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| NVESTI GATI ONS ON MAXFIELD S THEOREM - -

by Laura Southard
University of OkLahoma

Various properties of factorial s have fascinated recreational
nat hemat i ci ans for many years. John E Mxfield proved the fol | owi ng
theoremon factorials in 1970[1:

Theorem 1: |f Ais any positive integer having mdigits, there
exists a positive integer Nsuch that the first mdigits of N consti -
tute the integer A.

A though this theorem has al ready been proved, it still provides
food for thought. The purpose of this articleis to report theresults
of an investigationinto the smallest Nthat neets the criteria given
in Theorem1 for various val ues of A

A FORTRAN conputer programwas witten to find the smallest Nthat
neets Mxfield s criteriafor A=11t0999. The programwas 41 |ines
long and required 20 seconds of execution tinme on a VAX conputer. The
entire output of the programfor A =1 to 999 can be ordered fromthe
Editor for the cost of reproduction {$1.00).

Several interesting facts were found by studying the output from
the program For A=1to0 8, the smallest value of Nis small enough
to be cal cul ated on a hand calculator easily. For A =9 , the smallest
value of Nis 96. 96! = 9.91678E+149. This is obviously much too | arge
tocalculate without the aid of a conputer.

Wile the snallest value of Nfor A=9 is 96, 60 of the snall est
val ues of Nare | ess than or equal to 96 for A =1 to 99. The distri-
bution of these values of 4 is givenin Table 1

TABLE 1
A Nunber of N's that are less than or equal to 96
1-9 9
10- 19 10
20-29 8
30-39 7
40-49 4
50-59 6



I

60-69
70-79
80-89
90-99

The largest value of N that was calculated for A =1 to 99 was

716 for A =97 .

l ess than 500.

to 999.

TABLE 2

A Number of N's that are less than or equal to 716

1-99 99
100-199 83
200- 299 1)
300- 399 67
400- 499 42
500- 599 38
600- 699 48
700-799 2
800- 899 29
900-999 2

The distribution in Table 2 is substantially different than the

— O N P

distribution in Table 1.

The largest value of N that was calculated for A =1 to 999 was
For A =1 to 999, 821 of the smallest values of
were | ess than 2000, 965 of the N's were |l ess than 5000, and 995 of the

12745 for A = 841 .

N's were | ess than 10,000.

The smallest values of ¥ for values of A that are perfect squares

are given in Table 3.

TABLE

N factorial
1.000000e+
4.,032000e+
9.916780e+

16.507956e+
25.852024e+
36.288002e+
49.745037e+
64 .023750e+
8l .591545e+
100.078415e+
121. 6451 26e+
144 ,385956e+

For A=11to 99, 63 of the smallest values of N were
less than 100, 79 of the N's were | ess than 200, and 95 of the N's were
While the smallest value of N for A =97 is 716, 539
of the smallest values of ¥ are less than or equal to 716 for A=1
The distribution of these 539 values of A is given in Table 2.

3

169
196
225
256
289
324
361
400
441
484
529
576
625
676
729
784
841
900
961

239
786
590
304
887
853
719
1155
294
1401
1023
243
3152
11376
2720
1591
12745
166
97

169.
196.
225.
256.
289.
324.
361.
400.
441,
484,
529.
576.
625.
676.
729.
784,
841.
900.
961.

495331e+ 464
565201e+ 1934
694458e+ 1378
267303et+ 622
827087e+ 2229
293488et+ 2129
280975e+ 1741
386536e+ 3035
493835e+ 597
836578e+ 3799
155396e+ 2634
511169e+ 473
057922e+ 9658
960144e+41200
152344e+ 8160
666382e+ 4402
102356e+46787
369019e+ 295
927856e+ 149

No significant patterns were found

table for values of 4 that are prime.
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VOLUME OF AN n-DIMENSONAL
UNIT STHERE

by Ravi Salgia
Loyola Univensity of Chicago

May interesting and useful examples of Dirichlet integrals occur
and one of them is concerned with the evaluation of volume of certain

closed surfaces for various dimensions. Consider the unit circle and
2
1 1
(see Figure 1). The area, which will be referred to as volume in two

its interior, x5 + xs £ 1, where £, and z, are Cartesian coordinates

dimensions or VZ

,» enclosed by the circle i s determined as follows:
2

V2 =2 [f dzldxz

over the quadrant bounded by the curve

2 2 .
x1+:c2=1

and the coordinate axes. Fom simple integration, V2 can be shown to
equal 7.

Similarly, for a unit sphere in three dimensional Euclidean space,
the volume (Vs) is determined by:

3
Vg = fIf cl'nld:czdz:5
over the octant bounded by the surface

5. 2.8,
$1+$2+33=

and the coordinate planes. By evaluating this integral, Vs is ¢n/3.

1

In generalizing the previous results, the volume of an n-dimensional
unit sphere--which is analogous to volume in three dimensions and area in
two dimensions--can be calculated. If Vn represents the volume of an n-
dimensional unit sphere then Vn can be evaluated by using an n-tuple in-

tegral and

"
v, =2 If... fdrld'xz aoo d‘l:n,

where x, represents the nth axis, and the integral is bounded by the
curve
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Figure 1.
2 2 23
*; + x2 + . + Xn =1

and the appropriate coordinate planes. It is shown in reference 3,
using Dirichlet integral in n-dimensional Euclidean space, that the
volume of an n-dimensional unit sphere is
B Pade 2k ]= o/ (1)
" g G+
where »n is a natural number greater than one.

The Dirichlet integral, Dn , is defined as

B8
.
1A
=

=1

and the appropriate coordinate planes, where a,

and k are all constants greater than zero. By using the substitution
1i/p.
z, = a, (ké;i) * in the above expression, it is seen that

s m’l: o p?: (i=1: ) n):‘
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A m
- a i m
my ﬂ A ( 1,)
—— I‘ —
D % i=1Pg =1 P; P;
n no
7
1+ —
r E p;

1i=1

It iseasily seen that i f one substitutes the values a; =m, = k = 1,
and p; = 2 (i=1, 2, ..., n) in the above expression for D, , equation
(1) i s obtained.

Note that in equation (1), T i s the well known Gama Function--
which for a non-zero positive number n is defined as

@

T(n) = f 21 T g,

0
When n = 1, T(1) = fx”‘le‘“dz_z,
0
When 7 = %, T(%) = fx-;fe—xd'x:=/1?; and
0
Wenn=|ti1, r(d+1) =4r(j.

From equation (1), VM can be calculated numerically, with relative
ease, for all natural numbers n greater than one. Some of these values
have been calculated and are summarized in Table . Fom Table 1, it
can be seen that for n =5, v, attains a maximun. To see that this is

the only maximum for all n>1, see the theorem which follows.

TABLE 1
n 2 3 4 5 6
2
v ™ 2w T 25:2/05.3) 3/3!
n 3 2
Approximate Vn 3.142 4.189 4.935 5.264 5.168
n 7 8 9 10
v, 24:5/(7.5.3) wd/ar 251/(9.7.5.3) /5!
2 2 2.550
Approximate Vn 4.725 4.059 3.299

499

n/2
™
Theorem. Let Vn = n , Where n is a natural number > I,
r(g+1)
Then for n=5 , Vn attains a maximum; that is, V5> V7 for all natural

numbers j greater than one and not-equal to five.

Proof. The proof will be divided into three parts; the first part
uses a simple observation and the | ast two are based on the principle of
induction.

(a) |t can be seen from Table A that

V5>V4>V3>V2, or

V_ >V, i =2, 3, 4
5 3forJ 3

(b) In this part, we shall prove that

VWo> Vs Vp>Vgs vvv s Vopur > Vogag s oo

To verify that V2k+1 > V2k+2 for each natural number k > 1, the
principle of.induction can be utilized.

Whn k =2 , it is certainly true that V5 > Vb‘ (see Table 1).

Assuming V2k+1 > V2k+2 , it can be proved that Vz(k+1)+1

V2(k+1)+2 . Notice that

1 ’w2k+1

Vore1 = T (2T )

and

Vokta = r(%ﬂ 1)

mhere kK = 2, 3, 4, ..a . Itisgiventhat Vg ;> Voo,

SO
Vors1 1 r(%ﬁ+1)

Vorsz  vn (%ﬂ+1) >t

Now, note that
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2k+4 2k+2
Vones _ 1 (5= +1)=_1_ (S +1+1
T 2 N
o1 EEug _r(BEHE ) e Ve
- a 2k+3 V.
yr 27§+1 + 1 7 (2§+1 + 1) 2k+2
o ) ) L . 2k+4
which is certainly greater than 1 ; thisis true since rd > 1
Vore1
for allk>0andF——>1 is given.

2k+2

Thus, from induction, V2k+1 > V2k+2 for each natural number k > 1.

(e¢) In this part, we shall prove that

9 » s Vo > Vagar o
To verify that V2k > Vorpa for each natural number kK > 2, the same

types of arguments as in part (b), using the principle of induction,
can be utilized. 1t can thus be shown that the above is true.
Combining the results of parts (b) and (c¢), it is obtained that

V5 > V6‘ > V7 > .as « With the previous result from part (a) and the

preceding statement, it can be concluded that V5 > V3- for each natural

number J greater than one and not equal to five.
As a further interesting example, consider what the volume of the
n-dimensional unit sphere would be as n becomes very large,

= limexp (k nw- in kl) .

Je-so0

By Stirling's approximation for large k,
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wmkl =k ank-k.

S0,
kznn-znk.'a'kznn-k;mk+k=km%+k a
=k[9,n£-+ 2,ne]=k£n£§-.
Thus,
e e k
Lim V,, = limexp (k n 3&) = 2im () =0.

Koo k-0 ko

Therefore, as n becomes a very large number, Vn approaches zero.

The fact that the volume of a five dimensional unit sphere is a
maximum with respect to the volume of any n-dimensional unit sphere,
and the volume, as n becomes very large, approaches zero, proves very
interesting. The same types of arguments, like those worked in this
article, can be carried out for any bounded surface; and with the help
of Dirichlet integrals, interesting and fascinating properties can be
determined.

REFERENCES
1. Coxeter, H., Regular Polytopes, Dover Publications, Inc., Nav York,
1973.

2  Ryshik, G., Tables oOf Series, Products, and Integrals, Veb Deutsch
Verlag Der Wissenschaften, 1963.

3. Ssalgia, R., "pirichlet Integrals and Their Applications,(to appear
in the Journal of Undergraduate Mathematics).

This paper was written under the direction of Professor Theodore G.
Phillips.
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THE DI RI CHLET PROBLEM
A MATHEMATI CAL DEVELOPMENT

by John Gouget
Colby College

Introduction.

Mos students of advanced mathematies have encountered The Dirich-
let 'Problem. |t oceurs in different forms in courses in partial differ-
ential equations, the calculus of variations, complex analysis, vector
ealeulus, and i n mary areas of physics. The problemi s worthy of atten-
tion because i n vertually all of these cases it appearsin quite
different forms with entirely different techniques of solution.

The problem has fascinated the world's finest mathematicians from
Gauss to Poincare, continually providing challenging questions as we'll
as answers to an ever growing vaxiety of problems.

It isthe aimof this article to acquaint the reader with various
mathematical contexts i n which the Dirichlet Probiem arises, and then to
outline its historical development.

In this section, we briefly examine several of the contexts in which
the Dirichlet Problem arises.

First, the Dirichlet Problem may be considered as a boundary value
problem of partial differential equations. Suppose D is a bounded domain
in Rn and T its piecewise smooth boundary. Then one must find a scalar

function u such that

(1) viu=d¥% ,au, L 3u_,.0p
33:2 aa:z axZ
1 2 n
and (2) “’r = f (given) .

Equation (1) is called Laplace's equation, and any function satisfying it

is called harmonic.

A second type of problem is the following: Let v denote a vector
field in a finite bounded domain D in Rn' The problem is to find a
scalar function » such that
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(3) Vu =7 in D

and (4) u|r = f (given),

where T is once again the piecewise smooth boundary of D. A function i
satisfying (3) is called a potential of » (V denotes the gradient here).
The problem just outlined is-a generalization of problems which
arise in gravitational theory and electromagnetic theory. These problems

mey be characterized in the following way. In R, , et x and € be two
points, 7 =z - £, » =\p|dx - € |, and D a finite domain. 1f the vector
field F is defined by

- o
(5) F(x) = j; p(E) 7dv i
r
the density p is a non-negative function in D and zero outside D , then
the problem is, again, to find a scalar function » such that
(6) Vu="F
and (7) u[r = f (given).
Hw are these latter two problems related to the first Dirichlet

Problem, stated in equations (1) and (2)? For a vector field of the
form (5), one may show by direct calculation that if z is outside I, then

v. F=0.
P 2%u a2u .
By substitution from (6), one has Vv.vu = O or ﬁ" voo T 2% =0, which
x 9 2
1 an

is Laplace's equation. n the other hand, i f u satisfies Laplace's equa-
tion and equals f on T , does Vu = F? Using uniqueness theorems for
vector fields, one does indeed have vu = F (see [5], chapter 8). Thus
the first Dirichlet Problem and the second formulation are equivalent.
Another context in which the Dirichlet Problem arises is the follow-
ing "energy method" approach. Suppose D is again a bounded domain in Rn
and u is continuously differentiable in D . If one forms the quadratic

Ll ) - ]
fiveu i

D

functional
(8) L(u)
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then one may formulate the following problem: find a function u that

(9) minimizes the functional L(u) , and

(10) equals a given function f on the boundary of p.

An integral of the form (8) is called a Dirichlet or energy integral,
and may represent the potential energy of a system. This is a problem
in the calculus of variations; the minimization of a functional subject
to prescribed boundary conditions. The exact requirements on D and its
boundary were the subject of much work, and are discussed |ater.

Hw is this problem related to our first Dirichlet Problem? First,
if u is a solution of (9) and (10), one can show V2u =0 inD. Alter-
natively, one can show that if u satisfies Laplace's equation (1) in D
and if 2 =f on r, then u minimizes (8), the Dirichlet Integral. The
details may be found in [9], pages 135-9. The two problems are thus
equivalent.

Next, in the realm of complex variables, suppose one is dealing with
a multiple valued, complex, analytic mapping. A classic example is the
complex function Log Z. In order to obtain a single-valued mapping, and
hence a function, one makes copies ("branches") of the domain (the com-
plex plane), the result being a Riemann surface. These are then " patched
together" along branch "cuts." The number of copies depends on the
mapping i n question; Log z requires infinitely many, whereas ZJE requires
only two. The result is that the properly defined mapping on this new
domain, the Riemann surface, is single valued. It is also desired that
the function retain its analyticity. This is clear within each branch,
but unclear along the branch cuts. Riemann was faced with this problem.
If we think of having two functions, one defined on each branch, and re-
gard one of them as fixed, then the other must be chosen so that

(11) it agrees with the first function on the branch cut, and

(12) it is analytic.
If we denote the second function by g = u + iv, the first by f, the cut
by r, and g's domain by D, then g must satisfy the Cauchy-Riemann equa-
tions in D to be analytic, and equal f on I The Cauchy-Riemann equations

u _ w4 du_
are x = 3y 3y~ ax
equality of mixed partial derivatives, one obtains
2 2 2 2
(12) —-"g+—ag=oand—3’§+———3§ = 0.
ox Yy ox Yy

By taking second derivatives and assuming
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Thus the real and imaginary parts of an analytic, complex function
satisfy Laplace's equation, and the problem just stated is equivalent to
two Dirichlet Problems. In his doctoral thesis, Riemann used the Dirich-
| et integral method to attack the problem.

Finally, we note that Dirichlet Problems are the source of several
well known " special functions" of-mathematical physics. For example, in
Ré” if spherical coordinates and separation of variable are used, the
ordinary differential equation for the s variable (after the substitution
¥ = cos®) is

%d ((1-—x2) i——i)+ n(n+l) 0 = 0,

which is Legendre's equation. The n(n+1) parameter is a separation con-
stant, and solutions are the Legendre polynomials, Pn(:c) , if nisanon-
negative integer.

If a change to cylindrical coordinates i s made and separation of
variables used, the ordinary differential equation for the » variable is

rz R" + »R' + (}\21'2 - UZ)R =0,

where the parameters A and U are separation constants chosen so as to
yield physically reasonable solutions. The series solutions obtained are
J (ir) and J_U(Ar), the Bessel functions of order u and -v, respectively,
in the case where u is not an integer. |If uis an integer, other special
functions must be used in place of J u(xr) in order that two linearly
independent solutions result.

Histornical Development of the Dirichlef Problem.

In examining the historical development of the Dirichlet Problem,
several approaches are possible: the chronological development, the
biographical development, or the geographical development. With regard
to the Dirichlet Problem, we shall use the geographical, as there were
three places (England, France and Germany) where separate developments

took place, each having a unique approach to the problem.

In England, the first work of significance was done by George Green
(1793-18u41). Green's primary areas of interest were electricity and
fluid mechanics. The reader is referred to [4] for a complete survey. _
In studying these areas, Green was led to a number of mathematical re-
sults, most of which bear his name and all of which have proven indispen-
sable to the study of potential theory. In his 1828 booklet, "An Essay
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on the Application of Mathematical Analysis to the Theories of Electrici-
ty and Magnetism,” he introduces what are now referred to as Green's
theorems of potential theory, as well as the so-called Green's Function
method of solution of the Dirichlet Problem. In his 1833 paper, "Laws
of the Equilibrium of Fluids,” he considers the gravitational potential
of fluids of ellipsoidal shape, using mawy of the mathematical techniques
developed in the 1828 paper. It is interesting to note that the 1833
paper is generalized to » dimensions, as opposed to two or three dimen-
sions. It should also be noted that maty of Green's proofs are not math-
ematically rigorous, being based in part upon physical arguments. Two
examples are his conclusion that a minimum exists for the energy integral
(later called the Dirichlet integral),

NER! f |

where u is a real-valued function to be determined, and that a Green's
function exists for a given region in space. Though lacking in mathemati-
cal rigor, his work partially rejuvenated mathematical analysis in Eng-
land, which had produced little since the work of Newton (1642-1727).
Following in his steps were Kelvin, Stokes, Rayleigh and Maxwell.

Sir William Thomson, or Lord Kelvin (1824-1907), continued British
interest in mathematical physics. Thomson saw fit to call a function
“harmonic* if it satisfied the potential equation. His chief tool wes
again the energy integral. Using the calculus of variations, he thought
he had established the existence of a minimum for it and hence the ex-
istence of a solution to the Dirichlet Problem. Published in 1847, the
result was called "Thomson's Principle™ in England.

In France, Pierre-Simon de Laplace (1749-1827) spent much of his
l'ife working on celestial mechanics, although he had many other scienti-
fic interests. In 1792, he published a paper concerning the gravitation-
al potential due to a spherical mass. In it he uses and solves the po-
tential equation in spherical coordinates, employing series techniques
and Legendre polynomials. Today his solutions are called spherical
harmonics, so named by Kelvin. During that period in France, Joseph
Fourier (1768-1830) was studying the theory of heat conduction. He de-

rived the "heat equation,”

2 2 3T
vV'r =k 0E °
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and initiated the trigonmetric, or Fourier Series technique to study it
in rectangular coordinates. These results are summarized in his classic
"Theorie Analytique de | a Chaleur,” published in 1822. Although correct,
his results were not rigorous and served to stimulate much activity“in
mathematical analysis inthe remainder of the 19th century. He also con-
sidered the steady-state heat equation, which is Laplace's equation. The
term " steady-state" means that 3_’./"{ = 0; that is, the temperature,T ,

does not vary with time. Further, let us assume that T is prescribed on
a two dimensional boundary, T. The problem of heat conduction now be-
comes

vr = 0,

T, given,
another Dirichlet Problem.
Fourier studied the above problem in the case where! is a rectangle.

W shall assume that T' is the boundary of the region where 0 £ « < 1,
02y 21 Also, we assume that T must satisfy

T(0,y)

T(1,y) =0

T(x,0) 0
T(x,1) = f(x) (given).

In rectangular coordinates, Laplace's equation becomes

32'.7’ BZT _
———2+ —3 = g .
dx oy

Fourier assumed T(x,y) = X(xz)-Y(y}, where X and Y are to be found. This
is the method of separation of variables, which D'Alembert first used in

1752. Using this, Fourier obtained the following equations:

X" =x=0 X(0) = X(1) =0

yt+ar=o0 Y(0) =0

T(x,1) = f(x):

where A is a separation constant. This system can be shown to have the
solution

K == Hor n=0,1, 2 "

T(x,y) = 2‘1 Cnsinnmcsinhmry,
n=
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where 1

f flx) sinnwaxdx .
0

1
Cn =$in tmrw

Here, ¢, wes obtained by finding the Fourier Sine Series of f(x). The
time varying problem, where 37/3t # 0 is solved by similar means. See
[13], for example.

Gabriel Lame (1795-1870), at the Ecole Polytechnic in Paris, was
also interested in solving the steady-state heat equation in other coord-
inate systems. This is because i f the boundary, I, is other than rec-
tangular, Cartesian coordinates mey very well be inadequate. To illus-
trate this, suppose once again that we are dealing with two dimensions
and that T is a circle, say of radius one, with T prescribed on it. In
Cartesian coordinates, the problem is not solvable. In polar coordinates,
however, it becomes

r2 9—2-2 +r ol + ﬁf_'. =0
3 2

8r2 r N

T(1,8) = f(8) (given) 020 % 2r.

The partial differential equation can be solved by assuming T(»r,8) =
R(r)-6(8), This yields two ordinary differential equations after separa-

&°r
2 3

tion, namely,

T ar
2
29 4 re=0
de
with conditions
e(0) = of2wn)

e'(0) =0'(2n),

so that the solution will be continuously differentiable, and
T(1,8) = f(e).

The solution is then found to be

T(r,8) = z (an 7t cosne t bn Msi nznel,
n=0
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where 2r
a, = . f f(8) cosnode
0
and 7
1 2m
b == f £(8) sinnode
0

are found by Fourier Series techniques.

Lame sought to solve Dirichlet Problems for any boundary by employ-
ing a suitable coordinate system, so that the boundary surface took on
the simple form Xi = constant, where Xi is avariable in the desired co-
ordinate system. Having found such a coordinate system for a given prob-
lem, he hoped then to separate Laplace's equation as we have done in the
above examples, and solve the Dirichlet Problem. However, he eventually
came to realize this separation is not always possible. Today, we know
that Laplace's equation i s separable in eleven coordinate systems.

Lamé's work i S summarized in his 1859 book Lectures on Curvilinear

Coordinates.

Finally, we come to Germany, whose mathematical center was Berlin,
and to a lesser extent, Gattingen. In 1828, P. L. Dirichlet (1805-1859)
was appointed as a professor in Berlin. A graduate of the University of
Cologne, he had taught in France and studied with Fourier before return-
ing to Germany. Although chiefly remembered for his work in number
theory, he published papers concerning Fourier Series, fluid mechanics
and potential theory "Ueber einen neuen Ausdruck zur Bestimung der Dich-
tigkeit einer unendlich dunnen Kugelschale wenn der Werth des Potentials
derselben in jedem Punkte ihrer oberflache gegeben ist." In part because
of his interest in number theory and mathematical physics, he was appoint-
ed chairman of Gottingen in 1855, succeeding K. F. Gauss (1777-1855).
His 1850 paper solved the potential equation as Green and Thomson did, by
means of minimizing the energy integral. Although only at Gottingen for
four years, Dirichlet taught and influenced Behrnard Riemann (1826-1866).
Riemann named the technique of minimizing the energy integral the Dirich-
let Principle, and the boundary value problem the Dirichlet Problem. In
his doctoral thesis ("Grundlagen fur eine allgeneine Theorie der Func-;
tionen einer veranderlichen complexen Grosse™) which introduced and de-
veloped the Riemann surface approach to multiple-valued, complex mappings,
he frequently assumed and used the Dirichlet Principle whenever needed.
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During this period, analysis was coming under greater scrutiny with
regard to itsrigorous validity. In Germany, Karl Weierstrass (1815-
1897) made may contributions to the foundations of analysis, including
a number of startling and thought provoking counterexamples to previous-
ly accepted results. In 1879, while at the University of Berlin, he
showed that under the current conditions used with the Dirichlet Princi-
ple, that there is not always a continuously differentiable function that
minimizes the Dirichlet Integral.

This result caused a great deal of discussion and disappointment in
the mathematical community; a method that had been successfully and fre-
quently used for years was possibly invalid. In particular, this left a
large logical loophole in the dissertation of Riemann, a fact he was well
aware of, and which he attempted to rectify. In a later paper on minimal
surfaces, he attempted to establish the existence of the desired function
by geometric arguments but his arguments fell short of sufficient gener-
ality. Carl Neumann, another mathematical physicist of the era, was
saddened that a theory "which was so beautiful and could be utilized so
much in the future, has forever sunk from sight.”

This result of Weierstrass' did not mean that the Dirichlet Problem
was to go ignored, however. As we have seen in the first part of this
article, the problem can be studied from several perspectives. Herman
Schwarz (1843-1921), a student of Weierstrass' at Berlin, Carl Neumann,
and Henri Poincare (1854-1912) at the University of Nice in France, all
gave existence proofs by attacking Laplace's equation.

David Hilbert (1862-1943) was not, however, convinced that the Dir-
ichlet Problem could not be solved using the Dirichlet Integral. He sus-
pected that the assumptions underlying the calculus of variations were
at fault, not the method of minimizing the Dirichlet Integral. The prob-
lem, we recall, was in showing that the function minimizing the Dirichlet

Integral was contained in the set of admissible functions. As thisis a

limiting process, it refers to what we call "completeness,” which is fund-

amental to the notion of Hilbert Spaces. It is therefore quite conceiv-
able that Hilbert would correctly solve the problem, and he did, in 1899.
(see "Uber das Dirichletsche Prinzip," Jahresbericht der Vereinignng,
1900). A modern and elegant treatment of the applications of variational
techniques to partial differential equations is given in chapter 4 and
includes the Dirichlet Problem as a special case. It is interesting to
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note that Hilbert's student and later colleague, Richard Courant, (1888-
1972) became even more interested in the problem, chose it as the subject
of his doctoral thesis ("On the application of Dirichlet's Prineciple to
the problems of conformal mapping,” 1910), and eventually made if “the
subject of a book, [2].
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DESCARTES: PHILOSOPHER CR MATHEMATICIAN?

by James F. Goeke, S.J.
St. Louwis University

Rene Descartes, the seventeenth century French thinker, had a pro-
found effect on two disciplines: Philosophy and Mathematics. 1t was
Descartes' methodic doubt that led him to the thinking self as a philo-
sophic starting point. This "methodic doubt” was adopted by later phil-
osophers as well, takingphilosophyin an etirely new direction. As a
result, Descartes is often considered to be the father of modern philo-
sophy. Moreover, Descartes was also an influential mathematician. It
was Descartes who combined algebra and geometry t o come up with what is
now known as analytic geometry. Analytic geometry and the accompanying
Cartesian coordinate system were two of the necessary precursors to the
discovery of the Calculus.

It is exceptional for one person to have such a profound effect on
two quite distinct disciplines. The question that occurredtoneis,
"What is the common thread between Descartes' contributions to philoso-
phy and his contributions to mathematics?' It seems like a reasonable
question: every discovery takes place in a context, and the context of
these two discoveries includes the same person. Wha is the common
element?

In order to discover the common element i n Descartes' many intel -
lectual contributions, it is helpful to learn a little about Descartes'
background. Descartes finished the regular university course at the
University of Paris at the beginning of the seventeenth century. After
reflecting on his years at the University, he became quite frustrated.
Despite the fact that he had studied for most of hislife, he felt that
he wes certain of nothing. Philosophy was the discipline which frustra-
ted him the most. In his work entitled "A Discourse on Method", Des-
cartes wrote:

Despite the fact that philosophy has been cultivated by
the best minds that have ever lived, nevertheless no
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single thing is to be found in it which is not subject to
dispute, and in consequence which is not dubious. [1, p. 86].

In other words, it seemed to Descartes that philosophical reflec-
tion had hardly advanced beyond the first philosophical queries-of the
earliest Greek philosophers, and consequently that philosophers needed
to start all over again at the very beginning and to do it right this
time.

Unlike philosophy, there did seem to be a sure body of knowledge
in mathematics. Descartes wrote, "Most of all | was delighted with math-
ematics because of the certainty of its demonstration and the evidence
of itsreasoning."” [1, p. 85]. As a matter of fact, mathematics was the
only discipline in which Descartes found certainty. Therefore, he de-
cided to generalize the method of mathematics, namely the method of
starting with unquestionable axioms and proceeding logically from the
simple axioms to more complex theorems. The Cartesian method consisted
of four principles:

1) to accept nothing as true which is not so clear and distinct

that all doubt is excluded;

2) to divide large problems into smaller ones;

3) to proceed from the simple to the complex;

4) to enumerate and review the steps of your deductive reasoning

so thoroughly that no error can be admitted.
After arriving at this method, Descartes intended to apply it to all
disciplines, beginning with philosophy.

It was the application of the Cartesian method to philosophical
reflection which resulted in the unique Cartesian starting point. Re-
call that the first principle of the Cartesian method is "to accept
nothing as true which is not so clear and distinct that all doubt is
excluded." According to Descartes, everything is subject to doubt, in-
cluding sense data. Everything, that is, with the exception of one
thing, the existence of the doubter. The doubter, ny self, must exist
or else doubt itself would be impossible. It is thisreflective pro-
cess which resulted in the famous Cartesian assertion, "cogito, ergo
sum” (which means, "I think, therefore I am"). Arguing logically from
this unquestionable starting point, Descartes arrived at the existence
of Gad and at a certain knowledge of the physical world.

Obviously, the next step is to show how Descartes applied his
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nethod to nathermatics in order to come up with his coordi nate georetry.
But first, let us consider a fewquestions. |f Descartes was so de-
lighted with nathenatics, what need was there to apply his method to
the discipline? Secondly, if the Cartesian method was abstracted from
mat henatics, howcould it be reappliedto mathematics?

Inresponseto the first question, while Descartes was "delighted
wi th mathenatics because of the certainty of its denonstrations and the
evi dence of its reasonings,” he was convinced that there was enor nous
potential for much further progress inthe field. |In Descartes' tine
mat henat i cs consi sted essentially of Euclidean geonetry with al gebraic
appendages. Euclidean geonetry confines itself prinmarily to figures
fornmed by straight lines and circles, soin order to explainthe baffl-

i ng physi cal phenorrena of his day in mathenatical terns, phenonena such
as the el liptical path of the planets or the parabolic path of a cannon-
bal I, Descartes needed to come up with a way of dealing efficiently with
curves such as el lipses and parabol as. Descartes decided, therefore,
that it would be nice to establish a general procedure which one coul d
fol | owwhen dealing with ellipses, parabolas, and the Iike, and he set
out to acconplish just that.

Now t hat we have seen why there was a need for Descartes to apply
this "nmethod" to nathenatics, we nust expl ain how he applied his nethod
to the very disciplinefromwhich he abstracted it. Recall the Cartesiar
nmethod. The first principleof the Cartesian nethod is to accept not h-
ing as true which is not so clear and distinct thatalldoubt is excluded.
I'n Descartes' opinion, Euclidean geonetry and the al gebra of his day
ver e undoubtedly true; thus, they formed the foundation for his coordi-
nate geonetry. The third principleof his nethod is to proceed fromthe
sinpleto the conplex. oviously, a straight line is a sinpler georet-
ric figure than a curve. Descartes' nethod suggested, therefore, that
it should be possible to generate a procedure for dealing with curves
usi ng what he knew about straight lines. The Cartesian nethod coul d
only take himthis far. A this point Descartes had to discover a way
of dealing with curves based upon what he knew about straight |ines.

Descartes nade a start towards this discovery through a creative
way of envisioning curves. Inagine a curveto be the path forned by
the endpoint E of the line segnent EF(see figure 1 below. As the
vertical |ine segment EF noves towards or away fromthe fixed point 0,
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Figure 1

the line segnent shortens, lengthens, or even changes directions, depend-
ing upon the path of the curve. The line segnent’'s one endpoint E
follows the path of the given curve, whereas its other endpoint 7 al ways
remai ns on the sane horizontal line. Qice Descartes discovered this way
of envisioning curves, he was one creative insight away from establish-
ing a general procedure for dealing with any geonetric figure.

The second step in establishing a procedure for dealing wth geo-
metric figures involved al gebra. Descartes discovered that it was pos-
sible to conpare the ever-changing position of the point Ewith the
constant position of the origin(some fixed point O) using al gebra(see
figure 2 below. The distance fromthe origin to the vertical line seg-
ment EF , he called x. The distance fromthe horizontal line OF to the

E (x,y)
J
« F X R
€ \J/o F (
E' (x,-y)
Figure 2

endpoint E, he called y. Thus, the position of each point E could be
represented by an (x,y) coordinate. To avoid the type of confusion en-
gendered by points equi-distant fromthe origin(as exhibited), for
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exanpl e, by points E and E' in figure 2), Descartes arbitrarily deci ded
that the x-coordinate of a point tothe left of the origin would be neg-
ative whereas the x-coordinate of a point tothe right of the origin

woul d be positive. Likew se, he decided that the y-coordinate of a

poi nt bel owthe origin would be negative whereas the y-coordi nate of a
poi nt above the origin would be positive. Uon establishingthis coordi-
nate system Descartes discovered that there is one al gebrai c equation
whi ch can describe the rel ationship between the x and y coordi nates for
every point E-on the given curve. Thus, his general procedure for deal -
ing wth curves was conpl et e.

To sunmari ze, there are three basic insights which resulted in
Descartes' discovery of coordinate geonetry. Frst, he had to come up
with a creative way of envisioning curves, nanely as a series of points
forned by a "magic" line segnent. Secondly, he had to di scover howto
rel ate each point of the curve to afixed point. Thirdly, he had to
di scover that there was a uni que al gebrai c equation associ ated with each
uni que curve, an equation whi ch described the rel ationshi p between t he
x and y coordinates for every point on that curve. The G;lrtesi an net hod
led Descartes to the doorstep of coordinate geonetry; but as in all math-
enatical discoveries, creative insight was needed to open the door.

In concl usion, we see that the Cartesian nethod pl ayed a part in
Descartes' mathematics as well as his philosophy. There are other sin-
larities as well. Just as Descartes' philosophy is no |onger based on
sense data, SO Descartes' mathenatics is no | onger dependent on the
sensible figure. As Mrris Kline wote in his Mathematics i n Western
Culture, in Descartes' coordinate geonetry "the mind has repl aced the
eye." 2, p 177 . The curve is no | onger represented by a sensishl e
figure; it is represented by an al gebraic equation. This al gebraic ge-
onetry forned the foundation for nodern mathenatics, naki ng nore abstract
nat henat i cs possi bl e.

But back to the title of this paper. |s Descartes prinarily a
nat henati ci an or a phil osopher? | would venture to say that Descartes
was a mat hematici an at heart who took phil osophy very seriously. H
was a nman who was frustrated with the | ack of true know edge in a world
which acted as if it knewit all, and using the nethod of mathenatics,
Descartes tried t o advance nany of the various disciplines. Inretro-
spect, however, while Descartes did nake a profound contribution to

517

philosophical thought, it was nathematics itsel f which benefitted the
nost fromthe nathenatical "Cartesi an net hod".
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A THEOREM OF SIMILAR TRIANGLES

by Michael Eisenstein
CBM Educational Center, San Antonio

Theorem: Let AABC be any triangle.

Let O = (p,q) be any interior point of AABC.

Let K be the point of intersectionof the nedians of AAOB.

Let L be the point of intersectionof the nedians of ACOB.

Let Mbe the point of intersectionof the nedians of AAOC.
Then ALMK is simlar to AABC , theratio of a side of AMK to the
correspondi ng side of AABC is 1/3, and the correspondi ng si des
are parallel.

Proof. Ve refer to the drawing in Figure 1.

B (Qy b)

s
A(°,°) \Y2 C (c 10)

Figure 1.

V¢ find the coordinates of the points x,L, and M In any tri-
angl e the three nedi ans intersect at a comrmon point. Therefore, it
suffices to find the point of intersectionof any two medians i n each

triangle.
In each triangl e we find the equations of the |ines through two
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medi ans. Setting themequal to each other, we find the point of inter-
section. Let A= (0,0), B =(a,b), C= (c,0) where a, b, a are positive
real nunbers.

. \¢ consider a40B.
Let S be the mdpoint of 4B

_ {a+0 bt+o (a_ b == . :
Thens—(z,z) 2 Z)and 05 is a nedian of MOB.
— -1 . . b
The slope of 05 = —— and with the point (% 5 5) . the equation
2 P

of the line through 05 is

b _ b-2 a
y-§=a_:2_‘pl(x__2_) (1)

Let T be the mdpoint of 0F. ThenT:(ﬁE, Z?-)and AT is a

2
nedi an of  AAOB.
The slope of 4T is -Zl;%and the equation of the line through 4T is

"E+‘§ ) (2)

Solving (1) and(2) above for X and y, we have x :9-;-’-’-, y =b~'§2
and the point of intersection Kk = (a—gg, é?-)

II. V¢ consider ABOC.
Let y be the nmidpoint of 3¢, Then u = (Q—Z’L—G-, g-) and o7 i s a
nedi an of ABOC.
— _ b-2
The sl ope of oy = are -5
of the line through o7 is

Wth the point (p,q) , the equation

b-2
v = () (s0) + (@)

let T - (a—g’-’- , —;"'-) Then CT i s a nedian of ABDG.

The sl ope of TF = - . Wth the point (e,0) , the equation

atp-2e
of the line through the median CT is
- (Pta_
y = (a+p_2c) (w=c) | (4)
Solving (3) and (#) above for x and y, we have x = -‘z—"%f—a-, y =Z%a~

and the point of intersectionys = (g?‘g’ I"%a‘
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III. We consider AADC.

Let ¥ be the midpoint of A? Then v = (%,0 and OV is a median of

MOC. The slope of OV = —35- and with the point (%,0). the equation
p-3
of the line through 0V is

_ 2 c
y—-g‘p_J;'c’D—ch- . (5)

Let ¥ be the midpoint of 00, Then W= (2-;3, g—) and AW is a median

of A40¢ . The slope of 4% = -4 . With the point 4(0,0), the
equation of the line through A% is

y=f+;x. (6)

Solving (5) and (6 ) above for X and y, we have X = F%, Y :_03_

and the point of intersection M = (L;c—, %) .

We have from |, II, III above:
_ (atp b+g a+p+e b  pte
K- (g B2), po(mmebm) we(ER ).

3 3 3
Then
KL = (0)24.0 =£'=1-AC.
3 3 3
oM = (2)24'(2)2 =%\la2+b2 =1 .
3 3
2 2 —_—
=_f[z=c b _1 2, .2 _1
MK = (3)'*(3) -sd(a-c) +b =3BC.
Therefore ALMK isS similar to AdBC and the ratio of the corresponding sides
ist
3
—_— O — _ —_—
Slope of XL = a+p+c-0—slope of AC
3 - 3
Therefore, KL || 4C .
b
Slope of W=—g—=%=slope of AB.
3

Therefore IM||4B .
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W= —-b _ B
Slope of KM = =6 "o slope of BC

Therefore, XM||BC .

Alternate Proof.
Ve first establish:
Theorem A, Given MBC, let k¥ be the point of intersection of the

medians. Then the length of the line from a vertex toK = F of the
length of the median from that vertex.

c (c, d)
Proof.

A(o,0) M(go0) B

Figure 2.

Consider Figure 2. Let ¥ be the midpoint of 2B. Then M :( %, 0) and
@ is a median of AABC.

|e

The slope of CH is and with the point (%,0) , the equation

O

toj o

of the line through C¥ is

2d db
Y=%b5%" %-b ° (7

Let L be the midpoint of BC. ThenL :(Z_:_-;_a_’ %)and 47 is a median
of AABC.
The slope of AL isg% and with the point A(0,0), the equation at

the line through 4L is

y=bl+cx. (8)
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To get the point of intersection we equate (7) and (8) and have:

2d &b _ d
Sob ¥ " Zob  bte T

2db + 2de - 2ed + db . _ _db
(20-b) (b+3) Zo-b

Therefore X = =

d
9=§
_(b+te d
o = (%2 §)
bee V2, (d 1 7. 2
Then 4K = (T)*(E = 1re)? + a
2 L
_ Wp+c)\2 gl_) _1 z, 2
AL_J.(..Z__)+(2 _2\/(b+c) +d

Therefore XK = %AL. Similarly for the other two medians.

To complete the solution, we now refer to the Figure 1. above. As X is
the point of intersection of the medians of A4DB,

AT from Theorem A above.

1
3
1
= CT.

Similarly LT =

Therefore, AKIL is similar to ATC, as we have one congruent angle and

the corresponding adjacent sides in proportion. .
Thus 1
KL = 3 AC

As< TKL = < TAC we have XL || AC.

Similar arguments for ¥ and X¥ complete the proof.
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A SIMPLE MODEL FOR TWO | NTERACTI NG SPECI ES AND
THE PRINCI PLE OF COMPETITIVE EXCLUSI ON

by Karen Cunningham
Univensity of Texas at Arlington

1. Introduction

The theory of competition between two species living in the same
environment was first published by Charles Darwin in 1859 [6, p. 1295].
Volterra formally developed a mathematical model and hypothesis in 1931
which was verified experimentally by Gause in 1934 and 1935 [3] and [3,
Chap. 8]. Since that time there has been considerable controversy over
the validity of Volterra's equations and the various modified forms of
Gause's principle of competitive exclusion.

In its simplest form, the principle states that two species that
make their living in identical ways cannot coexist in the same environ-
ment. Then how different must the species be to coexist in an equili-
brium community? Eventually, after many diverse versions, the following
generally accepted statement was developed:

Principle of Competitive Excl usion: "Two species competing for
limited resources can only coexist if they inhibit the growth of the
competing species |less than their omn growth” [1, p. 89 ]. W will dem-
onstrate the validity of this principle by first deriving a system of
equations for two competing species and then showing that the behavior
of its solution supports the competititve exclusion principle.

2. Denivation of Equations

Consider a population model for one species where the growth rate
(the difference between the birth and death rate) is a constant. Let
N(t) be the size of an isolated population at time t and let » be its
growth rate. If at some initial time to the population islvo, then the
rate of change of the population dv(t)/dt is the growth rate times the
size of the population. So we have a linear differential equation, in-
vestigated by the British economist Malthus around 1800 [5, p. 125]:

dn(t)/dt = rN(t).
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With the initial condition Iv(to) = IVO, the solution to this equation
is r(t-t,)

N(t) = Noe
If » >0, as it would be in an unlimited environment, the population
grows exponentially with time. Nw let us restrict the species to a
microcosm, a representative of the total environment, but with limited
space and food.

Experimentally, it has been shown that the growth rate diminishes
as the population density increases [5, p. 151]. Also, the probability
that two members of the species will encounter each other i s proportion-
al to N2[2, p. 28]. So if we add a competition term of 4J\I2 to the

Malthusian equation, where b is a positive constant, we have:

an/dt = ri - bN°.
This equation was first investigated by Verhulst, a Dutch biologist, in
1837 and is known as the logistic equation for population growth [5, p.

153]. In this equation, r is the uninhibited growth rate and b repre-
sents the effect of crowding, where » and b are positive constants.

VW are now interested in an equilibrium population, when dN/dt= 0.
By examination, we see that there are two equilibrium populations, when

N=0 or N =uxr/b.
Whn ¥ = 0, the solution is trivial, but when the population is N = r/b,

this is called the saturation population and is the largest population a

species can sustain in a microcosm without loss. The logistic equation
i s separable and solving [5, pp. 159-160] we have
m(t) = 2

:r'—bIV0 s —P(t—to) :
bNO

1+(

Wen ¢ + =, then N(t) + »/b. Hence,the popluation approaches the
saturation population, regardless of its initial value (IVO # 0). Notice
if the initial population is less than the saturation population, then
dnN/dt >0 and so the population increases; but if it is greater than the
saturation population, then dV/dt < 0 and so the population decreases.
V¢ shall call this a stable equilibrium population, since as time in-

creases, all solutions near the saturation population stay near it.
It will now be to our advantage to express the logistic equation

in terms of the saturation population, =»/b. Let X = »/b and notice X

i
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is always positive. W have:

an/dt = N —b1v2=r1v(1-%zv) = (-2 = v D).

Since K represents the available number of spaces in the microcosm._f?r
the species, then (¥-¥)/K is the number of vacant spaces relative“i—o' any
N. Hence, for each member of the species added to the population, one
more place is occupied and the growth rate is reduced by the constant
factor 1/K.

To derive Volterra's equations for two competing species first
consider the logistic equations for species 1. and 2 in the absence of

the other. For species 1, when IV2 = 0, we have

le/dt rlIVl( (Kl—IVl)/Kl)

and for species 2, when ¥, = 0, we have

1

A, /dt = v, ((Ky-N,) /Ky

If these two species compete for the same food and space, we can assume
that each individual of one species inhibits the other species' growth
rate by a constant factor. Assume that each member of species 2 reduces
the growth rate of species 1 by the constant u/Kl. Similarly, assume
the growth rate of species 2 is decreased by the constant B/K2 for each
member of species 1. Adding these competition factors to the respective

logistic equations gives us Volterra's equations:

le/dt

n

r N (K N, - al,))/K;)
d1v2/d1: = r2N2((K2-1V2 - BNl)/KQ).

The positive constants a and B are called the coefficients of competition

and indicate the influence of each species on the other. So, one indi-
vidual of species A has an inhibitory effect of l/Kl on its own growth
rate and an inhibitory effect of B/K2 on species 2 growth rate. Similar-
ly, each member of species 2 inhibits its om growth rate by l/K2 and in-
hibits species 1 growth rate by m/Kl [9, Chap. 7].

3. Behavion of Solutions of, Volterna's Equations,

Notice that the variable t does not appear explicitly in the right-

hand members of this system. This type of system is called time-invari-

ant or autonomous. If we regard ¢ as a parameter, we can examine the
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population changes i n time using Nl and N2 as the axes of our coordinate;
system. The v - N2 plane is called a phase plane and the solution
curves, called trajectories, are depicted with arrows to indicate how
the populations change with time {7, Chap. 8].

First we would like to insure that neither population is ever less
than zero, so we must show that we are concerned only with the first
quadrant and nonnegative axes of the Nl - ZV2 phase plane. Considering

each species in the absence of the other, we then have
dIVl/dt = rllvl((Kl—Nl)/Kl), Iv2 = 0,

which is logistic equation for species 1. Let us examine the phase

plane solution. W have with IV2 =0
le/dt =0 if Nl = 0,
which implies (0,0) is an equilibrium population;

le/dt >0 if 0 <N1<Kl,

which implies the N:L population is increasing if O <N, < K, and ¥,

n
o

le/dt = 0 if Nl = Kl

which implies (Kl,O) is an equilibrium population;
dw,/dt < 0 if K, <N,
which implies the N:L population is decreasing if Kl < Nl and IV2 = 0.

This is sketched on the phase plane as in Fig. 1. Similarly, we can
sketch the solution of the logistic equation for species 2, when IVl =0
on the N2 axis. If we take the union of these trajectories, we see that
the origin and the positive axes are covered as sketched in Fig. 2.
From fundamental existence and uniqueness theory for ordinary differen-
tial equations, we know that given any set of initial conditions, an
autonomous system has no two solutions passing through the same point
[2, p. 391]. Hence, trajectories in the phase plane may never cross

So if we start off with initial population in the first quadrant
of the phase plane, the solution of the system must remain in the first
quadrant.

W now would like to consider the equilibrium populations of the
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N2 Ny

s «—e—<¢ ey e
o K, Ny o K, N,
Figure 1 Figure 2

Volterra system, when le/dt = dN2/dt = 0. Looking at
dv,/dt = r\N,((K -N,-al,)/K; ),

V\eknodel/dt =0 if and only if Ny =0o0rk - NL-al, = 0. If

Nl = 0 we have already seen what happens. Consider the line Kl - Ny

- aN2 = 0 or in slope-intercept form: IV2 = —Nl/a + Kl/a. Notice above
this line (IV2 > —Nl/a + Kl/a) that d[vl/dt<0; hence the N, population
is decreasing. Then below the line we have dIVl/dt >0, and the N, popu-
lation is increasing. This is sketched on the phase plane in Fig. 3
with arrows indicating change of the N1 population only.

If we now look at
dN2/dt = rQNQ((KQ—NQ—BNl)/Kz),

thenweknowdj\é/dt =0if e:nd only if ¥, = 0or KX, - ¥, - 8N, =0. Ve
have already observed what happens when IV2 = 0, so lets consider the
line N2 = -slvl + K. As with the first equation notice that above this
line d1V2/dt < 0 and the m, population is decreasing. Also below the
line dlvz/dt > 0 and the ZV2 population is increasing. In Fig. 4, the
phase plane is sketched with arrows indicating change of the I\l2 popula-
tion only.

If we eliminate the parameter ¢ in Volterra's equations we have:

dNQ/dIVl = (P2N2K1(K2—N2—BN1))/(rlNlKQ(Kl—Nl—uN2)). .

From this equation we can see that we can determine the slope of the
trajectories. W K2 - N2 —BI\Il = 0, then cZIVZ/dIVl = 0; hence the trajec-
tories have slope 0. W Kl - - all, = 0, then dN2/le is undefined,
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Figure 3 Figure 4

hence the trajectories have no slope. Since the slope is constant along
these lines, they are called isoclines. Adding dashes to indicate slope
we now represent in Fig. 5 the change of the N population, and in Fig.
6 the change of the It?2 popul ation.

N,

2

o

Ny
Figure 5 Figure 6 2
W are now ready to determine those values of a and 8 for which

two species can coexist. There are four possible cases which are pre-
sented as (1), (2), (3) and (4) below [8, Chap. 7]:

(&) l/Kl < E;/K2 and l/K2 > a/Kl.

Species 1 inhibits its om grwoth rate less than it inhibits species 2
growth rate and species 2 inhibits its owm growth rate more than it in-
hibits species 1 growth rate.

(2) l/Kl > B/K2 and l/K:2 < a/Kl.

The converse of Case 1, both species inhibit species 1 growth rate more

than they inhibit species 2 growth rate.

(3) 1/1{l < 3/1{2 and 1/, < o/K,-

Each species inhibits the other species growth rate more than its own.

() l/Kl > (Z\/K2 and l/K2 > a/Kl.

Each species inhibits its om growth rate more than that of the other
species. According to the principle of competitive exclusion we would
expect a stable coexistence between the species only with Case 4.

Case 1. Ve want l/Kl < B/K2 and 1/K2 > u/Kl. For sketching the
phase plane we restate these as K2/B <Kl and K2 < Kl/a. Plotting the
w, and v, isoclines in Fig. 7, we note the direction each population
must go i n each region. Possible equilibrium populations are marked - .
The solution curves for Case 1 are sketched in Fig. 8. Checking our
equilibrium points for stability we see that (0,0) is unstable, since
no solution stays close to it. The population (0,K2) is also unstable,
since there are trajectories which pass arbitrarily close to, but do not
stay close to (0,K2). But we see for the population (kl,o) that any
initial population with both species competing eventually ends up at
(kl,o). Hence, for Case 1, we have that i f we begin with both species
competing eventually species 2 will become extinct, and species L will
be at its saturation population.

Ny Nl

L 4

QLX

K
K" 2
A
4
° . N ° ” Ky Ky N,
p-]
Figure 7 Figure 8

Case 2 Ve want 1/K, > B/K, and 1/K, < a/K,, or K; < K,/8 and
Kl/a < K2. This is very similar to Case 1 except that the v, isocline
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is nov above the Nl isocline. The two isoclines and general direction
of the trajectories are shown in Fig. 9. Figure 10 has the solution

curves. Again equilibrium populations are marked with - . As we would

expect, we have two unstable equilibrium populations, at (0,0) and (Kl,o).

The only stable equilibrium is at (O,KQ). Hence, for Case 2, we have
that for an initial population including both species, only species 2
will survive.

Notice that Cases 1 and 2 can be used to demonstrate that two
nearly identical species cannot coexist. |f the two species are very
similar, an individual of either species has about the same inhibitory
effect on each species growth rate. Hence a and g are closeto 1. If
we assume a = B = 1, then species 1 and 2 are inhibited by l/Kl and
l/K2 respectively for each member of either species added to the micro-
cosm. Case 1 then reduces to K2 < Kl, in which only species 1 survived

and Case 2 reduces to Kl < K_, where only species 2 remained. Therefore,

2’
if two species are very similar then the one which has the greater sat-
uration population in the microcosm will survive and the other will be-

come extinct.

N2
K2
K
S
N, O e g TN
y-]
Figure 9 Figure 10

Case 3. W want 1/](1 < s/](2 and l/K2 < a/Kl, which implies K2/B
<X and Kl/a < K,.
arrows in Fig. 11, we notice the isoclines intersect, which implies

Plotting the Nl and N2 isoclines and direction

another equilibrium population. The solution curves for Case 3 are
sketched in Fig. 12. As in the previous two cases we see that the

LN

N

LY
v

o v
o K Ky N K Ko M
8 A
Figure 11 Figure 12

origin is again unstable. Looking at (Kl,o) we see that all traject-
ories that get close to it approach it. Hence the equilibrium popula-
tion (Kl,o) is stable. Similarly we see that (0,K2) is also a stable
equilibrium population. Let the intersection of the two isoclines be
denoted by (El,E2). V¢ can see that the motion of some trajectories
approach (£,,E,) while others move away from it. Hence the only equili-
brium population with the species coexisting is unstable. Therefore,
depending on the initial populations of the two species’ only one

species will survive.

Case 4. W want l/Kl > B/K2 and l/K2 > a/Kl, which says K < K2/B
and K2 < Kl/o,. As in Case 3, we notice a fourth equilibrium population
when we draw the Ivl and v, isoclines in the phase plane. Ve will repre-
sent this equilibrium population by (Sl, 52). Again arrows indicate the
change of each population in each region, as sketched in Fig. 13. Also
the trajectories for Case 4 are sketched in Fig. 14. Agan the origin
i s unstable. For the two equilibrium populations (Kl,O) and (0,K2) we
note that there are trajectories which move arbitrarily close to these
populations but are i n motion away from them. Hence both populations
corresponding to the extinction of one species are unstable.

Examining the equilibrium population (Sl, 32) we have all the tra-
jectories near it moving toward it. Hence the only stable equilibriuu‘l
population in this case involves the two species coexisting. Then re-
gardless of the initial values of the two species (except not equal to
0), we have the populations tending toward a stable coexistence.
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K| KZ. N‘ ° K. Ka, N|

Figure 13 Figure 14

Hence we have shown that the only conditions under which both spe-
cies survive is if each individual is more detrimental to its om speci-
es than to the other [4, p. 356].

We must realize that many innate and environmental factors are
simplified or ignored in the derivation of Volterra's model. Because of
this, the principle of competitive exclusion is virtually impossible to
test empirically because the hypotheses are not met. For additional
ideas in population theory see Levin's summary [8] including his exten-
sive bibliography.
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Computer Art

by Gheg K&ine, Neal Thompson, David 0'Connon
South Dakota School of Mines and Technology
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PUZZLE SECTI ON

Edited by
David Ballew

This Department i s for the enjoyment of those readers who are
addicted to working ercssword puzzles or wo find an occasional mathe-
matical puzzle attractive. VN consider mathematical puzzles to be prob-
lems whose solutions consist of answers immediately recognizable as
correct by simple observation and requiring little formal proof, Material

submitted and not used here wiZl be sent #o the Problems Editor if deemed
appropriate for that Department.

Address all proposed puzzles and puzzle solutions to Professor
Joseph Korhauser, Department Of Mathematics, Macalester College, St. Paul,
Mirnmesota, 55105. Deadlines for puzzles appearing i n the Fall Issue will

be the next February 15, and for puzzles appearing i n the Spring Issue
will be the next September 15.

Mathacrostic No. 16

Submitted by Theodor Kaugman, M.D.
Nassau Hospital, Mineola, L. |., New York 11501

Like the preceding puzzles' this puzzle (on the following two
pages) is a keyed anagram. The 207 letters to be entered in the diagram
in the numbered spaces will be identical with those in the 25 keyed words
at matching numbers and the key numbers have been entered in the diagram
to assist in constructing your solution. W completedr the initial
letters will give a famous author and the title of his book; the diagram
will be a quotation from that book. (See an example solution in the
solutions section of this Department.)
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A a nmuscle which partially twi sts on

B.

C

its axi s when tensing

an acconpanying part of semi-
i ndependent” nelodi ¢ character
road; nosaic; beetle or plant
giddy, volatile, heedless; this
puzzl e perhaps

a possibility (comp.)

excul pation

a dwarf nmale in botany

dai sy; dam or nountain

arch; crab; curve; kidney or
Zootwear

burial rites

what Sammy Gick did

"He that sleeps feels not the

Shak - Cynbeline

if you're serving, this is not too

good (comp.)
mutual |y destructive

habi tuat e

John D Rockefeller's grandchild
per haps

not regularly (3 wds.)

detached mass of |oosely fibrous
structure like a shredded tuft of
wool

uniformy
way and shark (2 wds.)

passively conpliant

tal kati veness

"

the part of the Eucharistic Service

just before the bread and wine are

consecr at ed

Q Howfar is it to the nearest
phone?

A Oh, 1 -2 mles up the road.

hypophosphat emi a; henophilia and

rape (comp.)

156 183 200 3 71 168 97 9 146

30 13 33 8 162 201 124 2 16

10 130 119 154 123 40 103 80

138 206 115 59 155 85 196 20

38 121 104 88 114 51 5 175 199

107 27

139 166 83 58 72 37 131 188 12

81 160 94 150 185 11 61 163 202

172 41 157

1 Ti2 L|3 D 4 Ji5 6 7 F|8 9 D|10 Q11 Y 12 X

13 L 14 H|15 16 L 17 18 0|19 20 R[21 A|22 F|23 s

24 F|25 J|26 V{27 28 A}29 30 31 T|32 33 L|34 K 3? I

36 U|37 X|38 W|39 40 ©Q 41 42 N|43 44 GJ45 J|46 M 47 I

48 J|49 0|50 U|51 52 N|53 54 55 56 P + 57 J|58 X +

59 R _ 60 M 61 Y|62 63 64 T|65 66 0|67 A 68 V

69 T|70 T 71 72 X|73 74 75 M|76 77 G}78 N|79 B{80 Qf8l Y
82 1|83 X|84 85 R|86 87 83 Ww|89 90 A|91 H|92 T

63 W|94 Y95 A|96 97 D}98 99 100 EJl01 102 G 103 Q104 W

105 F|106 E|107 D 108 1{109 110 111 cjl12 113 © 114 w{ll5 R|11l6

7 v 118 I(11% 129 121 wll22 123 0]124 L]125 cJ126 F[127 I

128 U 129 Cf130 131 132 133 E 134 C|135 M[136 P|137 O]138 R

139 x}140 U{l4l B|1l42 143 N |144 145 146 147 F|148 £|149 U|150 Y|151 V
152 B 153 154 Q}155 156 D|157 158 N {159 C|160 Y 161 B

162 L|l63 Y 164 165 N]lé6 167 168 D|169 170 v 171 s|172 %173 H

174 G175 W {176 T|177 178 U179 180 G181 182 S|183 D|184 T|185 Y|[186 J

187 N 188 Xx|189 190 191 192 F{193 194 G195 S|196 R|197 J

198 Cf199 W 200 201 L [202 203 204 N {205 206 R|207 U
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SOLUTI ONS

Mathacrostic No. 15. (See Fall 1982 Issue) (Proposed by Joseph D. E.
Konhauser)

Definitions and Key:

A. Bowditch K. Sassafras T. Heath hen

B. Uintaite L. Attenuate U. Injective

C. Horned sphere M. Brewster V. Chebyshev

D. Lotions N. Invertase W. Arcturus

E. Effervesce 0. octahedron X. Lebesgue

F. Rheotaxis P. Gad does not Y. Snowflake curve
G. Graffito play dice Z. Twistor

H. Aliquot part Q. Rhinitis a. Unicorn

I. Unguent R. Atavism b. Dustbin

J. Sawtooth wave S. Penrose staircase c. Yeti

First Letters: Buhler Gauss: A Biographical Study

Quotation: H A attitude towards his students has been overshadowed by
his neputation as a stnict, even unfain, critic of the wonk of others.
FHA private judgments, particularly of cofleagues, wene often quite
arbithary and inconsistent. One perceives--sit venia verbo--the
extravagance of the genius who cannot be sure what scales to use.

Sofved by: Jeaneatte Bickley, Webster Grove High School, Missouri; Rod
Chaumont and Jim Stanfield, Offutt Air Force Base, Omaha Charles R.
Diminnie, St. Bonaventure University; Victor G. Feser, May College,
Bismarck; Robert C. Gebhardt, Nav Jersey; Joel K. Haack, Oklahoma State

University; Theodor Kaufman, Brooklyn; Roger Kuehl , Kansas City; Henry S.

Lieberman, John Hancock Mutual; Eric C. Nummela, Nav England College;
Bab Prielipp, University of Wisconsin-Oshkosh; Sister Stephanie Sloyan,
Georgian Court College; Allan Tuchman, University of Illinois; The
Proposer and The Editor.
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RUZZALES FOR SOLUTION

1. Proposed by Jobeph Konhauser, Macalesfer College, St. Pauf,
Minnesota.

In the square array each letter represents one of the digits 0
through 9. Determine the correspondence, given that

1. ARC and (B are primes,
2. BBC and (OF are perfect squares, and
3. ACE and ECF are perfect cubes.

mo »
O m @
Mmoo

2. Proposed by Joseph Konhauser, Macalester College, St. Paul,
Minnesota.

Locate eight points in a plane so that the perpendicular
bisector of the line segment joining any two of the points passes
through exactly two of the others.

3. Proposed by Joseph Konhauser, Macalester College, Si. Paul,
Minnesota.

In the equal products 4 X NUMBER = 9 X BHNM each letter repre-

sents one of the integers O through 9. Determine the correspondence.

4. Phopobed by Joseph Konhauser, Macalesiter College, Si. Paul,
Minnesota.

The top and front views of a solid object are given. Drav the
side view.

Top View Front View
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5 Proposed bq Joseph Konhauser, Macalester Coflege, St. Paul,
Minnesota.
Dissect the hexagon ABODH- into three pieces which can be reas-

sembled to form a square.

6. Phopobed bg Jobeph Konhauser, Macalester Colfege, St. Paul,
Minnesoda.

Five unmarked opaque capsules contain equal amounts of sugar.
A small amount of sugar is transferred from one of the capsules into
another. Is it possible to isolate both the light and the heavy capsules

using an uncalibrated equal-arm balance just three times?

7. Proposed by Jobeph Konhauser, Macalester College, Si. Paul,
Minnesota.
Cross out eleven of the integers from the array below so that no

three of the remaining nine are in arithmetic progression.

1, 2, 3, 4, 5,6, 7, 8 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20

O e e v

g E

They said it couldn't be done

S he went right to it.

He took that thing that couldn’t
be done ....

A couldn't do it.
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CHAPTER REPORTS

KANSAS GAMMA (Wichita State University) heard Prof. D. V. Chopra speak
on the "History of Pi Mu Epsilon"; Prof. Monte Zenger of Friends Univer-
sity on "Mathematies Side Show'; and Prof. Jack R. Porter, University of
Kansas on " Some Topological Concepts”.

MINNESOTA ZETA (Saint Mary's College) heard "4 Nonarchimedean EXtension
of R" by Ghey Force; "The MU-Puzzle: A Gateway to Artificial Intelli-
gence" by Paul Froeschl; "Career Opportunities at National Security
Agency' by Stan Hanson; "The Birthday Problem” by Dn. William A. Haltman;
"Regenerative Simulation” b Gerald Karel; "Conditional Probabilities

and Paradoxes" by Peter Chiistenson; "Some Mathematics for Marathoning!
by Vh. Richard Jarvinen; "Career Opportunities in Mathematics" by a
nrepresentative from the Peach Corps; "An Introduction tO Queuing Theory”
by Gerald Stanczak; and "What i S the Caleulus of Variations?" by Michelfe
M. Kust.

MISSOURI GAMMA (St. Louis University) presented The James W. Garneau

Mathematics Award to Leona Martens; The Francis Regan Scholarship to
Ernic Fiore; The Missouri Gamma Undergraduate Award to Mary Perry and
Kim Wick; The Missouri Gamma Graduate Award to Martha Hasting; The John
J. Andrews Graduate Service Award to Glen Wwiglitz, Ch; and Beradino
Family Fraternityship Award to James Goeke, S.J. and Martha Hastings.
The winners of The Pi Mi Epsilon Contests were Yoshimura Nobuhiro (Senior
Contest) and Sanjay Jain (Junion Contest). Mr. Robert Emnett of
McDonnell Douglas Automation Company presented a talk on "Career
Opportunities Involving Applied Mathematice" and Prof. Edward Spitfznagel
gave the "James E Case, S.J. Memorial Lecture' on "Mathematics and the
Law' and "The Use of Bayes' Rule in Paternity Testing. Prof§. Edward
Spitznagel is from Washington University.

NEW YORK PHI (State University College at Potsdam) The winners of the

Pi Mu Epsilon Senior Award were Lyd{a P. Hardy and Nanog Ofslagern.
Winners are chosen by the members of the Chapter who have not yet gradu-
ated, on the basis of outstanding achievement i n mathematics and for the

promotion of scholarly activity in mathematics.
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PROBLEM DEPARTMENT

Edited by CLayton W. Dodge
Univernsity of Maine

This department welcomes problems believed to be new and at a
level appropriate for the readers of this journal. Old problems dis-
playing novel and elegant methods of solution are also invited. FPro-
posals should be accompanied by solutions i f available and by any inform-
ation that will assist the editor. An asterisk (*) preceding a problem
number indicates that the proposer did not submit a solution.

ALl communications should be addressed to ¢. W. Dodge Math Dept.,
University of Maim, Orono, NE 04469. Please submit each proposal and
solution on a separate sheet (one side only) properly identified with
m e and address. Solutions to problems in this issue should be mailed
by December 15, 1983.

Problems for Solution
Vd

534. Proposed by Chanles W. Trigg, San Diego, California.

Find the mathematical term that is the anagram of each of the fol-
lowing words and phrases: (1) RITES OF (2) NILE GETS MEN, (3) PANTS P
GONE, (#) IRAN CLAD, (5) \%WEQT (8) CL%IQ (7) GRABSALE (8) IRON

LAD, (9) TRIED A VIVE, (10) HAG, ND SEX, (I‘L']é.') ALTERING (12) RELA NG.
Ha agoNS LTV AL TRIAM &
535. Proposed by Stanley Rabinowitz, Digital Equipment Oohp ,

Mesimack, New Hampshire.

In the small hamlet of Abacinia, two base systems are in common use.

Also, everyone speaks the truth. Ore resident said, "26 people use ny
base, base 10, and only 22 people speak base 14." Another said, "O0f the
25 residents, 13 are bilingual and 1 is illiterate." Hw many residents

are there?

536. Proposed by Martha Matticks, Veazie, Maine.
A recent alphametric in Crux Mathematicorum [1982: 77, problem 721]

asks one to show that, in base ten, i eyl

TRIGG is three times WRONG.
In defense of the Dean of Numbers, solve these alphametrics independently

of each other:

(a) TRIGG x 3 = RIGHT in base ten where the digit 3 can be reused.

(b) TRIGG = 3 X RIGHT in base ten where the digit 3 can be reusedy
and

(c) TRIGG x 7 = RIGHT in base seventeen.

537. Pnoposed by Charfes W. Tnigg, San Diego, California.

Find the unique four-digit integer in the decimal system that can
be converted into its equivalent in the septenary system (base 7) by in-
terchanging the l eft hand and the right hand digit pairs.

538. Proposed by Emmanuel, 0. C. Imonitie, Nonthwest Missouri
State University, Maryville.

The roots of aX2 + bx +* ¢ = 0, where none of the coefficients a, b,

2=0are2mand

2

and ¢ is zero, are o and 8. The roots of a2 + X +c
28. Show that the equation whose roots are na and #nB is x2 + onx + 4n
=0.

539. Proposed by Hao-Nhien Q.Vu, Purdue University, West Lafayette,
Indiana.

Find a quadratic equation with integral coefficients that has cos
72° and cos 144° as roots.

*Does there exist such a quadratic with roots sin 72° and sin 1u4°?

540. Proposed by M. S. Klamkin, University of Alberta, Edmonton,
Canada.
If the radii Py Py r_, of the three escribed circles of a given

3
triangle AlAZAS satisfy the equation,

r r
Loa)(2-1)=q,
2 3

determine which of the angles A A, A3 is the largest.

541. Proposed by Stanfey Rabinowitz, Digital Equipment Corp.,
Mewimack, NV Hampshire.

A line meets the boundary of an annulus A1 (the ring between two
concentric circles) in four points P, g R S with R and § between P and
Q A second annulus AZ i s constructed by drawing circles on PQ and RS
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as diameters. Find the relationship between the areas 6f 4. and AZ'

1
542. Proposed by Herbert R Bailey, Robe Polytechnic Institute,
Terre Haute, Indiana.
A circle of unit radius is to be covered by three circles of equal

radii. Find the minimum radius required.

543. Proposed by Dominic C. MiLioto, Southeastern Louisiana Univ-
eusity, Hammond.

A linkage devicer shown in the figure, consists of a wood block
with two tracks cut perpendicular to one another and crossing at the
center of the block. Riding within the tracks are two small skids A and
B, joined together by a long handle. As the handle is turned, the skids
move within their respective tracks: A up and down and B from side to
side. Describe the curve generated by point ¢(at the end of the handle)

as the handle is turned.

N
S/B @ﬁﬂ y

S Side View

544. Proposed by Jack Gargunkel, Flushing, New Yohk.
Sow that a quadrilateral ABCD with sides AD = BC = s and 34 + 3B
= 120° has madimum area if it is an isosceles trapezoid. A solution

without calculus is preferred.

545. Proposed by Stanley Rabinowitz, Digital Equipment Conp.,
Mesvimack, Nv Hampshire.

Let fn denote the.n.th F.ibonacci number (f1 =1, f2 =1, and fn+2
= fn + fn” for n a positive integer). Find a formula for f‘m+n in terms
of fm and fn (only).

546. Proposed by Robert C. Gebhardi, Parsippany, New Jernsey.

Sow that the square of the sum of the squares of four integers

545

can be expressed as the sm of the squares of three integers, asin

(22 +32+42 4 52)2 = 1u2 + 282 + 442.

Solutions

510. [Spring 1982] Proposed by Charles W. Trigg, San Diego,
California.

A hexagonal number has the form 2n2 - n. |In base nine, show that
the hexagonal number corresponding to an » that ends in 7 terminates
in 11.

Editor's Comment. We, that is, I, goofed. This is problem 415,
which appeared on Page 62Q of the Spring 1979 issue, as pointed out by
the proposer.

Solutions were submitted by WALTER BLUMBERG, PETER JOHN DOVBROWSKY,
VICTOR G. FESER, JOHN M. HOWELL, HENRY S. LIEBERMAN, BOB PRIELIPP, STAN-
LEY RABINOWITZ, DOUGLAS F. RALL, HARRY SEDINGER, WADE H. SHERARD, KEVIN
THEALL, KENNETH M. WILKE, and the PROPOSER.

511. [Spring 1982] Proposed by Euwin Just and Norxman Schaumber-

ger, Bronx Community College, New Yohk.
If a>0 andB 2 4, prove that

B_B

(a) (é)s“s s

B B B

(b) (g_)Be e ¥
Solution by Walter Blumberg, Coral Gables, Florida.

Consider the well known inequality for all real x

1A

and

A

F xX-1
(*) x e 7,

with equality if and only if x = 1. The restriction 8 2 A can be re-
moved; that is, we let B be any real number. Nw substitute X =‘(e/a)0
in inequality (*) and raise each side of the result to the aB power.

W get
B

3

B B
[(e/a)®]* < [ele/@) 1)

which yields part (A). To prove part (b) substitute X = (a/e)oin (%)
and raise each side of the result to the eB power. In both (A) and (b)
if B =0, equality holds; if B # 0, then equality holds if and only if

a = e.
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Also bolved by PETER JOHN DOMBROWSKY, J. DOUGLAS FAIRES, DAVID
INY, TIM KEARNS, ROBERT MEGGINSON, and the PROPOSERS.

512. [Spring 19827 Phopobed by Jack Garfunkef, FLushing, New
York.
Denote the number of ways a positive integer »n can be partitioned

into 3 positive integers by P3(n). Thus, for example, P3(7) = 4, since

we have

1+1+5 1t2+4,1+3¢t3 and2t 2t 3 each equal to7.
Prove the following: If a, b, ¢ are positive integers and a2 + b2 : 02,
then

Pa(a) + P3(b) = Pa(c).

Solution by David Tng, Rensselaer Polytechnic Institute, Troy, New York.
Denote the number of ways a positive integer n can be partitioned
into two positive integers by P2(n). Then P2(n) =[n/2], where the
brackets indicate the greatest integer function. To find P3(n) we ob-
serve that there are P2(n - 1) sums starting with the addend 1,
P2(n - 4) sums starting with the addend 2, and in general P2(n - 3%k t2)
s1rs starting with the addend k. Then
[n/3]
Py(n) = Py(n - 3k + 2).
21
By noting that the odd terms and the even terms form arithmetic progres-
si on we-obtain

Ps(GniZ) = 3n2 + 2n, P3(6n +1) = 3n2 +n,

2

PS(Gn) = 3712, and Py(6nt 3) =3 tamt 1,

k2/12 - 1/3, or = k2/12, or = k712 + 1/4, so

Therefore Ps(k)

2.2 2 2 42 2
a“+b“-c 1 1 < a +tb”-c
— 17 "3 "3~ - P3(a) + PQ(b) - Pa(c) = 12
Given that a2 + b? = cz, this inequality reduces to

211« - < 10
D‘_ Pé a) t P3(b) P3(C) - 12"

i

+

W=

1
+E+

e

Since PS(”) is an integer for each n, it follows that
Pyla) + P3(b) = P3(0) .

This method of proof can be extended to establish the following

547

generalizations:
1) If |a2 +p% - 02[ > 12, then Pg(a) + P(b) # Pyle);

"

2) 1f a2 +b% = o + 1, then Pyla) + Py(b) = Plc);
3) If a b, e, dareall even positive integers and if

(a3 + 3a%) + % + 32 + (5 + 3%) - (& + 3d), then
Pyla) + P4(b) + P4(c) = P4(d); and

4) If a b, ¢, d are all odd positive integers and i f
(a3 + 3d% - 32a) + % + 3% - 32b) + (o + 30° - B2c)
= (d® + 34 - 32d), then

P,(a) + P4(b) + P4(c) = P4(d).

Generalization (1) states that (@, ¥, e) has to be "close" to a
Pythagorean triple for the desired equality to hold; generalization (2)
shows such a case. It would be interesting to see what patterns are
found for PS(n), Pé.(n), and so forth.

Also solved by WALTER BLUMBERG, JOHN OMAN and BOB PRIELIPP (fointlyl},
and the PROPOSER.

513. [Spring 1982] Phopobed by Ronald E. Shiffler, Geongia State
Univernsity, Atlanta, Georgia.

Our old friend, Prof. Euclide Pasquale Bombasto Umbugio, eminent
retired numerologist from Guayazuela, has been delving into statistics
of late in an effort to prove that his retirement salary is so laughably
low that he should be given food stamps in addition to his good conduct
pass to the 1986 baton twirlers semifinals. He has checked several dis-
tributions involving real numbers and in every case. the average devia-

tion (a.d.) is less than or equal to the standard deviation o, where

n

n
1 = 2 1 - &
a.d.=;i;|xi-x|ando=ﬁ 7Z;(aci-m).

Of course, x is the data mean

n
E: Lo
2

7=]

8|
It
3~

A

He conjectures that a.d. £ ¢ is always true. Help the professor to

prove his conjecture.
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Solution by Tim Keanns, Catharpin, Virginia
Let e, = |z, - z|. Then ; e; =ne. Also a.d. £ ¢ if and only

if (a.d.)2 < o2 which is trueif and only if
n n
1 2 .1 2
= (E %) *a Z: ;s
n 1=1 i=

n
n?3E) <n z;c.z,
i
'L:
— -2
ni;ciz-nzczio, or nz(ci—c)io,
= 1=

which is, of course, always true. The last two forms are equivalent ex-
pressions for n202 , as given in any elementary statistics text.

Also so0fved by WALTER BLUMBERG, PETER JOHN DOMBROWSKY, MARK EVANS,
DAVID INY, ROBERT E. LaBARRE, DOUG MATLOCK, BOB PRIELIPP, KEVIN THEALL,
and the PROPOSER.

Given a set of positive numbers, it is well known that their har-
monic mean ¢ their geometric mean < their arithmetic mean ¢ their root-
mean-square. The November 1977 Mathematics Magazine (vol. 50, p. 277)
shows these inequalities for two numbers in a concise geometric figure.
This problem demonstrates the | ast of these inequalities.

514. [Spring 19821 Proposed by Raymond E, Spaulding, Radford
University, Radford, V.inginia.
Let 4 A2A3 - A, be a regular polygon where An+,7' = Aj and
A e ™ 1. Let B. be a point on the segment 4 A i1 where AiBi = x.
Find the area of
Let Z‘" be the point where 4. B7’+1 intersects 4. 1 1:+2.

a regular polygon 6'1026’3 e Gy in terms of 7 and X.

Sofution by Stanley Rabinowitz, Digital Equipment Conp., Mewrimack, New
Hampshire.
Let AB, = k, AL, =4, =Y, and C,By = 2. By symmetry,

iBgAzAg = ichng, so triangles B3A3‘42 and 3302/13 are similar (by angle-

angle). Thus .

A4
and 2z = &

and

N]X
K

xX =
7 N

SN
S
-

and
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2 2
- z_ &2 _k"-x-%
_AzBs-AC-CZB3_k-k k- kK
Applylng the law of cosines to trlangle Bs,qz,q , we find that
2 3
k“=1+ X + 22 cose .
where 8 = 2n/n is the exterior angle of the regular n-gon. The are::;o-f_

a regular n-gon of side s is nsz/(4 tan(e/2)), so the area of the regular

n-gon with side C16'2 is, where 8 = 2n/n ,

n(k2 -z - .'zcz)2 n(l + 2x cosb-x)2

4° tan(e/2) 4(1 + 2% cosd+ XZ)tan (6/2)

Also sofved by WALTER BLUMBERG and the PROPOSER.

*615. [Spring 1982] Proposed by Jack Ganfunkel, Flushing, New York.

Given a sequence of concentric circles with a triangle ABC jrcum-
scribing the outermost circle. Tangent lines are drawn from each vertex
of ABC to the next inner circle, forming the sides of triangle A', B' ,
C. Tangents are now drawn from vertices A', B’ , €' to the next inner
circle and they are the sides of triangle A", " 6 ¢” 6 and so on. Prove

that the angles of triangle A(n)B(n)C(n) approach /3.

1. Disproog by David Iny, Rensselaer Polytechnic Institute, Troy,
New Yotk.

It is clear that the angles of triangle4 can he
made arbitrarily close to those of triangle A(n)B(”)c(”) by choosing the

(n+1)B(n+1)C(n+1)

difference in the radii of the appropriate circles small enough. Thus it
is possible to choose a sequence of decreasing concentric circles such

that the angles of successive triangles never vary from those of triangle
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ABC by more than any given g > 0.

2. Prood by Monnis Katz, Macwahoc, Maine.

Let the concentric circles have center B .let § and T be the
points of tangency of sides 4B and A'B' with their respective incircles
and | et those circles have radii R and r respectively, as shown in the
figure. Nw

sin(A/2) =sin8AI = R/AT and sinTAI = »/AI,

$TAL . sinTAI
A/2 " sin(A/2)

=
R
since the sine function is increasing and concave downward in the range

from o to w/2. Similarly

$A'CT <P
72 < fl-

The closer /R is to 1, the more nearly equal these fractions are. Fom
triangle AAC we have that #B'A’C’' = #A'AC + #A'C4, so that

4’ = $B'A'C’ = 2A'AT + 2I4AC T 2ICA - 2IcA!
~r. A A C v C_R+r A R-r C
R 2t2te " ®F 2% 2t ® "2

This sequence converges provided r/R < u < A for some fixed 4. But then
the sequence of radii converges to 0. Conversely, if the radii converge

to 0, then the triangles converge to equilateral.
A
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516. [Spring 19821 Proposed by J. L. Brenner, Paleo Alto,
California.

Prove, for a, b, a positive, that % (at b+e) EJ% (ab + be + ca

with equality if and only if a = b=e¢. Does this generalizeto

%ra+b+a+d)gﬁ—(ab+bc+cd+da)?

Solution by M. S. Ktamkin, University of, Alberta, Edmonton, Canada.
The first inequality is known. By squaring, it reduces to
(@a-12+ (b -ec)?+(c-a?>o.

More generally,
n 1/2 1/3 my1/n
r/(3) 2 w2 2wy 2
where the Tp are the elementary symmetric functions, i.e.

n n-1 n-2
(:z:+a1)(x+a2)...(x+an)=:c +T1:z: +T2:x: +"'+Tn'

The above are the Maclaurin inequalities, the first of which gives the
extension of the first proposed inequality to » variables. For four
variables it states

a+b+e+d 2“Iab+ac+ad+bc+bd+cd
4 6

The second inequality is valid for all a, b, a, d 2 0, for by squaring,
it reduces to

(a-bt+te-d?20.

More generally, if x, 2 0and n 2 4, then we have
(:1:1 Tyt ot xn)z & 4(3:1:1:2 PR F xnxl),
which can be proved by Mathematical induction.

Also solved by WALTER BLUMBERG, LOUIS H. CAIROLI, PETER JOHN DOM-
BROWSKY, MARK EVANS, VICTOR G. FESER, TAGHI REZAY GARACANI, DAVID INY,
RALPH KING, HENRY S. LIEBERMAN, DOUG MATLOCK, BOB PRIELIPP, STANLEY
RABINOWITZ, HARRY SEDINGER, KEVIN THEALL, and the. PROPOSER.

517. [Spring 1982] Proposed by Charles W. Trigg, San Diego,
California.
The nine non-zero digits are arranged to form three three-digit



552

primes with a sum that is divisible by 11. Find the primes and their
sum.

Solution by Bob Paielipp, University of Wisconsin-0shkosh.

There are 83 three-digit primes that have distinct non-zero digits.
Since primes greater than 5 terminate only in the digits 1, 3, 7, or 9,
any primes that contain three of these digits can be eliminated. The re-
maining primes can be listed in columns headed by 11k * »n for n = 4, 2,

., 10, that is, according to their remainders when divided by 11

Using these lists, a hand calculator, the fact that L+ 2 + ... + 9 = 45,
eighteen solutions to the given problem were found. As a check a BASC
program was constructed and run, yielding the same results:

primes amn primes um
683 947 251 1881 683 257 149 1089
683 257 941 1881 683 521 479 1683
947 653 281 1881 431 587 269 1287
563 827 491 1881 827 461 593 1881
641 257 389 1287 641 257 983 1881
389 251 647 1287 587 239 461 1287
983 251 647 1881 467 821 593 1881
281 347 659 1287 281 743 659 1683
281 359 647 1287 281 953 647 1881

Also sofved by WALTER BLUMBERG, ROBERT C. GEBHARDT, and STANLEY

RABINOWITZ.  Parntial solutions were found by LOUIS H. CAIROLI (| solution),
VICTOR G. FESER (1Z), DAVID INY {17}, HENRY S. LIEBERMAN {7}, KEVIN THEALL

(1), KENNETH M. WILKE (74}, and the PROPOSER (§).

518. [Spring 1982] Proposed by Michael W. Ecker, Pennsylvania
State Univernsity, Worthington Scranton Campus.

A baseball player gets a hit and observes that his batting average
rises by exactly 10 points, i.e., by .010, and no rounding i s necessary
at all, where batting average is ratio of number of hits to times at bat
(excluding walks, etc.). If this is not the player's first hit, how
may hits does he now have?

Solution by Robert E. LaBarne, United. Technofogies Reseanch Centen,
East Hantfornd, Connecticut.

Let ¥ and X be the numbers of current hits and at bats, respect-
ively. Then we have
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l=y_".1.+_01’
x - 1

X
which reduces to

y =-01z° * 1.01z. N
The graph of this equation is a parabola with vertex at (50.5, 25.5025)
and re-intercepts at (0, 0) and (101, 0). Since it is symmetric about
the line x = 50.5, we need try only x = 1, 2, ..., 50 and then use sym-
metry to find a second solution. Using a personal computer to perform
the drudgery, we find (25, 19) is a solution, so (76, 19) is the second
solution. Thus, in either case, he now has 19 hits.

ALso sofved by JEANETTE BICKLEY, WALTER BLUMBERG, MARTIN BROWN,

LOUIS H. CAIROLI, PETER JOHN DOMBROWSKY, MARK EVANS, VICTOR G. FESER,
ROBERT C. GEBHARDT, JOHN M. HOWELL, DAVID INY, RALPH KING, HENRY S.
LIEBERMAN, BOB PRIELIPP, STANLEY RABINOWITZ, DOUGLAS F. RALL, HARRY
SEDINGER, KEVIN THEALL, CHARLES W. TRIGG, TIMMY TUCKER, KENNETH M. WILKE,
and the. PROPOSER.

519. [Spring 1982] Proposed by Chanles W. Trigg, San Diego,
California.
Solve the equation

3% - (34)155 1+ 5%% — ¢

Solution by Peter John Dombrowsky, University of, Texas, Ausiin.
V¢ have
B F LT 57y,
which factors into

If -%-5"’)(3“-%-5“)=0.

Then we have
gr+1_5m+1___0 and 31’1—53:“1:0.

Nw &° = 5n has a solution only whenn = 0. Hencex = £1.

ALso sofved by JEANETTE BICKLEY, WALTER BLUMBERG, LOUIS H.
CAIROLI, FREDERICK C. DAY, MARK EVANS, J. DOUGLAS FAIRES, VICTOR G.
FESER, ROBERT C. GEBHARDT, EMMANUEL, O.C. IMONITIE, DAVID INY, TIM
KEARNS, RALPH KING, JEAN LANE, HENRY S. LIEBERMAN, D.C. MILIOTO, BOB
PRIELIPP, JOHN PUTZ, STANLEY RABINOWITZ, HARRY SEDINGER, WADE H.
SHERARD, KEVIN THEALL, HAO-NHIEN Q.VU, KENNETH M. WILKE, and the.
PROPOSER.
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520. [Spring 1982] Proposed by Chuck AZLison, Huntingfon Beach,
California.
The following diagrams describe the first few polygonal or k-gonal

numbers:
Triangular; k = 3 P(n, 3) = n(n ; 1)
QQ
Y VAN
1 3 6 10 15 21
Square; k = 4 P(n, 4) = n°
. o 0OJd 0 QQ9Q
1 b 9 16 25 36 ..
Pentagonal; k = 5: P(n, 5) = n(3;z - 1)
o o @ 000
1 5 12 22 35 51 i

where the numbers represent the number of dots shown, and each figure
is an extension of its predecessor. The nth number of each sequence is
given by the above formulas. Find a general formula for the nth k-gonal
number P(n, k).

Solution by Hanrny Sedinger, St. Bonaventure University, New York.
The k-gonal numbers are the partial sums of the series

lta,+a + ...,

where 8m =a, 4% k = 2. Thus the nth k-gonal number is

1+ (1tk-2)+(1+2(k-2))+ - +(1+(n-1)k-2))
n+(k-2X1L+2+ .-+ +(n-1))

nt(k—z)(i;ﬂ=%[(| - 1)(k - 2) t 2].
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Also solved by LOUIS H. CAIROLI, PETER IHN DOMBROWSKY, MARK
EVANS VICTOR G. FESER, JHN M. HOWELL, ROBERT E. LaBARRE, HENRY S.
LIEBERMAN, BOB PRIELIPP, HN PUTZ, STANLEY RABINOWITZ, KEVIN THEALL,
KENNETH M. WILKE (2 sofutions), and the. FROFOER

521. [Spring 1982] Proposed by Mownis Katz, Macuwahoc, Maine.

I was told, when | first saw that alphametric, that WE

a particular value for K produced a unique solution, but I 53]
have forgotten what that value is. So find the unique so- EE
lution where DAILY is prime. WORK
DALY

1. Solution by Kenneth M. WiLke, Topeka, Kansas.
The given alphametric yields the following relations:

2E + 0 + K=Y + 10c +W+D+E'+R=L+1002,

72 %1

e, +W +0=1+10c

2 2 e3+W=4A+¢c,, c4=D.

4

Hence we have D=1, A=0,W=9, Y =3o0or 7, and the third relation
implies ey = 2and O =1 -1. Nw trial of some 22 cases produces the
unique solution
96
13
966
9382
10457 .

2. Comment by Charles Ul Tnigg, San Diego, California.
The unique solution with an odd DAILY is that given above. Simi-

lar searches for an even DAILLY yield two solutions:

97 97

12 and 14

977 977

9268 9438
10354 10526 .

Each of these could be made unique by imposing on the first the condition
that the units' digit of DAILY is also its digital root; and on the sec-
ond, that the sum of the extreme digits of DAILY equals the sum of its

three other digits.
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W note that there is a unique solution with X = 2, two solutions
with X = 8, and no other solutions with other values of X.

ALso solved by WALTER BLUMBERG, VICTOR G. FESER, DAVID INY,
CHARLES W. TRIGG, and the. PROPOSER

— <~

During 1983-84, we will continue our National Paper Competition.
Every paper written by an undergraduate or a graduate student who has
not received a Master's Degree at the tine of submission i s eligible.
The winners for 1981-82 are:

FIRST PRIZE ($200) Bradley Strand, "Vector Subspaces of
Magic Squares", Department of Hathe-
matics, Carlton College, Northfield,
MN, 55057 (See the Faflf 1982 Issue)

SECOND PRIZE ($100) Karen Cunningham, "A Simple Modef gon
Two Interacting Species and the Principle
Competitive Exclusion”, Univ. of Texas
at Mlington (See this Issue of the
Jowrnal)

THIRD PRIZE ($50) Ravi Salgia, "Volume of an N-Dimensional
Unit Sphere”, Loyola University/Chicago,
{See this Tssue of the Jowrnat)

N 2

ARE YOU MOVING?

We. necognize that students move, and.we need your new
address! OWL Jowwnals are sent by thind class maif which
is not automatically forwarded. Don't miss your Ls4ues

of the. Journal. Send your address changu ox. better yet,
send a permanent address Zo:
Dr. David Ballew, Editor

South Dakota School of Mines and Technology
Rapid City, South Dakota 57701
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