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INTEGRATION: ~ WHY YOU CAN AND WHY YOU CAN'T

by Rick Miranda
Colonado State University

At most colleges and universities, a large part of the second
semester of calculus is devoted to the arcane subject commonly known
as "techniques of integration”. The basic problem is to find a closed-
form expression for [f(x)dc where f(x) is a specific function of the

variable X. Typically, the following methods are discussed:

- 'forward' substitutions X = g(u)

- 'backward' substitutions u = h(x)

- integration by parts

- the use of exponentials and logarithms
- trigonometric substitutions

- inverse hyperbolic trig functions

- powers of sines and cosines

- integrals with quadratics

- partial fraction decompositions.

There are two logical reactions to this subject:
a) There is too much material here.
b) There is not enough material here.

For anyone who has taken or taught this course, (a) hardly needs
explanation. Firstly, the mastery of all these techniques requires
quite a bit of rote memorization of basic integrals, especially for the
average student. Secondly, when faced with an integration problem, the
'menu’ of possible techniques to try to apply is large enough to make
the decision process fairly complicated. Finally, with extensive tables
and (lately) computer programs which integrate all functions encountered
in this course, the motivation to delve into this subject with one's
sleeves rolled up is naturally diminished, and this is made worse by
the amount there seem to be to know.

Have you ever heard (b) from a student of this subject? Well,



mw you have, and |l et nme explain why. After a good solid course on the
techniques of integration, including a thorough discussion of the topics
listed above, 1 could well come away with the following broad classi-
fication of integrals:

i) The integrals which I can find.

ii) The integrals which I cannot find.
Statement (b) is one reaction to the existence of the second class.

Most of the integrals encountered in the course are of type (i)
(or should be, by the end of the semester). A student, in fact, may
never see an integral of type (ii), and may conclude that all integrals
are of type (i), for the appropriate choice of "I1"; since he (or she)
knows in his gut that he can't possibly solve all integration problems,
the conclusion is that he is not the appropriate choice for "I, and
that the subject is much too complicated for mere mortals to think
about.

If an integral of type (ii) is seen in this course, it is usually
in one of the "set up but do not evaluate the integral which computes..."
problems on an exam; when going over the questions on the next day, the
teacher nay meke a remark to the effect that "we can't find this inte-
gral..." and the subject is embarrassingly dropped. Generally, no
attempt is made to explain why some integrals can be found and some
can't, and we're back to reaction (b) (on a slightly different level):
There is something missing here.

In this article 1'd like to discuss why there are integrals of
types (i) and (ii), and try to explain the fascinating relationship be-
tween this apparently analytic subject and the much more geometric sub-
ject of algebraic plane curves.

Let me begin by stating a theorem.

Theorem. Let R(t) be a rational function of the variable t, i.e.,
(t) is the ratio of two polynomials. Then

fR(t)dt

(0f course, actually finding a closed-form expression for it in-

can be found.

wolves factoring polynomials and solving linear equations, and is a
formidable task in itself -- but | won't address these problems here.)
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In ny view, it is not unfair to say that, even given the mass ~f
material devoted to integration techniques, this is the only true theo-
rem in this course; the other topics covered are really just methods to
use as the occasion arises. This being the case, one would think that
this would be the focal point of this course. However, it is hardly
ever stated explicitly, and often the details of the process of partial
fractions (which is the proof of this theorem) is given much more weight
than the simple and obviously powerful statement itself. This is under-
standable, since carrying out the partial fraction decomposition is a
complicated and cumbersome task, even in fairly simple situations, and
requires some attention. However, | think it is a mistake not to rise
above the fray and drive the point home that here is a large and common
class of functions which are all "of type (i)" -- | can integrate them!

If you grant that this is the 'only' theorem of this type, then
your mind should naturally turn to the following: can other integrals
be brought to this form by clever substitutions, and can this theorem
therefore achieve a wider scope of application? The well-known answer
to this question is: Sometimes, if you get lucky.

Example . Integrate‘/VZ+x2 de

2
; 2t Then 1 + :z:2 = f—)- and
Solution. Substitute X = —————" —2
_ _ 42 (1 - t7)
(1 - t%)
(2 2 + 2 4
dz = —22‘5; so the above integral transforms to‘/‘2 at ; it dt,
(1 - t°%) (1 -1t%)

and the theorem applies.

This seemed pretty lucky. What if I try-/VZ +z° dz? In this
case I'm stuck for a clever substitution. Wha is going on here? In
order to fix our attention on a certain general class of functions,
consider the following.

Definition. A function y = y(x) is algebraically dependent on x
if there is a polynomial ffx;,z,) in two variables, such that Fflx,ylz))

is identically zero.

Examples. y = VE (flzpzy) = o, - 52)
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4 _ .5

_ .4/5
=z 17 %2

(f(xl,xz) = x

2

- 3 _ 3
y -JZ + (f(acl,xz) =z + 1- Ty

The integralstJ + x° dx, _/‘Jl + ac3 dx, etc., are examples of inte-

grals which involve functions of x which are algebraically dependent on
x, and this is the class of functions which I want to focus on. Our

general problem can be formulated as follows.

The General Problem of Integration of Algebraic Functions.

Let R(xl, x2) be a rational function of two variables.
Let y = y(x)} be algebraically dependent on x.

CanfR(x, y(x})dx be found?

The answer is again: sometimes. But it doesn't have anything to do
with luck. Let's try to think about this systematically. If y = y(x)
is algebraically dependent on z, then there is this polynomial f(mz,xz)
such that f(x, y) = 0. Nw the equation f(xz,xz) = 0 defines a so-

called "algebraic curve"” in the (:cl,:c )-plane, and (x, y(x)) always

2
lies on this curve. The properties of this curve should therefore be

important i n studying y(x) . Central for us is the following property.

Definition. Let f'(xl,xz) be a polynomial in two variables. The
curve C = {(xl,x2)|f(m1,a:2) = 0} isrationally parametrized i f there
are rational functions X = xl(t), T, = xz(t), such that f(:cl(t), xg(t))
is identically zero as a function of t.

In this case the point (xl(t), xz(t)) will lie on the curve C for
all values of ¢. Let's look at any easy example.

Example. Let f(xl,xz) = :::3 + :.cg - 1, so that the curve C is the

2
unit circle. Then C is rationally parametrized by xz(t) = (—1_—1’?2—) s
(1 +¢t%)
x (t) = 2t . (Check this!) This is not magic. Note that the
2 2
(1 +¢%)
point P= (-1,0) isonC. LetL be the line through P with slope t;

t

an equation for L isxz = t(acl + 1). For any t, this line Lt will in-

t
tersect the circle C in two points, one of which is, of course, P. Call

the other point Pt' A little algebra will convince you that =

(1 -4 2t
(1+t2) (1 + ¢

2),giving the explicit parametrization above.

)
The importance of a rational parametrization for the curve C is

demonstrated by the following.

Theorem, Let H(xl,xz) be a rational function of two variables and
let y = y(x) be algebraically dependent on x, with f(x, y(x)) identic-
ally zero. Asaume that the curve € = {(.1(::L x2) If(x]:-”g) = 0} can be

rationally parametrized. Then fR(x, y(x))dz can be found.

Precof. Let x, = :z:l(t), zy = :cZ(t) be the parametrization of C.

Note that x = Xq(t), Y = xz(t) in this case; meke this substitution

dx
into the integral. One gets ﬁ?(xlft), xZ(t))(a?l)it, which has a

rational integrand. W can now apply the theorem.

The above proposition seems to be constructive, too; the only
hitch is in parametrizing the curve C. In particular, the immediate
question is: Which curves C can be rationally parametrized, and how?

1 f f(xl,xz) = gz, t bacz ¥ ¢, so that the degree of fisoneand Cis a

1
line, then clearly C may be rationally parametrized,; x, = bt + 2y
x, - at t 295 where (21,22) is any point on C. In this case y(z) =

xz(xl) = - (%)x - (%) is a linear function of x and any rational expres-

sion in X and y can be immediately reduced to a rational function of x
alone, so the above process is not too enlightening.
Fortunately, there is one other large class of curves which can

be parametrized.

Proposition. Ary conic C (i.e., defined by f(x1°x2) = 0 where

f(xl,xg) is of degree 2) can be rationally parametrized.

Proof. Let ne present two proofs of this statement, one algebraic
and one geometric in spirit. The first step of the algebraic proof is
to change coordinates from (:cl,mz) to (z,y) so that f'(acl,xz) becomes

2 2
glx,y) = x_2 iy 9—2 - 1, the "standard form" for a conic. Thisis a
a b

linear change of coordinates, so that i f we can parametrize gfxz,y) = 0
by rational functions, we will be able to transport this parametrization
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to f(xl’xz)‘ The second step is to explicitly paranetrize the standard
conic gfxz,y) = 0. Here is one vay.

&_ag"'at b *at

Anore geonetric proof is afforded by followng the hint of the circle
exanple. P ck any point Pon the conic C Paranetrize the lines
through P by their slopes: if P= (:ro,yo), | et L, be the line y - Y =
tlx - xo) through P with slope t. Now intersect LI with the conic G
one will get two points, one of whichis P, the other is Pt = (x(t),
y(t)); it isnot hard to see that x(t) and y(t) are rational paranetri-
zati on~of the conic C

QED

Note that in the above argument, one night want to use a vertical
l'ine sonetines where the slope "is infinity". This leads naturally into
sone el ementary concepts of projective geonetry, which | do not wshto
discuss at this tine.

As pronmised by our theorem a proposition about paranetrizing
curves shoul d give us a nice applicationto integrals. Here's the re-
sul't for conics restated for this purpose:

Conoflary. For any nunbers a, b and a, the integral

ﬁ?(a:, Jamz + bx + c)dx

can be found (where R(aal,:cz) isarational expressionin two variables).

Proof. If y =yaac2 +bx + e, theny is al gebraically dependent on
X; flx,y) = y2 -—ax” = bx —eisidentically zero. SYnce f(z,y) has
degree 2, the curve f(:x:l,xz) =0 defines a conic, and therefore nay be
rational |y paranetrized. Nowthe theoremapplies.
QED

In our course on techniques of integration, alot of tineis spent

devel opi ng nethods for handling integral s invol ving Juz + be t e, but
the general result above is very rarely brought out into the open -- |
think it should be.

fs long as we're here...
Paranetri zi ng coni cs has been fun for nmillenia. Let us recall
our paranetrizationof the circle

I
"
l\!iﬁ.ﬂ\)

y = —?i-?
1+t

[EEN
+
o

Note that if #is arational nunber, then x and y will both be rational

nunbers also. So what? Vell, wite t =$f—, wth » and » integers. Then,

cleari ng denom nators, we see that

z u2 - u2 = 2w
= 3 - L]
u? + 0% u? 4+ v?

2)2 + (aw)? = (% + v%2. In other
wor ds, (v2 - u, 2uv, u2 + v2) is a Pythagorean triple. Mreover, it is
an el enentary theoremfromnunber theory that all Pythagorean triples

cone this way. This very geonetric approach to nunber theory was pio-

and x2 + yz = 1 means that (v - «
2

neered by the Geek D ophantus, and has been refined i nto sone anazi ng
results relating the geonetry of sol utions to equations and the nunber
theory which naturally ari ses.

But back to integration. Recall the followng magic trick for
integrating an expression involving sin8and cos8 : nake the substitu-
tion6 = 2arctan(t). Wy does this work? A littletrigononetry and
differentiation formulas (including the dreaded hal f-angl e forml as)

w |l produce

2
cose=——*————?-2-,sine= th, de = -——@?
1+t 1+t 1+t

and so this substitution replaces the trigononetric integrand with a
rational integrand, and now we use the theorem Fomour vantage point,
this anazing and ad hoc substitution, which at first glance works "be-
cause it works", is seen as exactly substituting the rational paranetri -
zation of the circle which we' ve becone quite famliar wth for the
trigononetric paranetrization x = cos 8, y = sin 6. Hence we have the
foll owing(wthout any nagic!):

Conoflany. 1If R(xl,a2) is arational expressionin two variables,

t hen fR(cose, sing)de can be found.
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Recal | the hyperbolic functions sinh(z} and cosh({x), so called
because they give a paranetrization of the hyperbol a :c? - xg =1
coshz(:z:) - Si nhz(m) =1 for any x , SO (cosh(x) , sinh(x)) al ways
lies on the unit hyperbola. V¢ nowknow that the unit hyperbol a can

al so be rational |y paranetri zed by

1+t2 2 2t
L P L 2 B

x, = s
¥ - &P 1-t

1

Qur mai n theoremnow yi el ds the fol | owi ng i medi at el y.

Conollary. |f R(xl,xz) is any rational expression in tw vari
ables, then f R(cosh(z) , sinh(z))dx can be found.

(Wing the chainruleit is easy to see that dx:«id-f% using the
above substitutionsfor cosh(x) and sinh(x).) I-t

This just about exhausts the applications of the existence of
rational paranetrizationsfor conics to the theory of integration. GCan
we proceed to hi gher degree curves? \éll, there are curves which are
not conics, but which can still be rationally paranetri zed:

Example. y :Sf'q satisfies fix,y) = y7 -2 =Q This is para-
metrized by x = tq, y = If. Hence,

Conollany. fR(x,xp/q)dr can be found, where R(xl,xz) is any
rational expressionin two variables.

Exampfe. The | emniscate flz,y) = (x2 + y2)2 - (x2 - yz)s 0 (draw
this!) has a rational paranetrization

_2t(t + 1) 24t - 1)
TET s Y= T
4t” + 1 (4t° + 1)(2¢t + 1)

To find this, one intersects the | enmiscate Cwith a circle Ct centered
at (t, -t) of radius v2t, so that 0= (0, 0)ison Ct. Infact, CnCt
consi st of @ and one ot her point P, whi ch has the above coor di nat es.
The above exanpl e | ooks ike I'm just showi ng off -- maybe that's
right. Finding paranetrizations for plane curves is not easy, and in
fact nost curves {f(z,y) =0} cannot be rationally paranetrized e

2. x3 - 1 = 0, which defines the algebraic functiony -

exanple is y

Vl + :::3, which T got stuck on earlier. (If you're good with polynomials,
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you mght try to prove that y2 - x3 - 1=0cant berationally para
netrized.) e corollary of our discussion, then, is thatf 1_+';3d:n
can't be expected to be found with our present techniques. In general,
the integral s involving the square root of a cubic polynonmal inx are
classically called elliptic(they arise in conputing various quantities
associated to an ellipse, e.g., arclength, etc.) and can't be solved in
closed formusing el enentary functions. Now we knowwhy: behind the
whol e probl emlies an unparametrizable curve!

The probl emof parametrizing curves actually led to the invention
of topol ogy. Assune {f(x,y) = 0} is paranetrized. This gives a nice
continuous function from {t-space} to {solutions to f(x,y) = 0}, send-
ing atypical t to (x(t),y(t)). There's nothing in all of the above
di scussi on which says that ¢ can't be a conpl ex nunber instead of just
a real nunber; after all, we went "backward" to rational t's for a
nunber -t heoreti c application -- why not go "forward" to conpl ex ¢'s?
Recal | that {conpl ex t-space} is a 2-sphere, if you add the point at «
(which, again, we saw earlier was not unreasonable). So the above para-
netrizationcan be viewed as a nice continuous function fromthe 2-sphere
to conpl ex- sol utions (x,y) to f(x,y) = 0. Therefore, intuitively, these
conpl ex sol utions better 1 ook pretty nuch | i ke a sphere. However, in
|l ots of exanples, this solutions set doesn't |ook anything |ike a sphere.
For exanpl e, the conpl ex sol utions to y2 =1+ x3 made up, topol ogi cal |y,
atorus. So there seens to be a real topol ogical obstruction here to
paranetrizing this curve, and the attenpt to understand this phenonenon
led to the devel opment of modern topol ogy.

It turns out that the general curve of degree at least 3 (i.e.,
f(x,y) has degree > 3) cannot be rationally paranetrized; however, there
are speci al curves which can be, as the exanpl es above illustrate. The
general probl emof the existence of rational paranetrizations of plane
curves ultinately led to the flowering: of the field of al gebrai c geone-
try, and is quite conplicated.

Have we then sinply substituted one field of ignorance for another?
No, not really. | think we have isolated the essential problem which
is one of paranetrization, not integration, and al ong the way el uci dat ed
many of the standard results of integrationtheory, all in terns of one
basic idea. This kind of overviewcan only benefit any student of this
subj ect, can put into its proper perspective the nore mundane aspects
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of the techniques of integration, and hopefully motivate both student
and teacher with a broader picture of the field,

Ore last highly beneficial side effect to this approach is that,
on the horizon of this subject, which seems to some, at first glance,
to be a "dead end" mathematically, we see the following topics rising
tantalizingly out of the mist:

- the theory of conics

- number theory, and diophantine equations

- topology

- complex variables

- higher analysis

- algebraic geometry.

This is a large part of modern mathematics! [ all hard problems (like
why | can't integrate everything) lead to such unexpected, diverse
areas? 1 don't know, but even one example is an occasion for celebra-
tion by a lover of mathematics.

< &
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LITTLE KNOAMN COMPUTER LANGUAGES
Author Unknoan

PASCAL~ FORTRAN, COBOL -- these programming languages are well known and
{more or less} well loved throughout the computer industry. There are
numerous other languages, however, that are less well known yet still
have ardent devotees. In fact, these little known languages generally
have the most fanatic admirers. For those who wish to know more about
these obscure languages -- and why they are obscure -- we present the
following catalog:

--SIMPLE--SIMPLE is an acronym for Sheer Idiots Monopurpose Programming
Linguistic Environment. This language, developed at the Hanover College
for Technological Misfits, was designed to make it impossible to write
code with errorsin it. The statements are. therefore, confined to
BEGIN+ END and STOP. No matter how you arrange the statements, you can't
make a syntax error.

-=SLOBOL--- SLOBOL is best known for the speed, or lack of it. Although
many compilers allow you to take a coffee break while they compile,
COBOL compilers allow you to travel to Bolivia to pick the coffee.

Three or four programmers are known to have died of boredom sitting at
their terminals while waiting for a SLOBOL program to compile. Weay
SLOBOL programmers try to return to a related {but infinitely faster}
language, COCAINE.

--VALGOL--- From its modest beginnings in Southern California's San
Fernando Valley, VALGOL is enjoying a dramatic surge of popularity
across the industry.

VALGOL commands include REALLY- LIKE. WHL AND Y'NOW. Variables are
assigned with the =LIKE and "TOTALLY operators. Other operators include
the " California Booleans," FERSURE and NOWAY. Repetitions of code are
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handled in FERSURE loops. Here is a sample VALGOL program.

LIKE.Y'NOW {IMEAN} START

IF

A = LIKE BITCHEN AND

B = LIKE TUBULAR AND

C = LIKE GRODYxxMu

{FERSURE }xx2

THEN

FR | = LIKE 1 TO OH MAYBE 100
DO WAH + {DITTY*x2}

BARF{ 1} = TOTALLY GROSS{0UT}
SURE

LIKE BAG THIS AROGRAM

REALLY

LIKE TOTALLY {Y'NOw}
VALGOL characterized by its unfriendly error messages. For example,
when the user makes a syntax error, the interpreter displays the message
GAG ME WITH A SPOON!

--LAIDBACK- - -H storically, VALGOL is a derivative of LAIDBACK, which was
developed at the {now defunct} Marin County Center for T'ai Chi, Melow-
ness and Computer Programming, as an alternative to the more intense
atmosphere in nearby Silicon Valley.

The Center was ideal for programmers who liked to soak in hot tubs while
they worked. Unfortunately, few programmers could survive there for

long, since the Center outlawed pizza and RC Cola in favor of bean curd
and Perrier.

May mourn the demise of LAIDBACK because of its reputation as a gentle

and nonthreatening language. For example, LAIDBACK responded to syntax
errors with the message: SORRY MAN. | CAN'T DEAL BEHIND THAT.

-- SARTRE—Named after the late existential philosopher, SARTRE is an
extremely unstructured language. Statements in SARTRE have no purpose,
they just are. Thus, SARTRE programs are left to define their omn
functions. SARTRE programmers tend to be boring and depressed and are
no fun at parties.

--FIFTH---FIFTH is a precision mathematical language in which the data

types refer to quantity. The data types range from €C» DUNCE. SHOT and
JGGER to FIFTH {hence the name of the language}, LITER- MAGNUM and
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BLOTTO. Commands refer to ingredients such as CHABLIS. CHARDONNAY.
CABERNET- GIN. VERMOUTH+ VODKA, SOOTCH and WHATEVERSAROUND.

The many versions of the FIFTH language reflect the sophistication-and
financial status of its users. Commands in the ELITE dialect include
VIR and LAFITE, while commands in the QUTTER dialect include HOOTCH
and RIPPLE. The latter is a favorite of frustrated FORIH programmers
who end up using this language.

--(---This language was named for the grade received by its creator when
he submitted it as a class project in a graduate programming class. C-
is best described as a "low level" programming language. In fact, the
language generally requires more C-statements than machine-code state-
ments to exercise a given task. In this respect, it is very similar

to COBOL-

—-LITHP---This otherwise unremarkable language is distinguished by the
absence of an "S" in its character set. Programmers and users must
substitute "TH". LITHP is said to be useful in prothething lithtth.

~--D0GO——-Developed at the Massachusetts Institute of Obedience Training,
DOGO heralds a new era of computer-literate pets. DOGO commands include
SIT- STAY. HEEL and ROLL OVER. An innovative feature of DOGO is "puppy
graphics,” a small cocker spaniel that occasionally leaves a deposit as
he travels across the screen.

--FOCUSALL---a language designed to run on small DEC machines with
minimal memory. Its only supported distribution is paper tape, for
loading in from an ASR-33 teletype. This takes 20 minutes, after which

the user is greeted with the message:

QONGRATULATIONS  YOU HAVE JUST LOADED FOCUSALL!

The interpreter is then ready to accept any valid command. The only
valid commend is:

LOAD FOCUSALL

which causes the system to once again load the interprete from paper
tape.
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The power of the language comes from the fact that preceding a command
with a statement line causes it to be stored as a program line for later
execution as in the following example:

100 LOAD FOCUSALL

110 LOD FOCUSALL
150 LOAD FOCUSALL

The pronunciation of the name is much more flexible than the language
itself. You pronounce it according to your mood. Actually, the name
cane from a combination of DEC FOCAL, a FDPB DHELIGHT, and the habit we
Optics Lab types in days of yore had of referring to a lead engineer
as "Focus Mai" {should be "Focus Person""}. Somebody would then chime
out: "and he's gonna focus every chance he gets!"

——PINBOL---PINBOL is best known for the chance involved in making its
program run. Three tries at running are allowed, after which the
message "GAME OVER- INSERT QUARTER AND TRY AGAIN' is displayed.

Some allowable ANBOL instructions and their meanings are:

LET ALIPPER Illogical Left Shift
RIGHT FLIPPER Illogical Right Shift
gH00T Try tO Run

ANBOL is known to be extremely addictive. Those who are fluent ANBOL
programmers are known as ANBOL WIZARDS

——FASTBOL———commonly known as a QUICKIE. Error messages include:
"COMPUTUS INTERRUPTUS™ A closely related language is NOONER.

--GERITOL---This language is characterized by the habits of its ardent
users. Instructions frequently forget their function while executing
and conclude with the "I USD TO KNOW THAT" condition code. Loops tend
to repeat frequently at sporadic intervals, even when not intiated.

*
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ANOTHER DAY AT THE RACES

by Edward Anderson
West Winginia University

In preparing a presentation of "A Day at the Races" by William
Tomcsanyi (P{ Mu. &psilon Jowrnal, Spring 1982) for our chapter of Pi Mi
Epsilon, West Virginia Alpha, | came across a simplification of the pro-
cedure which reduces the calculations in Mr. Tomcsanyi's article.

The impetus for this simplification was Mr. Tomcsanyi's attempt to
solve an 8 x 8 matrix representing every horse in an eight-horse race,
which if successful would have shown that it is possible to bet on every
horse in a given race and come out ahead no matter which one wins. His
example produced negative results, indicating no solution, but he stated,
"There probably does exist some combination of odds that would somehow
yield positive results to the eight equations.”

In fact, this conjecture is not true. To prove that it is not,
two important relations are used:

1) Thesus of the bets placed on each of the horses is constant
throughout the problem:
Xy # &gt e s +x8=S.
II) The sum of the fractions of the total pot bet on each horse
as computed from the odds is greater than one.

The second of these occurs because the track and the state take a portion
of the total amount bet, leaving less than 100%for the winner's pool.

Typically, the winners' pool would be about B
Track's percentage kB
80%of the total, but to be as general as
possible, let us say that the total bet by Wlnneal's'
poo

everyone at the track is B and the winners'
pool is US, where k < 1.00. Pictorially,

the winners' pool would look like this:

Now, the odds on each horse are computed based on the amount bet
on that horse compared to the total winners' pool. If the odds are a
to 1, then a = (kB - h)/h, where » is the total amount bet on that horse,
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or (at1) =% /h. Inanideal race, where the winners' pool were 100%
of the amount bet, we would have (a+ 1) =B/ h, or 1/ (at+ 1) = k/ B,
the fraction of the total which was bet on this horse. Here, though, we
have 1/ (¢ t+ 1) = h /xB, and the aum of the eight fractions is greater
than one:

1 1 1
+ + .. .t
+ 1 a2+l a8+l

4

1
E(hl+h2+' " .+h8)

H

1/kB (B) = 1l/k > 1.

Let us mow go back to the 8 x 8 system used by Mr. Tomcsanyi,

letting a, = the odds on horse ¢ and P = the desired profit, as before,
but changing x. to the total dollar amount to be bet on horse 7, instead

of the number of $2. bets. The revised matrix is as follows:

al -1 -2 -1 -1 -1 -1 -1 .’L‘l 1

-1 -2 -1 -1 -1 -1 -3} |=z 1
a 2

a 4 a, -1 1 -1 -1 - |z, 1

e HEE s 14 1 a1 -3 =, . 1

1 -1 -1 -4 14 1 3 |z | 1
ai 5

-1 -1 -1 -1 - 8.6 -1 -4 xe 1

-1 -1 -1 -1 -1 -1 a, -1 x,, 1

-1 -1 -2 -1 -1 -1 -1 aBJ :ca 1

Notice that each row is just an expression for the profit as the
amount won minus the amount lost. Since the amount lost i s the total
amount bet minus the amount bet on the winning horse, a simple means of
writing each row equation would be

ax, - (s - x.) = P,

or f(a.*lz., = Pt+s
i Z

This i s easily solved for T giving

x-M .
1 7 a +1

To find 8, we use this formula to substitute for each z, inl:

1 1 1
(P+35)( + +. ..+ ——) =8.
a1+1 a2+1 a8+1
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From II, the sm of the 1/( 4; * 1) 's is greater than one. V&
showed that this number was 1/k . Thus

(P+5) (=5 or P=(k- U5

Since we have chosen P to be positive and k¥ i s less than one, it
follows that § must be negative. Thus there i s never any way to bet on
every horse in a race and come out ahead no matter wo wins, even in an
ideal situation where the track takes nothing for itself. It is a simple
matter to generalize this argument for any size race.

But the steps used in this argument do more than just prove that
no solution exists involving every horse in the race; some interesting
side benefits fall out along the way. V¢ can now

1) Determine whether there exists a combination of bets yielding
a positive solution for any number of horses less than the total;

2) Estimate the total amount which must be bet to produce the
desired profit before the individual amounts are computed; and

3) Find the individual bets with a minimum of calculations.

Taken together, these form a three-step process which is as gen-
eral as the matrix form and, once you get used to it, as simple to com-
pute as the general form of the 3 x 3:

1) Yau wish to bet on nhorses in the race. Compute

1 1 1
ay +1 a,+ 1" a, + 1
If this aum is |ess than one, there exists a positive solution.
2) Using the aum above as ¢, plug it into the equation

P={ é- - 1) S and solve for S. Yau mey choose any value for

P, but the bigger P is, the bigger S becomes.
3) Once you have chosen Pand computedS , compute the amount to
bet on each horse by

_P+38§
i a.+ 1
7

With this three-step system, it is just as easy to bet on four or

five horses as on three, and since the calculations are shorter, it can

*

al | be done using later odds.
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ON THE DISCRETE LYAPUNOV
AND RICCATI MATRIX EQUATIONS

by Minh T. Taan
Boetng MilLitany Adnplane Company
and Mahmoud E. Sawan
Wichita State Univensity

ABSTRACT

In this note, the inequalities, which are satisfied by the deter-
minants of the positive definite solutions of the discrete algebraic
Riecati and Lyapunov matrix equations, are presented. The results give
lower bounds for the product of the eigenvalues of the matrix solutions.
Also for a discrete Lyapunov equation, we present an algorithm to deter-
mine wider what conditions a positive diagonal solution will exist. |
all the conditions cae satisfied, the algorithm also provides such a
diagonal solution.

I. INTRODUCTION

The discrete al gebraic Rccati and Lyapunov nmatrix equati ons have
been used widely in various areas of engineering systemtheory, particu-
larly in control systemtheory. The techniques of sol ving these equa-
tions nunerically are well-established [4]. Those techniques are nostly
iterative algorithns which require naking an initial guess of the sol u-
tion. S if these initial guesses are chosen wi sely, one can save a | ot
of unnecessary conputations. Therefore, to obtain preci se estinates of
the "sizes" of the solutions, we provide here | ower bounds for the deter-
nmnants of the natrix solutions of the two equations. Aso for the dis-
crete Lyapunov equations, we address the question of the existence of a
posi tive diagonal solution for this equation and derive an al gorithmto
provi de such a solutionif all the conditions are satisfied.

Inthe follow ng, the notations xT, Ay (x), tv (x) and || denote
the transpose, eigenval ue, trace and determinant of the matrix x, re-
spectively. Aso for our derivationlater, we will nake use of the fol -
low ng results [1,3].

i) For any nxn matricesL and H wth L >0
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n
tor”lEt) 2 3 ]Ai(lf)lz z % [tr(m)]? (1)
i=1

ii) For any real mxn matrices Rand s such that R:RT>Q‘
s=5"50

[R]Y™ = ™ nips) (2)
[s|=1 " n

iii) For any mxn natrix ¥, nxm natrix Z, nyxn natrix W and mym
natrix a2, we have the fol l ow ng property
(W 2z 2v1 ! = w2 - wlzle + iz T ! (3)

11.  THE RICCATI EQUATION
In this section, we derive a |l ower bound for the determ nant of
the discrete al gebraic Rccati matrix equation

P =a'Pa - aTpB(r + B'PB)~18TPA + Q ()

vhere A, P, @eB™@™, Bed™ ™ Q=¢T >0 Here we assune B8] 2 l9]
and the matrix Ais stable, therefore the solution matrix P is positive
definite.

Theorem 1. The determinant of the positive definite matrix sol u-
tion P of equation (&) satisfies the follow ng inequality

n
7] 2 [M + 0 + en®|BET V0112 (5)
2n|BBT|1/n
L 2 T
vhere M= 37 [A.(4)|" + tr(BB°Q) - n
1=1

Proof. Wing(3) withW=pL z2:-8 x'=1adyY =5, () be
cones

p=aTtr ! + 88710 + o (6)
Miltiplying (6) by [7~2 + BB'] fromthe left yields

(P! +88T1p = [P7? + BBT3AT[P L + BBTY 14 + [P + BE'Je (1)

Gonputing the traces of both sides of (7) and using(1l) wth L'l =

[P'1 + BBT], H = AT and rearranging terns, we have
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tr(BB'P - P_JQ) zM (8)

Now using (2) with R=P and note that |x| = 1/ |x'1| and tr(x) = to(z'),

(8) becorres
1/n
n[BBle/nlplz/n _ MIPIZ/YI - YLIQI Z 9)

Solving (9) for |p|*/™

, We get the inequality (s).
I111. THE LYAPUNOV EQUATION
A. Lower Bound for the Sol ution of the Lyapunov Equation
Setting B=0 in (u), theresult is the discrete al gebraic
Lyapunov nmatrix equation

P = ATPA + @ (10)

and we present the follow ng theorem

Theonem 2. The determinant of the positive definite matrix solu-
tion P of equation(10) satisfiesthe follow nginequality

|p| 2 — ] (11)

n- Y )

1=1

Proof. Miltiplying(10) by P~ fromthe left and conputing the
traces of both sides yield

n = toPlaTPa) + tr(p Q) (12))
Then, using(1) with L=rand H=A and noting that X, (4) = Ai(AT), we
have n
tr(Fl) Sn - % I (a)]2 (13)
=1

Substituting R=prland s= ?—/ into(2) leads to
o™

n

2
n - [x.(4)]
1 aly g’—z b
|P7| & T = 7 (14)
n|q] nlq|

Rewriting (1#), we get the inequality (11).

B Positive D agonal Solution of the Lyapunov Equation
It is well-known that the solution of the discrete al gebraic

Lyapunov equation(10) exists if and only if Ais a stable matrix, i.e.,
[rac4)] <1 [5] . However, we are concerned here with the question of
whet her or not there exists a positive diagonal matrix solutionP. In
other words, given a real square stable matrix A, we pose the probl em
Find the conditions on A such that a positive diagonal matrix P exists
wher e ATPA - P <Q Suchamtrix has been used widely in the stability
anal ysi s, control theory and nmany of its applications {6,7], In the
foll owi ng sections we present an al gorithmto deternine under what con-
ditions such a matrix P will exist and i f all the conditions are satis-
fied, the al gorithmal so provides the val ue of P.
1. Derivation of the al gorithm
The fol I owing definitions are needed for our derivation.

a) XT: (.;-‘l,xg cees Jin)

b) P =diag (:x:l,x2, I mn)
¢) & = {eeR", llel] = 1}
- . . . T,
4) =& is an eigenvector corresponding to A _ (A"PA - P)

e) Ejz)= diagle}, ¢p 1.y 8,)

£) X = {xeR", 0%x, 21}

Wth the above definitions, |et

r__ (ATpa - p)
max

h(x)

- max 2 (ATPA - Pe
eck

= max flz,e) (15)
eek

V¢ observe that a diagonal matrix P > O exists such that ATPA -P<O0Oif

and only if we can find a point zeX such that hf(x) < Q So the problem
nowis to determne whether or not such a point z exists. Before a
search algorithmis derived, we need to point out sone properties of
hiz).

Let = be an interior point of Xand
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Q|
=3
<
\J
|

I

Ae - E—e

= Euz) () (16)

then it has been shown (2] that

", _T_
hix) = &' g (17)
and
hix) 2 Xg, for all xex o

2. The search procedure

a) Start with .'x:lt-:X and conput e h(xl). | f h(xz) < 0, stop;
ot her wi se conput e 9, and choose xpeX such that x-gg] <0

b) Conpute h(xk). | f h(xk) < 0, stop; otherwi se conput e g;

and choose AL such t hat (a:iﬂ)gi < 0 where £ =1,

2, «.., k
To choose Lp,q 0 W need to sol ve a mini max probl em
Let
Sk 4 pin max {ngi} (19a)
xeX 1242k
,.Y’
L, Tk mep) (19b)
Not e t hat
Sk <0
h(x) ;zTgi, i=1 2 ...,k
So
w2 P g s, (20)
| f Sk < 0, stop; otherw se find :c.lz wher e
0=, M ()T (21)
1545k k9%
Then

Typp = B R (22)
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To find =7 , let

-P
- ok
Py=T g <0 4 =3z ) - B, <1 .
k k
t hen
xp = quay, + (1 - qk)Ek (23)

So, we can conpute xk+2 using the fol | owi ng forml a
Tp1 = %quk + (1 - ngk)xk (2u)

c) Conpute Irp7 replace k by k+1 and go back to step b.

The convergence criteria of the above al gorithmis estab-
lished [2] as stated bel ow

If at any iteration, h(z) < O(or 5 = 0), the al gorithm
stops, indicating definitely that there is a point xeX such
that k(x) < O(or no xex exists suchthat h(x) < 0) . If neither
condi tion occurs and k = = , then the al gorithmconverges as

5, + 0 inplying that h(z) 20 for all xeX.

Also as shown in [2] , instead of sol ving the m ni max prob-
I em (19), one can obtain the sane result by sol ving the fol |l ow ng
probl em using |inear progranm ng techniques.

Problem
Let - - nax 2 (25a)
Sk z, 4
Subj ect to
Oéxiél,i=1,2, ) (25b)
02222/ n |4l (25¢)
(254)

g, +250,i=2 ..., k

If (;;t) is the solution of (25), then x* is the solution of (19).

3. Exanpl es
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- ATPA Cpe -.48375 .0275
.0275 -.355
and h(xz) = -.35 < 0 - stop.
A is diagonally stable.
1.9 -.8
b) Let 4 = , =
2.47 -1
T 4.35  -1.39]
then ARA - P=
-1.99 .32
and h(xl) =518 > 0 - continue.
1 . 317
91 = 1 =
2, .2
Viiss -3 -.94]
N p = 1.7022
g, = e, -k e, =
1 (Ael) 1 (el) 1 2 0258
T >
X'g, = 0, forall xex
A is not diagonally stable.
CONCLUSION

The inequalities (5) and (11) make it possible to estimate lower
bounds for the determinants of the discrete algebraic Riccati and Lya-
punov matrix equations. These bounds do not require A to be nonsingular
and only require a few matrix computations. These computations can even
be further simplified by comparing the first and last terms of (1) in-
stead of the middle term. However, the tightness of the bounds may re-
duce considerably. Also the conditions for which a positive diagonal

solution of the discrete Lyapunov equation exists, are presented. |f
all the conditions are satisfied, such a solution will also be provided.
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THE FUZZY PLANE

by Chaistopher Roesmen
University of Dayton

In the early 1930's Lukasiewicz published several papers describ-
ing a many-valued logic. [1] A proposition p was allowed to have a
truth value [designated T(p)] for any real number from zero to one, in-
clusive. Ore and zero played the roles of true and false, respectively.
The logic can be used to write axioms for the fuzzy plane in which the
proposition "point p ison line I'" is allowed to vary in truth value
from zero to one, inclusive.

Suppose propositions p and g are given with their truth values T(p)
and T(q). The negation of p(~p). conjunction of p and g(pAg). disjunc-
tion of p and g(p\/q ). implication of p to g (p-+g). and equivalence of
p and gq (p«<sq), have their truth values calculated by the following
rules: [1, p. 36]

1. Til~p) =1 - T(p)

2. T(pvg) = max[T(p), T(q)]

3. T(pAg) = min[7(p), T(q)]
4. T(p+q) =1 if T(p) < T(q)

=1- T(p) + T(q) if T(p) > T(q)
5 Tlpeq) =1 - |T(p) - T(q)].

The axioms of the projective plane, which are found in most books

on projective geometry, are given below:
1. Given two distinct points, a unique line is on the two points.

2. Given two distinct lines, a unique point is on the two points.

3. There exist four points such that no three of them are collinear.

The axioms can be generalized to the axioms of the fuzzy plane. Letting

the proposition "point p ison line I" be designated " P12", the fuzzy
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plane is as follows:
1. Given two distinct points P and Py» a unique line | determines
the maximum possible value of T[(p1 | l)/\(sz ]. ,
2. Given two distinct lines I1 and Lo, @ unique point p determines
the maxdimum possible value of T{(p I LN I 2.2)].
3. There exist four points PysPy Pz » and Py and no line g such
one or more of the following cases hold:

i. [T (p; I 2IN(py | APy I 2] 2%
i [7 (p, 1 APy | WIA(D, | )] 2 %
iii. [T, 1 APy 1 2)A(P, | )} 2 %
iv. [T (py T R)A(pg | WIN(P, I 2}z %

As is done to show consistency of the axioms for the projective
plane, a model shall be used to show consistency of the axioms for the
fuzzy plane. For such a model | et one use seven points and lines. The
truth value for "p; | zj" (i, § =1, ..., 7) is given by an incidence
matrix in which the real-valued functions wij and ¢ij are subject to

the following restrictions:
i) 0% ¢ij(t) <%¥forall t €IR

ii) 3551p7:j(t) 2 1forall t€lIR

The incidence matrix is as follows:

Py Py P3 Py Ps Pg Py
Ly Y11 V12 13 V14 15 16 417
2 Va1 22 Va3 %24 025 926 Yay
23 %31 V32 ¢33 %34 35 V36 V37
e” Ves g2 443 %44 Vg5 2T 947
25 %51 $52 %53 Ysq V55 ®56 Vs7
kg %61 %62 Ves Veq %65 Vo6 67
%y ®71 Yoz V73 ®7q Y5 476 477
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Let the incidence matrix be labelled D . The following theorem can now

be shown.

Theorem. The seven-point plane with incidence matrix D satisfies & P e
the axioms of the fuzzy plane for each ¢ € IR Z ‘2;(—

=1

Proof. Axiom 1. Given two points p; and pJ. such that £#j and

2, =1, ..., 7. a comparison of column vectors for p. and p; reveals by Hao-Nhien QUA. VU, Freshman
, z J Pundue Univernsity, West Lafayette, |N
thatT[(p?: I zK)A(pj 1 g)] = mm[T(pk 2, (pj I 2,012 % fora
unique line JZ.K(K =1 .uuy 7). Isn't it beautiful to prove the convergence of the series this
Axiom 2. Given the two lines L and ;zé such that ¢ # j way? (The square has area 1)

and Z, j =1, ..., 7, @ comparison of row vectors for g; and L5 shows
o i >
that 7[ (s, | pK)/\(zS. | pp)] =minlp, | 2.), (p, | 23.)] > % for a
unique point p (K =1 ..., 7). I._E
Axiom 3. Consider the points Pys Pys Pz» and Pg *

Case 1. T[(pl I 2,)A(pg | 25)] = min[xbzz(t), w23(t)] > % for each
t € IR But T(p, I 2,) <% Hence T[(pz 1 2)A(ps | 25)A\(py | 12)]<35.
Case 2. T[(p1 | 9.1)/\(p2 I 9,1)] = min[d)u(t), wlz(t)] > % for each

telR But T(pg leg) < is  Hence T[(pz | 2,)A(py I 2, )N(pg I 21)]<f‘5.
Cas 3. T[(pl | 22)/\(p3I 9,2)] = min[lllm(t), wzz(t)]for each

telR Bu T(pg | L,) < % Hence T[(p1 T 2 N\pg I 2g)N(pg I 12)]< %.
Case 4. T[(p3 I 2, )N (py | 2,0] = min[w73(t), w72(t)] > % for each

telR ButT(p, I, <% Hence T[(ps I 8, \py I 2,)N(pg I 17)] <

The seven-point plane with incidence matrix b 1s an example of a FELEEFFELEEssrossffrrasssssaisssssiassrsfsrssfsfssssssssss
fuzzy plane. The example establishes the consistency of the axioms for
the fuzzy plane, a generalization of the projective plane.
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AN ANALYSIS OF MONOPOLY

by Thomas Chenien
and Cathy Vandenfond
East Carnolina Univernsity

For as | ong as games have existed, man has tried to di scover ways
to consistently win at them \Wether it be backganmon, bl ackj ack, or
tic-tac-toe, peopl e have sought systens to help themw n a larger pro-
portion of ganes than mght otherw se be expected. This trend has in-
creased with the advent of the conputer and its capability to work on
l'arge sanpl es of data quickly. Following this |ead. we exam ned the
gane of Mnopoly in order to establish which strategi es are nore success-
ful as well as the advantages of going first.

The gane of Mnopoly has been around in one formor another since
1932, when Charl es Darrow, an unenpl oyed heati ng-equi pnent sal esnman,
drewout the original gane. Darrow experinmented with the gane by pl ay-
ing it with his wife and neighbors. shortly afterwards. orders for the
gane started coning in, and Darrow decided to offer it to Parker Bros.
for distribution. After initially rejecting Mnopoly, Parker Bros.
changed its nind and bought the rights in 1934. Since then. over eighty
mllion sets have been sol d worl d-w de, and Parker Bros. now sponsors a
worl d's chanpi onship conplete with a $5,000 prize.

\¢ were assigned a project to devel op a conputer programin Pascal
whi ch woul d execut e predeterm ned strategies for the buying, devel oping,
and nortgaging of the various propertiesin Mnopoly. ¢ utilized a
records system whi ch kept track of each player's assets, property hol d-

i ngs, which properties vere still unowned, etc. After each player's
noverent , subroutines handl ed the player's options to buy or to nortgage
property as wel|l as whether or not to build houses or hotels. Two ot her
subroutines dealt with the results of drawi ng either a Chance or Comuni -
ty Chest card (i.e., whether a player paid out or received money and
whet her or not he noved his token around the board.)

In order to keep the programfrombecom ng too | arge, we i ncor po-
rated a few simplifications into the gane. For exanple. if a player
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went to jail, he automatically paid $50 on his next turn and noved on.

If a player drewa "Gt Qut of Jail Free" card, the bank bought the
card for $50 and the card was returned to its respective pile. N trad-
ing of property between the players was allowed. Finally, the game was
pl ayed until one player went bankrupt or until 150 turns had el apsed.

I f the second condition occurred, the results of the gane were exan ned
to determneif the game was a drawof if one of the players had a win-
ni ng position.

V¢ experinented with four basic strategies. First was the "Bar-
gai n Basenent" strategy where the player buys any unowned property he
| ands on so | ong as he has enough cash on hand to pay for it. Therea-
soning behind this strategy is to prevent your opponent fromobtaining
a nonopol y whil e at the same tine obtaining one or more propertiesto
develop later. The second strategy was the "Two Corners" strategy. |t
calls for the purchase of any property (the orange, red and yel |l ow) be-
tween Pennsyl vani a Railroad and the Go to Jail space at any tine and
the purchase of other properties which can be devel oped when nore than
$1,000 is available. Qaning these properties neans that your opponent
shoul d I and on at | east one of your properties on every trip around the
boar d.

The third strategy was the "Controlled Gowh" plan. It calls
for the buying of property whenever two conditions were net -- the col or
group | anded on had not yet been split by the two players and $500 was
available to the player. This plan allows for growh yet |eaves enough
capital to devel op a nonopoly when it is acquired.

The final strategy we tried was the "Mdified Two-Corners.” It
foll ows the same basic plan as the "Two-Corners" with the added fact or
of buying Boardwal k-Park Place group. Al of the plans involve the prop-
erties which could be devel oped. Additionally, all four called for the
purchase of railroads and/or utilities whenever they were | anded on.

In actual play the "Two-Corners” led the "Bargain Basement" in a
one-hundred game series with a total of 54 wins, 27 | osses, and 19 draws.
Next the "Controlled Gowh" played the " Two-Corners” and won the one-
hundred gane series with a record of 57-34-9. Lastly, the "Gontrolled.
Gow h" strategy played the "Mdified Two-Corners" strategy. |n two
one- hundred gane series, the overall record was 88-79-33 in favor of the
"Controlled Gowh" plan. However, the second series was practically a
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draww th only a one win advantage for the | eader.

An anal ysi s of some of the games pl ayed reveal ed sone of the short-
com ngs of the strategies involved. The first strategy fell short be-
cause it left no noney for the building of houses, while the opponent
usual Iy had noney on hand and devel oped hi s property first. The second
strategy all oned the opponent too rmany opportunitiesto gain a nmonopoly,
while it realisticallytried for only three col or groups, a task which
isrelatively easy to block. The last two plans went quite some way in
order to mnimze these weaknesses and succeeded fairly well.

To neasure the desirability of each property, we devel oped a val ue
function to determne a nurreri cal val ue of each property's useful ness.
W took a frequency distributionof the nunber of tines that each prop-
erty was | anded on and multiplied each frequency by the basic rent of
the property. W then divided the product by the cost of the property.
The val ues of the function ranged from15.82 for Mediterranean Ave. to
123.76 for Water Wirks; the nean was 59.76, the nedian 54.33, and the
standard devi ation was 24.89. After Water Wrks, the highest property
was the Hectric ., with arounded val ue of 121. The next three pro-
perties were all railroads -- B&0o at 93, Reading at 91, and Pennsyl vani a
at 89. Rounding out the top ten properties were Boardwal k at 79, Short
Line RR at 70, Illinois, Tennessee, and Pacific Aves. at 64, 57, and 56,
respectively. The |east val uabl e properties were Mediterranean Ave.,
Qiental at 34, Baltic and Vernont Aves. at 35, and Connecticut at 36.

Smlar functional val ues were determned for each of the groups
of properties. The highest val ue bel onged to the Orange col or group
with a value of 970.15. The | owest val ue of 569.84 bel onged to the Dark
Purpl e group. The nean for the groups which coul d be devel oped was
760. 81, the nedi an was 754. 34, and the standard devi ati on was 129. 28.

A conpl ete ranking of the groups is as follows: GCange - 970; Lt. Blue -
899; Red - 770; Lt. Purple - 768; Dk. Blue - 740; Yellow - 737; Qeen -
632; and Ok. Purple - 570. On a sinilar scale the Railroads had a val ue
of 685 while the Wilities had a val ue of only 306.

& al so investigated the advantage of going first in Mnopoly. To
test the advantage, each player went first for fifty ganes out of every
one-hundred ganme series. V¢ then calculated a differential score, that
i's the nunber of |osses subtracted fromthe nunber of wns. The average
differential score increased by 6.5 points when a player went first as
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opposed to when he went second. Qur sanple involved four sets of cne-
hundred ganme series with two players per gane.

I'n order for everyone here to become Mnopoly Mgul s, we offer the
fol  owi ng suggestions: |f your opponent offers you the chance to go
first, take it. Buy around the board in a defensive manner (that is at
| east one property per groupY. Wen trading begins, trade for the
QO ange-Red corner as well as for the Lt. Blue properties. They are
I anded on nost frequently and offer the best return. The railroads and
utilities offer a good chance for the buyer to rai se sone cash with
which he may later devel op other properties. Finally, whenever your

opponent has a hotel on Boardwal k, never, we repeat, never land on it

FRATERN TY KEY-PI NS

Gold Clad Key-Pins are available at the National Office
at the Special Price of $8.00 each. Write to:

Dr. Rchard Good, National Ofice

Depart ment of Mathematics

Uni versity of Maryl and

ol | ege Park, Maryland 20742
Please indicate the Chapter into which you were initiated
and the approximate date of initiation.
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1984 NATIONAL A MJ EPSI LON
MEETI NG

It £5 time to be making plans to send an undergraduate delegate on

bpeakeh §rom yowr Chapten to the Annual Meeting of Pl MJ EPSILON in Eugene,
Onegon in August of 1984. Each Speaker who presents a paper will rececve

travel benefits up to $500 and each delfegate, up to $250 (only one speaker
on delegate can be funded from a single Chapter, bat others can atfend.)
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DOES (a+ib)(S*39) EQUAL A REAL NUMBER?

by Ravi Salgia
Loyola University, Chicago

A well known result in complex analysis is that if the pure imagi-
nary number i is raised to a power equal to itself, where £ = v=1 , one
obtains an infinite number of solutions. However, when there is a re-
striction of the argument from [¢,27), it is seen that

i¥ = exp(- 1/2) .

This amazing and intriguing result of an imaginary number raised
to its own base gives rise to the question: Wha condition must two com-
plex numbers, a+ib and c+id, meet such that

(atib) (et+id) _ c,

where a, b, e, and d are all real numbers, and ¢ is a real number > O .
To answer this, look at

(a+ib) Y = ol (crid) snlarib)] =< . (1)

From basic complex analysis, it is known that a complex number,
a+ib, can also be represented in its polar form as r exp(i68), where

r= a2 + b2 and 8 = aretan (b/a), where 6 € 10,21r). Thus,

exp[(e+id)an(r exp(ie))]

]

€

exp (e+id)(en r + i9)

exp[ (egnr - 6d) + i(dinr + c8)]

[exp(ctnr - 8d)][cos(dinr + c8) + isin(dinr + c8)] .

From this,

[exp(eanr - od)][cos(dinr + c8)]

€

0 = [exp(einr - od)][sin(dinr + co)] .

]

Since exp(etnr - od) # 0, then sin(dinr + ¢8) = 0 or dinr + ¢ = nr,
where n is an integer. Also, since £ is a positive number, and the
argument of complex numbers restricted from [0,27), n must be zero.
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Therefore, if the number (a+ib) (e+id) is to be a positive real

number, ¢ , then

521- JLn(cz2 + b2) + ¢ aretan (b/a) = 0.

Notice, also, that if this occurs, then

]

e = exp[ g—sz.n(az + b%) - d avetan b/a)1 .

To illustrate this formula, consider ¥ . Inthiscase a=e= 0,
and b=d = 1, thus

g sm(az + b2) + ¢ arctan (B/a) = 0

which satisfies the condition for equation (1). Thus, il is areal

number : .
il = exp [% Il.n(a2 + b2) - d aretan (P/a)]

= exp [0 - aretan (1/0)]
—exp (- "/2) ,

a result which was assumed at the onset of this paper!

Challenge to the Reader: Can you find any other " interesting”
(a+ib) (e#id) ynat is a positive real? |f you can, send your results to
the Editor and we will publish them in the neat issue.
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1)

2)

3)

Therefore, Arctan 1 + Arctan 2 t Arctan 3 =

ARCTAN 1 + ARCTAN 2 + ARCTAN 3 =

by Michael Eisenstein
CBM Educational Center, San Antonio

Consider 8 in the right triangle in Figure 1.

5
(=]
Figure 1
T _ =T
tan 7= 1 so Arctan 1 7"
. w
e+ 2 Sln(f;f EJ cosf
tan 2 = T\ 1 -siné
1+ coi(e+ 5)
8+3
SO Arctan 2 = 5
T - 6\ sin(m-6) _ sin®
tan( 2 )_ I+cos{m-6) = I-cos® 8
SO Arctan 3 = I ; 6

=2

W=

o |
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A CURIOUS RATIO OF K-STARS
by Michaet Eisenstein
CBM Educational Center, Son Antonio
Theorem. Given a regular polygon of n-sides, n 2 5, let a "k-star”

(The triangle added
on is formed by extending the left and right sides of two consecutive

7 ¥

Let Pk and Ak be the perimeter and area of a k-star respectively.

be the polygon together with k triangles added on.

vertices.)

Example:

o ¥

n==5 k=¢

Then
P

&

Q

~ for k=1,2,...,n.

X
-
ol

Proof. Let A, be the area of one of the triangles added on. Let
b be the length of a side of the polygon.

Then
(n-k)b t 2k1

v
I
&
~u
I

—A0+kAA

>3
Q
n
X
1

Where | is the length of a side of a triangle other than b

nb _ nb-kb+2kl 6

V¢ need to show -, ~ is identically true.

Ao Ao+k/1A
The equation is true if and only if
nb/lo + nbkAA = nbAo - kbAn + 27<ZAO ,

or
nbA, = (21-bJA, ,
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or
- b
2 4 = 2157 “a So
Consider an interior triangle with point Q at the center of the 2
polygon. The polygon is composed of »n of these triangles. and
1 2 1
, AA = 2 b 4fcos? 360 ~ *
Then b? =a’ +a° - 2a°%c 0?&69 2
Q Then the right side of I) above is
e o nb 55 1.2 1-cos® 369
205 “a = b 2
2 b b 4 cos§6—0
b Zcosi‘:o— %
n
So
1 360 360
= %bz ] 360 (Z%OST) (1-— 7 )
Thus ~cos n
1) B
=4 .
Nowv consider the appended triangle o
So I) is established and therefore
L ]
Pk PO
‘€= i for k = 1,2,3,...,7.
b g 2
Now « = 180 _(n-2)(180) _ 360
n n
So 7,2 = ZZ + b2 - ZZbcos% 4>
__b D‘ '4
& 360 <>

_Jzz_ﬁ _J412-b2
7 "V 2

-
1
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CHAPTER REPORTS

ALABAMA DELTA (University of South Alabama) The speaker at the
i nduction cerenony was faculty menber Prof. Leon Mattics. Prof. Mattics
presented a | ecture on "The Primitive Roots of Unity".

ARKANSAS BETA (Hendrix_College) The under graduat e research program
was once again very active and several Henrix Students attended the

M d- South Mat hematics Col | oqui umat Menphis State on February 18, 1983,
and at the Ckl ahoma- Arkansas MM neeting at the University of Cklahona
in Norman on March 18-19, Katren Anderson, Blanca Hearn, and Katen
Shinkey presented their papers. Aso these three plus Mike MeCluthan
presented their papers at the Conference on Undergraduate Mathenatics
held in Stillwater, Okl ahomay April 15-16. The Annual Hendrix-Sewanee-
Sout hwest ern Mat h Synposi umwas hel d at the Uhiversity of the South in
Sewanee on April 29 where Kmen Anderson, Bianca Hearn, and Karen
ShirLey again presented papers.

Several students received awards at the Honors Convocation in My:
McHenry-Lane Freshman Math Award was given to John Crippen and Kathy
Prunty; Hogan Senior Math Award was shared by Bianca Hearn and Karen
Shinkey; The Phillip Parker Undergraduate Research Award was gi ven to
Kmen Shirnfey, Karen Shirnkey al so received the President's Medal.

The Chapter heard the foll owing papers: Report on the National Pi M
Epsilon meeting held i n Toronto, Canada bir Dana Payne; "Employment

and Graduate School Strategies for Math Majors” by Dn. Cecil MeDeamott;
"What |s Combinatorics?" by Dn, Dwayne Collins; "Image Processing and
Opportunities for Math Graduates Interested i n Applied Mathematics' by
Mark Burton; "Interesting Problems in Greek Mathematics' by Dn. Robert
C. Eslingen; "Humanistic Mathematies” by Drh. Chais Spatz; "The Gawma
Function and Log~Convexity” by Kmen Andernson; "Continued Square ROOtS'
by Bianca Heann; "Properties Of Separating Point in Continua" by Mike
McClurkan; "Two Fundamental Equations Arising from Notational Ambiguities
i n Caleulus” by Kmen Shirkey; "Introducing the Concept of Integration”
by Peten Greim; "lsaac Newton, The Man' by Dn. Billy Bryant; and
"Forecasting Using the Box-Jenkins Methodology" by Da. Robert Baken.

CONNECTIQUT BETA (University of Hartford) The Chapter heard Pro{.
Westan Comfont of sl evan Universitv speak on "Some Undecidable
Qustions in Mathematics™. The foll owi ng students won Departmental
Awards: Antonio Anania, Debra Barberrni, Danief Bowker, Paul Saulnier,
and Mary Lanson.
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GEORGIA BETA (Georgia Tech) Mary K. Shegfield won The Outstanding

Graduate in Mathematics Award.

ILLINOIS ALPHA (University of Illinois The Chapter organized an

informati on semnar for undergraduates and heard three tal ks during the
1982-83 school year. Prof. Kenneth Stofarksy spoke on "King Solomon,
the Alabama Paradox, and Mathematics Justice. " Pro4. Lee Rubel
presented a talk entitled "The Logic of Differential Equations’. And,
Prof. Heind Halberstam spoke on "William Rowen Hamilton and the
Beginnings of Modern Algebra”.

KENTUCKY GAVWWA (Murray State University) The Chapter heard tal ks by
Michele Wilkie, Paif Bryan, and Mike Softys al| of Murray State. M.
Soltys spoke on "Shortcuts in Multiplication™.

LOUISIANA KAPPA (Louisiana Tech) sponsored The Annual Calculus Contest
whi ch was won by Georgia Georgious with second place awarded to
Hassein Sadati.

MASSACHUSETTS DELTA (University of Lowell) conducted The Annual
Mathematics Day for Area High Schools. Approxi mately 1000 students
and teachers attended. In conjunctionwth this event, the follow ng
presentations were given: "The TABFUNCITION i n BAIC Language' by
Dn. Raoul M. Freyne; "Four-Color Map Problem' by Dr. Joyce Williams;
"Dynamics of Tennig" by Pro4. S.J. Bodor; '"Freshman Caleulus at
University of Lowell" by Prof. P. Condo; "Wimning at the Racetrack:
Luck or Mathematics" by Prof. Edward F. Baldyga; '"Mathematics and
Computer Science' by Prof. A.W. Doenr; " Why W EXist in Three
Dimensional Space by Dr. John Brode; "Learming Arithmetic in a Foreign
Language” by Dr. Ken Levasseur; "An Easier W&y tO Graph Polar Curves'
by Prof. Tom Kudzma; "A Logical and Chromological Development of Our
Number System” by Dn. W.P. Copley.

MINNESOTA ZETA (Saint Mary's College) had a very active year in which
the following presentations were given: "Interactive Data Analysis to
an Air Pollution and Mortality Model™ by Dt. Gary McDonald; "Markov
Chains” by Sue BLass; and "Speculations on the Source or Rigor in Greek
Mathematies” by Davdd Urnion.

MISSOURI BETA (Washington University) 'he main activity of the Mssouri
Beta Chapter of Pi Mi Epsilon was a Math Contest for area hi gh school
students. Other activities included talks about actuarial careers by
representatives from General Averican Life inthe Fall and Spring. A so,
at the end of the year a banquet, with el ections, was hel d.
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MONTANA BETA (Montana State University) There were two chapter meetings
at which invited talks were given. These were: "Geometric Solutions

to Algebraic Problemg" by Dn. Adrien Hess; and "Mathematical Billiards"
by Dn. Jack Robinson, Washington State University.

NBW JERSEY THETA (Trenton State College) The Chapter sponsored the
following special lectures: "Einstein's Speeial and Gemeral Theories

of Relativity = Historical Perspectives” by Dr. John Norton, Princeton,
NJ; "Artificial Intelligence" by Dn. Charles Golfdberg, Trenton State
College; "Topology Can Get Wild" by Dr. Edythe Woodnuff; and "Computa-
tion of Circular Aregs by the Babylonias and Egyptians' by Dr. Siegfried
Haenisch.

NEV YORK PHI (Potsdam) Dx. Philip Schwartau spoke at the Fall induction.
His talk was entitled "From Potsdam to Ph.D.”. Marcia Borden won the
coveted Clarkson Memorial Award for the highest four year overall grade
point average. This is the sixth consecutive year that this graduating
senior award has been won by a member of the chapter. Graduating
chapter members fared well outside the discipline of mathematics, also.
Cynthia Pedersen won the top award in the Department of Administration
and Management; Chiistine Stockschlaeder in Chemistry; Joan Iannuzzi

in Computer and Informational Sciences, and Sharon Schachter Schoemaker,
chapter secretary, in Economics.

NV _YORK OVEGA (Saint Bonaventure) The Chapter was given the following
presentations:  "Ramsey Theory" by Prof. Jack Graver, Syracuse University;
"Using Technology to Improve Man - Computer Interaction” by Mr. Waltenr
Doherty, Manager of Systems Performance and Technology Transfer at IBM;
"Selected Problems and Their Methods of Solution” by Prof. Ralph King;

and "The Towers of Hanoi Puzzle - an Application of Math Induction” by
Prof. Charles Diminnie. The Pi Mu Epsilon Award was presented to

Bernand Sampson, with honorable mention to Jane Stofatshi.

NEBW YORK ALPHA ALPHA (Queen's College) Heard the following papers:
"Trap-Door Functions and Secret Codes’” and explained hov number theory
and prime numbers are used in the development of secret codes, by Dx.
Kenneth 8. Kramen; "Using the Computer Language BASC in the Math
Classroom" by Dn. Ronald 1. Rothenberg. |inda Hechtman and Hal Weinstein
were the recipients of The 1983 TIME prize for excellence in Mathematics
and service to the NY Alpha Alpha Chapter.
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OHIO NU (University of Akron) At the Initiation and Awards Banquet,

the Chapter presented an award to Linda Chang for her mathematics project,
"Chi Squared Predicts the Crab Will". Genald McCoy, Mary Frank, and
Robent Miller received the Samuel Selby Mathematics Scholarship Award

for 1982-83. Dn. Kenneth Cummins of Kent State University presented

an interesting and very enlightening talk entitled "How to Know Where

You Are in the Middle of Nowhere".

OHIO THETA (Xavier University) The recipients of the Richard J.
Wehrmever Pi Mu Epsilon Award are John Flasophler and Steven Kurzhals.

It was-awarded to' them for their excellence i n problem solving.

OHIO XI (Youngstown State University) Several members attended the
National Meeting held in Toronto, Canada where Kriss Schuellen, a
graduate student, gave a talk. Various speakers on Math related topics
visited the club. Annette Trivolino, a senior math major from Westminster
College spoke about her recent semester spent in France;, Mr. Cyrnil
Mattis demonstrated construction of geometric models; and Dk, Bhushan
Wadwha of Cleveland State University gave an entertaining talk on "Number
Theory”. Other activities included tutoring sessions for area higrh

school students preparing to take a national mathematics test. he
chapter helped with the fall Ohio Section M.AAA. meeting held on the
Youngstown State University campus. Several members attended the

Spring meeting with 2 of our senior members presenting papers.

SOUTH CAROLINA DELTA (Furman university) The Chapter sponsored the
seventh annual Furman University Mathematics Tournament; 360 students
representing 57 high schools participated. Dr. Ian P. Schagen, a
visiting professor from Loughborough University of Technology,
Leicestershire, England, spoke on "Mathematical Modeling i n 0il1 Field
Development”.

SOUTH DAKOTA BETA (South Dakota School of Mines and Technology)
sponsored an undergraduate seminar series on Recreational Mathematics.
The Chapter heard papers on "Factoring Large Numbers" by James Sandau;
"Godel's Theorem" bq Dr. Edward Couwin; and "Four Jewels of Number
Theory” bq Dh. David Ballew. The Chapter sponsored a presentation by
industry interviewers on "The Art of Interviewing”. Chapter members
also gave tutoring sessions for Freshman and helped with the 35th
Annual West River Mathematics Contest.
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REPORT OF THE 1983
ALBANY MEETING

The Program for the 1983 Meeting of the PI MJ EPSILON FRATERNITY
was held at SUNY in Albany on August 9 through August 11 of 1983.

The program included:

A BASC Program for the Schredering
Equation

Subset Selection

Two Ancient Greek Comstruction
Problems in Euclidean and Hyperbolic
Geometry

What Difference Does it Make?

The Gamma Function and Log-Convexity

A Ubiquitous Partition of Subsets
of

Leo Moser's Theorem

Exploratory Data Analysis Using
Microcomputers

Cryptography -- The Seience of
Secret Writing

Mary Anne Bromefmeien
Ohio Delta
Miami Univernsity

David Van Brackle
Flonida Theta
Univers.ity of Central Florida

Jack M. Rau
Oklahoma Beta
Oklahoma State Univernsity

Dariush Saghafi
John Carnoll lUniversity

Karen Andenson
Arnkansas Beta
Hendrix College

Donafd John Nicholson
Towa Alpha
Towa State University

Susan McDonald Britt
North Carnolina Delita
East Carolina University

Thomas Tentoeve 111
Michigan Delta
Hope College

Denise Vining
Ohio Delta
Miami University

The J. Sutherland Frame Lecture was given by Prof. Henry L. Aldexn,

of the University of California, David and entitled "Honv to Discover
a#d Prove Theorems: A Demonstration with Partitions.
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PUZZLE SECTION

Edited by
Jobeph D.E. Konhauser

This Department i s for the enjoyment of those readers who are
addicted to working doublecrosties or wo find an occasional mathematical
puzzle attractive. W consider mathematical puzzles to be problems
whose solutions consist of answers immediately recognizable as correct
by simple observation and requiring little formal proof. Material
submitted and not used here wiZl be sent to the Problems Editor i f
deemed appropriate for that Department.

Address all proposed puzzles and puzzle solutions to Prof. Joseph
Konhauser, Department of Mathematies, Macalester College, St. Paul,
Minnesota, 55205. Deadlines for puzzles appearing i n the Fall Issue
will be the next February 75, and for puzzles appearing i n the Spring
Issue will be the next September 75.

Mathacrostic No. 17

Submitted by Joseph D.E. Konhauser
Macatester College, St. Paul, Minnesota

Like the preceding puzzles, this puzzle (on the following two
pages) is a keyed anagram. The 227 letters to be entered in the diagram
in the numbered spaces will be identical with those in the 28 keyed
words at the matching numbers. The key numbers have been entered in
the diagram to assist in constructing your solution. Whan completed,
the initial letterswill give the name of an author and the title of a
book; the completed diagram will be a quotation from that book. (See an

example solution in the solutions section of this Department.)



DEFINITIONS
A a sweet cordial of the
Medi t erranean region

B latest in an indefinitely
nunmer ous sequence

C doubl e dagger
a rabbini cal acadeny
E arsenic trioxide

F. supposing that not

G a small grayish European
war bl er
H. ness; predicament (3 wds.)

like in quality, nature or

st at us

J. Hungarian narch by unknown
conposer in honor
hero revered by Magyar

K exposure to the rays of the sun

L. about 8.669 cubic inches, a
British vol ume nmeasure

M mirage, especially one seen at
the Strait of Messina (2 wds.)

N gelatin prepared fromthe air
bl adders of sturgeons

0. roughly, one is to a mnute as
a mnute is to 1140 centuries

P a fossil footprint

Q something difficult to dispose

of, solve, or decide about
R mate
8. Franklin P. Adams's coi nage
for a name that sounds like

its owner's occupation

T a four-bit word

irregular short poem or chant

V. a space between regul ar and

nor nal

W able to flourish in a salty
soi 1

X pretentious nonsense; clap-
trap: drivel

Y. aversion to mental work

judicial investigation,
usual |y before a jury

a. umbilic (2 wds.)

b. right-handed

of a national
patriots

WORDS
180 199 77 207 121 34 18

"2 189 T03 58 175 146 216 29 206

"93 28 76 223 130 184

83 64 193 71 116 24 T67

"8 778 "70 47 56 132 "27 98

47 164 192 157 89 39

"32 151 50 6 271 147 156 62 20 I77
"67 45 179 55 104 172 7 201 82 225 187 128
152 "46 171 26 220

110 7% 154 19 ZI3 I3 88

12 69 178 144 99 196 125 43 200 140
173 766 86 118 134 106

123 10 114 136 211 37 161 183 204 85 48
181 120 84 95 133 49 148 21 61

149 141 203 162 195 60 218 126 35 15
217 153 22 182 202 79 40

"65 101 222 41 165 17

752 113 33 129 186 212 11 91 226 155
105 30 137 163 90 112 188 9

142 119 53 190 87 25

143 "92.166 214 5 75 107 131 38
124 210 150 224 19 117 139 100 1

115 215 208 165 16 59 111 158 31 174
122 757 "14 205 94 168 159

"63 138 81 109 4 185 36 73

T94 145 170 54 72 97 127

135 723 "44 160 209 197 176 80 227 108
96 68 102 51 198 219 3

1 vi2 Bi3 b|4 5 U 6 G|7 H|B E|9 S}10 M|1l1 R{l2 K13 J
14 X|15 O 16 17 Q|18 A{l9 V|20 Gj21 N 22 P|23 aj24 D|25 T
26 I 27 28 CJ29 B30 S|31 W{32 G|33 R|34 A|35 0|36 Y
37 M|38 U|39 F|40 41 Q|42 E|43 K|44 al45 H 46 147 F|48 M|49 N
50 GJ51 b|52 R 53 T(54 Z|55 H 56 E|57 X 58 BJ59 W|60 O
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130 C {131 U|132 E 133 134 L {135 a|136 M|137 S}138 Y {139 V|140 K 141 0jl42 T
143 U 144 K |145 146 B 147 G148 N |149 O 150 V{151 G|152 I|153 P
154 J 155 R 156 157 F |158 W|159 X [160 a (161 M 162 0|l63 s 164 F
165 W[l66 U 167 168 X|169 Q170 2 {171 I |172 H}173 L 174 W|175 B
176 a {177 G 178 179 H180 A|181 N {182 P {183 Mi184 C 185 Y {186 R
187 H |188 S (189 B [190 191 J|192 F|193 D 194 21195 O 196 K 197 a
198 b {199 A {200 K [201 202 P {203 O 204 M 205 X {206 B {207 A {208 W
209 a |210 V 211 212 R|213 J|214 U215 W |216 B |217 P {218 0219 b {220 I
221 G [222 Q {223 C 224 225 H 1226 R {227 a




604

SOLUTIONS

Mathacroatic No. 16. (See Spring 1983 Issue) (Proposed by Theodon

Kaufman, M.D. , Nassau Hospital, Méneofa, L.|., New York)

Words:

A. Rotator I. Horseshoe Q. Off and on
B. obbligato J. Obsequies R. Floccule

C. Tobacco K. Ran S. Equably

D. Harebrained L. Toothache T. Great whites
E. Might-be M. Love-40 U. Acquiescent
F. Acquittal N. Internecine V. Loquacity

G. Nannander 0. Frequent W. Offertory

H. Shasta P. Exxon X. Sex-linked

First Letters: (Tony) ROTHMAN: (The) SHORT LIFE OF E{variste) GALOS
- from Scientific American

Quotation: The solution to the genenal quadratic, orn second-degree,
equation a x + bx + ¢ = 0, known to the. Babylonians, requires the.
extrnaction of, the square loot of a function of the coefficients, namely
b? - 4ac. Hence, the general quadratic equation 45 s0fvable by
nadicals.

Sofved by: Jeanette Bickley, Webster Grove High School, Missouri;
Betsy Curtis, Meadville, Pennsylvania; Victor G. Feser, May College,
Bismarck, North Dakota; Robert Konhauser, Macalester College, St. Paul,
Minnesota; Roger Kuehl, Kansas City, Missouri; Henry S. Lieberman,
John Hancock Mutual Life Insurance Co., Boston, Massachusetts; Sister
Stephanie Sloyan, Georgian Court College, Lakewood, Nav Jersey; and
The Proposer and The Editor. One unsigned solution was received.
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COMMENTS ON PUZZLES 1 - 7 (See Spring 1983 Issue)

The unique answer to Puzzfe #1 has 541, 149 and 216 as rows from
top to bottom in that order. Fourteen readers respond to #1, The
solution requires just a bit of trial and error. For Puzzfe #2, only
four correct responses were received. All were equivalent to the
arrangement of points in Figure 1, which is essentially that of L.M.
Kelly, as given by H.M. Croft in "Incidence Incidents", Eureka, October,
1967. A second arrangement is obtainable by drawing the equilateral

triangles inwardly on the sides of the square as in Figure 2.

Figure 1 Figure 2

Nine readers responded correctly to Puzzle #3, A solution is obtain-
able without trial and error. For example, Robert C. Gebhardt | et

M - NUM and n = BER leading 307m = 692n. Since 307 and 692 are
relatively prime, m = 692 and n = 307. Puzzfe #4 drew responses from
thirteen readers. The puzzle is well-known and most contributors
supplied the two best-known solutions, which are shown in Figure 3.
But Jm Gasparri and Phil Shepherd showed that there are infinitely
many possible side views. Three of their drawings are reproduced in

Figure 4.
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7 £

Figure 3 Figure 4

Fourteen responded to Puzzfe #5. Despite sone clains to the contrary,
there are two sol utions. Puzzfe #4 drewten responses, several with
much detail and a few w th sone hand-wavi ng. Readers wi shing a copy
of a detailed solutionto #6 shoul d cormuni cate with the Puzzle Editor.
Puzzle #7 drew eight responses. There are only two correct answers,
nanely (1, 2, 6, 7, 9, 14, 15, 18, 20) and (1, 3, 6, 7, 12, 14, 15,
19, 2. Victor G. Feser observed that if one of the sequences is
reversed and added termwise to the other, the suns have the common
value 21. Surprised? For a proof that there are no other correct
answers, see the paper "Integers, N Three in Arithmetie Progression”
by Chiang and Maclintyre, Mathenatics Magazi ne, May-June, 1968.

List of Solvers; Paul Aslanian (4), Jeanette Bickley (1, 2, 3, 4, 5,
61, David Brady (7), Janda S. Cook {1, 5, 71, Betsy Curtis (4],
Victor G. Feser {1, 3, 4, 5, 6, 71, Robert Forshberg (41, Jim Gasparri
(4), Robert C. Gebhardt {7, 2, 3, 4, 51, David Iny (1, 3, 5, 6, 71,
Ralph King (4, 51, Roger Keuhl (71, 2, 3, 4, 5, 6, 7), Glen E. Mills

{1, 3, 5, 6, 71, Thomas M. Mitchell (1), Bus Petrakos {7), John H. Scott

1,2, 3, 4, 5, 61, Philip Shepherd (7, 3, 4, 5, &), Emil Slowinski
(1, 3, 5 6, 71, Bill Spencer (4), Bill Taylor {4, 5, 61, David Harland
(1, 5, 71 and Danny Ying (1, 5, 61.
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PUZZLES FOR SOLUTI ON

1. Proposed by 1.J. Good, Virginia Polytechnic Institute,
Blacksburng, Virginia,

An eight-inch cube has a one-inch cube renoved fromone corner,
and anot her one-inch cube renoved fromthe opposite corner. Can the
resul ting body be constructed out of 170 bl ocks each bei ng one inch by
one inch by three inches?

2. Proposed by Joseph Konhauser, Macalester CoUege, St. Paul,
Minnesota.

Wsing only standard arithnetical symbols, wite the nunber 4 using
three 7's.

3. Proposed by Joseph Konhauser, Macalester CoUege, St. Paul,
Minnesota.
Fromthe 7 x 7 square, delete the four 2 x 3 rectangl es marked X

D ssect the remai ning swastika-1ikeregioninto five pieces which, wth-

out being turned over, can be reassenbled to forma 5 x 5 square.

4. Proposed by Joseph Konhauser, Macalester CoUege, SZ. Paul,
Minnesota. 3 4
Find unequal positive integers a, b, and c such that a3 t b7 =c.

*
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5. Proposed by Joseph Konhausen, Macafesten Cottage, St. POLL.,
Minnesota.

Sketch a graph (a finite collection of nodes and arcs) such that
exactly three arcs terminate at each node and such that it is not
possible to color the arcs with three colors so that no two arcs are

the same color terminate at the same node.

6. Proposed by Joseph Konhauser, Macalester College, St. Paul,
Minnesota.

On a circle of circumference 21 inches, what is the smallest
number of marks which can be located so that for each integer n from 1
to 20 inclusive there are two marks (Not necessarily neighbors) which

are separated by n inches measured along the arc of the circle?

1. Proposed by Jobeph Konhauser, Macalester College, St. Paul,
Minnesota.
The eight numbers (2, 3, 4, 6, 9, 14, 22, 31) have am 91 and the

property that taken two at a time the 28 sums obtained are all different.

Are you able to find eight positive integers with am less than 91 with

the same property?

NOMINATING COMMITTEE

Elections for the National Officers will be held this Spring.

The Nominating Committee is:

J. Sutherland Frame, Chainman
Michigan State University

Richard Andree
University of Odahona

E. AlLan Davis
University of Utah

The committee solicits recommendations from the membership.
Contact any of the above committee members with your suggestions.
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PROBLEM DEPARTMENT

Edited by Clayton W. Vodge
University of Maine

This department welcomes problems believed to be nev and at a
level appropriate for the readers of this journalz. Old problems dis-
playing novel and elegant methods of solution are also invited. Pro-
posals should be accompanied by solutions i f available and by any in-
formation that wiZl assist the editor. An asterisk (*) preceding a
problem number indicates that the proposer did not submit a solution.

All communications should be addressed to cw. Dodge Math. Dept.,

University of Maine, Orono, NME 04469. Please submit each proposal and
solution preferably typed or clearly written on a separate sheet (one
side only) properly identified with reme and address. Solutions to
problems i n this issue should be mailed by July 15, 7984.

Nb problemi s ever closed. Even when a solution has been pub-
lished, this department i s st<ll interested in new information and will
gladly consider any comments you ngy wish to submit.

From time to time it seems appropriate to publish a2l problems
that remain unsolved, last done thefall of 1968. Currently, through
1982, there are twelve such proposals for whiekh solutions are needed.
These are listed below.

120, [Spring 1960, Fall 1968] Ptopobed by Michael Goldberg,
Washington, V.C.

1. All the orthogonal projections of a surface of constant
width have the same perimeter. Does any other surface have this
property?

2. A sphere may be turned through all orientations while re-
maining tangent to the three lateral surfaces of a regular triangular
prism. Does any other surface have this property? Note that a solu-

tion to (2) is also a solution to (1).

136. [Fall 1961, Fall 1968] Proposed by Michael Goldberg,
Washington, D.C.
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What is the smallest convex area which can be rotated continu- 403. [Fall 1977] Pnroposed by David L. Sifverman, West Los
ously within a regular pentagon while keeping contact with all the sides Angeles, Califoania.
of the pentagon? This problem is unsolved but has been solved for the Two players play a game of "Take It or Leave It" on the umit -in-
square and equilateral triangle. For the square, it is the regular tri- terval (0,1). Each player privately generates a random number f rom the
arc made of circular arcs whose radii are equal to the side of the square. uniform distribution and either keeps it as his score or rejects it and
For the triangle, it is the two-arc made of equal 60° arcs whose radii generates a second number which becomes his score. Neither player knows,
are equal to the altitude of the triangle. prior to his oan play, what his opponent's score is or whether it is
144. [Fall 1962, Fall 19681- Proposed by Huseyin Demir, Kan- the result of an acceptance or a rejection. (However, variants based
ditli, Eregli, Kdz., Turkey. on modifying this condition, either unilaterally or bilaterally, are
Find the shape of a curve of length L lying in a vertical plane interesting).
and having its endpoints fixed in the plane, such that when it revolves The scores are compared and the player with the higher score
about a fixed vertical line in the plane, generates a volume which when wins $1.00 from the other.
filled with water shall be emptied in a minimum of time through an ori- a. Wha strategy will give a player the highest expected score?
fice of given area A at the bottom. (Note: The proposer has obtained b. Wha strategy will give a player the best chance of winning?
only the differential equation of the curve.) c. |If one player knows that his opponent is playing so as to

190. [Spring 1967] Proposed by Joseph Arkin, Suffern, N.Y. maximize his score, how much of an advantage will he have i f he employs

Lo . the best counter-strategy?
If w, v, ¢t, n, u, g, k, and » are distinct nonzero integers, 9y

find infinitely many solutions to the Diophantine equation 419. [Spring 1978] Proposed by Michael W. Eckenr, City Univer-
w4+v4+t4+n8=u4+q4+k4+r8 4ty of New York.
Seventy-five balls are numbered 1. to 75 and are partitioned into
where w, v, u, andq are each a hypotenuse of some Pythagorean right sets of 15 elements each, as follows: B = {1, ++., 15}, | = {16, **., 30},
triangle. N= {31, +--,45}, ¢ = {46, ..., 60}, and 0 = {61, ---, 75}, as in Bingo.
239. [Spring 19701 Pxoposed by David L. Silvewman, Beverly Balls are chosen at random, one at a time, until one of the fol-
HitLs, California. lowing occurs: At least one from each of the sets B, I, G, O has been
A pair of toruses having hole radius = tube radius = 1 are chosen, or four of the chosen numbers are from set #, or five of the
linked. a) Wha is the smallest cube into which the toruses can be numbers are from one of the sets, B8, I, G, O
packed? b) Wha convex surface enclosing the linked toruses has the Problem: Find the probability that, of these possible results,
smallest volume? ¢) Wha convex surface enclosing the linked toruses four N's are chosen first. (Comment: The result will be approximated
has the smallest area? 4) Wha is the locus of points in space equi- by the situation of a very crowded bingo hall and will give the likeli-
distant from the two links? hood of what bingo players call "an ¥ game” that is, bingo won with the

278. [Spring 19721 Proposed by Paul Endos, University of winning line being the middle column ¥).

Waterfoo, Ontanio, Canada. 423. [Spring 1978, Spring 1979, Spring 1980, Spring 1981] Pro-
Prove every integer £ n! isthe am of <n distinct divisors posed by Richard 8. Field, Santa Monica, California.

of n! Try to improve the result for large n; for example, let f(n) be Find al |l solutions in positive integers of the equation

the smallest integer so that every integer £ n! is the sum of f{n) or AD = BD = CC, where D is a prime number.

fewer distinct divisors of n. W know f(n) < n. Proven - f(n)+=.
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*456. [Fall 1979, Fall 1980, Spring 1981] Proposed by Pant
Endos, Spaceship Eanth.

Is there an infinite path on visible lattice points avoiding
all (u, v) where both u and v are primes? (The proposer offers twenty-
five dollars for a solution).

"Let me restate problem 456. | want a path on visible lattice
points (with relatively prime coordinates) which does not pass through
a point (p, ¢q) where both coordinates are primes and where both coordi-
nates tend to infinity. Explanation: (u, v) has four neighbors,
futi, v/, (u-1, v), (u, v+1), (u, v - 1), and a point can be joined
only to one of its neighbors.

'l offer 50 dollars for a path which goes through visible lat-
tice points and avoids (;y, ¢) and moves monotonically away from the
origin, i.e., (u, v) can be joined only to (u + 1, v) or (u, v + 1).
The start of the path can be any (u, v} = 1. | pay also for a non-
existence proof. 1 do not know the solution and | apologize for the
unclearly and incorrectly stated problem 456. M old age and stupidity

is, | believe, adequate explanation and excuse."

493. [Spring 1981] Proposed by Kenneth M. WilLke, Tope-ka,
Kansas.

Determine the greatest power which divides n!. Prove that for
n>2litisasquare. (This is a restatement of problem 467 [Spring
1980].)

*525. [Fall 1982] Pnoposed by John M. Howelf, Littlerock,
California.

An equilateral triangular prism is used as a die Wha must the
ratio of sides be so that the probability of falling on a triangle is

the same as falling on a rectangle?

CORRECTION
536. [Spring 1983] Proposed by Marntha Matticks, Veazie, Maine.

A recent alphametric in Crux Mathematicorm [1982: 77, problem
721] asks one to show that, in base ten,

TRIGG i s three times WRONG.
In defense of the Dean of Numbers, solve these alphametrics independ-
ently of each other:
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(a) T9GG X 3= RGHT in base eight where the digit 3 can be

reused,
(b) TRIGG = 3 X RIGHT in base ten where the digit 3 can be

reused, and
(¢) TRIGG X 7 = 9GHT in base seventeen.

fPart (a) was erroneously listed with a wrong base.]

Problems for Sol ution

547. Phopobed by Monnis Katz, Macwahoe, Maine.

Solve this musical alphametric.

548. Proposed by Paul A. McKfueen, Charnlotte, Noath Carolina.

Arrange the ten digits in arow, e.g.

dl d2d3d4d5 d6d7d 8d9d1 o’

so that the following conditions are satisfied: the number dydzd,
is divisible by 2, d3d4d5 is divisible by 3, d4d5d6. by 5, d5d6d7 by

7, dedrds by 11, d7d8d9 by 13, and the number d8d9d10 divisible by 17.

549. Pnroposed by R. S. Luthar, University of, Wisconsin Center,
Janesville.

If a, b, ¢ are positive numbers, prove that

a b e 10w
b+c+c+a+a+b > a1

[For an interesting related problem see Problem 356 in The Pentagon,
Spring 1983, p. 120 1.

550. Proposed by |, R. Hess, Washington, D.C.

Hw many different Pythagorean triples have a side or hypote-
nuse equal to 10407

551. Proposed by Robent C. Gebhardt, Hopatcong, New Jensey.

If k is the largest odd integer not exceeding the positive

integer n, n 2 2, prove that
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2 7 2 3n 2 57 2 km n
cos 2n+cos on + cos 2n+'--+cos -2—71- =Z'

552.  Proposed by Atbent White, St. Bonaventwre University,
New Yonk.
Let a, =1 anda = 2q + (-1)% forn > 1 Fi nd

1 n-1
1im %
oo 2n+1

*553. Plopobed by Jack Garfunkef, Faking, New Yohk.

Given a triangle ABC erect equilateral triangles BAP and AC®
outwardly on sides A and CA. Let R be the midpoint of side BC and
let G be the centroid of triangle ACQ. Prove that triangle PRG is a
30°-609-390° triangle.

554.  Proposed by Chartes W. Trigg, San Diego, California.
The SPF.A. (Society for Persecution of Feline Animals)
established a PU R R

FREE

A REA at its headquarters.
In the word square each letter uniquely represents a decimal
digit, and each word and acronym represents a square integer. \Wwha
are these squares?

555.  Pnoposed by Richand D. Stratton, Colorado Springs,
Colonado,

Eighteen toothpicks can be arranged to form six congruent
equilateral triangles. Rearrange the toothpicks to form sixteen
congruent equilateral triangles each of the same size as the original

Six.

556. Proposed by Richard 1. Hess, Palos Vehdu, California.

A normal pair of unbiased dice give a total of 2 through 12
according to the distribution 1, 2, 3, 4, 5, 6, 5, 4, 3, 2, 1. Hw
should you change the spots on the dice so that the sums 2 through 12
and only those sums still occur but with as uniform a distribution as
possible? (Minimize the sum of the squares of the deviations from
completely uniform).
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*557. Proposed by Pauvne Fish, Seal Beach, California.
It is known and easy to show with elementary calculus that

Find a definite integral whose value is 1_7%3' - e, where e is the base
of natural logarithms.
558.  Proposed by Richard | . Heds, Palos Vendes, California.
Let ABD be a quadrilateral. Let each of the sides AB, BC, (D
DA be the diagonal of a square. Let E, F, G, H be those vertices of
the squares that |ie outside the quadrilateral. That is, EAB, FBC,

QD, and HDA are directly congruent isosceles right triangles with
apexes £, F, G, H. Prove that EG and FH are perpendicular. See the

figure below.

559. Proposed by Sidney Penner, Bronx Community College, New
Yonk.

"This isS quite amazing," said B. "My bingo card does not con-
tain a BINGO , but if I cover one more square, regardless of its
location, then I will have a BINGO."

a) Wha is the maimum number of covered squares on B's card?

b) Wha is the minimum number?

Recall that a bingo card is a5 X 5 matrix with the center square
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already covered at the start of the game. A BINGO can occur in 12 ways,

by covering the 5 squares of any row, column, or diagonal.

560. Proposed by Leon Bankogf, Lob Angeles, California.
Two proofs of a Problem 10713 appeared in the 1891 (pp. 34-35)
1892 (p. 79) issues of the Educational Times. Unfortunately,
neither proof is valid. The problem and its supposed proofs are stated
below with wording somewhat modernized for clarification. Find all
errors.

Problem 10713.  Proposed by W. J. Greenstreet, M.A. In a given
circle the radii ¢4 and 0 are perpendicular. Let the circle on 2k as
diameter have center 0' and let 0'4 cut this new circle in point D.
Then A is the length of the side of a regular decagon inscribed in the
given circle. Also, let the tangent AQto the new circle cut the given
circle again at P. See the diagram below. Then A is the length of
the side of a regular pentagon inscribed in the given circle.

|.  Sofution by R Knowles, M.A., Prof. Zerr, and othens.
Take QA and B as coordinate axes. Then the equations for the circles
are
X2+y2=c‘2 and X2+y2-cy=0.
Now (AO')Z = 5¢%/4 and
AD= A0 - 0'D=( V5 - 1)e/2,
which is equal to the side of a regular inscribed decagon. | et

617

he t ky = a2 be a chord of circle (0) that is tangent to circle (0')
and equal to the side of the inscribed pentagon. Because it is a tan-
gent, we have

h2 + %% = (k - 20)°.
The condition that this chord equals the side of the pentagon is

(k - 20)% = 26%(3 - /5),
whence

k= (3-/5)e or k= (1+/5ec.
The latter value makes h impossible. Therefore there is only one real
chord of circle (0), tangent to circle (0'), which is equal to the side
of the inscribed pentagon.

[l.  Solution by the Proposenr.
Let A =a. Then 00 = e/2 and

20" - 0'D = N1 + tan® 040" - §=§(/5'- 1)

%l(/g - 1) = 3e sin16°,

AD

]

2 2 2
so D is a side of the inscribed decagon. Nw 4P =D + ¢

[casey's Euclid, iv. 10, Prob. 6]. Therefore

5
0% = 25 - 2/5) + a2

’

= %—c V]O -2/5 = 2¢ sin36° »

so AP is the side of the regular inscribed pentagon.

Sol uti ons

522. [Fall 1982] Pnoposed by Charles W. Trigg, San Diego,
California.

Arrange nine consecutive digits in a 3-by-3 array so that each of
the six three-digit integers in the columns (read downward) and rows is
divisible by 17.

Amalgam of sofutions submitted independently by Bob Prielipp, Univernsity
0f Wisconsin- Oshkosh, and Kemneth . Wikke, Topeka, Kansas,

First list all three-digit multiples of 17 that do not contain
a repeated digit: 017, 034, 051, ..., 986. \& arbitrarily select a
number from the list for the top row and another with the same initial
digit and no other common digits for the left column. To avoid dupli-
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cation of effort we take the column number greater than the row number.
A systematic search then produced the following arrays:

204 306 425 918
357 782 731 306
816 459 680 527.

The arrays formed by interchanging rows and columns also satisfy our
initial conditions. Since 051 and 085 are actually two-digit numbers,
the first two arrays are eliminated. The second and fourth arrays are
eliminated because they do not contain nine consecutive integers.
Hence the unique solution is the third array (and its transpose). The
others are "near misses.”

Also sofved bg RHONDA L. AULL, Clemson Univensity, SC, VICTOR G.
FESER, Mary College, Bismarck, NU, ROBERT C. GEBHARDT, Hopatcong, NJ,
JIM GOEKE, 83, St. Louis, MO, DAVID INY, Rensselaer Polytechnic Insti-
tue, Troy, NY, RANDY ISTVANEK, Kenosha, WI, TIMOTHY C. KEARNS, Cathar-
pin, VA, ROGER KUEHL, Kansas City, M0, ROBERT G. LOGAN, Middeetown, NJ,
PAUL A. McKLUEEN, Charfotte, NC, LINDA J. MILLER, Hope College, Holland,
MI, NATHAN RUD, St. OLaf§ College Problem Soluing Group, Northfield, MN,
JANE E. STOLARSKI, St. Bonaventunre University, NY, THOMAS F. SWEENEY,
Russefl Sage College, Troy, NY, and the PROPOSER. "Near Miss" sofu-
Lions were found bq KATHLEEN GRECO, Rancho Pafos Verdes, CA, GLEN E.
MILLS, Pensacola Junior College, FL, ELIZABETH A. SWIFT, California
State University, Long Beach, and. THEODORE G. ZAVALES, Rutgers Univenr-
84y, New Brunswick, NJ.

523. [Fall 1982] Proposed by Stanley Rabinowitz, Digital Equip-
ment Cow,, Mearimack, NV Hampshire.

Let ABCD be a parallelogram. Erect directly similar right
triangles 4A2F and FBA outwardly on sides AB and DA (so that angles ADE
and FBA are right angles). Prove that CE and CF are perpendicular.

|. Solution by Leon Bankoff, LoA Angeles, California.

ED/AD = AB/BF + ED/BC = DC/BF. }EDC = #CBF. Therefore AEDC ~
ACBF. (ED 4 BC ADC . FB) ~ EC 1 FC. %,

*Why waste words?

11. Solution by the Proposenr.

% prove a more general result. |f ADE and FBA are directly
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similar triangles and ABCD is a parallelogram, then triangle FCE is
directly similar to triangles ATE and FBA .

Identify vectors in the plane with complex numbers. Let A beat
the origin and l et points B and D be represented by the complex numbers
b and d respectively. Let k be the complex representation of the stretch-
rotation that carried 4D to &. Then & =kd. Then B = b/k and #C =
B+Bb=bk+d AlsoEc=8b+ @ =kd+h Nowk F& =b+kd =L,
so triangle FCE is directly similar to the two given triangles.

Also sofved by EDWARD S. DOLAN, Secaucus, NJ, JACK GARFUNKEL,
Flushing, NY, EMMANUEL, O0.C. IMONITIE, Noathwest Missouri Studs. Univer-
sity, Maryuifle, DAVID INY, Renssefaer Polytechnic Institute, Thog, NY,
ROGER KUEHL, Kansas City, MO, HENRY S. LIEBERMAN, John Hancock Mutual
Life Ins, Co., Boston, MA, BOB PRIELIPP, University of Wisconsin-0Oshkosh,
CHARLES W. TRIGG, San Piege, CA, and the. PROPOSE!? [second solution).
Solutions tO special cases wene submitted by RALPH KING, Saint Bona-
venture Univensity, NY, and QUYEN NGUYEN, Akron University, OH.

524. [Fall 1982] Proposed by Morrnis Katz, Macwahoc, Maine
Solve this holiday alphametric for a real prime XMAS

MERRY
_xs
DODGE
Sotlition by David Iny, Rensselfaer Polytechnic Tmstitute, Troy,
NV Yolk.
V¢ note that D=M *+ 1 and R+ M + (possible ecarry} = 10 + d.
Hence R = 1 and the "possible carry™ is0. Nw Sis 3, 7, or 9, and ¢
isAtZIorA+t2 Using\this information it is easy to eliminate all
pairs (E, ¥) except (8, 7). Two possibilities result: 47118 *+ 6409 =
53527 which is eliminated because 6409 = 13 - 17 * 29, and the unique

solution
57118

3529
60647

Also solved by VICTOR G. FESER, Mary Coflege, Bismarck, ND, JIM
GOEKE, SJ, St. Louwis, MO, RANDY ISTVANEK, Kenosha, WI, ROGER KUEHL,
Kansas City, MO, GLEN E. MILLS, Pensacofa Junion Coflege, FL, St. 0Laf
Problem Solving Group, St. OLaf College, Northgiefd, MN, CHARLES W.
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TRIGG, San Diego, CA, and. the PROPOSR WO ernroneous solutions were
submitted.

526. [Fall 1982] Proposed by Morrnis Katz, Macwahoe, Maine.

Solve this alphametric in base twelve, with apologies to J.A.H.
Hunter.

VUE
EIGHT
PUTTY

Solution by Chartes U. Trigg, San Diego, California.

Represent the " digits" ten and eleven by X and L, respectively,
and the base twelve by B. Immediately we have | = L, =0, E + 1= P,
H+1=7,F+T7=Y+B,and S+ G=T+B. ThenE 29, T2 4, and
T 27 Nw tabulate the possibilities for H, T, E, P, and Y. In each
case, among the unassigned digits there must be two such that S+ G =
T+ B. This is possible in only one case, except for the interchange of
X and 7, shown below:

X08
84745
90551.

ALso solved by MARK EVANS Lowisville, KY, VICTOR G FESER, Mary
College, Bismarck, ND, DAVID INY, Renssefaen Polytechnic Institute, Troy,
NY, ROGER KUEHL, Kansas City, MO, GLEN E. MILLS Pensacola Junion College,
FL, BOB PRIELIPP, University of, Wisconsin-Oshkosh, KENNETH M. WILKE,
Topeka, KS and the FROPOER

527. [Fall 1982] Proposed by Gregorny Wulczyn, Bucknell Univer-
sdity, Lewisburg, Pennsylvania.

Find the volume of the largest rectangular parallelepiped with
upper vertices on the surface and lower vertices on the xy-plane that
can be inscribed in the elliptic paraboloid ‘Z—; + ifzi: 2h = 2a.

Solution by Henry S. Lieberman, John Hancock Mutud. Life Tns. Co.,
Boston, Massachusetts.

The upper vertices of the parallelepiped form a rectangle in-
scribed in an ellipse and with sides parallel to the coordinate axes.
Let (x, y, # ) be the coordinates of the upper vertex in the first
octant. Then the volume of the parallelepiped is V = 4xys. Since we
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have 2 = h - (:chla2 + yz/bz)/z, then

2 2
v=4xy(h-—x—-—ﬂ———2) .

2a2 2b
Then
v < _y_?_ x 5z .’1__2__
— =4ylh - —5 - )+ dxyl - 5 )= 4y(h - — - )
w” VT 2 T gl a 2?2t
and similarly 2 2
éy'~4x(h_§_—_§l_) .

2al 22
Setting these first partials equal to zero we see that the nontrivial
critical points (with neither x nor y equal to zero) derive from

2 2 2 2

Sx it 2 3y~
h="5+ and B s _Z'LZ .

2’ »? 222 2b

Nw subtract three times each equation from the other to solve for &
and y, obtaining

x=% /o and y =25/ .

Since at the two extremes z = 0 and 2z = h we have V=10 and since V is
clearly positive for intermediate values of z, V attains its maimum at
an interior critical point, the point found above. Hence the madimum

volume must be

a b Loh, by okl
Vmax=4xyz=4(—2—/2_h_)(§/2_h)(h-2(2+2))—abh.

ALso sofved by DAVID DELSESTO, No. Scituste, RI, ROBERT C. GEB-
HARDT, Hopatcong, NJ, TMOTHY C. KEARNS, Catharpin, VA, and the PFROFOSR

528. [Fall 1982] Proposed by Alan Wayne, Pasco-Hernando Communi-
ty College, Florida.

In the set of natural triangles--that is, the set of triangles
with side lengths that are integers--consider, for instance, the trio:
(19, 24, 35), (15, 29, 34) and (14, 31, 33). Call this trio a "size
triplet”, because the three triangles have the same perimeter and the
same area. Since the common area is least, this is the smallest size
triplet. Wha is the next larger size triplet?

Solution by David, Iny, Rensselaer Polytechic Inatitute, Thoy,
New Yonrk.

The next larger size tripleis (24, 25, 41), (17, 33, 40), and

(15, 37, 38), found by computer. These first two size triples are of



622

even perimeter and smallest i n terms of perimeter as well. The smallest
size double is (15, 8, 8) and (14, 14, 3), but in terms of perimeter is
(4, 11, 11) and (7, 7, 12).

Furthermore, by a slight modification of Foster and Robins' spolu-
tion to problem E 2872 [The American Mathematieal Monthly, vol. 89, no.
7, August-September 1982, pp. 499-5001, we can construct ten triangles
of equal perimeter and area, (1242700, 830280, 579020), (1246032, 752250,
653718), (1245675, 765765, 640560), (1182675, 1101360, 367965), (1186770,
1093950, 3712801, (1206660, 1047540, 397800). (1219920, 1001130, 430950),
(1233180, 928200, 490620). (1236495, 901680, 5138251, and (1246440,
729300, 676260).

Also solved by the FROFOER

529. [Fall 19821 Proposed by Stanley Rabinowitz, Digitaf Equip-
ment Coap., Mewrnimack, Nan Hampshire.

Sow that there is no "universal field" that contains an isomor-
phic image of every finite field.

SoLution by Tam Moocne, Bridgewater State Coffege, Massachusetts.

I f such a "universal field" existed, then its unity 1 is nonzero
and is the unity element for all the subfields. By assumption there are
subfields of characteristic 2 and 3. Hence we have both 1.+ 1 = 0 and
1+1+1=0, sol= 0, acontradiction.

Also sofved by MICHARL W, ECKER, Pennsyfvania Sitate University,
Wonthington Seranton Campus, and the FROFOSER

530. [Fall 19821 Proposed by Leon Bankoff, Ld Angeles,
California,

In the accompanying diagram, AB (= 2r) is the diameter of circle
(0) and AC /= Zrl) the diameter of circle (01) , D is a point on dia-
meter AC, and the half-chord DQ perpendicuar to AC cuts the circle ¢p1)
at P. The circles (Wl) of radius 0y and (Wz) of radius o, are tangent
to circles (0) and (01) and touch PQon opposite sides. Sow that
py/py = 1,/P0

I. Sofution by Henny S. Lieberman, John Hancock Mutual Life
Ins. Co., Boston, Massachusetts.

For ¢ = 1 and 2 we apply the law of cosines to triangles Wiozo
to get

2 2 2 _
(*) (owi) = mz”i) + (010) 2(01W7:)(010)cos[li010.
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0l¢ 'y

Since the projections of WZ and W2 are at distances ) and Py from D,
we have that

- 0 =
01W2 cos W2010 0 WcosW101 fy + CP

Also 010 = r - T oW, =1 - Pys andOZ\ME:rl‘l'pi, i=1, 2.
Nw subtract equations (*) to get

2 2 _ 2 _ 2 _
(ow,) (OW,)" = (0,W,) (0, 200,0)(p, + py),

_ 2 _ 2 _ 2 _ 2 _ -
(r=p,)" - (r p)" = (r, + 92) (ry + 0q) 2(r = ry) (o, + Py
which reduces to o
2
2rp, = 2r.p whence - =
P1 12 O
11. Solution by the Proposer.
Let dl and d2 denote the distances of W1 and W2 from the radical
axis of circles (0) and {01) (their common tangent at A). Let CB (= 21"2)
be the diameter of the circle (02).
It is known [Casey, Sequel to Euclid, p. 118] that if a variable
circle touches two fixed circles, its radius has a constant ratio to the
perpendicular from its center onto the radical axis. O

-pl = 2— = ———r‘g = PZ = e
dz dz A0, r+r

the eccentricity of the ellipse whose foci are O and 01 and whose major

axisis .402. Then

dz-d2=pl+p2=ed1+ed2, or dl(l-e)=d2(1+e) .

Hence we have
_1+r2/(r+r1) _.r
1-e 1-r2/(r+r1) r,

2

the required result.
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Also sofved by Eric C. Nummela, Nw England Coflege, Henniker,
NH.

531. [Fall 1982] Pnoposed by Robert E, Megginson, University
of TLLinodis.

Prove, without using mathematical induction, that
2:6:10-14..u(dn - 2) = (n +1) (n+2)...(2n).

1. Amalgam of essentially Aimilan sofutions by VICTOR E. BLOOM-
FIELD, Bellevue, Washington, DAVID DELSESTO, No. Scifuate, Rhode I1sfand,
CHARLES R. DIMINNIE, St. Bonaventure Univernsity, NY, MICHAEL W. ECKER,
Pennsylvania Sate. Univensity, Wonthington Scranton Campus, RUSSELL
EULER, Nonthwest Missouri State University, Marnyvifle, JACK GARFUNKEL,
Flushing, New Yonk, ROBERT C. GEBHARDT, Hopatcong, NJ, JOHN M. HOWELL,
Littlerock, California, TIMOTHY C. KEARNS, Catharpin, Vinginia, HENRY
S. LIEBERMAN, John Hancock Mutuaf Life Ins. Co., Boston, MA PETER A.
LINDSTROM, Nonth Lake Cortege, Iaving, TX, QUYEN DINH NGUYEN, University
of Akron, OH, BOB PRIELIPP, Univernsdity of Wisconsin-Oshkosh, HARRY SED-
INGER, SZ%. Bonaventure University, NY, KENNETH M. WILKE, Topeka, KS, and
the PROPOSER.

W have

2 « B - 10 - 14 eeeen (4n - 2)

=(2-4 .6 ... (4n - 2)(4n)) /(4 . 8 - 12 «o-.. (4n))

22" (2m)1/WMnt) = (2n)i/mt = (n ¥ 1)(n + 2)- - (20).

"

11. Solution by Paul A. McKfueen, Charfotte, Noath Canolina.

W have
(nt D+ 2) e () = BOEDEHD) e Gn)
_ (2n)!
T !
_1-2 3 -4 (2n - 1)(2n)
1 2 n
=26 - 10 - 14 ceens (um - 2) .

532. [Fall 1982] Proposed by Mornnis Katz, Macwahoc, Maine, and
Charles W. Trnigg, San Diego, California.

From a square grid of side 17, alternate squares are removed to
form a sieve. Dissect this sieve into fewer than a dozen pieces and
reassemble them into a square of side 15. See problem 49] [Spring 1982,
page 421].

Sofution using 10 pieces by David Iny, Rensselaer Polytechnic
Institute, Trhoy, New Yonrk.

11111J0000000000
121128 9 9 8
1|2 3]al1]2i8 8)9[8 8 8]9]e 8
112137 3]1§2|8[9 9 9]8[9. 9 9]8
1|2| 377 712|8 8)9]8 8 8)9[6 8
112|373]7|2|8[5 9 918[9 9 9]8
1121 3[7 7]2]|8 8]9]8 8 8]9[8 8
112]3 3]7]2|8[9 9 9]8[9 9 9]8
1|2|3]7 7{2|8 8]9[8 8 B]9(8 8
12|13 316]2|8[9 9 9]8[9 9 9]8
1]12|3[8 sl2]8 8]ofg 8 Bl9o[8 8
112)1373]612]8[979 9]8][3 9 9]8
1|2]5 5 5|2|8 8]9[8. 8 8]9[8 8
12§|2|§289998999a
1l122222/888888888
3333333333[77777|55
sT I3 11 131z 17 Q2 15
11111[666J44j22222]|55
t(Ja el 18T ]2 [12 2 18
19991199 9|8 8]2[8 8 8|28 8
1{Jo [1[Ie Cls[J2[8 218
1f9 9 9folo 9 98 8]2{8 &8 8|28 8
1 F:]9 Clo D9 U8 128 218
1{f9 9 9lofo 9 98 8]2[8 &8 8]2[8 8
1o o [J9 (Je ]2 [1e (]2 18
1{9 9 9o 9 918 8]2{8 8 8]2[8 8
1[5 Clo 1o Ll Cle [ 18 L1218
1/ 9 9]0[g 998 8]2[8 8 BJ2[B 8
1Y e e e 12182} I8
199 9lofg 9 9|8 8|28 8 8]2[8 8
1{ ]9 (Mol 9 [ 28 [12]"18
1/9999999|888888888

An eleven-piece sclution was provided by the Proposens.

625



626

533. [Fall 1982) Proposed by D. 0. Fantus, Alexandria,
Vinginia.

It is known that cancelling the sixes in the proper fraction
16/64 yields the equivalent fraction 1/4 in lowest terms (problem E24,
September 1933, The American Mathematical Monthly). Find or characterize
all proper fractions having 3-digit numerators and 3-digit denominators
that reduce to lowest terms by cancelling the same digit from numerator
and denominator.

I. Solution by David Tny, Rensselaen Polytechnic Institute,
Troy, New York.

There are two classes of solutions:

(1) %: %% whereb=a* c=d + e and ae/de is a proper frac-

tion in lowest terms. In this case a factor of 11 is divided out, and
(2) %: ?—; where ab/de is a proper fraction in lowest terms.

Here a factor of 10 is divided out.

TI. Comment by Bob Prielipp, University of Wisconsin-0shkosh.

Here are some references related to this problem:

1. R.P. Boas, "Anomalous Cancellation,” pp. 113-129 of Mathe-
matical Plums, edited by Ross Honsberger. The Mathematical Association
of America, 1979. (Seven additional references to this problem are given
on page 129).

2. Charles W. Trigg, Solution to Problem 434, Mathematics Maga-
zone, 1961, pp. 367-368.

3. Charles W. Trigg, Solution to Problem 365, Pi Mu Epsilon
Journal, 1977, pp. 372-374. [The editor of this department really should
have spotted this one! - ed.]

Also sofved by GLEN E. MILLS, Pensacofa Junion College, FL,
CHARLES W. TRIGG, San Diego, CA, and the PROPOSER. Tnrigg supplied the.
additional. reference:

4. W.E. Buker, Solution to Problem 1317, School Science and
Mathematics, 34 (April 1934), pp. 432-3.

Late. s0fution to ProbLem 518 by DOUGLAS FRIEDMAN, University of
Pennsylvania, Philadefphia. Late sofution t0 ProbLem 520 by JOHN BAILEY,
MiLsaps College, Jackson, MS.

W
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