AC f= 2r ) t h e  diameter of  c i r c l e  fO1), D is  a po in t  on diameter 
1 

AC, and t h e  half-chord DQ perpendicular t o  AC c u t s  the  c i r c l e  ( 0  ) a t  P.  
1  

The c i r c l e s  ( W )  of r a d i u s  p1 and (Wp) o f  rad ius  p 2  a r e  tangent t o  

c i r c l e s  f0)and (0  and touch PQ on opposi te  s i d e s .  Show t h a t  1  

531 . Piopo.Aed by Rob& E. tte.ggLnbon, U d v m L t y  0 6  I i lL inoh .  

Prove, without using mathematical induct ion,  t h a t  

2 - 6 - 1 0 - 1 4 . . .  f4n - 2)  = (n  i 1) (n  + 2 )  ... f2n) .  

532. Pwvpobad by  M o m  Kcrfz, Macwa.hoc, M d n e  and C f e a A ^ e ~  W. 

Tkigg, Sun VLego, CaLL60fiWA. 
From a square g r i d  of  s i d e  1 7 , a l t e r n a t e  squares a r e  removed t o  

form a s ieve.  Dissect t h i s  s ieve  i n t o  fewer than a dozen pieces and 

reassemble them i n t o  a square of  s i d e  15.  See problem 491 [Spring 

1982, page 4211. 

533. Piopobed b y  V.O. Fan-tuA, Aie-xu*, Vh.gLWLO.. 

It is  known t h a t  cance l l ing  t h e  s i x e s  i n  t h e  proper f r a c t i o n  

16/64 y i e l d s  t h e  equivalent  f r a c t i o n  1 / 4  i n  lowest terms (problem E24, ., 
September 1933, The American Mathematical Monthly). Find o r  charac te r ize  

a l l  proper f rac t ions  having 3- dig i t  numerators and 3- digi t  denominators 

t h a t  reduce t o  lowest terms by cance l l ing  t h e  same d i g i t  from numerator 

and denominator. 



Solut ions 

498. [Fall 1981 1 Pxopobe.d by R.S. L&m, UÃˆM.vm^t 0 4  W^Acoit~in, 
JanebuJUULe. 

Find t h e  general  so lu t ion  o f  

3 x 3 + y  + % = I .  
Sot.uH.on by PeAcA Szabaga, WoodSiide, Nw Yoxk. 

3 The equation x + y3 + 3xy = 1 may be wr i t t en  a s  

3 2 2 3 2 2 f x  + 3x y + 3xy + y ) - f 3 x y  + 3xy - 3xy) - 1 = 0, o r  

f f x +  y)3 - 1) - 3 x y f f x +  y) - 1) = 0, 

which has x + y - 1 a s  a f a c t o r .  Then 

2 f f x +  y) - l ) f f x + y )  + f x  + y )  + 1 - 3xy) = 0, 

which reduces t o  t h e  two equations: 

2 ( l ) x + y  - 1 = 0 ,  o r  y = - x + 1 ;  (2 )  f x + y )  + ( x +  y) + 1  - 3xy = 0 ,  
2 which may be r e w r i t t e n  a s  y2  - f x  - l ) y  + fx + x + 1) = 0. This equa- 

t i o n  may be solved a s  a quadra t ic  i n  y :  

Ai&o hoivrd by JOHN M. HOWELL. HENRY S. LIEBERMAN. VINCENT A. 

MILLER. STANLEY RABINOWITZ. KENNETH M. WILKE. and the. PROPOSER. ~ i i  
-real so lu t ions ,  namely y = 1 - x and t h e  i s o l a t e d  po in t  (-1, -1). were 

found by VICTOR G. FESER. DAVID INY, DAVID E. PENNEY. and BOB PRIELIPP. 

The a r r a y  below is  defined by t h e  following proper t i es :  

i )  The e n t r i e s  a r e  d i s t i n c t  p o s i t i v e  in tegers .  

i i )  I n  each column, t h e  e n t r i e s  a r e  consecutive i n t e g e r s ,  top  t o  

bottom. 

i i i )  In  each row, each i n t e g e r  (except t h e  f i r s t  one, of  course)  

is a mul t ip le  of  t h e  i n t e g e r  a t  i ts  l e f t .  

1 7 511 

2 8 512 

3 9 513 

a )  Find a four th  column f o r  t h i s  a r ray .  

b )  Find t h e  minimal four th  column f o r  t h i s  a r r a y ,  and show 

it is  minimal. 

c )  Construct an a r r a y  of 4 rows and 4 columns with t h e  same- 

proper t i es .  Is it minimal? 

SoilJUtAJOn by W . C .  I g - t p ,  Vanbu/uf, Conne.cti.c.Uit. 
One poss ib le  four th  column is 134217727 

134217728 
134217729. 

Let A be t h e  f i r s t  number of t h e  four th  column. Then we must 

have AsO(mod 511). A + 1: O(mod 512). and A + 2 =  0(mod 513). 

This means t h a t  A 5 511(mod 511 ) a A: 5ll(mod 512), and A 5 511 

(mod 513). SoAs511(mod LCM(511, 512. 513) s511(mod 134217216). 

Then t h e  minimum n o n t r i v i a l  value of A i s  511 t 134217216 = 

134317727. 

Using t h e  same s t r a t e g y  a s  i n  p a r t  ( b ) ,  we l e t  A be t h e  f i r s t  

number i n  column 2 (where column 1 contains  1, 2. 3, and 4 ) .  

ThenAsO(mod l ) ,  A + l S O ( m o d  2). A + 2=0(mod 3 ) , A  + 3:O 
(mod 4 )  l ead  t o  A = 13 .  Then l e t  B be t h e  first number i n  

column 3. The same s t r a t e g y ,  appl ied again,  l eads  t o  B = 

21853. And, with C t h e  f i r s t  number i n  column 4 ,  we eventu- 

a l l y  f i n d  t h a t  

C s  21853(mod ~ C ~ ( 2 1 8 5 3 ,  21854, 21855. 21856)) 

5 2 
= 21853 + 2 x 3 x 5 x 72 x 1 3  x 31 x 41 x 47 x 223 x 683 

= 21853 + 114,060,035,298,125,280 

= 114,060,035,298,147,133. 

A^o &o{.ved by ROBERT C .  GEBHARDT, ROGER KUEHL. JEFF LOVELAND, 

BOB PRIELIPP. KENNETH M. WILKE, and t h e  PROPOSER. 

500. [fa1 1 1981 ] Pxopohed by Chuck U o n  and P e r f a  Chu, San 

Pedno, C ~ o x n u J i .  
A condemned pr i soner  is given a chance t o  escape execution. He 

is  given two boxes capable of  holding s i x t e e n  b o t t l e s  each, and is  r e-  

quired t o  place e i g h t  b o t t l e s  of water and e igh t  b o t t l e s  of  c l e a r  p o i s q  

i n  those boxes leaving no box empty. He w i l l  then summon t h e  guard who 

w i l l  then pick one box a t  random and then s e l e c t  a b o t t l e  from t h a t  box 

which t h e  pr isoner  must dr ink.  How should t h e  pr i soner  arrange t h e  



b o t t l e s  i n  t h e  two boxes t o  maximize h i s  p robabi l i ty  of  surv iva l ,  and 

what is  t h a t  p robabi l i ty?  

E&&e.ntLcLU.y ~ ^ f f n A i A  AoLU^COHA wme. ~ubin^fcted by  JEANETTE BICKLEY, 

S t .  LotLii, hbhoufu. ,  MICHAEL W. ECKER, Scv in ton ,  Pe.nnliqLvania, MARK 
EVANS, LotLiiuWLe., Kentucky, VICTOR G. FESER, Mimy CoU-we., Rc imo~ck ,  
No& Vako-te, ROBERT C. GEBHARDT, Hopoteong, Nw J m t y ,  JOHN M. HOWELL, 

IMM.mock, ~ ~ f , o A n i a ,  ROGER KUEHL, Kan6ah C ^ t i / ,  hbhou)u., HENRY S .  

LIEBERMAN, Newton, MciA6uchu~e-fcti. JEFF  LOVELAND, N o d h  Logan, V e m o n t ,  
ALEX MCKALE, S u w v t h m o ~  C o U q e ,  P e n n ~ q b a n i a ,  ROGER MEGGINSON, Bemont, 
l tUno^u,,  KENNETH M. WILKE, Topeka, Kan~a.4, and the.  PROPOSER. 

The prisoner  should place only one b o t t l e  of  water i n  one box; he 

should place t h e  o t h e r  f i f t e e n  b o t t l e s  i n  t h e  o ther  box. H i s  p robabi l i -  
7 11 t y  of  surv iva l  is 1 /2(1)  + 1/2(=) = -g- . 

One incor rec t  so lu t ion  was received. This problem is  c e r t a i n l y  

not  new. Ecker and Wilke pointed ou t  t h a t  it appeared a s  problem 3 2 5  i n  

The Pentagon (XL, 1 9 8 1  , pp. 111-113). Its o r i g i n  is  much e a r l i e r .  

501  . [ F a l l  1 9 8 1  ] P~opo6ed  by Rob& C .  GebkaA.dt, Pcuu>ippany, Men) 

JUL6e.y. 
A rec tangle  is  inscr ibed  i n s i d e  a c i r c l e .  The a rea  of t h e  c i r c l e  

is  twice t h e  a r e a  o f  t h e  rectangle.  What a r e  t h e  proportions of  t h e  

rectangle? 

S o l u t i o n  by  fiemy S .  Liebeman,  Neulton, M o ~ ~ a c h i i ~ e - t t i .  
Let d be t h e  diameter of t h e  c i r c l e  and x and y be t h e  s i d e s  of  

t h e  inscr ibed rec tangle .  Then 

2  d 2  
X + y2 = d 2  and = 2x7.j 

so  t h a t  

Let t = s o  t h a t  
Y  

8 t + ^ - = L o r  t2 - - t  + 1  = 0. t n 

Solving f o r  t we g e t :  

Hence t h e  ratio of t h e  longer  s i d e  t o  t h e  s h o r t e r  s i d e  of  t h e  rec tangle  

Mo6t of, the, 6oUoMILng "aJUo-tolLvuUi" u&ed the. ~ a m e  method: 
JEANETTE BICKLEY, MARTIN J. BROWN, D A V I D  DEL SESTO, MARC0 A. ETTRICK, 

MARK EVANS, VICTOR G. FESER, JOHN M. HOWELL, RALPH KING, ROGER KUEHL, 

JEFF  LOVELAND, DOUG MATLOCK, ROBERT MEGGINSON, VINCENT A.  MILLER,  STAN- 
LEY RABINOWITZ, GEORGE W. RAINEY, WADE W. SHERARD, PETER SZABAGA, CHARLES 
W. TRIGG, and the. PROPOSER. 

502. [ F a l l  1 9 8 1 1  Pmpo6ed by  RobeA-t C. G e M o A d t ,  P m i p p a n y ,  
Nw J m f c y .  

k k k k  Consider 2  + 2  = 1  + 3  f o r  k  = 1,  

and k k k k k k  2  + 2  + 2  = I  + I  + I  + 3 k  f o r  k = 1 , 2 .  

Complete t h e  equations 
k k k  2  + 2  + 2  + 2 k = ?  f o r  k  = 1,2 ,3 ,  

and ? = ?  f o r  k = 1 , 2 , 3 , 4 ,  
k  

where t h e  l e f t  s i d e  i s  a funct ion of  2  only, and t h e  r i g h t  s i d e  is a 
k  k  funct ion o f  1  and 3 only. 

7 .  So-Eu-tcon b y  S-tenteg KabLnowLtz, Dig- Equipmwt Coup., 
Me/iAiUnac.k, New fiamp6hift.e.. 

We have 
k k k k k k k k k k  2  + 2  + 2  +2 = I  + I  + l  + l  + 1  + 1  + ( - l I k + 3 ^  

f o r  k  = 1,2 ,3  
and 

k k k k k  k k k k k k k k k  2  + 2  + 2  + 2  + 2  + ( - 2 )  = 1  + 1  + 1  + 1  + 1  + 1  + 1  + 1  
k k  + lk  + l k  + (- l^ + ( - I /  + W k  + (-I^ + ( - 1 )  + 3  

f o r  k  = 1,2 ,3 ,4 .  

We ar r ived  a t  t h e s e  formulas by t h e  following method: 
n  

Let a, b, . . . , c = d ,  e .  . . , f mean t h a t  
k k  a + b  +... + c k = c l k + e k + . . .  +fk f o r k = 1 , 2  ,... n ' 

where t h e r e  a r e  t h e  same number of  terms on both s i d e s  of  t h e  equal 

s igns  (add e x t r a  0 ' s  if necessary). Then a theorem of  Tarry says  t h a t  



n a,b ,..., e = d,e ,..., f 

and i f  x is a r b i t r a r y ,  then 
nil  a,b, ..., e ,  (d + x ) ,  f e  + x ) ,  ..., ( f  + x )  = 

d, e ,  . . ., f ,  (a  + X I ,  (b  + X I ,  . . ., fe + X I .  
We applied t h i s  theorem using x = -1 . See Dickson, History o f  the 

Theory o f  Numbers, Vol . I I ,  Chelsea Publishing Company, 1971 page 710. 

2. S o l d o n  by Rob& E .  Meggin~on, U d v m e  06 2 f ino .h .  

By a l i t t l e  experimentationy it i s  easy t o  see  t h a t  a so lu t ion  t o  
k k k k  2 + 2 + 2 +2 = ? must involve more than a sum of terms of  t h e  form 
k 1 and sk , but it i s  not e x p l i c i t l y  s t a t e d  what s o r t  of unary o r  binary 

k k funct ions of 1 and 3 a r e  allowed. Thus* I f e e l  p e r f e c t l y  j u s t i f i e d  i n  

not ing t h a t :  
k k k ( 1 n ( 3 ~ ) ) / 1 n ( l ~  + lk  + l k )  2 = f 1  + I )  

f o r  - p o s i t i v e  in teger  k ,  which gives obvious so lu t ions  t o  both p a r t s  

of  t h e  problem. 

A&o holved by VINCENT A. MILLER, who 60und p o l y n o m h h  i n  k UA 

c o e 6 6 i ~ e n t ~  06  sk, and by t h e  PROPOSER, who intended a boLuLion 06 

Type I .  

503. [Fa1 1 1981 I Pmpobed by Gtegoay WuLczyn, B u c k n m  IhLvUL- 

h d y ,  Lwh bmg , Pennb yLva&. 
2 2 2 

Find t h e  equation of  t h e  e l l i p s o i d  E- + y-- + = 1 with minimum 
a2 b2 c2 

volume which s h a l l  pass  through t h e  po in t  p(p,s , t ) ,  0 < P < a, 0 < s < b, 

o < t < c .  

SoLuZion by Rob& C .  Gebha~~clt, Hopcukong, NU Jemeg .  

The point  (P,s ,  t )  is on t h e  e l l i p s o i d ,  s o  

Solving, g e t  2 2 2  2 2  2 2  2 2  e 2 = a b t / [ a b  - b p  - a s ] .  

The volume of an e l l i p s o i d  is known t o  be V = (4/3)nabe. To minimize 

V, minimize 3 bv set tin^ a$/aa and t o  0. 

2 2 Set t ing  t h e  numerator t o  zero, g e t  a2b2 - 2b P - a's2 = 0. (1 
2 2  2 2  Similar ly,  by s e t t i n g  a?/ab = 0, g e t  a2b2 - b P - 2a s = 0. (11 

Subtract ing ( I )  from (11) and rearranging t h e  r e s u l t ,  g e t  r /a  = s h .  

Similar ly g e t  p/a = t / c .  Putt ing these  r e s u l t s  i n  t h e  equation f o r  t h e  

e l l i p s o i d ,  g e t  a = ~ 6 ,  b = s 6 ,  e = t6. This is  hardly a surpr i se .  

s ince ,  i f  P = s = t, t h e  e l l i p s o i d  would become a sphere of r a d i u s  re, 
a s  expected. 

A&o boLved by HARRY S. LIEBERMAN,, VINCENT A. MILLERy and t h e  PROPOSER. 

504. [Fa1 1 19811 P&opohed by C h d u  (U. T@g, San Viego,  

C ~ 6 0 t ~ .  

In  t h e  square a r r a y  of t h e  nine non-zero d i g i t s  

9 2 6  

4 1 7  

8 3 5  

t h e  sum of  t h e  d i g i t s  i n  each 2-by-2 corner a r r a y  is  16. Find another 

arrangement of t h e  nine d i g i t s  i n  which t h e  sum of  t h e  d i g i t s  i n  each 

corner  a r ray  is  = t i m e s  t h e  c e n t r a l  d i g i t .  

SoLukLon by U i & t  G .  F ~ A U L ,  Mmy CoUege, Ehmatck,  No& Vakot i~ .  

I f  t h e  c e n t r a l  d i g i t  is 1 o r  2, then t h e  g Y  wherever it is placed* 

w i l l  cause one corner  t o  overflow. I f  t h e  c e n t r a l  d i g i t  is 5 o r  g r e a t e r *  

then t h e  1, wherever it is placed,  w i l l  cause one corner t o  f a l l  shor t .  

I f  t h e  c e n t r a l  d i g i t  i s  3: i f  t h e  9 is  placed a t  t h e  s i d e y  i t ' s  easy t o  

see  t h e r e t s  no so lu t ion ;  i f i t t s  placed a t  t h e  corner ,  t h e r e  a r e  a num- 

ber  of cases ,  but  none leads  t o  a so lu t ion .  

So t h e  c e n t r a l  d i g i t  is 4 .  I f  t h e  9 i s  i n  t h e  corner ,  t h e r e  a r e  

a number of  cases ,  but none works out .  So t h e  9 is  on t h e  s i d e ;  again,  

t h e r e  a r e  a number of cases--and some of them work ou t .  

Ignoring r o t a t i o n s  and r e f l e c t i o n s y  t h e r e  a r e  exact ly two solu-  

t i o n s  : 

6 1 7  1 6  7 

9 4 8  9 4 3  

2 5 3  2 5 8  

Bo.#z boLuLiou w a e  &o 6ound by DAVID INYy ROGER KUEHL,  HENRY S -  

LIEBERMAN* VINCENT A. MILLER, DAVID E .  PENNEY (with severa l  extensions 

t o  t h e  problem), BOB PRIELIPP STANLEY RABINOWITZy KENNETH M .  WILKE, , 

and f ie  PROPOSER. JEANETTE BICKLEY, CAROL DIMINNIEy MARK EVANS, ROBERT 

C. GEBHARDTy SAMUEL GUTy  BRUCE KINGy JEFF LOVELAND, KIRK MAHONEY, ALEX 

McKALE, a d  ROBERT MEGGINSON each d i ~ c o v e ~ ~ e d  one ~ 0 ~ ~ 0 ~ .  



5 0 5 .  [Fall 1981 I Pkopobd by John M. How&, L . i h ~ m o c k ,  
C ~ , j o ~ .  

A basebal l  team has a l l  -300 h i t t e r s .  They never s t e a l  a base, 
g e t  picked o f f  base o r  h i t  i n t o  a double play.  And men on base advance 

only one base when there  is  a h i t .  

a )  What is t h e  probabi l i ty  of  t h i s  team g e t t i n g  one o r  more runs 

i n  an inning? 

b )  What is  the  expected number of runs scored by t h i s  team per  

inning? 

S o W o n  by Rogm Kuefd, Ka~a C a y ,  ~ K A A o ~ .  

a )  The probabi l i ty  of  a team g e t t i n g  no runs i n  an inning is t h e  sum of 

t h e  p r o b a b i l i t i e s  of 
3 1 )  th ree  o u t s ,  ( - 7 )  = -343, 

2)  two o u t s  and one h i t  ( i n  any o r d e r ) ,  followed by an o u t ,  
2 2 3(.7) ( - 3 )  - ( - 7 )  = .3087, 

3 )  two o u t s  and two h i t s  ( i n  any order ) ,  followed by an ou t ,  
2 2 6(.7) ( - 3 )  - ( - 7 )  = -18522, and 

4)  two o u t s  and t h r e e  h i t s  ( i n  any o r d e r ) ,  followed by t h e  t h i r d  
2 3 

o u t ,  10(.7) ( - 3 )  - ( - 7 )  = .092619 

t h a t  is ,  

-343 + -3087 + A3522 + .09261 = .92953. 

Thus t h e  probabi l i ty  of  g e t t i n g  a t  l e a s t  one h i t  i s  

1 - -92953 = -07047. 

b )  Exactly one run  is scored when four  h i t s  a r e  made before t h r e e  o u t s  

accumulate. This can occur i n  

ways, so t h e  probabi l i ty  o f  1 run  is 
4 15( .3)  (.7)3 = -0416745. 

The desired expected number of  runs per  inning is t h e  sum of  each number 

o f  runs times i ts p m b a b i l i t y  of  occurrence. We have 
0, 

= -0416745 + -035066 + .0210039 + ... 
= -117334. 

&o ~ o l v e d  by CAROL D I M I N N I E 9  MARK EVANS, ROBERT C.  GEBHARDTS 
DAVID I N Y ,  JEFF  LOVELANDS and t h e  PROPOSER. 

I1The addi t ion  cryptarithm IN + THE = MOOD is  not d i f f i c u l t ,  but 

t h e  so lu t ion  cannot be unique because N and E  can be interchanged, and 

so can I and H.I1 .% 

l1Even taking account of  those  interchanges,I1 h i s  f r i e n d  r e p l i e d , -  

Ifthere a r e  s t i l l  many d i f f e r e n t  s01utions. '~  

'!That is so,If agreed t h e  f irst ,  Ifbut l e t  me t e l l  you t h e  value of  

one of  those four  l e t t e r s . 1 1  

I could not hear  t h e  l e t t e r  and t h e  value he whispered t o  h i s  

colleague but t h e  r e p l y  was q u i t e  c l e a r .  '!Ah, now t h e  so lu t ion  is 

unique except,  of course, f o r  t h e  interchange of t h e  two l e t t e r s  of t h e  

o ther  p a i r ,  and it used every d i g i t  t h a t  is  an odd prime, too." 

S o L u t i o ~  by  Rob& E. M e g g h o n ,  U n i v m a  0 6  I U v w L 4 .  
It is  obvious t h a t  T = 9  and MO = 10 . We w i l l  construct  t h e  

poss ib le  so lu t ions ,  f i r s t  where t h e  add i t ion  N + E  does not  r e s u l t  i n  

a c a r r y ,  then where a 1 is c a r r i e d .  

Case 1: N + E  5 9 .  Then I + H = 10. Since 0, 1, and 9 have -- 
been eliminated, here a r e  t h e  poss ib le  values f o r  t h e  p a i r  (1,H): 

( 2 , 8 ) ,  ( 3 , 7 ) ,  ( 4 , 6 )  and interchanges; e .g. , ( 8 , 2 )  . 
The possible  values f o r  t h e  t r i p l e  fN,E,D) a r e :  

( 2 , 3 , 5 ) ,  ( 2 , 4 , 6 ) ,  ( 2 , 5 , 7 ) ,  ( 2 , 6 , 8 ) ,  ( 3 , 4 , 7 ) ,  (3,5381 

and interchanges of  N and E. If we take  a l l  poss ib le  matchings of  

(N, E, D) with ( I ,  H), we obta in  these  poss ib le  values f o r  (N,E,D, I, H): 

(2 ,3 ,5 ,4 ,6 ) ,  ( 2 , 4 , 6 , 3 , 7 ) ,  ( 2 , 5 , 7 , 4 , 6 ) ,  

( 2 , 6 , 8 , 3 , 7 ) ,  ( 3 , 4 , 7 , 2 , 8 ) ,  ( 3 , 5 , 8 , 4 , 6 ) ,  

along with t h e  so lu t ions  d i f f e r i n g  only i n  interchanges of fl 

I with H. 

Case 2: N + E  2 10. Now 1 + I + H = 10. Except f o r  -- 
interchanges, here m e  t h e  p o s s i b i l i t i e s :  

(1,H): ( 2 , 7 ) ,  f 3 , 6 ) ,  ( 4 , s ) .  

with E  and 

t h e  obvious 

(N,E,D): ( 4 , 8 , 2 ) ,  ( 5 , 7 , 2 ) ,  ( 5 , 8 , 3 ) ,  ( 6 , 7 , 3 ) ,  ( 6 , 8 , 4 ) ,  f 7 , 8 , 5 ) .  

(N,E,D,I,H): ( 4 , 8 , 2 , 3 , 6 ) ,  ( 5 , 7 , 2 , 3 , 6 ) ,  ( 5 , 8 , 3 , 2 , 7 ) ,  

( 6 , 7 , 3 , 4 , 5 ) ,  ( 6 , 8 , 4 , 2 , 7 ) ,  ( 7 , 8 , 5 , 3 , 6 ) .  

It is easy t o  check t h a t  if t h e  value o f  N o r  o f  E i s  spec i f ied  we do ., 

not  ob ta in  a unique (up t o  interchange)  so lu t ion .  Thus, e i t h e r  I o r  H 

was specif ied.  Again, it i s  easy t o  check t h a t  requ i r ing  I ( o r  H) t o  be 

2,  3,  4 ,  6 ,  o r  7  does not  r e s u l t  i n  uniqueness. I f  I = 5  we obta in  t h e  



~ n i q u e  so lu t ion  (6,7,3,4,5), while requ i r ing  I = 8 gives only 

f3 ,4 ,7 ,2 ,8) .  

Since t h e  so lu t ion  uses every d i g i t  t h a t  is  an odd prime. t h e  

only p o s s i b i l i t y  is  t h a t  I (or  H) was s p e c i f i e d  t o  be 5, giving t h e  

so lu t ion  (N, E, D , I ,  H) = (6,7,3,4,5). The cryptarithm must have been: 

46 + 957 + 1003, except f o r  t h e  poss ib le  interchanges. 

MAO ~ 0 l v a - f  by  M R K  EVANSy VICTOR G. FESER, ROGER KUEHL, VINCENT 
A. MILLER,  CHARLES W. TRIGG, and t h e  PROPOSER. 

FESER noted t h a t  t h e  problem "seems t o  be badly s t a t e d  . . . . 
I t  says t h e r e ' s  a unique so lu t ion ,  and--as a s o r t  of bonus, a f a c t  not  

needed f o r  s o l u t i o n- - ' i t  uses every d i g i t  t h a t  i s  an odd prime.' In 
f a c t  t h i s  condit ion is  necessary f o r  f ind ing  a unique so lu t ion ."  W T z  

r e p l i e d  t o  FESERIS comment by s t a t i n g  t h a t  " c lear ly  t h e  f r i e n d  needed 

only t h e  value given t o  him and, i f  we had heard t h a t  comment, it, too,  

would have been enough f o r  us. Since we could not  hear it, it should 

be no s u r p r i s e  t h a t  o ther  information might be necessary.'1 

5 0 7 .  [Fa1 1 1 9 8 1  I P k o p o ~ a i  b y  Hmb& R .  B a i l e y ,  Robe PoLyXech- 
VLLC Imx5.tuXe, T m e  Haute, Indium. 

A u n i t  square is t o  be covered by t h r e e  c i r c l e s  of  equal rad ius .  

Find t h e  minimum necessary rad ius .  

S o l d o n  edited &om 2h.t  hubmLtted by  David I v y ,  R e n b ~ & m  
PolyXechnic l n b t i t u t e .  T J L O ~ ,  New Yokk. 

In  t h e  accompanying f i g u r e ,  H i s  t h e  midpoint of  s i d e  BC. The 
t h r e e  covering c i r c l e s  pass  through ADFE, FCHG, and HBEG, so  t h e  square 

of  t h e i r  diameter is  given by 

d 2  = C H ~  + HG' = HB' + BE' = AE' + AD' 

Solving f o r  B E y  we g e t  

1 2 2 7 + B E  = 1 - 2 B E + B E  + 1, 

7 2BE = 7 , 

1 49 65 h% d 2 = - + - = -  and d = -  
4 64 64 ' 8 

A b o  ~ o l v e d  b y  Xhe PROPOSER. T h e e  h c o m e c t  ~ o l u t i o n A  w m e  

hubmh32.d. 

5 0 8 .  [Fa1 1 1 9 8 1 1  P m p o ~ e d  by  h c e  W. f i g ,  BWL& ffm, NeN 

Yokk. 
When Professor Gmbugio asked h i s  ca lcu lus  c l a s s  t o  f i n d  t h e  der i-  

va t ive  of  y 2  with ~ e s p e c t  t o  z2 f o r  t h e  funct ion y = x2 - z, h i s  nephew 

Socrates Umbugio found $$* and obtained t h e  c o r r e c t  answer, Help t h e  

professor  t o  enl ighten h i s  nephew about taking der iva t ives .  

SoLuaXon by  . S . t a ~ ~  RabLnouLtz, V L g a  Equ.Lpnie& C o k p o W o n ,  

M e m h a c k ,  New Hatnp~hhe .  
The formula used is  a c t u a l l y  c o r r e c t ,  f o r  by t h e  chain r u l e  we 

have : 

RABINOWITZ rece ives  t h r e e  gold s t a r s .  O n l y  he and t h e  PROPOSER 

gave a complete so lu t ion .  Credi t  f o r  p a r t i a l  so lu t ions  goes t o  each of  

t h e  following persons, who agreed t h e  answer was c o r r e c t  f o r  t h e  s t a t e d  

funct ion o r  f o r  some s p e c i a l  c l a s s  o f  funct ions only: MARK EVANSy V IC-  

TOR G. FESER, RALPH KING, ROBERT E .  MEGGINSON, VINCENT A.  MILLER y and 

PETER SZABAGA. 

The desired rad ius  is  there fore  &I16 =.50389. Since AE = 118 i s  l e s s  

than 113, t h e  configurat ion i n  t h e  accompanying f i g u r e  is b e s t .  



509 .  [Fa1 1 1981 1 Pkopobed by Jack Gm&nket, queemh CoLLege, 
Nw Yokk. 

Given a  t r i a n g l e  ABC with i ts i n c i r c l e  I, touching t h e  s i d e s  of  

the  t r i a n g l e  a t  po in t s  L,M,N. Let P, Q, R be t h e  midpoints o f  a r c s  NL, 

LM, and MN respec t ive ly .  Form t r i a n g l e  DEF by drawing tangents  t o  t h e  

c i r c l e  a t  PS Q y  and R.  Prove t h a t  t h e  perimeter of  t r i a n g l e  DEF 2 per i-  

meter of  t r i a n g l e  ABC. 

S o l u Z o n  by David I nq ,  ReMb&ix Polytechn& I M W e ,  TJLO~,  

Nw Y O J L ~ .  

Let r be t h e  rad ius  of  t h e  i n c i r c l e  (I). The b i s e c t o r s  o f  angles  

By and C of t r i a n g l e  ABC a l l  pass  through I. Then t h e  perimeter of 

iangle ABC is 

A C 2 r c o t - +  2 r  c o t  f +  2 r c o t 3 .  2  

milar ly,  t h e  perimeter o f  t r i a n g l e  DEF is  

D E F 227 c o t - +  2 r  c o t  y +  2 r c o t y  2 

A+B = 2 r  c o t  .? + 2 r  c o t  + 2 r  c o t  - 
4 

s ince  D = (B + C)/2, e t c . ,  because t h e  angle formed by two tangents  t o  a  

c i r c l e  is measured by ha l f  t h e  d i f fe rence  of  t h e  intercepted a r c s .  The 

theorem follows because c o t  0 is convex f o r  0 < 0 < 1r/2Â so  

( 1  1 D A+B A B 2 co t  - =  2 c o t - s  c o t  - t c o t z ,  e t c .  2  4 2  

Clearly,  equa l i ty  holds if and only if ABC i s  e q u i l a t e r a l .  

A b o  boLved by M.S. KLAMKIN, JEFF LOVELANDS ROBERT E .  MEGGINSONS 

and .the PROPOSER. KLAMKIN pointed out  t h a t  inequa l i ty  (1 )  and more 

general  r e s u l t s  a r e  obtained i n  h i s  paper l ' Inequal i t ies  f o r  a-=iangle 

Associated with n Given Trianglesyl '  PubZ<cat<ons de Za F a w Z t e r  DrEzectro- 

techn%ue de LrUniversi te  a Bezgrade, No. 3 3 0  ( 1 9 7 0 )  pp. 3-7. 

La te  b o l u t h n  .to p k o b l m  466 by FRED GALVIN. 
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