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* 
INVESTIGATIONS ON MAXFIELD'S THEOREM - - -- 

Various properties of factorials have fascinated recreational 

mathematicians for many years. John E. Maxfield proved the following 

theorem on factorials in 1970 [1]: 

ThWiern 1 :  If A is any positive integer having m digits, there 

exists a positive integer N such that the first m digits of N! consti- 

tute the integer A .  

Although this theorem has already been proved, it still provides 

food for thought. The purpose of this article is to report the results 

of an investigation into the smallest N that meets the criteria given 

in Theorem 1 for various values of A. 

A FORTRAN computer program was written to find the smallest N that 

meets Maxfield's criteria for A = 1 to 999. The program was 41 lines 

long and required 2.0 seconds of execution time on a VAX computer. The 

entire output of the program for A = 1 to 999 can be ordered from the 

Editor for the cost of reproduction .($1.00). 

Several interesting facts were found by studying the output from 

the program. For A = 1 to 8, the smallest value of N is small enough 

to be calculated on a hand calculator easily. For A = 9 , the smallest 
value of N is 96. 96! = 9.91678Ei149. This is obviously much too large 

to calculate without the aid of a computer. 

While the smallest value of N for A = 9 is 96, 60 of the smallest 

values of N are less than or equal to 96 for A = 1 to 99. The distri- 

bution of these values of A is given in Table 1. 

TABLE 1 

A Number of N's that are less than or equal to 9 6  
1-9 9 

10-19 1 0  



The l a r g e s t  value of N t h a t  was ca lcu la ted  f o r  A = 1 t o  99 was 

716 f o r  A = 97 . For A = 1 t o  99, 63 of  t h e  smallest  values of N were 

l e s s  than 100, 79 of  t h e  N ' s  were l e s s  than 200, and 95 of t h e  N ' s  were 

l e s s  than 500. While t h e  smallest  value of  N f o r  A = 97 is  716, 539 

N a r e  l e s s  than o r  equal t o  716 f o r  A = 1 

of these  539 values of A i s  given i n  Table 2. 

of t h e  smallest  values of  

t o  999. The d i s t r i b u t i o n  

TABLE 2 
a r e  l e s s  than o r  equal t o  716 

99 
83 
75 
67 
42 
38 
48 
29 
29 
29 

A Number of  N's t h a t  
1-99 

100-1 99 
200-299 
300-399 
400-499 
500-599 
600-699 
700-799 
800-899 
900-999 

No s i g n i f i c a n t  p a t t e r n s  were found i n  Table 3 o r  i n  a s imi la r  

t a b l e  f o r  values o f  A t h a t  a r e  prime. 
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The d i s t r i b u t i o n  i n  Table 2 i s  s u b s t a n t i a l l y  d i f f e r e n t  than t h e  

d i s t r i b u t i o n  i n  Table 1. 

The l a r g e s t  value of  N t h a t  was ca lcu la ted  f o r  A = 1 t o  999 was 

12745 f o r  A = 841 . For A = 1 t o  999, 821 o f  t h e  smal les t  values of N 

were l e s s  than 2000, 965 o f  t h e  N's were l e s s  than 5000, and 995 of t h e  

N ' s  were l e s s  than 10,000. 

The smallest  values of  N f o r  values of  A t h a t  a r e  p e r f e c t  squares 

a r e  given i n  Table 3. 

TABLE 3 
A N N factorial 
1 1 1.000000e+ 0 
4 8 4.032000e+ 4 
9 96 9 -91 6780et 149 
16 89 16.507956e+ 135 
25 23 25.852024et 21 
36 9 36.288002et 4 
49 1 29 49.745037e+ 21 6 
64 18 64 .023750e+ 14 
81 40 81 -591 545et 46 
100 197 100 .078415e+ 366 
121 19 121.6451 26e+ 15 
144 109 144.385956e+ 174 
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VOLUME OF AN n-DIMENSIONAL 
UNIT SPHERE 

Many i n t e r e s t i n g  and usefu l  examples of  Di r ich le t  i n t e g r a l s  occur 

and one of  them is concerned with t h e  evaluat ion of  volume of  c e r t a i n  

closed surfaces f o r  various dimensions. Consider t h e  u n i t  c i r c l e  and 
2 2 

its i n t e r i o r ,  x + x2 2 1, where x1 and x2 a r e  Cartesian coordinates 1 
( see  Figure 1 ) .  The a rea ,  which w i l l  be r e f e r r e d  t o  a s  volume i n  two 

dimensions o r  V2, enclosed by t h e  c i r c l e  i s  determined a s  follows: 

over the  quadrant bounded by t h e  curve 

and t h e  coordinate axes. From simple in tegra t ion ,  V can be shown t o  
2 

equal v. 

Similar ly,  f o r  a u n i t  sphere i n  t h r e e  dimensional Euclidean space, 

t h e  volume (V3) is determined by: 

over t h e  oc tan t  bounded by t h e  sur face  

and t h e  coordinate planes.  By evaluat ing t h i s  i n t e g r a l ,  V3 i s  4 d 3 .  

In  general iz ing t h e  previous r e s u l t s ,  t h e  volume o f  an n-dimensional 

u n i t  s p h e r e ~ w h i c h  is analogous t o  volume i n  t h r e e  dimensions and a rea  i n  

two d i m e n s i o n s ~ c a n  be calculated.  If V represen ts  t h e  volume o f  an n- 
n 

dimensional u n i t  sphere then V can be evaluated by using an n- tuple in-  
n 

t e g r a l  and 

where X_ represents  t h e  n
th a x i s ,  and t h e  i n t e g r a l  is  bounded by t h e  

curve 

Figure 1. 

2 2 
XI + x + . + x2 i 1 

2 n 

and the  appropriate  coordinate planes. It is shown i n  reference 3 ,  

using Di r ich le t  i n t e g r a l  i n  n-dimensional Euclidean space, t h a t  t h e  

volume o f  an n-dimensional u n i t  sphere i s  

where n is a n a t u r a l  number g r e a t e r  than one. 

The Di r ich le t  i n t e g r a l ,  Dn , is  defined a s  

bounded by t h e  surface 

and t h e  appropriate  coordinate planes,  where a;, m. , pi (i=l,  . . ., n ) , ~  

and k a r e  a l l  constants  g r e a t e r  than zero. By using t h e  s u b s t i t u t i o n  

xi = 
(kc5)"" i n  t h e  above expression, it is seen t h a t  



I t  i s  e a s i l y  seen t h a t  i f  one subs t i t u t e s  the values a. = mi = k = 1 ,  

and p; = 2 (i = 1 ,  2, ..., n )  i n  the  above expression f o r  Dn , equation 

(1)  i s  obtained. 

Note t h a t  i n  equation ( I ) ,  F i s  the  well  known Gamma Function-- 

which f o r  a non-zero pos i t ive  number n is defined a s  
m 

n-1 -x 
When n = 1 ,  T ( l )  = x e & = I ;  

0 

When n = j + 1, r ( j  + 1) = j r  ( j ) .  

From equation (I), V can be ca lcu la ted  numerically, with r e l a t i v e  

ease, f o r  a l l  n a tu r a l  numbers n grea te r  than one. Some o f  these  values 

have been calculated and a r e  summarized i n  Table 1. From Table 1, it 

can be seen t h a t  f o r  n = 5 ,  V a t t a i n s  a maximum. To see  t h a t  t h i s  is 
n 

t h e  only maximum fo r  a l l  n > I ,  see t he  theorem which follows. 

TABLE 1 

4 2  

T h e o ~ m .  ~ e t  Vn = , where n is a na tu r a l  number > 1, 
r ( ? +  1 )  

- . .- 
Then f o r  n = 5 , V a t t a i n s  a maximum; t h a t  i s ,  V > V .  f o r  a l l  n a tu r a l  n 5 .7 
numbers j grea te r  than one and not-equal t o  f ive .  

Proof. The proof w i l l  be divided i n t o  three p a r t s ;  the f i r s t  p a r t  

uses a simple observation and the  l a s t  two a r e  based on t h e  pr inc ip le  of 

induction. 

( a )  It can be seen from Table 1 t h a t  

V > V4 > V3 > V2, or 5 

V > V .  f o r j  = 2, 3, 4. 
5 3 

(b)  I n  t h i s  p a r t ,  we s h a l l  prove t h a t  

v 5 > V 6 ,  V 7 > V 8 ,  ... , '2k+1 > '2k+2 ' - -  ' 

To ver i fy  t h a t  > V2k+2 f o r  each na tura l  number k > 1 ,  the  

p r i nc ip l e  of .  induction can be u t i l i z ed .  

When k = 2 , it is ce r t a i n ly  t r u e  t h a t  V5 > V6 (see Table 1). 

Assuming VZk+^ > V2k+2 , it can be proved t h a t  V2,.7)+1 > 

V2(k+D+2 . Notice t h a t  

and 

where k = 2 , 3, 4, . .. . It is given t h a t  V2k+1 > v2k+2 , 
s o  

Now, note t h a t  



2k+4 > which i s  c e r t a i n l y  g r e a t e r  than 1 ; t h i s  is  t r u e  s ince  - 2k+3 

v2k+1 i s g i v e n .  f o r  a l l  k > 0 and - > 1 
'2k+2 

Thus, from induct ion,  VykM > V2k+2 f o r  each n a t u r a l  number k > 1 . 
( c )  In t h i s  p a r t ,  we s h a l l  prove t h a t  

To v e r i f y  t h a t  V2, > VZk+Â¥ f o r  each n a t u r a l  number k > 2 , t h e  same 

types o f  arguments a s  i n  p a r t  ( b ) ,  using t h e  p r i n c i p l e  of  induct ion,  

can be u t i l i z e d .  It can thus be shown t h a t  t h e  above is t r u e .  

Combining t h e  r e s u l t s  of p a r t s  (b )  and ( c ) ,  it is obtained t h a t  

V > V6 > V7 > .. . . With the  previous r e s u l t  from p a r t  ( a )  and t h e  
5 

preceding statement, it can be concluded t h a t  V > V .  f o r  each na tura l  
5 3 

number j g r e a t e r  than one and no t  equal  t o  f i v e .  

A s  a f u r t h e r  i n t e r e s t i n g  example, consider what t h e  volume of t h e  

n-dimensional u n i t  sphere would be a s  n becomes very l a r g e ,  

2k/2  k 
l i r n  V2, = l i r n  2k = l i m  E- 
k-m k-w r(-g- + l )  k - ~  k!  

k 
= i m  e q  [ i n  (b)] 

k-w 

= l i r n  exp ( k  ims- i n  k ! )  . 
k* 

By S t i r l i n g ' s  approximation f o r  l a r g e  k ,  

Thus, 

Therefore, a s  n becomes a very l a r g e  number, V n approaches zero. 

The f a c t  t h a t  the  volume o f  a f i v e  dimensional u n i t  sphere is a 

maximum with respec t  t o  t h e  volume o f  any n-dimensional u n i t  sphere,  

and the  volume, a s  n becomes very l a r g e ,  approaches zero, proves very 

i n t e r e s t i n g .  The same types o f  arguments, l i k e  those worked i n  t h i s  

a r t i c l e ,  can be c a r r i e d  out  f o r  any bounded sur face ;  and with the  help 

o f  Di r ich le t  i n t e g r a l s ,  i n t e r e s t i n g  and fasc ina t ing  proper t i es  can be 

determined. 
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THE DIRICHLET PROBLEM: 
A MATHEMATICAL DEVELOPMENT 

by John Go&& 
CoLfcy C0U.e.g~ 

Introduction. 

Most students of advanced mathematics have encountered The Dirich- 

l e t  'Problem. I t  occurs i n  dif ferent forms i n  courses i n  partial dif fer-  

ent ial  equations, the calculus of variations, complex analysis, vector 

calculus, and i n  many areas of physics. The problem i s  worthy o f  atten- 

tion because i n  vertuaZZy a l l  of these cases it appears i n  quite 

dif ferent forms with entirely dif ferent techniques of solution. 

The problem has fascinated the world's finest mathematicians from 

Gauss to Poinaare, continually providing challenging questions as we'll 

as answers to an ever growing vaxiety of problems. 

I t  i s  the aim of th i s  ar t ic le  to acquaint the reader with various 

mathematical contexts i n  which the Dirichlet Problem arises, and then t o  

outline i t s  historical development. 

In  t h i s  sec t ion ,  we b r i e f l y  examine severa l  of t h e  contexts  i n  which 

t h e  Di r ich le t  Problem a r i s e s .  

F i r s t ,  t h e  Di r ich le t  Problem may be considered a s  a boundary value 

problem o f  p a r t i a l  d i f f e r e n t i a l  equations. Suppose D i s  a bounded domain 

i n  R and r i t s  piecewise smooth boundary. Then one must f i n d  a s c a l a r  

funct ion u such t h a t  

and ( 2 )  " 1  = f (given) . 
Equation (1)  i s  c a l l e d  Laplace's equation, and any funct ion s a t i s f y i n g  it 

is c a l l e d  harmonic. 

A second type o f  problem is  t h e  following: Let denote a vector  

f i e l d  i n  a f i n i t e  

s c a l a r  funct ion u 

bounded domain D i n  R .  The problem is t o  f i n d  a 

such t h a t  

and ( 4 )  " I r  = f  (given) ,  

where r is once again t h e  piecewise smooth boundary of  D. A f u n c t i o n u  

s a t i s f y i n g  ( 3 )  is c a l l e d  a p o t e n t i a l  of (V denotes t h e  gradient  here ) .  

The problem j u s t  ou t l ined  i s - a  genera l iza t ion  of  problems which 

a r i s e  i n  g r a v i t a t i o n a l  theory and electromagnetic theory. These problems 

may be character ized i n  t h e  following way. In  R ,  l e t  and be two 

po in t s ,  = a - r, r =\p 14z - \, and D a f i n i t e  domain. I f  t h e  vector  

f i e l d  F is defined by 

t h e  dens i ty  p is a non-negative funct ion i n  D and zero ou ts ide  D , then 

t h e  problem is,  again, t o  f i n d  a s c a l a r  funct ion u such t h a t  

and ( 7 )  uIp = f (given) .  

How a r e  these  l a t t e r  two problems r e l a t e d  t o  t h e  f i r s t  Di r ich le t  

Problem, s t a t e d  i n  equations (1 )  and ( 2 )?  For a vector  f i e l d  o f  t h e  

form ( 5 ) ,  one may show by d i r e c t  ca lcu la t ion  t h a t  if i s  ou ts ide  D, then 

V. F =  0. 
2 a u 2 a u By s u b s t i t u t i o n  from ( 6 ) ,  one has V -  Vu = 0 o r  - i . . . + - = 0, which a 2 
x~ az2 n 

is  Laplace's equation. On t h e  o ther  hand, i f  u s a t i s f i e s  Laplace's equa- 

t i o n  and equals f on T , does Vu = F? Using uniqueness theorems f o r  

vector  f i e l d s ,  one does indeed have Vu = 3 ( see  151, chapter 8). Thus 

t h e  f i r s t  Di r ich le t  Problem and t h e  second formulation a r e  equivalent .  

Another context i n  which t h e  Di r ich le t  Problem a r i s e s  is  t h e  follow- 

ing  "energy method" approach. Suppose D is  again a bounded domain i n  R n 
and u is continuously d i f f e r e n t i a b l e  i n  D . If one forms t h e  quadrat ic  

func t iona l  

(8) 



then one may formulate t h e  following problem: f i n d  a funct ion u t h a t  

(9 )  minimizes t h e  func t iona l  L(u) , and 

(10) equals a given funct ion f on t h e  boundary of D. 

An i n t e g r a l  of t h e  form (8)  i s  c a l l e d  a Di r ich le t  o r  energy i n t e g r a l ,  

and may represent  t h e  p o t e n t i a l  energy of  a system. This is  a problem 

i n  t h e  calculus of  var ia t ions ;  t h e  minimization of  a func t iona l  sub jec t  

t o  prescr ibed boundary condit ions.  The exact requirements on D and its 

boundary were t h e  sub jec t  of  much work, and a r e  discussed l a t e r .  

How i s  t h i s  problem r e l a t e d  t o  our first Di r ich le t  Problem? F i r s t ,  
2 

i f  u is  a so lu t ion  o f  (9)  and ( l o ) ,  one can show V u = 0 i n  D.  Alter-  

na t ive ly ,  one can show t h a t  i f  u s a t i s f i e s  Laplace's equation (1)  i n  D 

and i f  u = f on r ,  then u minimizes (81, t h e  DiFichlet In tegra l .  The 

d e t a i l s  may be found i n  [9], pages 135-9. The two problems a r e  thus  

equivalent.  

Next, i n  t h e  realm of  complex var iab les ,  suppose one is  deal ing with 

a mult iple  valued, complex, a n a l y t i c  mapping. A c l a s s i c  example is  t h e  

complex funct ion Log Z .  In  order  t o  ob ta in  a single-valued mapping, and 

hence a funct ion,  one makes copies  ("branches") o f  t h e  domain ( t h e  com- 

plex plane) ,  the  r e s u l t  being a Riemann sur face .  These a r e  then "patched 

together"  along branch "cuts." The number o f  copies depends on t h e  
k mapping i n  question; Log 2 requ i res  i n f i n i t e l y  many, whereas Z requ i res  

only two. The r e s u l t  i s  t h a t  t h e  properly defined mapping on t h i s  new 

domain, t h e  Riemann surface,  is  s i n g l e  valued. It i s  a l s o  des i red  t h a t  

t h e  funct ion r e t a i n  i ts  a n a l y t i c i t y .  This is c l e a r  within each branch, 

bu t  unclear along t h e  branch cu ts .  Riemann was faced with t h i s  problem. 

If we th ink  o f  having two funct ions,  one defined on each branch, and r e -  

gard one of them a s  f ixed ,  then t h e  o ther  must be chosen so  t h a t  

(11) it agrees with t h e  f i r s t  funct ion on t h e  branch c u t ,  and 

(12) it i s  a n a l y t i c .  

I f  we denote t h e  second funct ion by g = u + i v ,  t h e  f i r s t  by f ,  t h e  cu t  

by r ,  and g ' s  domain by D ,  then g must s a t i s f y  t h e  Cauchy-Riemann equa- 

t i o n s  i n  D t o  be a n a l y t i c ,  and equal f on l'. The Cauchy-Riemann equations 

a r e  - =  - and = - Ã By taking second der iva t ives  and assuming 
ax ay ay ax * 

equa l i ty  of mixed p a r t i a l  der iva t ives ,  one obtains  

Thus t h e  r e a l  and imaginary p a r t s  o f  an a n a l y t i c ,  complex funct ion 

s a t i s f y  Laplace's equation, and t h e  problem j u s t  s t a t e d  is  equivalent  t o  

two Di r ich le t  Problems. In  h i s  doctoral  t h e s i s ,  Riemann used t h e  Dirich- 

l e t  i n t e g r a l  method t o  a t t a c k  t h e  problem. 

F ina l ly ,  we note t h a t  Di r ich le t  Problems a r e  t h e  source of  severa l  

well known " special  functions" of-mathematical physics. For example, i n  

R ~ ,  i f  spher ica l  coordinates and separat ion of  var iab le  a r e  used, t h e  

ordinary d i f f e r e n t i a l  equation f o r  t h e  6 var iab le  ( a f t e r  t h e  s u b s t i t u t i o n  

x = cos 6 ) is 

which is Legendre's equation. The nfn+l) parameter i s  a separat ion con- 

s t a n t ,  and so lu t ions  a r e  t h e  Legendre polynomials, P(x) , i f  n is  a non- 

negative in teger .  

I f  a change t o  c y l i n d r i c a l  coordinates  is  made and separa t ion  of 

var iab les  used, t h e  ordinary d i f f e r e n t i a l  equation f o r  t h e  P var iab le  i s  

where t h e  parameters X and u a r e  separat ion constants  chosen so a s  t o  

y i e l d  physical ly  reasonable so lu t ions .  The s e r i e s  so lu t ions  obtained a r e  

J (Xr) and J ( X P ) ,  t h e  Bessel funct ions o f  order  u and -u, respec t ive ly ,  

i n  t h e  case where u i s  not  an in teger .  I f  u is  an i n t e g e r ,  o ther  spec ia l  

funct ions must be used i n  place of  J (Ar) i n  order  t h a t  two l i n e a r l y  u 
independent so lu t ions  r e s u l t .  

In examining t h e  h i s t o r i c a l  development of  t h e  Di r ich le t  Problem, 

severa l  approaches a r e  possible:  t h e  chronological development, t h e  

biographical development, o r  t h e  geographical development. With regard 

t o  t h e  Di r ich le t  Problem, we s h a l l  use t h e  geographical,  a s  t h e r e  were 

t h r e e  places (England, France and Germany) where separa te  developments 

took place,  each having a unique approach t o  t h e  problem. 

In England, t h e  f i r s t  work of  s ignif icance was done by George Green 

(1793-1841). Green's primary a reas  of  i n t e r e s t  were e l e c t r i c i t y  and 

f l u i d  mechanics. The reader  i s  r e f e r r e d  t o  [4] f o r  a complete survey. .- 

In studying these  a r e a s ,  Green was l e d  t o  a number of  mathematical r e-  

sults, most of  which bear h i s  name and a l l  of which have proven indispen- 

sab le  t o  t h e  study of p o t e n t i a l  theory. In h i s  1828 booklet ,  "An Essay 



on t h e  Application of Mathematical Analysis t o  t h e  Theories of  E l e c t r i c i-  

t y  and Magnetism," he introduces what a r e  now r e f e r r e d  t o  a s  Green's 

theorems of  p o t e n t i a l  theory,  a s  well a s  t h e  so-called Green's Function 

method of so lu t ion  of t h e  Di r ich le t  Problem. In  h i s  1833 paper, "Laws 

of  t h e  Equilibrium of Fluids,"  he considers  t h e  g r a v i t a t i o n a l  p o t e n t i a l  

of f l u i d s  o f  e l l i p s o i d a l  shape, using many of t h e  mathematical techniques 

developed i n  t h e  1828 paper. It i s  i n t e r e s t i n g  t o  note  t h a t  the  1833 

paper i s  general ized t o  n dimensions, a s  opposed t o  two o r  t h r e e  dimen- 

sions.  It should a l s o  be noted t h a t  many of Green's proofs a r e  not  math- 

ematical ly  r igorous,  being based i n  p a r t  upon physical  arguments. Two 

examples a r e  h i s  conclusion t h a t  a minimum e x i s t s  f o r  t h e  energy i n t e g r a l  

( l a t e r  c a l l e d  t h e  Di r ich le t  i n t e g r a l ) ,  

where u is  a real- valued funct ion t o  be determined, and t h a t  a Green's 

funct ion e x i s t s  f o r  a given region i n  space. Though lacking i n  mathemati- 

c a l  r i g o r ,  h i s  work p a r t i a l l y  rejuvenated mathematical ana lys i s  i n  Eng- 

land,  which had produced l i t t l e  s ince  t h e  work o f  Newton (1642-1727). 

Following i n  h i s  s t e p s  were Kelvin, Stokes, Rayleigh and Maxwell. 

S i r  William Thomson, o r  Lord Kelvin (1824-1907), continued B r i t i s h  

i n t e r e s t  i n  mathematical physics. Thomson saw f i t  t o  c a l l  a funct ion 

"harmonic" i f  it s a t i s f i e d  t h e  p o t e n t i a l  equation. H i s  chief  t o o l  was 

again t h e  energy i n t e g r a l .  Using t h e  calculus o f  v a r i a t i o n s ,  he thought 

he had establ ished t h e  exis tence of a minimum f o r  it and hence t h e  ex- 

i s tence  o f  a s o l u t i o n  t o  t h e  Di r ich le t  Problem. Published i n  1847, t h e  

r e s u l t  was c a l l e d  "Thornson's Principle"  i n  England. 

In  France, Pierre-Simon de Laplace (1749-1827) spent much of  h i s  

l i f e  working on c e l e s t i a l  mechanics, although he had many o ther  s c i e n t i-  

f i c  i n t e r e s t s .  In  1792, he published a paper concerning t h e  grav i ta t ion-  

a l  p o t e n t i a l  due t o  a spher ica l  mass. In  it he uses and solves t h e  po- 

t e n t i a l  equation i n  spher ica l  coordinates ,  employing s e r i e s  techniques 

and Legendre polynomials. Today h i s  so lu t ions  a r e  c a l l e d  spher ica l  

harmonics, so  named by Kelvin. During t h a t  period i n  France, Joseph 

Fourier (1768-1830) was studying t h e  theory of heat  conduction. He de- 

r ived  t h e  "heat equation," 

and i n i t i a t e d  t h e  t r igonmetr ic ,  o r  Fourier  Ser ies  technique t o  study it 

i n  rectangular  coordinates. These r e s u l t s  a r e  summarized i n  h i s  c l a s s i c  

"Theorie Analytique de l a  Chaleur," published i n  1822. Although c o r r e c t ,  

h i s  r e s u l t s  were no t  r igorous and served t o  s t imula te  much a c t i v i t y i n  

mathematical ana lys i s  i n  t h e  remainder o f  t h e  19th century. He a l s o  con- 

sidered t h e  s teady- state  heat  equation, which is Laplace's equation. The 
aT term "steady- state" means t h a t  - =  0; t h a t  i s ,  t h e  temperature,T , a t  

does not  vary with time. Further, l e t  us  assume t h a t  T is  prescr ibed on 

a two dimensional boundary, r .  The problem of heat  conduction now be- 

comes 
2 

V T = O ,  

T I  given, 

another Di r ich le t  Problem. 

Fourier s tudied t h e  above problem i n  t h e  case where r 
We s h a l l  assume t h a t  I' is t h e  boundary of  t h e  region where 

0 5 y 5 1. Also, we assume t h a t  T must s a t i s f y  

T(0,y) = T(l,y) = 0 

is a rec tangle .  

O i x < 1 ,  

T(x, 1 )  = f(x) (given). 

In  rectangular  coordinates ,  Laplace's equation becomes 

Fourier assumed T(x,y) = x(x)-Y(y), where X and Y a r e  t o  be found. This 

is  t h e  method of  separa t ion  of var iab les ,  which D'Alembert f i r s t  used i n  

1752. Using t h i s ,  Fourier obtained t h e  following equations: 

X" - AX = 0 XfO) = X(l) = 0 

Y" + XY = 0 Y(0) = 0 

T(x,l) = f(x), 

where A. i s  a separa t ion  constant .  This system can be shown t o  have t h e  

so lu t ion  

~ ( x , y )  = y^ Cn s i n  nxx s i n  hnvy, 
n=l 



where where 21r 

c =- I f f(x) s i n n n x b  . n s i n  hnv 

Here, Cn was obtained by finding the Fourier Sine Series of f fx ) .  The 

time varying problem, where aT/at # 0 is solved by similar  means. See 

[l3], f o r  example. 

Gabriel Lame (1795-1870), a t  the Ecole Polytechnic i n  Paris ,  was 

a lso  in teres ted  i n  solving the steady- state heat equation i n  other coord- 

ina te  systems. This is because i f  the boundary, I, is other than rec- 

tangular, Cartesian coordinates may very well be inadequate. To i l l u s -  

t r a t e  t h i s ,  suppose once again t ha t  we are  dealing with two dimensions 

and t h a t  r is a c i r c l e ,  say of radius one, with T prescribed on it. In  

Cartesian coordinates, the problem is  not solvable. In polar coordinates, 

however, it becomes 

The p a r t i a l  d i f f e r en t i a l  equation can be solved by assuming T(vJe) = 

R(r)'Q (Q). This y ie lds  two ordinary d i f f e r en t i a l  equations a f t e r  separa- 

t ion ,  namely, 

with conditions 

~ ' ( 0 )  = 0 '(2v), 

so t h a t  the  solut ion w i l l  be continuously d i f ferent iab le ,  and 

The solution is then found t o  be 
00 

T(P> 8) = ,̂ f a  rn cos n8 + b rn s i n  no), 
n=o 

a = f f e )  cosnede 
n v 

0 
and 

a re  found by Fourier Series techniques. 

Lame sought t o  solve Dirichlet  Problems f o r  any boundary by employ- 

ing a su i tab le  coordinate system, so t h a t  the boundary surface took on 

the  simple form Xi = constant, where X. i s  a variable i n  the desired co- 

ordinate system. Having found such a coordinate system fo r  a given prob- 

lem, he hoped then t o  separate Laplace's equation a s  we have done i n  the  

above examples, and solve the Dirichlet  Problem. However, he eventually 

came t o  r ea l i ze  t h i s  separation is  not always possible. Today, we know 

tha t  Laplace's equation i s  separable i n  eleven coordinate systems. 

Lame's work is  summarized i n  h i s  1859 book Lectures on Curvilinear 

Coordinates. 

Finally,  we come t o  Germany, whose mathematical center was Berlin, 

and t o  a l e s se r  extent ,  &ttingen. In 1828, P. L. Dirichlet  (1805-1859) 

was appointed a s  a professor i n  Berlin. A graduate of the  University of 

Cologne, he had taught i n  France and studied with Fourier before return- 

ing t o  Germany. Although chief ly  remembered f o r  h i s  work i n  number 

theory, he published papers concerning Fourier Series,  f l u id  mechanics 

and potent ia l  theory "Ueber einen neuen Ausdruck zur Bestimung der Dich- 

t i gke i t  einer  unendlich dunnen Kugelschale wenn der Werth des Potentials  

derselben i n  jedem Punkte i h re r  oberfl iche gegeben i s t . "  In  pa r t  because 

of h i s  i n t e r e s t  i n  number theory and mathematical physics, he was appoint- 

ed chairman of ~ G t t i n ~ e n  i n  1855, succeeding K. F. Gauss (1777-1855). 

His 1850 paper solved the  potent ia l  equation a s  Green and Thomson did,  by 

means of minimizing the  energy in tegra l .  Although only a t  ~ i t t i n ~ e n  f o r  

four years, Dirichlet  taught and influenced Behrnard Riemann (1826-1866). 

Riemann named the technique of minimizing the  energy in tegra l  the  Dirich- 

l e t  Principle,  and the  boundary value problem the  Dirichlet  Problem. In 

h i s  doctoral t he s i s  ("Grundlagen fur eine allgeneine Theorie der Func--, 

tionen einer veranderlichen complexen ~ r g s s e " )  which introduced and de- 

veloped the  Riemann surface approach t o  multiple-valued, complex mappings, 

he frequently assumed and used the  Dirichlet  Principle whenever needed. 



During t h i s  period, ana lys i s  was coming under g r e a t e r  sc ru t iny  with 

regard t o  i t s  r igorous v a l i d i t y .  In  Germany, Karl Weierstrass (1815- 

1897) made many contr ibut ions t o  t h e  foundations o f  ana lys i s ,  including 

a number of  s t a r t l i n g  and thought provoking counterexamples t o  previous- 

l y  accepted r e s u l t s .  I n  1879, while a t  t h e  University of  Ber l in ,  he 

showed t h a t  under t h e  cur ren t  condit ions used with t h e  Di r ich le t  Pr inci-  

p l e ,  t h a t  t h e r e  i s  not always a continuously d i f f e r e n t i a b l e  funct ion t h a t  

minimizes t h e  Di r ich le t  In tegra l .  

This r e s u l t  caused a g r e a t  d e a l  of discussion and disappointment i n  

t h e  mathematical community; a method t h a t  had been success fu l ly  and f r e-  

quently used f o r  years  was possibly inva l id .  In p a r t i c u l a r ,  t h i s  l e f t  a 

l a r g e  l o g i c a l  loophole i n  t h e  d i s s e r t a t i o n  of  Riemann, a f a c t  he was wel l  

aware o f ,  and which he attempted t o  r e c t i f y .  In a l a t e r  paper on minimal 

surfaces,  he attempted t o  e s t a b l i s h  t h e  exis tence of  t h e  desired funct ion 

by geometric arguments bu t  h i s  arguments f e l l  shor t  of s u f f i c i e n t  gener- 

a l i t y .  Carl Neumann, another mathematical phys ic i s t  of t h e  e r a ,  was 

saddened t h a t  a theory "which was s o  b e a u t i f u l  and could be u t i l i z e d  so  

much i n  t h e  fu ture ,  has forever  sunk from sight ."  

This r e s u l t  of  Weierstrass'  did not mean t h a t  t h e  Di r ich le t  Problem 

was t o  go ignored, however. A s  we have seen i n  t h e  first p a r t  of  t h i s  

a r t i c l e ,  t h e  problem can be  s tudied from severa l  perspect ives.  Herman 

Schwarz (1843-1921), a s tudent  of  Weierstrass'  a t  Berl in ,  Carl Neumann, 

and Henri ~ o i n c a r e  (1854-1912) a t  t h e  University of Nice i n  France, a l l  

gave exis tence proofs  by a t tack ing  Laplace's equation. 

David Hi lber t  (1862-1943) was no t ,  however, convinced t h a t  t h e  D i r -  

i c h l e t  Problem could not be solved using t h e  Di r ich le t  In tegra l .  He sus- 

pected t h a t  the  assumptions underlying t h e  calculus o f  var ia t ions  were 

a t  f a u l t ,  not t h e  method of  minimizing t h e  Di r ich le t  In tegra l .  The prob- 

lem, we r e c a l l ,  was i n  showing t h a t  t h e  funct ion minimizing t h e  Di r ich le t  

I n t e g r a l  was contained i n  t h e  s e t  of  admissible funct ions.  A s  t h i s  is  a 

l i m i t i n g  process, it r e f e r s  t o  what we c a l l  "completeness," which is fund- 

amental t o  t h e  not ion o f  Hilbert  Spaces. It is  there fore  q u i t e  conceiv- 

ab le  t h a t  Hilbert  would cor rec t ly  solve t h e  problem, and he d id ,  i n  1899. 

( see  "Uber das Dir ichletsche Prinzip," Jahresbericht  der  Vereinignng, 

1900). A modern and elegant  treatment of t h e  app l ica t ions  of  v a r i a t i o n a l  

techniques t o  p a r t i a l  d i f f e r e n t i a l  equations is given i n  chapter  4 and 

includes t h e  Di r ich le t  Problem a s  a s p e c i a l  case. It  i s  i n t e r e s t i n g  t o  

note  t h a t  H i l b e r t l s  s tudent  and l a t e r  colleague, Richard Courant, (1888- 

1972) became even more i n t e r e s t e d  i n  t h e  problem, chose it a s  t h e  sub jec t  

of h i s  doctoral  t h e s i s  ("On t h e  app l ica t ion  of  D i r i c h l e t ' s  Pr inc ip le  t o  

t h e  problems of conformal mapping," 1910), and eventual ly made i f t h e  

sub jec t  of  a book, [2]. 
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DESCARTES: PHILOSOPHER OR MATHEMATICIAN? 

by J a m u  F .  Goehe., S . J .  
S t .  Lo& U i w J ~ ~ i - i t q  

Rene Descartes, t h e  seventeenth century French th inker ,  had a pro- 

found e f f e c t  on two d i sc ip l ines :  Philosophy and Mathematics. I t  was 

Descartes'  methodic doubt t h a t  l ed  him t o  t h e  thinking s e l f  a s  a phi lo-  

sophic s t a r t i n g  point .  This "methodic doubt" was adopted by l a t e r  ph i l-  

osophers a s  well,  t ak ingphi losophyin  an e t i r e l y  new d i rec t ion .  A s  a 

r e s u l t ,  Descartes i s  o f t e n  considered t o  be t h e  f a t h e r  o f  modern phi lo-  

sophy. Moreover, Descartes was a l s o  an i n f l u e n t i a l  mathematician. It 

w a s  Descartes who combined algebra and geometry t o  come up with what i s  

now known a s  a n a l y t i c  geometry. Analytic geometry and t h e  accompanying 

Cartesian coordinate system were two of t h e  necessary precursors  t o  t h e  

discovery of t h e  Calculus. 

It  is  except ional  f o r  one person t o  have such a profound e f f e c t  on 

two q u i t e  d i s t i n c t  d i sc ip l ines .  The question t h a t  occurred t o  me is, 

'What is t h e  common thread  between Descartest con t r ibu t ions  t o  philoso-  

phy and h i s  con t r ibu t ions  t o  mathematics?" It seems l i k e  a reasonable 

question: every discovery takes  place i n  a context ,  and t h e  context  of  

these  two d i scover ies  includes t h e  same person. What is  t h e  common 

element? 

I n  o rder  t o  discover t h e  common element i n  Descartes'  many i n t e l -  

l e c t u a l  contr ibut ions,  it i s  h e l p f u l  t o  l e a r n  a l i t t l e  about Descartes'  

background. Descartes f in i shed  t h e  regu la r  u n i v e r s i t y  course a t  t h e  

Universi ty  of  Par i s  a t  t h e  beginning of  t h e  seventeenth century. After  

r e f l e c t i n g  on h i s  years  a t  t h e  University, he became q u i t e  f r u s t r a t e d .  

Despite t h e  f a c t  t h a t  he had s tudied f o r  most of  h i s  l i f e ,  he f e l t  t h a t  

he was c e r t a i n  of  nothing. Philosophy was t h e  d i s c i p l i n e  which f r u s t r a-  

t e d  him t h e  most. I n  h i s  work e n t i t l e d  "A Discourse on Method", Des- 

c a r t e s  wrote: 

Despite t h e  f a c t  t h a t  philosophy has been cu l t iva ted  by 

t h e  bes t  minds t h a t  have ever l ived ,  nevertheless  no 

s i n g l e  th ing  i s  t o  be found i n  it which is not  sub jec t  t o  

dispute,  and i n  consequence which i s  not  dubious. [1, p. 861. 

In o ther  words, it seemed t o  Descartes t h a t  phi losophical  r e f l e c-  

t i o n  had hardly advanced beyond t h e  first phi losophical  quer ies -o f  t h e  

e a r l i e s t  Greek philosophers, and consequently t h a t  philosophers needed 

t o  s t a r t  a l l  over again a t  t h e  very beginning and t o  do it r i g h t  t h i s  

time. 

Unlike philosophy, t h e r e  d id  seem t o  be a sure  body of  knowledge 

i n  mathematics. Descartes wrote, "Most of  a l l  I was del ighted with math- 

ematics because of t h e  c e r t a i n t y  of its demonstration and t h e  evidence 

of i ts  reasoning." [1, p. 851. A s  a matter  of  f a c t ,  mathematics was t h e  

only d i s c i p l i n e  i n  which Descartes found c e r t a i n t y .  Therefore, he de- 

cided t o  genera l ize  t h e  method of mathematics, namely t h e  method o f  

s t a r t i n g  with unquestionable axioms and proceeding l o g i c a l l y  from t h e  

simple axioms t o  more complex theorems. The Cartesian method consis ted 

of f o u r  p r inc ip les :  

1 )  t o  accept nothing a s  t r u e  which is not s o  c l e a r  and d i s t i n c t  

t h a t  a l l  doubt i s  excluded; 

2)  t o  d iv ide  l a r g e  problems i n t o  smaller  ones; 

3 )  t o  proceed from t h e  simple t o  t h e  complex; 

4) t o  enumerate and review t h e  s t e p s  of your deductive reasoning 

s o  thoroughly t h a t  no e r r o r  can be admitted. 

After  a r r i v i n g  a t  t h i s  method, Descartes intended t o  apply it t o  a l l  

d i s c i p l i n e s ,  beginning with philosophy. 

It was t h e  app l ica t ion  of t h e  Cartesian method t o  phi losophical  

r e f l e c t i o n  which r e s u l t e d  i n  t h e  unique Cartesian s t a r t i n g  point .  Re- 

c a l l  t h a t  t h e  f i r s t  p r i n c i p l e  of  t h e  Cartesian method is " to accept  

nothing a s  t r u e  which is  not  s o  c l e a r  and d i s t i n c t  t h a t  a l l  doubt is  

excluded." According t o  Descartes, everything is  sub jec t  t o  doubt, in-  

cluding sense data .  Everything, t h a t  is, with t h e  exception of one 

thing,  t h e  exis tence of  t h e  doubter. The doubter,  my s e l f ,  must e x i s t  

o r  e l s e  doubt i t s e l f  would be impossible. I t  is  t h i s  r e f l e c t i v e  pro- 

cess  which r e s u l t e d  i n  t h e  famous Cartesian a s s e r t i o n ,  "cogito, ergo 

sum" (which means, "I think,  there fore  I amtt). Arguing l o g i c a l l y  f r o m  

t h i s  unquestionable s t a r t i n g  po in t ,  Descartes a r r ived  a t  t h e  exis tence 

of God and a t  a c e r t a i n  knowledge of t h e  physical  world. 

Obviously, t h e  next s t e p  is t o  show how Descartes appl ied h i s  



method to mathematics in order to come up with his coordinate geometry. 

But first, let us consider a few questions. If Descartes was so de- 

lighted with mathematics, what need was there to apply his method to 

the discipline? Secondly, if the Cartesian method was abstracted from 

mathematics, how could it be reapplied to mathematics? 

In response to the first question, while Descartes was "delighted 

with mathematics because of the certainty of its demonstrations and the 

evidence of its reasonings," he was convinced that there was enormous 

potential for much further progress in the field. In Descartes' time 

mathematics consisted essentially of Euclidean geometry with algebraic 

appendages. Euclidean geometry confines itself primarily to figures 

formed by straight lines and circles, so in order to explain the baffl- 

ing physical phenomena of his day in mathematical terms, phenomena such 

as the elliptical path of the planets or the parabolic path of a cannon- 

ball, Descartes needed to come up with a way of dealing efficiently with 

curves such as ellipses and parabolas. Descartes decided, therefore, 

that it would be nice to establish a general procedure which one could 

follow when dealing with ellipses, parabolas, and the like, and he set 

out to accomplish just that. 

Now that we have seen why there was a need for Descartes to apply 

this "method" to mathematics, we must explain how he applied his method 

to the very discipline from which he abstracted it. Recall the Cartesiar 

method. The first principle of the Cartesian method is to accept noth- 

ing as true which is not so clear and distinct thatalldoubt is excluded. 

In Descartes' opinion, Euclidean geometry and the algebra of his day 

were undoubtedly true; thus, they formed the foundation for his coordi- 

nate geometry. The third principle of his method is to proceed from the 

simple to the complex. Obviously, a straight line is a simpler geomet- 

ric figure than a curve. Descartes' method suggested, therefore, that 

it should be possible to generate a procedure for dealing with curves 

using what he knew about straight lines. The Cartesian method could 

only take him this far. At this point Descartes had to discover a way 

of dealing with curves based upon what he knew about straight lines. 

Descartes made a start towards this discovery through a creative 

way of envisioning curves. Imagine a curve to be the path formed by 

the endpoint E of the line segment (see figure 1 below). As the 

vertical line segment moves towards or away from the fixed point 0, 

Figure 1 

the line segment shortens, lengthens,or even changes directions, depend- 

ing upon the path of the curve. The line segment's one endpoint E 

follows the path of the given curve, whereas its other endpoint F always 

remains on the same horizontal line. Once Descartes discovered this way 

of envisioning curves, he was one creative insight away from establish- 

ing a general procedure for dealing with any geometric figure. 

The second step in establishing a procedure for dealing with geo- 

metric figures involved algebra. Descartes discovered that it was pos- 

sible to compare the ever-changing position of the point E with the 

constant position of the origin (some fixed point 0) using algebra (see 

figure 2 below). The distance from the origin to the vertical line seg- 

ment , he called x. The distance from the horizontal line OF to the 

Figure 2 

endpoint E, he called y. Thus, the position of each point E could be 

represented by an ( x , y )  coordinate. To avoid the type of confusion en- 

gendered by points equi-distant from the origin (as exhibited), for 



example, by points E and E' in figure 2), Descartes arbitrarily decided 

that the x-coordinate of a point to the left of the origin would be neg- 

ative whereas the x-coordinate of a point to the right of the origin 

would be positive. Likewise, he decided that the y-coordinate of a 

point below the origin would be negative whereas the y-coordinate of a 

point above the origin would be positive. Upon establishing this coordi- 

nate system, Descartes discovered that there is one algebraic equation 

which can describe the relationship between the x and y coordinates for 

every point E'on the given curve. Thus, his general procedure for deal- 

ing with curves was complete. 

To summarize, there are three basic insights which resulted in 

Descartes' discovery of coordinate geometry. First, he had to come up 

with a creative way of envisioning curves, namely as a series of points 

formed by a "magic" line segment. Secondly, he had to discover how to 

relate each point of the curve to a fixed point. Thirdly, he had to 

discover that there was a unique algebraic equation associated with each 

unique curve, an equation which described the relationship between the 

x and y coordinates for every point on that curve. The Cartesian method 
Â 

led Descartes to the doorstep of coordinate geometry; but as in all math- 

ematical discoveries, creative insight was needed to open the door. 

In conclusion, we see that the Cartesian method played a part in 

Descartes' mathematics as well as his philosophy. There are other simi- 

larities as well. Just as Descartes' philosophy is no longer based on 

sense data, so Descartes' mathematics is no longer dependent on the 

sensible figure. As Morris Kline wrote in his Mathematics i n  Western 

Culture, in Descartes' coordinate geometry "the mind has replaced the 

eye." 2, p. 177 . The curve is no longer represented by a sensisble 

figure; it is represented by an algebraic equation. This algebraic ge- 

ometry formed the foundation for modern mathematics, making more abstract 

mathematics possible. 

But back to the title of this paper. Is Descartes primarily a 

mathematician or a philosopher? I would venture to say that Descartes 

was a mathematician at heart who took philosophy very seriously. He 

was a man who was frustrated with the lack of true knowledge in a world 

which acted as if it knew it all, and using the method of mathematics, 

Descartes tried to advance many of the various disciplines. In retro- 

spect, however, while Descartes did make a profound contribution to 

philosophicalthought,it was mathematics itself which benefitted the 

most from the mathematical "Cartesian method". 
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A THEOREM OF S I M I L A R  TRIANGLES 

by t.U.cha.&t Eis,e-n~-Ce-Cn 
CBM Educational Cun-teh, Sun Antonio 

Thi~tem: Let AABC be any triangle. 

Let 0 = fp,q) be any interior point of AABC. 

Let K be the point of intersection of the medians of AAOB. 

Let L be the point of intersection of the medians of ACOB. 

Let M be the point of intersection of the medians of AAOC. 

Then ALMK is similar to AABC , the ratio of a side of ALMK to the 

corresponding side of AABC is 1/3, and the corresponding sides 

are parallel. 

Proof. We refer to the drawing in Figure 1. 

Figure 1. 

We find the coordinates of the points K ,  L, and M. In any tri- 

angle the three medians intersect at a common point. Therefore, it 

suffices to find the point of intersection of any two medians in each 

triangle. 

In each triangle we find the equations of the lines through two 

medians. Setting them equal to each other, we find the point of inter- 

section. Let A = f0,0), B =fa,b), C = (0,o) where a, b, a are positive 

real numbers. 

I. We consider [\AOB. 

Let S be the midpoint of 3. 
a+O b+O Then s = (-2-1-2-) = ( 1, i) and OS is a median of M O B .  

b 
-1 

The slope of OS = - and with the point 
5 -p 
2 

of the line through OS is 

Let T be the midpoint of m. Then T = (9, b+3-) and AT is a 

median of AAOB. 

The slope of is -H -̂ and the equation of the line through AT is 
=+P 

Solving (1) and (2) above for x and zj , we have x = Sffi , y = 9 
and the point of intersection k = (T, 9). 

11. We consider ABOC. 

Let U be the midpoint of %. Then 24 = (9, ^\ and is a 

median of ABOC. 

The slope of @ = . With the point fp, q)  , the equation a+e -2p 
of the line through OU is 

Let T = (T , %). Then is a median of 1 0 C .  

The slope of = $& . With the point (c?,o) , the equation 
of the line through the median is 

A 
zj = (a+p-2c ) (X-C I . ( 4 )  

Solving (3) and (4) above for x and y, we have x = 
-& 

and the point of intersection L = (F , '3 ) . 3 3 s -  3 



111. We consider LADC. 

Let V be t h e  midpoint of  A?. Then V = ($,0)and 0V is a median of 

AAOC. The s lope o f  0V = -̂ -, and with t h e  point  (Â¤,o) t h e  equation 
P--j 

of  t h e  l i n e  through 0V is 

Let W be t h e  midpoint of m. Then W = E ,̂ 2- and i s  a median 
( 2  

of MOC . The slope of = -̂ Ã . With t h e  point  A(0,0), t h e  

equation of t h e  l i n e  through AM is 

Solving ( 5 )  and (6 ) above f o r  x and y , we have x = y, y = 3- 
and t h e  point  of i n t e r s e c t i o n  M = 

We have from I, 11, I11 above: 

K = ( y , % ) ,  i = ( ~ ,  F), 
Then 

Therefore LLMK is s i m i l a r  toAABCand t h e  r a t i o  of t h e  corresponding s i d e s  

1 is  - 
3 '  

0 - 
slope of  = + = 0 = slope of AC. 

3 - 3 

Therefore, \\AC . 
b - - 

Slope of ST = -3 = b- = slope of  AB. 
- a 
3 

Therefore \\ . 

- - 
3 b - 

Slope of  KM = = â  = slope of BC. - 
3 

- - 
Therefore, KM\\ BC . 

Alternate Proof. 

We f i r s t  e s t a b l i s h :  

Theo~em A. Given MBC, l e t  K be t h e  point  of  i n t e r s e c t i o n  of t h e  
2 

medians. Then t h e  length of t h e  l i n e  from a ver tex  t o  K = f of t h e  

length of  t h e  median from t h a t  ver tex.  

c (c, d) 

Figure 2. 

Consider Figure 2. Let M be t h e  midpoint of  a. Then M =( g, 0) and - 
CM is a median of AABC. 

The s lope of  is  -d, and with t h e  point  ( $ 0 )  , t h e  equation 
c-y 
6 

of t h e  l i n e  through CM i s  

Let L be t h e  midpoint of E. Then L = (b2, 3 n d  'u is a median 

of h4BC. 
d The slope of 41, is  - and with t h e  point  Af0,0), t h e  equation a t  b* 

t h e  l i n e  through is  

d y = - x .  
b+c 

(8) 



To g e t  t h e  point  of i n t e r s e c t i o n  we equate ( 7 )  and ( 8 )  and have: 

Therefore X = 3 

2 
Therefore AK = -,AL. Similar ly f o r  t h e  o t h e r  two medians. 

To complete t h e  so lu t ion ,  we now r e f e r  t o  t h e  Figure 1 above. A s  K is  

t h e  po in t  of i n t e r s e c t i o n  of t h e  medians of  AADB, 

1 
KT = -, AT from Theorem A above. 

1 Similar ly LT = - CT . 
3 

Therefore, AKTL is s i m i l a r  t o  AATC, a s  we have one congruent angle and 

t h e  corresponding adjacent  s i d e s  3'.n proportion. . - 
Thus 

1 KL = - AC. 3 
A s  < TKL = <:TAG we have KL\\ E. 

Similar  arguments f o r  i3? and XT? complete t h e  proof. 

- 
-.-- - 

A SIMPLE MODEL FOR TWO INTERACTING SPECIES AND 
THE PRINCIPLE OF COMPETITIVE EXCLUSION 

by Kme-n CunnLngham 
U n i v e ~ 4 . t t g  o< Te.w a< A/iAmg.ton 

1 .  IrettoducAcon 

The theory of competition between two spec ies  l i v i n g  i n  t h e  same 

environment was f i r s t  published by Charles Darwin i n  1859 [6,  p.  12951. 

Volterra  formally developed a mathematical model and hypothesis i n  1931 

which was v e r i f i e d  experimentally by Gause i n  1934 and 1935 [3] and [9, 

Chap. 8 1 .  Since t h a t  time t h e r e  has been considerable controversy over 

t h e  v a l i d i t y  of V o l t e r r a l s  equations and t h e  various modified forms of 

Gausels p r inc ip le  of competitive exclusion. 

I n  i ts simplest  form, t h e  p r i n c i p l e  s t a t e s  t h a t  two species  t h a t  

make t h e i r  l i v i n g  i n  i d e n t i c a l  ways cannot coex is t  i n  t h e  same environ- 

ment. Then how d i f f e r e n t  must t h e  spec ies  be t o  coexist  i n  an e q u i l i -  

brium community? Eventually, a f t e r  many diverse versions,  t h e  following 

general ly  accepted statement was developed: 

Ppi-neiple of Competitive Exclusion: "Two spec ies  competing f o r  

l imited resources can only coex is t  i f  they i n h i b i t  t h e  growth of  t h e  

competing species  l e s s  than t h e i r  own growth" [1, p. 89 1. We w i l l  dem- 

o n s t r a t e  t h e  v a l i d i t y  of  t h i s  p r i n c i p l e  by first deriving a system of  

equations f o r  two competing spec ies  and then showing t h a t  the  behavior 

of  i ts  so lu t ion  supports t h e  competi t i tve exclusion pr inc ip le .  

2. V&HA.vcvU.on 06 Equo/fcLon~ 
Consider a population model f o r  one species  where t h e  growth r a t e  

( t h e  d i f fe rence  between t h e  b i r t h  and death r a t e )  i s  a constant .  Let 

N( t )  be t h e  s i z e  of an i s o l a t e d  population a t  time t and l e t  r be i ts 

growth r a t e .  If a t  some i n i t i a l  time to t h e  population is  No, then t h e  

r a t e  of change of  t h e  population dN(t) /dt  i s  t h e  growth r a t e  times t h e  

s i z e  of t h e  population. So we have a l i n e a r  d i f f e r e n t i a l  equation, i n-  

ves t iga ted  by t h e  B r i t i s h  economist Malthus around 1800 [5, p. 1251: 



With t h e  i n i t i a l  condit ion N(t ) = No, t h e  so lu t ion  t o  t h i s  equation 
0 

I f  r > 0, a s  it would be i n  an unlimited environment, t h e  population 

grows exponential ly  with time. Now l e t  us  r e s t r i c t  t h e  species  t o  a 

microcosm, a represen ta t ive  of the  t o t a l  environment, but with l imi ted  

space and food. 

Experimentally, it has been shown t h a t  t h e  growth r a t e  diminishes 

a s  t h e  population dens i ty  increases [5, p. 1511. Also, t h e  p robabi l i ty  I 
t h a t  two members of  t h e  species  w i l l  encounter each o ther  i s  proportion- 

2 2 
a 1  t o  N [2, p. 291. So i f  we add a competition term of -bN t o  t h e  

I 

Malthusian equation, where b i s  a p o s i t i v e  constant ,  we have: 

dN/dt = r N  - bN2. 

This equation was first invest igated by Verhulst,  a Dutch b i o l o g i s t ,  i n  

1837 and is  known a s  t h e  l o g i s t i c  equation f o r  population growth [5, p. 

1531. In  t h i s  equation, r is  t h e  uninhibi ted growth r a t e  and b repre-  

s e n t s  t h e  e f f e c t  of  crowding, where r and b a r e  p o s i t i v e  constants .  

We a r e  now i n t e r e s t e d  i n  an equilibrium population, when dN/dt= 0. 

By examination, we s e e  t h a t  t h e r e  a r e  two equilibrium populations, when 

N = O  o r  N = r / b .  

When N = 0, t h e  so lu t ion  i s  t r i v i a l ,  but when t h e  population is  N = vlb ,  

t h i s  is c a l l e d  t h e  s a t u r a t i o n  population and i s  t h e  l a r g e s t  population a 

species  can s u s t a i n  i n  a microcosm without l o s s .  The l o g i s t i c  equation 

i s  separable  and solving [5, pp. 159-1601 we have 

When t Â¥ - ,  then N( t )  + r /b .  Hence,the popluation approaches t h e  

sa tura t ion  population, regard less  of  i t s  i n i t i a l  value (No # 0).  Notice 1 
i f  t h e  i n i t i a l  population i s  l e s s  than t h e  s a t u r a t i o n  population, then 

dN/dt > 0  and s o  t h e  population increases;  but i f  it is g r e a t e r  than t h e  
I 

s a t u r a t i o n  population, then dN/dt < 0 and so  t h e  population decreases. 

We s h a l l  c a l l  t h i s  a s t a b l e  equilibrium population, s ince  a s  time in-  

creases,  a l l  so lu t ions  near  t h e  s a t u r a t i o n  population s t a y  near it. 

It w i l l  now be t o  our advantage t o  express the  l o g i s t i c  equation 

i n  terms of t h e  s a t u r a t i o n  population, r / b .  Let K = r / b  and no t ice  K 

. . 

i s  always pos i t ive .  We have: 

b 1 K-N mat = VN - b ~ ~ = r ~ ( i - g v )  =  NO --,Â£ = PN(+. 

Since K represen ts  t h e  a v a i l a b l e  number of  spaces i n  t h e  microcosm_for - -  ,- 
t h e  species ,  then (K-N)/K is t h e  number of vacant spaces r e l a t i v e  t o  any 

N. Hence, f o r  each member of  t h e  spec ies  added t o  t h e  population, one 

more place i s  occupied and t h e  growth r a t e  is  reduced by t h e  constant  

f a c t o r  1/K. 

To der ive  Vol te r ra ' s  equations f o r  two competing species  f i r s t  

consider  t h e  l o g i s t i c  equations f o r  species  1 and 2 i n  t h e  absence of 

t h e  other .  For species  1, when N = 0, we have 

and f o r  spec ies  2, when N = 0, we have 

I f  these  two spec ies  compete f o r  t h e  same food and space, we can assume 

t h a t  each ind iv idua l  of  one species  i n h i b i t s  t h e  o ther  species '  growth 

r a t e  by a constant  f a c t o r .  Assume t h a t  each member of  species  2 reduces 

t h e  growth r a t e  of species  1 by t h e  constant  a/H.. Similar ly,  assume 

t h e  growth r a t e  of spec ies  2 is  decreased by t h e  constant  S / K  f o r  each 

member of  species  1. Adding these  competition f a c t o r s  t o  t h e  respec t ive  

l o g i s t i c  equations gives us  Vol te r ra ' s  equations: 

The p o s i t i v e  constants  a and (3 a r e  ca l led  t h e  c o e f f i c i e n t s  of  competition 

and ind ica te  t h e  inf luence of each spec ies  on t h e  other .  So, one ind i-  

v idua l  of species  1 has an i n h i b i t o r y  e f f e c t  of  1 / K  on i t s  own growth 

r a t e  and an i n h i b i t o r y  e f f e c t  of B/K on species  2 growth r a t e .  Similar- 
2 

l y ,  each member of spec ies  2 i n h i b i t s  i ts own growth r a t e  by 1/K2 and in-  

h i b i t s  spec ies  1 growth r a t e  by a / K  [9, Chap. 71. 

3 .  8e-hav-ivk of, SvÂ¥faitcoyu of, VoU.ewia'~ Equations, 

Notice t h a t  t h e  var iab le  t does not appear e x p l i c i t l y  i n  t h e  r i g h t-  

hand members of t h i s  system. This type of system i s  c a l l e d  time-invari- 

a n t  o r  autonomous. If we regard t a s  a parameter, we can examine t h e  - 



population changes i n  time using N and N a s  t h e  axes of  our coordinate; 
1 2 

system. The 5 - N plane i s  ca l led  a phase plane and t h e  so lu t ion  
2 

curves, c a l l e d  t r a j e c t o r i e s ,  a r e  depicted with arrows t o  ind ica te  how 

t h e  populations change with time [7, Chap. 81. 

F i r s t  we would l i k e  t o  insure  t h a t  n e i t h e r  population is  ever  l e s s  

than zero, s o  we must show t h a t  we a r e  concerned only with t h e  f i r s t  

quadrant and nonnegative axes of t h e  N - N2 phase plane. Considering 

each species  i n  t h e  absence of t h e  o t h e r ,  we then have 

dnl/dt = rlNl( (Kl-N1)/K1) , N2 = 0, 

which is  l o g i s t i c  equation f o r  species  1. Let us  examine the  phase 

plane solut ion.  We have with N = 0 

d n / d t  = 0 i f  N = 0, 

which implies (0,O) i s  an equilibrium population; 

which implies t h e  N population is  increasing i f  0 < N <  K and N = 0; 1 

which implies (K ,0 )  is  an equilibrium population; 1 

which implies t h e  N population i s  decreasing i f  K < and N = 0. 
1 

This is sketched on t h e  phase plane a s  i n  Fig. 1. Similar ly,  we can 

sketch t h e  so lu t ion  of t h e  l o g i s t i c  equation f o r  species  2, when Nl = 0 

on t h e  N axis .  If we take  t h e  union of these  t r a j e c t o r i e s ,  we see  t h a t  
2 

t h e  o r i g i n  and t h e  p o s i t i v e  axes a r e  covered a s  sketched i n  Fig. 2. 

From fundamental exis tence and uniqueness theory f o r  ordinary d i f fe ren-  

t i a l  equations, we know t h a t  given any s e t  of  i n i t i a l  condit ions,  an 

autonomous system has no two so lu t ions  passing through t h e  same point  

[2, p. 3911. Hence, t r a j e c t o r i e s  i n  t h e  phase plane may never c ross  

So if we s t a r t  o f f  with i n i t i a l  population i n  t h e  f i r s t  quadrant 

of t h e  phase plane, t h e  so lu t ion  of  t h e  system must remain i n  t h e  f i r s t  

quadrant. 

We now would l i k e  t o  consider  t h e  equilibrium populations of t h e  

Volterra  system, when d N / d t  = da2/dt  = 0. Looking a t  

we know & / d t  = 0 i f  and only i f  N = 0 o r  K - N 1 -off2 = 0. I f  

N = 0 we have already seen what happens. Consider t h e  l i n e  K - % 
1 
- off 2 = 0 o r  i n  s lope- intercept  form: N2 = -N,/a + Kl/a. Notice above 

t h i s  l i n e  ( N  > -Nl/a t Kl/a) t h a t  dWl/dt < 0; hence t h e  Nl population 

is decreasing. Then below t h e  l i n e  we have &V1/dt >0, and t h e  5 popu- 

l a t i o n  is  increasing.  This is sketched on t h e  phase plane i n  Fig.  3 

with arrows ind ica t ing  change of t h e  N 1 population only. 

I f  we now look a t  

& / d t  = r N (  (K-N2-@Nl)/K2), 

then  we knowcfflL/dt = 0 i f  and only i f  N = 0 o r  K - N2 - @ N  = 0. We 

have already observed what happens when N = 0, s o  l e t s  consider t h e  

l i n e  N 2 = - @ N  t K2. A s  with t h e  f i r s t  equation no t ice  t h a t  above t h i s  

l i n e  dn / d t  < 0 and t h e  N population is decreasing. Also below t h e  
2 

r l i n e  %/dt > 0 and t h e  N population is increasing. In  Fig. 4,  the  

phase plane i s  sketched with arrows ind ica t ing  change of t h e  N popula- 

t i o n  only. 
, If we el iminate  t h e  parameter t i n  Vol te r ra ' s  equations we have: 

From t h i s  equation we can s e e  t h a t  we can determine t h e  s lope of t h e  

t r a j e c t o r i e s .  When K - N - Q S  = 0, then dS 2 /dN = 0; hence t h e  t r a j e c -  

t o r i e s  have s lope 0. When K - Nl - aSy = 0, then da2/dN1 is undefined, 



Each species  i n h i b i t s  i ts own growth r a t e  more than t h a t  of t h e  o ther  

species. According t o  t h e  p r i n c i p l e  of competitive exclusion we would 

expect a s t a b l e  coexistence between t h e  species  only with Case 4. 

Figure 3 Figure 4 

hence t h e  t r a j e c t o r i e s  have no slope. Since t h e  s lope is constant  along 

these  l i n e s ,  they a r e  ca l led  i soc l ines .  Adding dashes t o  ind ica te  s lope 

we now represent  i n  Fig. 5 t h e  change of t h e  N population, and i n  Fig. 

6 t h e  change of t h e  N population. 

Ni 

Figure 5 
We a r e  now ready t o  determine 

Kah 
T 

0 

Figure 6 9 "4 
those values of  a and 0 f o r  which 

two spec ies  can coexis t .  There a r e  four  possible  cases  which a r e  pre- 

sented a s  (11, (21, ( 3 )  and ( 4 )  below [9, Chap. 71: 

(1 )  1/ K < g/K2 and 1/K2 > a/Kl. 

Species 1 i n h i b i t s  i ts own grwoth r a t e  l e s s  than it i n h i b i t s  spec ies  2 

growth r a t e  and spec ies  2 i n h i b i t s  its own growth r a t e  more than it in-  

h i b i t s  species  1 growth r a t e .  

(2 1/ K > f3/K2 and 1/K2 < a/Kl. 

The converse of  Case 1, both spec ies  i n h i b i t  spec ies  1 growth r a t e  more 

than they i n h i b i t  spec ies  2 growth r a t e .  

( 3 )  l / K l  < e/K^ and l / K 2  < a/Kl. 

Each species  i n h i b i t s  t h e  o ther  species  growth r a t e  more than i t s  own. 

Cue. 1 .  We want 1 / K  < Q / K  and 1 / K  > a / K .  For sketching t h e  

phase plane we r e s t a t e  these  a s  K2/B <Kl and K 2 <  Kl/a. P l o t t i n g  t h e  

H, and N~ i s o c l i n e s  i n  Fig. 7, we note t h e  d i r e c t i o n  each population 

must go i n  each region. Possible  equilibrium populations a r e  marked . 
The so lu t ion  curves f o r  Case 1 a r e  sketched i n  Fig. 8. Checking our 

equilibrium p o i n t s  f o r  s t a b i l i t y  we see  t h a t  (0,O) i s  unstable ,  s ince  

no s o l u t i o n  s t a y s  c l o s e  t o  it. The population (0,K2) is a l s o  unstable ,  

s ince  t h e r e  a r e  t r a j e c t o r i e s  which pass a r b i t r a r i l y  c lose  t o ,  but  do not  

s t a y  c l o s e  t o  ( 0 4 ) .  But we see f o r  t h e  population (kl,O) t h a t  any 

i n i t i a l  population with both species  competing eventual ly ends up a t  

(kl,O). Hence, f o r  Case 1, we have t h a t  i f  we begin with both species  

competing eventual ly species  2 w i l l  become e x t i n c t ,  and species  1 w i l l  

be a t  i ts  s a t u r a t i o n  population. 

Figure 7 Figure 8 
Cue. 2. We * want l/Kl > 0/K2 and 1/K2 < a/Kl, o r  Kl < K2/B and 

Kl/a < K2. This is very s i m i l a r  t o  Case 1 except t h a t  t h e  N i s o c l i n e  



i s  now above t h e  N i soc l ine .  The two i s o c l i n e s  and genera l  d i r e c t i o n  1 
of t h e  t r a j e c t o r i e s  a r e  shown i n  Fig. 9. Figure 10 has t h e  so lu t ion  

curves. Again equilibrium populations a r e  marked with - . A s  we would 

expect,  we have two unstable  equilibrium populationsy a t  (OyO) and (KlyO). 

The only s t a b l e  equilibrium i s  a t  (OyK2). Hence* f o r  Case 2Â we have 

t h a t  f o r  an i n i t i a l  population including both species ,  only species  2 

w i l l  survive. 

Notice t h a t  Cases 1 and 2 can be used t o  demonstrate t h a t  two 

near ly  i d e n t i c a l  spec ies  cannot coexist .  I f  t h e  two species  a r e  very 

s imi la r ,  an ind iv idua l  of  e i t h e r  species  has about t h e  same i n h i b i t o r y  

e f f e c t  on each species  growth r a t e .  Hence a and 0 a r e  c lose  t o  1. If 

we assume a = = 1, then species  1 and 2 a r e  inh ib i ted  by l /K and 
1 

l/K2 respec t ive ly  f o r  each member of e i t h e r  species  added t o  t h e  micro- 

cosm. Case 1 then reduces t o  K < Kly i n  which only spec ies  1 survived 

and Case 2 reduces t o  Kl < K2Â where only species  2 remained. Therefore, 

if two species  a r e  very s i m i l a r  then t h e  one which has t h e  g r e a t e r  s a t -  

ura t ion  population i n  t h e  microcosm w i l l  survive and t h e  o ther  w i l l  be- 

come ex t inc t .  

Figure 9 Figure 10 

3. We want l/Kl < 0/K2 and l/K2 < a/Kly which implies K2/0 

< Kl and Kl/a < K2. P lo t t ing  t h e  N and N i s o c l i n e s  and d i r e c t i o n  
1 2 

arrows i n  Fig. 11, we no t ice  t h e  i s o c l i n e s  i n t e r s e c t ,  which implies  

another equilibrium population. The s o l u t i o n  curves f o r  Case 3 a r e  

sketched i n  Fig. 12. A s  i n  t h e  previous two cases we see t h a t  t h e  

Figure 1 1  Figure 12 

o r i g i n  i s  again unstable .  Looking a t  (KlyO) we s e e  t h a t  a l l  t r a j e c t -  

o r i e s  t h a t  g e t  c lose  t o  it approach it. Hence t h e  equilibrium popula- 

t i o n  (K $ 0 )  i s  s t a b l e .  Similar ly we see t h a t  (OyK2) i s  a l s o  a s t a b l e  
1 

equilibrium population. Let t h e  i n t e r s e c t i o n  of t h e  two i s o c l i n e s  be 

denoted by (ElsE2). We can s e e  t h a t  t h e  motion of  some t r a j e c t o r i e s  

approach ( E  ,E ) while o thers  move away from it. Hence t h e  only e q u i l i -  
1 2  

brium population with t h e  spec ies  coexist ing is unstable .  Therefore, 

depending on t h e  i n i t i a l  populations of t h e  two spec ies y only one 

species  w i l l  survive. 

CUe 4. We want l/Kl > B/K2 and l/K2 > a/Kly which says Kl< K2/0 

and K2 < Kl/a. A s  i n  Case 3 ,  we not ice  a four th  equilibrium population 

when we draw t h e  N and N2 i s o c l i n e s  i n  t h e  phase plane. We w i l l  repFe- 
1 

s e n t  t h i s  equilibrium population by (Sl, S 2 ) .  Again arrows i n d i c a t e  t h e  

change of each population i n  each region,  a s  sketched i n  Fig. 13. Also 

t h e  t r a j e c t o r i e s  f o r  Case 4 a r e  sketched i n  Fig. 14. Again t h e  o r i g i n  

i s  unstable .  For t h e  two equilibrium populations (Kl,O) and (0,K2) we 

note t h a t  t h e r e  a r e  t r a j e c t o r i e s  which move a r b i t r a r i l y  c lose  t o  these  

populations but a r e  i n  motion away from them. Hence both populations 

corresponding t o  t h e  ex t inc t ion  of one spec ies  a r e  unstable .  

Examining t h e  equilibrium population (Sly S 2 )  we have a l l  t h e  t r a -  

j e c t o r i e s  near  it moving toward it. Hence t h e  only s t a b l e  equ i l ib r i?  

population i n  t h i s  case involves t h e  two species  coexist ing.  Then r e-  

gard less  of t h e  i n i t i a l  values of  t h e  two species  (except not equal t o  

O I y  we have t h e  populations tending toward a s t a b l e  coexistence. 



Figure 13 Figure 14 

Hence we have shown t h a t  t h e  only condit ions under which both spe- 

c i e s  survive i s  i f  each ind iv idua l  is more detr imental  t o  i ts  own speci-  

e s  than t o  t h e  o ther  [4* p. 3561. 

We must r e a l i z e  t h a t  many inna te  and environmental f a c t o r s  a r e  

s implif ied or  ignored i n  t h e  der iva t ion  of  V o l t e r r a l s  model. Because of  

t h i s ,  t h e  p r i n c i p l e  of competitive exclusion is v i r t u a l l y  impossible t o  

t e s t  empir ical ly  because t h e  hypotheses a r e  not met. For a d d i t i o n a l  

ideas i n  population theory see  Levints  summary [B] including h i s  exten- 

s ive  bibliography. 
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Computer A r t  

by Gheg W n e ,  N e d  Tkompon, David ~ ' C v n n o h  
S o h  Vako-ta School 0 4  Minu  and TtcknvLogg 

PUZZLE SECTION 

E&ed by 

Vavid  8aU.w 

f i i s  Depar*nt i s  for the enjoyment of those readers who are 
addicted t o  working crossword puzzles or who find an occasional mthe- 
m t i c a l  puzzle attractive.  We consider m t h e m t i c a l  puzzles t o  be prob- 
lems whose solutions consist of answers i m d i a t e l y  recognizable as 
correct by simple observation and requiring l i t t l e  f o m l  proof, Material 
submitted and not used here w i l l  be sent fo the Problems Editor i f r  hemed 
appropriate for that Departmen*. 

Address a l l  proposed puzzles and puzzle solutions to Professor 
Joseph Konhauser, Departmnt of Mathematics, Macalester College, St. Paul, 
bfinnesota, 55105. Deadlines for puzzles appearing i n  the Fall Issue w i l l  
be the next February 15, and for puzzles appearing i n  the Spring Issue 
will  be the next September 15. 

Mathacrostic No. 16 

S~~bnu'Xted by  Tkeodoa Kau,$nan, M.V. 

NaAAau H o ~ p L ~ k t ,  N n w t a ,  1. I . ,  N ~ L U  Y04k 17507 

Like t h e  preceding puzzles y t h i s  puzzle (on t h e  following two 

pages) i s  a  keyed anagram. 'Ibe 207 l e t t e r s  t o  be entered i n  t h e  diagram 

i n  t h e  numbered spaces w i l l  be i d e n t i c a l  with those i n  t h e  25 keyed words 

a t  matching numbersy and t h e  key numbers have been entered i n  t h e  diagram 

t o  a s s i s t  i n  construct ing your so lu t ion .  When completedy t h e  i n i t i a l  

l e t t e r s  w i l l  g ive a  famous author  and t h e  t i t l e  of h i s  book; the  d iapam 

w i l l  be a quotation from t h a t  book. (See an example so lu t ion  i n  t h e  

so lu t ions  sec t ion  o f  t h i s  Department. ) 



DEFINITIONS WORDS 

A. a muscle which partially twists on 
its axis when tensing 21 67 90 205 95 191 28 

B. an accompanying part of semi- - - - - - - - - - 
independent melodic character 63 b 1 5 2 d  6 141 17 79 161 101 

C. road; mosaic; beetle or plant - - - - - - - 
125 129 198 111 159 134 53 

D. giddy, volatile, heedless; this 
puzzle perhaps 156 183 200 3 71 168 97 9 146 107 27 

E. a possibility (comp.) - - - - - - - 
148 100 164 106 144 73 133 

F. exculpation -------- - 
22 179 24 7 126 105 99 147 192 

G. a dwarf male in botany - - - - - - - - - 
54 169 62 77 194 102 174 180 44 

H. daisy; dam or mountain ------ 
190 91 120 189 14 173 

I. arch; crab; curve; kidney or --------- 
Zootwear 132 118 82 35 167 108 69 127 47 

J. burial rites ------- -- 
186 57 4 197 48 25 86 45 145 

i<. wnat S a m y  Glick did --- 
34 29 19 

L. "He that sleeps feels not the - " 
Shak - Cymbeline 30 13 33 8 162 201 124 2 16 

M. if you're serving, this is not too 
good (camp.) 75 135 193 46 153 60 

ti. mutually aestructive ----------- 
52 158 177 165 87 143 93 204 78 187 42 

0. habituate - - - - - - - - 
137 96 113 84 49 18 39 66 

P. John D. Rockefeller's grandchild 
perhaps 136 b 5 6 d  76 65 

Q. not regularly (3 wds.) -------- 
10 130 119 154 123 40 103 80 

R. detached mass of loosely fibrous 
structure like a shredded tuft of 138 206 115 59 155 85 196 20 
wool 

S. uniformly ------- 
142 171 182 55 195 23 74 

T. way and shark (2 wds.) ----------- 
43 112 92 176 184 64 15 31 1 70 89 

u. passively compliant ----------- 
50 140 181 110 178 149 207 32 36 128 117 

V. talkativeness - - - - - - - - - 
170 116 109 122 26 98 203 68 151 

W -  the part of the Eucharist~c Service 
just before the bread and wine are 38 121 104 88 114 51 5 175 199 
consecrated 

X. Q. How far is it to the nearest 
phone? 139 166 83 58 72 37 131 188 12 172 41 157 

A. Oh, 1 - 2 miles up the road. 
Y. hypophosphatemia; hemophilia and 

rape (comp.) 81 160 94 150 185 11 61 163 202 



SOLUTIONS 

W a c t o b z Z c  No. 1 5 .  (See Fa1 1 1982 I ssue)  [Phopobed bg Jobeph 77. E. 

Defini t ions and Key: 

Bowditch 
u i n t a i t e  
Horned sphere 
Lotions 
Effervesce 
Rheotaxis 
Graf f i t 0  

Aliquot p a r t  
Unguent 
Sawtooth wave 

K. Sassafras  
L. Attenuate 
M. Brewster 
N. Invertase 
0. octahedron 
P. God does not 

play dice 
Q. Rhin i t i s  
R. Atavism 
S. Penrose s t a i r c a s e  

T. Heath hen 
U. In jec t ive  
V. Chebyshev 
W. Arcturus 
X. Lebesgue 
Y .  Snowflake curve 
2. Twistor 
a .  Unicorn 
b .  Dustbin 
c .  Yet i  

F i r s t  Le t te r s :  Buhler Gauss: A Biographical Study 

Quotation: H A  U d e  .t& hi4 b & d d  hcU been ~ ~ W h a d ~ w t d  bg 

hi4 h e p u k t i o n  a a bLtLcX? even u n 6 a i ~ ~ ~  &c 0 6  t h ~  wotk 0 6  o t h W ,  

HA p ~ v a X e  j u d g m d ,  p d c W g  06 coUeaguu,  w a e  06ten q d X e  

~~y u.nd Lnc0uAten-t.  One p ~ & v e ~ - - ~ ~  v e h  vabo--.the 

ex&avagance 06 .the g e d u  who cannot be A w e  what b d e b  t o  u e .  

Solved by: Jeaneat te  B i  ckl ey Webster Grove High Schooly Missouri ; Rod 

Chaumont and Jim S t a n f i e l d Â  Offu t t  A i r  Force Basey Omaha; Charles R. 

Diminnie, S t  Bonaventure University; Victor G. Fesery Mary College, 

Bismarck; Robert C. Gebhardt, New Jersey;  Joel K. Haacky Oklahoma S t a t e  

University; Theodor Kaufman, Brooklyn; Roger Kuehl , Kansas City;  Henry S. 

Lieberman, John Hancock Mutual; Eric  C. Numel a ,  New England College; 

Bob Priel  i pp University of Wisconsin-oshkosh; S i s t e r  Stephanie sl oyan, 

Georgian Court College; Allan Tuchmany University of  I l l i n o i s ;  The 

Proposer and The Editor.  

PUZZLES FOR SOLUTION 

1. Phopobed bg Jobeph K o n h a ~ a ~  M a c d u Z a  CoUege? S t .  P&, 

K n n u  oak. 

In t h e  square a r ray  each l e t t e r  represents  one of  t h e  d i g i t s  0 

through 9. Determine t h e  comspondencey given t h a t  

1. ABC and CBD a r e  primes, A B C  

2. BBC and CDF a r e  p e r f e c t  squares, and C B D 

3.  ACE and ECF a r e  p e r f e c t  cubes. E C F  

2.  Phopobed bg Jobeph K o n h a u ~ a ~  M a d e b t a  CoUege? St .  Pa&, 

f i n n u  o.ta. 

Locate e i g h t  points  i n  a plane s o  t h a t  t h e  perpendicular 

b i sec tor  o f  t h e  l i n e  segment joining any two o f  t h e  po in t s  passes  

through exac t ly  two o f  t h e  o thers .  

3 .  Phopob ed bg Jobeph K0nhau5e&~ M a d u t a  CoUege? S. Paul9 

f i n n u  o.ta. 

In t h e  equal  products 4 x NUMFiER = 9 x BERNUM each l e t t e v  repre-  

s e n t s  one of  t h e  in tegers  0 through 9. Deternine t h e  co~respondence. 

4. Phopob ed bg Jobeph K o n h a u ~ a ~  MacatebXm CoUege? S t .  Paulp 

finnebo.ta. 

The top  and f r o n t  views of  a s o l i d  ob jec t  a r e  given. Draw t h e  

s i d e  view. 

Top View Front View 



5. Pmpobed bq 30btph Konha~ek, MadebXek CoUege, SX, Pad, 

MLnnuota. 

Dissect t h e  hexagon ABCDEF i n t o  t h r e e  pieces which can be reas-  

sembled t o  form a square. 

6 .  Phopobed bq Jobeph KonhauAel~, MadebXa  CoUege, S f .  P d ,  

MLnnebota. 

Five unmarked opaque capsules contain equal amounts of sugar. 

A small amount of  sugar is  t r a n s f e r r e d  from one of  t h e  capsules i n t o  

another. Is it possible  t o  i s o l a t e  both t h e  l i g h t  and t h e  heavy capsules 

using an uncal ibrated equal-arm balance j u s t  t h r e e  times? 

7. Pmpobed bq Jobeph Konhuhek, M a d e b r n  CoUege, S i .  Pad, 

hhhnuota. 

Cross out  eleven of  t h e  in tegers  from t h e  a r ray  below so  t h a t  no 

th ree  of  t h e  remaining nine a r e  i n  a r i thmet ic  progression. 

They said it c o u Z h r t  be cbne 
So he went right t o  it. 
He took that thing that e o u Z h f t  
be h e  .... 
And e o u l h  ' t  do it. 
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MISSOURI GAMMA ( S t .  Louis Un ivers i ty )  presented The James W. Garneau 

Mathematics Award t o  Levna Mattem; The Francis Regan Scholarship t o  

ELLC Fivht; The Missouri Gamma Undergraduate Award t o  Mmq P m y  and 

Kim Wick; The Missouri  Gamma Graduate Award t o  M&a Hating; The John 

J. Andrews Graduate Serv ice Award t o  Gtcn W w ~ g U z ,  Ch; and Beradino 

Family F r a t e r n i  t ysh ip  Award t o  3m1a Goekt, S.3,  and Maha%a H a d X n g h .  

The winners of  The P i  Mu Epsilon Contests were Yobhimwtu Nobuhho [Scnioh 

ConXc%X) and Sanjaq 3ain ( 3 d o h  ConXebX). Mh. Rob& Emnee o f  

McDonnell Douglas Automation Company presented a t a l k  on f fCaree~ 

Gpportwzities Involving Applied Mathemticsrf and Ph06.  E h d  S p a z ~ g d  

gave t h e  "James E. Case, S. J. Memorial Lecture

f

r on ffMathemtics and the 

Lawr

f 

and "The Use of Bayesf Rule i n  Paternity Testing

f

f.  Phvd. E h v d  

S p d ~ f l ~ g d  is  from Washiqgton University. 

NEW YORK PHI (S ta te  Un ivers i ty  College a t  Potsdam) The winners o f  t h e  

Pi  Mu Epsilon Senior Award were Lq&a P. Hahdq and Nancq Udbtagek. 

Winners a r e  chosen by t h e  members o f  t h e  Chapter who have not  y e t  gradu- 

ated,  on t h e  b a s i s  of  outs tanding achievement i n  mathematics and f o r  t h e  

promotion of  schola r ly  a c t i v i t y  i n  mathematics. 



PROBLEM DEPARTMENT 

E u e d  by UayXon W .  Dodge 
UnLvmity  06 Maine 

This department welcomes problems believed t o  be new and a t  a 

leve l  appropriate for the readers of t h i s  journal. Old problems d is -  

playing mve2 and elegant methods o f  solut ion are also inv i ted .  Pro- 

posals should be accompanied by solutions i f  available and by any {nform- 

a t ion  that  w i l l  a s s i s t  the edi tor .  An as ter isk  f*) preceding a problem 

number indicates that  the proposer did not  submit a solution. 

A22 communications s h u l d  be addressed t o  C. W. Dodge, Math Dept., 

University o f  Maim, Orono, ME 04469. Please submit each proposal and 

solution on a separate sheet (one side only)  properly ident i f ied  ~ L t h  

m e  and address. Solutions t o  problems i n  t h i s  i ssue  should be mailed 

by December 15, 1983. 

Problems f o r  So lu t ion  
/ 

Find t h e  mathematical term t h a t  is  t h e  anamam of each of t h e  f o l -  - 
lowing words and phrases: (1 )  RITES OF, (2 )  NILE GETS blENy (3)  $ANTS fiii7' 

GOU 1 
GONE, (4)  IRAN CLAD, ( 5 )  COVERT, (6)  CLEJIC (7 )  GRABS ALE, ( 8 )  IRON 

V&TO % < I  <&' ,$ +,.,,a 
IED A VIVE, (10) HAG, NO SEX, (11) ALTERING, (12) 

J-I C& A ~ ~ J L  x f i 7 k f 4 L  
535. Phopo~d by S&~n&q Rabinodtz , D i g M  E q u i p e d  Cohp. , 

Memhacfz, Nw ffampbhhc. 
In  t h e  small hamlet of  Abaciniay two base systems a r e  i n  common use. 

Alsoy everyone speaks t h e  t r u t h .  One r e s i d e n t  s a i d ,  !I26 people use my 

base, base 10 ,  and only 22 people speak base 14.11 Another s a i d ,  !'Of t h e  

25 r e s i d e n t s ,  1 3  a r e  b i l i n g u a l  and 1 is i 1 l i t e r a t e m t 1  How many r e s i d e n t s  

a r e  there?  

536. Phopo~d by M d h a  MaLtLchb, Ueazie, MLne. 

A recen t  alphametric i n  Crux Mathematicorm [1982: 77, problem 7211 

asks one t o  show t h a t ,  i n  base t e n ,  i 4  16 t L  
g '  \? 
12 
1, it. 

TRIGG is  t h r e e  times IiRONG. 

In  defense of  the  Dean of  Numbers, solve these  alphametrics independently 

of  each o ther :  

( a )  TRIGG x 3 = RIGHT i n  base t e n  where t h e  d i g i t  3 can be reused. 

(b )  TRIGG = 3 x RIGHT i n  base t e n  where t h e  d i g i t  3 can be reused y 

and 

( c )  TRIGG x 7 = RIGHT i n  base seventeen. 

537. Phopo~ed by CMu W .  Tdgg,  Sun Viego, CaLi60hnia. 
Find t h e  unique four- dig i t  in teger  i n  t h e  decimal system t h h t  can 

be converted i n t o  i ts equivalent  i n  t h e  septenary system (base 7 )  by in-  

terchanging t h e  l e f t  hand and t h e  r i g h t  hand d i g i t  p a i r s .  

538. Phopo~d by EmanueL, 0. C .  ImovuXe, N o & t h e ~ . t  M~AAOL 

W e  UnLum.Lty, MmyuLUe. 
2 

The r o o t s  of ax + bx + c = 0, where none of t h e  c o e f f i c i e n t s  a ,  b ,  
2 2  2 2 

and c i s  zero,  a r e  a and 6. The r o o t s  of a x + b x + c = 0 a r e  2a and 

2B. Show t h a t  t h e  equation whose r o o t s  a r e  nu and nf3 is x2 + 2nx + 4n 
2 

= 0. 

539. Phopo~d by Hao-Nhien 2. Vu, Padue UnLumLty, Wat La6ay&e, 

lluiimm. 

Find a quadrat ic  equation with i n t e g r a l  c o e f f i c i e n t s  t h a t  has cos 

72' and cos 144' a s  r o o t s .  

ADoes t h e r e  e x i s t  such a quadra t ic  with r o o t s  s i n  72' and s i n  144O? 

540. P~opohd by M. S .  ~ a m k n ,  UniveMiLy od Mb&%ta, Edmodon, 

Canada. 
If t h e  r a d i i  rl, r2, r of t h e  t h r e e  escr ibed c i r c l e s  of  a given 

3 
t r i a n g l e  AlA#3 s a t i s f y  t h e  equation, 

determine which o f  t h e  angles  A1, A2, A i s  t h e  l a r g e s t .  3 

541 . Pkopohed by Sakni?ey RabLnouLtz, V i g h W  Equipment Coap. , 
M w h a c k ,  Nw Hamphhe. 

A l i n e  meets t h e  boundary of  an annulus A1 ( t h e  r i n g  between two 

concentr ic  c i r c l e s )  i n  f o m  poin t s  P, Q, R, S with R and S between P and 

Q. A second annulus A2 is  constructed by drawing c i r c l e s  on PQ and RS 



a s  diameters. Find t h e  re la t ionsh ip  between t h e  a reas  ofA and A 1 2. 

542. Phopobd by Umb& R. Ba.iLeyl Robe PoLytechnic InbaXtute, 

T m e  Ua&el Indiana. 

A c i r c l e  of un i t  rad ius  is t o  be covered by t h r e e  c i r c l e s  of equal 

r a d i i .  Find t h e  minimum rad ius  required.  

543. Phopobed by Dominic C .  W o t o l  S o & m t m n  lou, i~iana U n h -  

m & y ,  Ummond. 

A l inkage device y shown i n  t h e  f i g u r e ,  c o n s i s t s  of  a wood block 

with two t r a c k s  c u t  perpendicular t o  one another and crossing a t  t h e  

cen te r  of  t h e  block. Riding within t h e  t racks  a r e  two small sk ids  A and 

B y  joined together  by a long handle. A s  t h e  handle i s  turned, t h e  sk ids  

move within t h e i r  respec t ive  t racks :  A up and down and B from s i d e  t o  

s i d e .  Describe the  curve generated by point  C(at t h e  end of t h e  handle) 

a s  t h e  handle is turned.  

Side View 

544. Phopobed by Jack G m d u n k d ,  FLu~hLng, Nw Yohk. 

Show t h a t  a q u a d r i l a t e r a l  ABCD with s i d e s  AD = BC = s and +A + 3B 

= 120Â has maximum area i f  it i s  an i sosce les  t rapezoid.  A so lu t ion  

without ca lcu lus  i s  preferred.  

545. Phopobed by S t m d e y  RabinouLtz, VLgiAal Eqdpment Cohp., 

Memhack., Nw Umpbh&e. 

Let f denote t h e  n t h  Fibonacci number (fl = 1, f2  = 1, and fnj2 n 
= fn + fn+* f o r  n a p o s i t i v e  i n t e g e r ) .  Find a formula f o r  fmjn i n  terms 

of  fm and fn (only). 

546. P h o p o ~ d  by Rob& C .  GcbhmdX, P m i p p a n y ,  Nw J m e y .  

Show t h a t  t h e  square of t h e  sum of  t h e  squares of four  in tegers  

can be expressed a s  t h e  sum of t h e  squares of t h r e e  i n t e g e r s ,  a s  i n  
2 2 2 

(22 + 32 + 4' + s212 = 14 + 28 + 44 . 

Sol utions 

510. [Spring 19821 Pkopobed by C h d u  W .  T ~ g g ,  Sun Diego, 

CaLL~0hnia. 

A hexagonal number has t h e  form 2n2 - n. I n  base n iney  show t h a t  

t h e  hexagonal number corresponding t o  an n t h a t  ends i n  7 terminates  

i n  11. 

Ed<tor rs  Coment. We* t h a t  i sy  I, goofed. This is  problem 415, 

which appeared on Page 62Q of t h e  Spring 1979 i s s u e a  a s  pointed out  by 

t h e  proposer. 

S O L A O M  w m e  ~u.bmLLtd by WALTER BLUMBERG* PETER JOHN DOMBROWSKY, 

VICTOR G. FESER, JOHN M. HOWELL, HENRY S. LIEBERMAN, BOB PRIELIPPa STAN- 

LEY RABINOWITZ, DOUGLAS F. RALL, HARRY SEDINGER, WADE H. SHERARD, KEVIN 

THEALLY KENNETH M. \41LKEa and t h e  PROPOSER. 

51 1 . [Spring 19821 Phopohed by Emkn Ju-t and Noman S c h u m b ~ ~ -  

g m ,  W o n x  C o m u ~ y  CoLLegel Nw Yohk. 
I f  a >  0 and B ?  1, prove t h a t  

and 

Consider t h e  well  known inequa l i ty  f o r  a l l  r e a l  x 

(*I x-1 
x 2 e  , 

with equa l i ty  i f  and only i f  x = 1. The r e s t r i c t i o n  B 2 1 can be r e-  

moved; t h a t  i s y  we l e t  0 be any r e a l  number. Now s u b s t i t u t e  x =-(e/a)  0 

0 i n  inequa l i ty  (*) and r a i s e  each s i d e  of  t h e  r e s u l t  t o  t h e  a power. 

We g e t  

0 which y i e l d s  p a r t  (A). To prove p a r t  (b)  s u b s t i t u t e  x = ( a / e )  i n  i 

and r a i s e  each s i d e  of  t h e  r e s u l t  t o  t h e  e 0  power. In  both (A) and (b)  

i f  0 = O a  equa l i ty  holds;  i f  0 # O a  then equa l i ty  holds i f  and only i f  

a = e .  



A&o bo lved by PETER JOHN DOMBRO\iSKY, J. DOUGLAS FAIRES, D A V I D  

INYa T I M  KEARNS, ROBERT MEGGINSON, and &c PROPOSERS. 

512. [ S p r i n g  19821 Phopobed by Jack G m d u n k d ,  FLu4Kng. N u  

Yokk. 

Denote t h e  number of  ways a  p o s i t i v e  i n t e g e r  n can be par t i t ioned  

i n t o  3 p o s i t i v e  i n t e g e r s  by P (n). Thus, f o r  examplea P3(7) = Q a  s ince  3 
we have 

1 + 1 + 5 ,  1 t 2 + 4, 1 + 3 t 3, and 2 t 2 t 3 each equal t o  7. 
2 Prove t h e  following: I f  a, b, c a r e  p o s i t i v e  in tegers  and a2 + b2 = c , 

then 

P3(a) t P3(b) = P3(c). 

SotuaXon by David Tng, R c n b b e h m  PolytechnLc T~a%ute, Tkog, Nw Yohk. 

Denote t h e  number of ways a  p o s i t i v e  i n t e g e r  n can be par t i t ioned  

i n t o  two p o s i t i v e  i n t e g e r s  by P2(n). Then P2(n) =[n/2], where t h e  

brackets  i n d i c a t e  t h e  g r e a t e s t  i n t e g e r  funct ion.  To f i n d  P3(n) we ob- 

serve t h a t  t h e r e  a r e  P (n - I) sums s t a r t i n g  with t h e  addend la  
2 

P (n - 4) sums s t a r t i n g  with t h e  addend 2, and i n  general  P2(n - 3k + 2) 2 
sums s t a r t i n g  with t h e  addend k. Then 

[n/31 
P3(n) =. '& P2(n - 3k+ 2). 

By not ing t h a t  t h e  odd terms and t h e  even terms form ar i thmet ic  progres-  

s i o n ~ ~  we ob ta in  

2 P3(6n) = 3 7 ~ ~ ~  and P3(6n t 3) = 3n + 3n t 1. 
2 2 2 Therefore P3(k) = k /I2 - 1/3y o r  = k 112, o r  = k /I2 + 1/4Â so  

Given t h a t  a2 + b2 = c2Â t h i s  inequa l i ty  reduces t o  
10 - 5 < P (a) t P3(b) - P3(c) 2 . 

12 - 3 

Since P (n) is  an i n t e g e r  f o r  each n, it follows t h a t  3 

This method of proof can be extended t o  e s t a b l i s h  t h e  following 

genera l iza t ions :  
2 

1 )  If la2 + b2 - e 1 > lZa then P3(a) + P3(b) # P3(c); 
2 2 2 2) I f  a + b = e + 1, then P fa) + P3(b) = P3(c); 3 - - - -  

3) I f  a, b, ca d a r e  a l l  even p o s i t i v e  in tegers  and if 

3 2 
(a3 + 3a2) + (b3 + 3b2) + (c3 + 3c2) = (d + 3d ), then 

P4 (a) + P4(b) + P4(c) = P4(d); and 

4) I f  a, b, c, d a r e  a l l  odd p o s i t i v e  in tegers  and i f  

3 2 (a + 3a - 32a) + f i  + 3b2 - 32b) + (c3 + 3c2 - 32c) 

= (d3 + 3d2 - 32d), then 

P4(a) + P4 (b) + P4 (c) = P4 fd) . 

General izat ion ( 1 )  s t a t e s  t h a t  (a, b ,  c) has t o  be l lc losel l  t o  a  

Pythagorean t r i p l e  f o r  t h e  desired equa l i ty  t o  hold; genera l iza t ion  (2) 

shows such a  case.  It  would be i n t e r e s t i n g  t o  see what pa t te rns  a r e  

found f o r  P5(n), P6(n), and s o  f o r t h .  

A.00 boLwed by WALTER BLUFlBERG, JOHN OMAN and BOB P R I E L I P P  [ j o i d y ] ,  

and $he PROPOSER. 

51 3. Bp r i n g  19821 Phopobed by Ronald E. S ~ , ~ , ~ ~ L C Y L ,  Geohgia S m e  

U ~ w m d q ,  dL&znaiz, Geohgia. 

O u r  o ld  f r i e n d a  Prof. Euclide Pasquale Bombasto Umbugio, eminent 

r e t i r e d  numerologist from Guayazuela, has been delving i n t o  s t a t i s t i c s  

of  l a t e  i n  an e f f o r t  t o  prove t h a t  h i s  ret i rement  s a l a r y  is  so  laughably 

low t h a t  he should be given food stamps i n  add i t ion  t o  h i s  good conduct 

pass  t o  t h e  1986 baton t w i r l e r s  semifinals .  He has checked severa l  d i s-  

t r i b u t i o n s  involving r e a l  numbers and i n  every case. t h e  average devia- 

t i o n  (a.d.) i s  l e s s  than o r  equal t o  t h e  standard deviat ion u, where 

. - 

a.d. = L  lzi - and u2 = L  (xi - ; j2 .  n i=1 n i=1 

Of course a ; i s  t h e  da ta  mean 

He conjectures  t h a t  a.d. 2 u i s  always t r u e .  Help t h e  professor  t o  

prove h i s  conjecture.  



SoL&n b y  T h  Kemn.4, C - ~ n ,  V h g M  - - 
Let c: = lxi - X I .  Then 2 ci = nc. Also a.d. 5 u if and only 

z=1 

2 2 
i f  fa.d.1 2 u , which is t r u e  i f  and only if 

which is,  of course, always t r u e .  The l a s t  two forms a r e  equivalent ex- 

pressions f o r  n2u2 , a s  given i n  any elementary s t a t i s t i c s  t e x t .  

ALAo ~ o L v e d  b y  WALTER BLUMBERGy PETER JOHN DOMBROWSKY, MARK EVANS, 

DAVID INY,  ROBERT E. LaBARRE, DOUG t4ATLOCKy BOB PRIELIPP,  KEVIN THEALL, 

and .the PROPOSER. 

Given a  s e t  of p o s i t i v e  numbers, it i s  well  known t h a t  t h e i r  har- 

monic mean 5 t h e i r  geometric mean 5 t h e i r  a r i thmet ic  mean 5 t h e i r  roo t -  

mean-square. The November 1977 Mathematics Magazine (vol.  50 ,  p. 277) 

shows these  i n e q u a l i t i e s  f o r  two numbers i n  a  concise geometric f igure .  

This problem demonstrates t h e  l a s t  of these  i n e q u a l i t i e s .  

514. [Spr ing  19821 Phopo~ed b y  Raymond E. S p ~ ~ g ,  Raddotd 

U ~ v m L t g ,  Raddohd, V h g L h .  
Let A1A#3 ... A be a  regu la r  polygon where An+j = A .  and 

n J 

AiA;+l = 1. 
Let B. be a  point  on t h e  ~ e g m e n t A ~ A ~ + ~  where A;Bi = X. 

Let C. be t h e  point  where AiBi+l i n t e r s e c t s  Ai+lBi+2. Find t h e  area of 
'L 

a regula r  polygon C1C2C3 . . . Cn i n  terms of  n and X. 

Soha%n b y  S&w&y RabinowLtz, D i g a  Eq&ptn& Cohp., M u d m u c k ,  NW 

H m p ~  m e .  
Let A B = k, A C = A2Cl = y, and C B = z .  By symmetry, 2  3 3 2 2 3 

$B8#3 = $C#83, so  t r i a n g l e s  B$#2 and B3Cf13 a r e  s i m i l a r  (by angle- 

angle) .  Thus 

z k x  x x 
2 

z = - a n d - = - ,  SO y = ~ a n d z = -  
I Y  I L f  k 

and 

z2 k
2

- x - x  2 C C  = A $ 3 - A 2 C 1 - C B  = k - t - T =  
1 2  2 3 k 

Applying t h e  law o f  cosines t o  t r i a n g l e  B $1#3 , we f i n d  t h a t  
2  2 

k = 1 + x + 2x coso .- . --- -- 
where 9 = 2n/n is t h e  e x t e r i o r  angle of t h e  regu la r  n-gon. The area o f .  

2  a  regu la r  n-gon of  s i d e  s is n s  /(?.tan(8/2)),  so  t h e  a rea  of  t h e  regu la r  

n-gon with s i d e  C C is, where 8.; 2n/z , 1 2  

2 2 n ( k 2 - x - z )  - n f 1  + 2x cosg-x) 2 - 
2 4k2 t a n  f9/2) 4f1 + 2x cosg+ x ) t a n  (â‚¬11 

ALAo A O L V ~  b y  WALTER BLUMBERG and t h t  PROPOSER. 

*515.  [Spr ing  19821 Phopo~ed b y  Jack G m d u n k d ,  FLuAhng, Nw Yohk. 
Given a  sequence of  concentr ic  c i r c l e s  with a  t r i a n g l e  ABC circum- 

scr ib ing  t h e  outermost c i r c l e .  Tangent l i n e s  a r e  drawn from each ver tex  

of  ABC t o  t h e  next inner  c i r c l e ,  forming t h e  s i d e s  of  t r i a n g l e  A f ,  Bf , 
C!. Tangents a r e  now drawn from v e r t i c e s  A ' ,  Br  , Cf t o  t h e  next inner  

c i r c l e  and they a r e  t h e  s i d e s  o f  t r i a n g l e  A r r ,  Brr, Crr, and so  on. Prove 

t h a t  t h e  angles o f  t r i a n g l e  A ( n ) ~ ( n ) ~ ( n )  approach 1r/3. 

I .  VLbphooi by  David l n y ,  Ren.4Adaut PoLytechnic l a t i t u t e ,  Thoy, 
3Iw Yo tk .  

It is c l e a r  t h a t  t h e  angles  of t r i a n g l e  A ( ~ ' ~ ) B ( ~ ' ~ ) c ( ~ + * '  can he 

made a r b i t r a r i l y  c l o s e  t o  those o f  t r i a n g l e  by choosing thc  

d i f fe rence  i n  t h e  r a d i i  of  t h e  appropriate  c i r c l e s  small enough. Thus it 

is  poss ib le  t o  choose a  sequence of  decreasing concentr ic  c i r c l e s  such 

t h a t  t h e  angles  of  successive t r i a n g l e s  never vary from those of  t r i a n g l e  



ABC by more than any given E > 0. 

2. Phooi by MOW& Katz ,  M a ~ ~ ~ h o c ,  Mdne.. 

Let the  concentric c i r c l e s  have center I, l e t  S and T be the 

points of tangency of s ides  AB and ArB' with t h e i r  respective i nc i r c l e s  

and l e t  those c i r c l e s  have r a d i i  R and r respectively,  a s  shown i n  the  

f igure.  Now 

sin(A/2) = s i n  SAT = R/AI and sinTAI = r / A I ,  

s ince the s ine  function is increasing and concave downward i n  the range 

from 0 t o  ~ / 2 .  Similarly 

iArCI r 
C/2< f l -  

The c loser  r/R is t o  1, the more nearly equal these fract ions are .  From 

t r i ang le  A'AC we have t h a t  3BrA'Cr = kAfAC + 3AfCA, so t h a t  

h l l =  ^SrA'C1 = 3ArAI+ &IAC + WA - WA' 

This sequence converges provided r/R < u < 1 for  some fixed K. But then 

the sequence of r a d i i  converges t o  0. Conversely, i f  the  r a d i i  converge 

t o  0, then the t r iangles  converge t o  equi la tera l .  

r 
I 516. [ S p r i n g  1 9 8 2 1  Phopo&e.d by 3. L .  &lenne/i, Pata AMo, 

I caLL^o-. 1 
Prove, f o r  a ,  b ,  a pos i t ive ,  t h a t  - f a  + b + c) 2 

3 
' 

with equali ty i f  and only i f  a = b = c. Does t h i s  generalize to -..- 

SoiiLt ion by M .  S .  Ktemkui, U n - L v u ~ , i L y  of, AÂ£beA-6a. Edmon-ton, Canada. 

The first inequali ty is known. By squaring, it reduces t o  
2 2 

(a - b) + (b - a)  + (a - aJ2 > 0. 

More generally, 

where the T a r e  the  elementary symmetric functions, i . e .  r 

The above a re  the Maclaurin inequal i t ies ,  the  f i r s t  of which gives t he  

extension of t he  f i r s t  proposed inequali ty t o  n variables.  For four 

variables it s t a t e s  

The second inequali ty is  va l id  fo r  a l l  a, b, a, d > 0, f o r  by squaring, 

it reduces t o  

2 
( a - b + a - d )  2 0 .  

More generally, i f  xl 2 0 and n 2 4, then we have 

z + z + a .  + x j2  2 4x1x2 + 3 z + . + xnxl', n 2 3 

which can be proved by Mathematical induction. 

AIAo hoived by WALTER BLUMBERG, LOUIS H. CAIROLI ,  PETER JOHN DOM- 
BROWSKY, MARK EVANS, VICTOR G. FESER, TAGHI REZAY GARACANI, DAVID INY,  
RALPH KING, HENRY S .  LIEBERMAN, DOUG MATLOCK, BOB PRIEL IPP,  STANLEY 

RABINOWITZ, HARRY SEDINGER, KEVIN THEALL, a d  the. PROPOSER. 

51 7 .  [ S p r i n g  1 9 8 2 1  Pkopo~ed by Cha^JLa W .  T e g ,  Sa.n V iego,  ' 
CaJUL<iotWAJO.. 

The nine non-zero d i g i t s  a r e  arranged t o  form three  three- digit  



primes with a sum t h a t  is d i v i s i b l e  by 11. Find t h e  primes and t h e i r  

sum. 

S o l u t i o n  by Bob PLeLL'pp,  Ui'num-c-ty 06  WÂ¥CAcon&in-O&hko&h 

There a r e  83 th ree- dig i t  primes t h a t  have d i s t i n c t  non-zero d i g i t s .  

Since primes grea te r  than 5 terminate only i n  t h e  d i g i t s  1, 3, 7, o r  9, 

any primes t h a t  contain t h r e e  of t h e s e  d i g i t s  can be eliminated. The re-  

maining primes can be l i s t e d  i n  columns headed by l l k  + n f o r  n = 1, 2, 

. ,  10 ,  t h a t  is, according t o  t h e i r  remainders when divided by 11. 

Using these l ists,  a hand ca lcu la tor ,  t h e  f a c t  t h a t  1 + 2 + ... + 9 = 45, 

e ighteen so lu t ions  t o  t h e  given problem were found. A s  a check a BASIC 

program was constructed and run,  y ie ld ing  t h e  same r e s u l t s :  

primes sum - 
683 947 251 1881 

683 257 941 1881 

947 653 281 1881 

563 827 491 1881 

641 257 389 1287 

389 251 647 1287 

983 251 647 1881 

281 347 659 1287 

281 359 647 1287 

primes sum - 
683 257 149 1089 

683 521 479 1683 

431 587 269 1287 

827 461 593 1881 

641 257 983 1881 

587 239 461 1287 

467 821 593 1881 

281 743 659 1683 

281 953 647 1881 

f^Ltto botued  by WALTER BLUMBERG, ROBERT C. GEBHARDT, and STANLEY 

RABINOWITZ. PawbusJL ~ o i L l A t . o n ~  w e m  (Sound by LOUIS H .  CAIROLI  ( I  b o l u t i o n ) ,  

VICTOR G. FESER ( 1 2 1 ,  DAVID INY  1171, HENRY S .  LIEBERMAN ( 7 1 ,  KEVIN THEALL 

m, KENNETH M. WILKE ( 1 4 1 ,  a n d t h e  PROPOSER ( 8 1 .  

518. [ S p r i n g  19821 P m p o b d  by Miic.ha.eL W. E c k a ,  Penn.6ylvafu.a. 

S-to-te U n i v m - L t y ,  Wotdki.ngton S c ~ a w t o n  Cmpu-i .  

A baseba l l  player  g e t s  a h i t  and observes t h a t  h i s  b a t t i n g  average 

r i s e s  by exact ly 1 0  po in t s ,  i . e . ,  by .010, and no rounding i s  necessary 

a t  a l l ,  where b a t t i n g  average is  r a t i o  of number of  h i t s  t o  times a t  b a t  

(excluding walks, e t c . ) .  I f  t h i s  is  not  t h e  p l a y e r ' s  first h i t ,  how 

many h i t s  does he now have? 

Solut i .on by ~ o b w L  E .  L a B m e ,  Un i ted .  T&c.hnoLogiu, R a m h  Can-Ca,  

E a t  H C U ~ ~ ~ O J L ~ ,  Conne-&cat. 

Let y and x be t h e  numbers of  cur ren t  h i t s  and a t  b a t s ,  respect-  

ive ly .  Then we have 

which reduces t o  
2 * y =-J31x + 1 . 0 1 ~ .  > .  -- - 

The graph of t h i s  equation is a parabola with ver tex  a t  (50.5, 25.5025 1 
and re- intercepts a t  (0 ,  0 )  and (101, 0 ) .  Since it i s  symmetric about 

t h e  l i n e  x = 50.5, we need t r y  only x = 1, 2, ..., 50 and then use sym- 

metry t o  f i n d  a second so lu t ion .  Using a personal  computer t o  perform 

t h e  drudgery, we f i n d  (25, 19) is  a so lu t ion ,  s o  (76, 19) i s  t h e  second 

so lu t ion .  Thus, i n  e i t h e r  case, he now has 19 h i t s .  

AAio b o h e d  by JEANETTE BICKLEY, WALTER BLUMBERG, MARTIN BROWN, 

LOUIS H. CAIROLI ,  PETER JOHN DOMBROWSKY, MARK EVANS, VICTOR G. FESER, 

ROBERT C. GEBHARDT, JOHN M. HOWELL, DAVID INY ,  RALPH KING, HENRY S .  

LIEBERMAN, BOB P R I  EL IPP  , STANLEY RABINOWITZ, DOUGLAS F .  RALL, HARRY 

SEDINGER, KEVIN THEALL, CHARLES W .  TRIGG, TIMMY TUCKER, KENNETH M. WILKE, 

and the. PROPOSER. 

519. [ S p r i n g  19821 P ~ ~ o p o b e d  by C M u  IU. T G g ,  S u n  V i e g o ,  

CaJU.60hfu.a.. 

Solve t h e  equation 

3̂  - (34)15-^ + 5^ = 0. 

S o l u t i o n  by P ~ U L  John Vombtoubky, U n i v m - i t y  o f ,  T e x a ,  Au-i-tui. 

We have 

which f a c t o r s  i n t o  
5 If - - t .  5*1( l" ' -5.  5 sX) - 0 .  

Then we have 

3 ^ - p = o  and p - 5 s - 1 = 0 .  

n 
Now 3 = 5 has a s o l u t i o n  only when n = 0. Hence x = k l  . 

AAio b o h e d .  by JEANETTE BICKLEY, WALTER BLUMBERG, LOUIS H. 

CAIROLI ,  FREDERICK C. DAY, MARK EVANS, J .  DOUGLAS FAIRES, VICTOR G. 

FESER, ROBERT C. GEBHARDT, EMMANUEL, O.C. I M O N I T I E ,  DAVID INY ,  T I M  

KEARNS, RALPH KING, JEAN LANE, HENRY S .  LIEBERMAN, D.C. MILIOTO,  BOB L 

PRIEL IPP ,  JOHN PUTZ, STANLEY RABINOWITZ, HARRY SEDINGER, WADE H. 

SHERARD, KEVIN THEALL, HAO-NHIEN Q.VU,  KENNETH M. WILKE, and the. 

PROPOSER. 



520. [Spring 19821 Phopohed by Chuck A U o n ,  Hun-ting-Con Beach, 

C ~ o i n i a . .  

The following diagrams describe t h e  f i r s t  few polygonal o r  k-gonal 

numbers : 

Triangular; k = 3: 

1 3 6 10 

Square; k = 4: 

where t h e  numbers represent  t h e  number of do ts  shown, and each f i g u r e  

is an extension of its predecessor. The n th  number of each sequence is 

given by t h e  above formulas. Find a general  formula f o r  t h e  n t h  k-gonal 

number P(n, k ) .  

S o i u t i o n  by H m y  Sedtngm,  S t .  Bonaveivtwie Un-tvmLty,  New Yo&. 

The k-gonal numbers a r e  t h e  p a r t i a l  sums of  t h e  s e r i e s  

1 t a 2  t a t ..., 
where a = am., t k - 2. Thus t h e  n t h  k-gonal number is m 

1 t ( 1  + k - 2) t ( 1  t 2(k - 2 ) )  t .-- t ( 1 t  (n - l ) ( k  - 2 ) )  

= n  t ( k -  2 ) ( 1  t 2 t --â t (n - 1 ) )  

= n t (k - 2)'" l n  = $ [(I - D ( k  - 2) t 21. 

AÂ£i hoivnd by LOUIS H .  CAIROLI, PETER JOHN DOWROWSKY, MARK 

EVANS, VICTOR G. FESER, JOHN M. HOWELL, ROBERT E .  LaBARRE, HENRY S. 

LIEBERMAN, BOB PRIELIPP, JOHN PUTZ, STANLEY RABINOWITZ, KEVIN THEALL, 

KENNETH M .  WILKE ( 2  h o W o f l ~ ) ,  and the. PROPOSER. 

521. [Spring 19821 Piopohed by Mo& K&, Uacwahoc, Maine. 

I was t o l d ,  when I f i r s t  saw t h a t  alphametric, t h a t  WE 

a p a r t i c u l a r  value f o r  K produced a unique so lu t ion ,  but  I DO 

have forgo t ten  what t h a t  value is .  So f i n d  t h e  unique so- WEE 

l u t i o n  where DAILY i s  prime. WORK - 
DAILY 

1 . S o u o n  by Ke.n.nvth M. WUke ,  Topeka, KWOA . 
The given alphametric y i e l d s  t h e  following r e l a t i o n s :  

c 2 + W + 0 = I + 1 0 c 3 ,  c 3 + W = A + c 4  , c = D .  

Hence we have D = 1, A = 0 ,  W = 9, Y = 3 o r  7, and t h e  t h i r d  r e l a t i o n  

implies c2 = 2 and 0 = I - 1. Now t r i a l  of some 22 cases  produces t h e  

unique so lu t ion  

96 

1 3  

966 

9382 - 
10457 . 

2 .  Comment by ChÂ£ULi 111. Ti-Lgg, Sun 0Lq0, CaLLdoiMJJL. 

The unique so lu t ion  with an odd DAILY i s  t h a t  given above. Simi- 

l a r  searches f o r  an even DAILY y i e l d  two so lu t ions :  

12 
and 

14 

977 977 

9268 9438 - 
10354 10526 . 

Each of these  could be made unique by imposing on t h e  f i r s t  t h e  condit ion 

t h a t  t h e  u n i t s '  d i g i t  of DAILY is  a l s o  i ts d i g i t a l  r o o t ;  and on t h e  sec-  

ond, t h a t  t h e  sum o f  t h e  extreme d i g i t s  of  DAILY equals t h e  sum of  i ts  

t h r e e  o ther  d i g i t s .  



We note t h a t  t h e r e  is  a  unique so lu t ion  with K = 2, two so lu t ions  

with K = 8, and no o ther  so lu t ions  with o ther  values o f  K. 

A&&o &oiue.d by  WALTER BLUMBERG, VICTOR G. FESER, DAVID INY, 

CHARLES W. TRIGG, and the. PROPOSER. 

During 1983-84, we win continue o w  National Paper Competition. 

Every paper written by an undergraduate or a graduate student who has 

not received a Master's Degree a t  the tine of submission i s  eZÂ¥LgibZe 

The winners for 1981-82 are: 

FIRST PRIZE ($200) 

SECOND PRIZE ($100) 

THIRD PRIZE ($50) 

KULdLe.if Stnand, l'UivtOh S u b ~ p a c u  of 
Magic S q m u " ,  VepaAiment o f  Mo-tfie- 
m a t i ~ 4 ,  CaAJUon College., Noith&eJtd, 
M N ,  55057 (See. -the. F a U .  1982 U&VLS.} 

Kmen Cunningham, "A  Simple. Model <oh 
TIOO I n t e ~ a d n g  S p e c L u  a d  a%e PIUAdpLe. 
Compet i t ive  Exc^aa.t.onJ1, Univ. of Tern& 
a-t W n g t o n  (See. tki& T A A U ~  o f  the. 
J o ~ ~ n a f . 1  

Ravi S d g h ,  "Voiume. of an N-Vhe.nAionaiS. 
U n i t  SpheAe", Loyota. Unhe~i-Uy/Chi tcago,  
(See. -t^a ~ A A U ~ .  of the. J o ~ ~ n O t . 1  

ARE YOU MOVING? 
We. hecognize  that ~Aidewte move., and. we. need gouh new 

a d d h m !  OWL J o W  me. he& by tiuAd &A IMJUL which 
Â¥L n o t  auto ma ti^ {.o/usa/ided. U o n l t  &A YOWL Â¥LAAUA 
o f  the.  JOWL^. Send yo& a d d l u ~  c h a n g u  ox. b&tteh ye<, 

&end a pe~-mamnt  ~ d d t u - 5  -to: 

Dr. David Ballew, E d i t o r  
South Dakota School o f  Mines and Technology 
Rapid C i t y ,  South Dakota 57701 

- - 
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