


VOLUME7 FALL 1983 NUMBER 9 
CONTENTS 

Integration: Why You Can and Wh 
557 

Little Known Computer Languag 

Another Day at the Races 

On the Discrete Lyapunov and Riccati Matrix Equ 

The Fuzzy Plane 
Christopher Roesmer . 

Sum of Powers of 2 
Hao-Nhien Qui V 

n Analysis of Monopoly 

A curios Ratio of K-Stars 
Michael Eisenstei 

. ............... .. .......... 

Puzzle Section 
Joseph D.E Konhauser . . . . . . . . . . . . . . . . . . . . . . . . .  601 

Problem Department 
Clayton W. Dodge.. . . . . . . . . . . . . . . . . . . . . . .  609 



PI MU EPSILON JOURNAL 
THE OFFICIAL PUBLICATION 

OF THE HONORARY MATHEMATICAL FRATERNITY 

David Ballew, Editor 

ASSOCIATE EDITORS 

Roger Opp Clayton Dodge 

Joseph Konhauser 

OFFICERS OF THE FRATERNITY 
President: E. Maurice Beesley, University of Nevada 

President-Elect: Milton Cox, Miami University 

Secretary-Treasurer: R.A. Good, University of Maryland 

Past-President: Richard V. Andree, University of Oklahoma 

COUNCILORS 
David Barnette, University of California, Davis 

Robert Eslinger, Hendrix College 

Eileen L. Poiani, Saint Peter's College 

A.D. Stewart, Prairie View A&M University 

. books for review, problems for solution and solutions to problems, should be 
'ectfy to the special editors found in this issue under the various sections. Editorial 
-"-ec including manuscripts (two copies) and news items should be mailed to THE 
3 -E Pi MU EPSILON JOURNAL. South Dakota School of Mines and Technology. 

For manuscripts, authors are requested to identify themselves as to their 
are undergraduates or graduates, and the college or university they are 
position if they are faculty members or in a non-academic profession. 

published at the South Dakota School of Mines and Technology 
One volume consists of five years (10 issues) beginning with the 
tarting in 1949. For rates, see inside back cover. 

INTEGRATION: WHY YOU CAN AND WHY YOU CAN'T 

by ?tick W a n d a  
Cotonado S-tott U n i v m U y  

A t  most co l leges  and u n i v e r s i t i e s ,  a l a r g e  p a r t  of t h e  second 

semester of ca lcu lus  i s  devoted t o  t h e  arcane subject  commonly known 

a s  "techniques of integrat ion" .  The b a s i c  problem i s  t o  f i n d  a closed- 

form expression f o r  where f(x) i s  a s p e c i f i c  funct ion of  t h e  

var iab le  x. Typically, t h e  following methods a r e  discussed: 

- 'forward' s u b s t i t u t i o n s  x = g(u)  

- 'backward' s u b s t i t u t i o n s  u = h(x)  

- in tegra t ion  by p a r t s  

- the  use of  exponentials and logarithms 

- trigonometric s u b s t i t u t i o n s  

- inverse hyperbolic t r i g  funct ions 

- powers of s i n e s  and cosines 

- i n t e g r a l s  with quadrat ics  

- p a r t i a l  f r a c t i o n  decompositions. 

There a r e  two l o g i c a l  reac t ions  t o  t h i s  sub jec t :  

a )  There is too  much mater ia l  here.  

b )  There i s  not enough mater ia l  here. 

For anyone who has taken o r  taught  t h i s  course, ( a )  hardly needs 

explanation. F i r s t l y ,  the  mastery of  a l l  these  techniques requ i res  

q u i t e  a b i t  of r o t e  memorization of b a s i c  i n t e g r a l s ,  e spec ia l ly  f o r  t h e  

average s tudent .  Secondly, when faced with an in tegra t ion  problem, the  

'menu' of possible  techniques t o  t r y  t o  apply is l a r g e  enough t o  make 

t h e  decis ion process f a i r l y  complicated. Final ly,  with extensive t a b l e s  

and ( l a t e l y )  computer programs which i n t e g r a t e  a l l  funct ions encountered 

i n  t h i s  course, t h e  motivation t o  delve i n t o  t h i s  subject  with one's 

s leeves r o l l e d  up i s  na tura l ly  diminished, and t h i s  i s  made worse by 

the  amount there  seem t o  be t o  know. 

Have you ever  heard ( b )  from a s tudent  of t h i s  sub jec t?  Well, 



now you have, and l e t  me explain why. After  a good s o l i d  course on t h e  

techniques of  in tegra t ion ,  including a thorough discussion o f  t h e  top ics  

l i s t e d  above, I could wel l  come away with t h e  following broad c l a s s i -  

f i c a t i o n  of  i n t e g r a l s :  

i )  The i n t e g r a l s  which I can f ind .  

i i )  The i n t e g r a l s  which I cannot f ind .  

Statement ( b )  is  one r e a c t i o n  t o  t h e  exis tence of t h e  second c l a s s .  

Most of  t h e  i n t e g r a l s  encountered i n  t h e  course a r e  of  type ( i )  

(o r  should be, by t h e  end o f  t h e  semester).  A s tudent ,  i n  f a c t ,  may 

never see an i n t e g r a l  of type ( i i ) ,  and may conclude t h a t  a l l  i n t e g r a l s  

a r e  of  type ( i ) ,  f o r  t h e  appropriate  choice of "I"; s ince  he ( o r  she)  

knows i n  h i s  gu t  t h a t  he c a n ' t  possibly solve a l l  in tegra t ion  problems, 

t h e  conclusion is t h a t  he is t h e  appropriate  choice f o r  "I", and 

t h a t  t h e  sub jec t  i s  much t o o  complicated f o r  mere mortals  t o  th ink  

about. 

I f  a n  i n t e g r a l  of type ( i i )  is seen i n  t h i s  course, it is usua l ly  

i n  one o f  t h e  " s e t  up bu t  do not  evaluate  t h e  i n t e g r a l  which computes ..." 
problems on a n  exam; when going over t h e  quest ions on t h e  next day, t h e  

teacher  nay make a remark t o  t h e  e f f e c t  t h a t  "we c a n ' t  f i n d  t h i s  i n t e-  

g r a l  ..." and t h e  sub jec t  i s  embarrassingly dropped. Generally, no 

attempt is  made t o  explain why some i n t e g r a l s  can be found and some 

c a n ' t ,  and we're back t o  reac t ion  ( b )  (on a s l i g h t l y  d i f f e r e n t  l e v e l ) :  

There is something missing here.  

In  t h i s  a r t i c l e  I ' d  l i k e  t o  d i scuss  why t h e r e  a r e  i n t e g r a l s  of  

types ( i )  and ( i i ) ,  and t r y  t o  explain t h e  f a s c i n a t i n g  r e l a t i o n s h i p  be- 

tween t h i s  apparent ly a n a l y t i c  sub jec t  and t h e  much more geometric sub- 

j e c t  of  a lgebra ic  plane curves. 

Let me begin by s t a t i n g  a theorem. 

The0i~.  Let R f t )  be a r a t i o n a l  funct ion of t h e  var iab le  t ,  i - e . ,  

t) is  the  r a t i o  of two polynomials. Then 

lurse,  a c t u a l l y  f inding a closed-form expression f o r  it in-  

r i n g  polynomials and solving l i n e a r  equat ions,  and is a 

task i n  i t s e l f  -- but I won't address these  problems here.) 

I n  my view, it is not  u n f a i r  t o  say t h a t ,  even given t h e  m-iss of 

mater ia l  devoted t o  in tegra t ion  techniques, t h i s  is t h e  a t r u e  theo- 

rem i n  t h i s  course; t h e  o ther  t o p i c s  covered a r e  r e a l l y  j u s t  methods t o  

use a s  t h e  occasion a r i s e s .  This being t h e  case ,  one would think t h a t  

t h i s  would be t h e  f o c a l  point  of  t h i s  course.  However, it is  hardly 

ever  s t a t e d  e x p l i c i t l y ,  and of ten  t h e  d e t a i l s  of  t h e  process of  p a r t i a l  

f r a c t i o n s  (which i s  t h e  proof o f  t h i s  theorem) is given much more weight 

than t h e  simple and obviously powerful statement i t s e l f .  This i s  under- 

standable,  s ince  car ry ing  out t h e  p a r t i a l  f r a c t i o n  decomposition is  a 

complicated and cumbersome t a s k ,  even i n  f a i r l y  simple s i t u a t i o n s ,  and 

requi res  some a t t e n t i o n .  However, I th ink  it is  a mistake not  t o  r i s e  

above t h e  f r a y  and dr ive  t h e  point  home t h a t  here is a l a r g e  and common 

c l a s s  of funct ions which a r e  a l l  "of type ( i ) "  -- I can i n t e g r a t e  them! 

I f  you gran t  t h a t  t h i s  is t h e  'only'  theorem of t h i s  type, then 

your mind should n a t u r a l l y  t u r n  t o  t h e  following: can o ther  i n t e g r a l s  

be brought t o  t h i s  form by c lever  s u b s t i t u t i o n s ,  and can t h i s  theorem 

there fore  achieve a wider scope of  app l ica t ion?  The well-known answer 

t o  t h i s  question is: Sometimes, i f  you g e t  lucky. 

E x .  In tegra te  /+ + x2 dc . 
Solution. Subs t i tu te  x = . 

2 t  . Then 1  + x2 =(( ,  ( 1  - + t2) Jand 

( 1  - t2) 

2  4  
( s o  t h e  above i n t e g r a l  transforms t o  

2 + 4 t  t 2 t  
dc = at, 

( 1  - t2P 
and t h e  theorem appl ies .  

This seemed p r e t t y  lucky. What i f  I t r y  

case I ' m  s tuck f o r  a c lever  s u b s t i t u t i o n .  What i s  going on here? I n  

order  t o  f i x  our a t t e n t i o n  on a c e r t a i n  general  c l a s s  of funct ions,  

consider  t h e  following. 

Ve6inLtion. A funct ion y  = y (x )  is  a l g e b r a i c a l l y  dependent on .1- 

i f  t h e r e  is a polynomial f f x  ,x ) i n  two v a r i a b l e s ,  such t h a t  f f x , y f x ) )  1 2  
i s  i d e n t i c a l l y  

2 
Examptu . y = 'fx f f f x  ,x ) = x1  - x 2 )  1 2  



3 The i n t e g r a l s  f l l  + x2 &, j\̂  + X &, e t c . ,  a r e  examples of  i n t e -  

g r a l s  which involve funct ions of x  which a r e  a lgebra ica l ly  dependent on 

x ,  and t h i s  is  t h e  c l a s s  of  funct ions which I want t o  focus on. Our 

general  problem can be formulated a s  follows. 

The GenvwJL P/iob-ton 0 4  In^eg/io-tlon o(1 Atge.blcu.c Funatiov^. 

Let R(xl ,  x  ) be a r a t i o n a l  funct ion of  two var iab les .  2 

Let y  = y ( x )  be a l g e b r a i c a l l y  dependent on x .  

y  ( x )  ) dx be found? 

The answer i s  again: sometimes. But it doesn ' t  have anything t o  do 

with luck.  L e t ' s  t r y  t o  think about t h i s  systematical ly .  If y  = y ( x )  

is a lgebra ica l ly  dependent on x ,  then t h e r e  i s  t h i s  polynomial f (x1 ,x2 )  

such t h a t  f ( x ,  y )  = 0 .  Now t h e  equation f ( x  x  ) = 0 defines a so- 1' 2  
c a l l e d  " algebraic  curve" i n  t h e  ( x  , x  )-plane, and (x ,  y ( x ) )  always 1 2  
l i e s  on t h i s  curve. The proper t i es  of  t h i s  curve should there fore  be 

important i n  studying y ( x )  . Central  f o r  us is  t h e  following property. 

Ve6imAt.on. Let f ( x  x  ) be a polynomial i n  two var iab les .  The 
1' 2  

curve C = { ( x  , x  ) \ f (x1 ,x2 )  = 01 is r a t i o n a l l y  parametrized i f  t h e r e  1 2  
a r e  r a t i o n a l  funct ions x  = x l ( t ) ,  x2 = x  ( t ) ,  such t h a t  f ( x l ( t ) ,  x 2 ( t ) )  1  2  
is i d e n t i c a l l y  zero a s  a funct ion of  t .  

In  t h i s  case t h e  point  ( x  ( t ) ,  x  f t ) )  w i l l  l i e  on t h e  curve C f o r  1  2  
a l l  values of  t .  Let ' s  look a t  any easy example. 

2  2  E m .  Let f ( x  , x  ) = x1 + x2 - 1, s o  t h a t  t h e  curve C is the  1 2  
.7 

(1  - t " )  
uni t  c i r c l e .  Then C is r a t i o n a l l y  parametrized by x l ( t )  = -.-, 

( 1  + t 2 )  
2 t  . (Check t h i s ! )  This is not magic. Note t h a t  t h e  

( 1  + t 2 )  

point  P  = (-1,O) i s  on C .  Let L be the  l i n e  through P  with slope t ;  t 
an equation f o r  Lt i s  x2 = t ( x l  + 1 ) .  For any t ,  t h i s  l i n e  Lt w i l l  in-  

t e r s e c t  t h e  c i r c l e  C i n  two po in t s ,  one of which is ,  of  course, P .  Cal l  

t h e  o ther  po 

,g iv ing  t h e  e x p l i c i t  parametrization above. 

The importance o f  a r a t i o n a l  parametr izat ion f o r  t h e  curve C is 

demonstrated by t h e  following. 

Thexifiem. Let R(x x  ) be a r a t i o n a l  funct ion of two var iab les  and 1' 2  
l e t  y  = y ( x )  be a lgebra ica l ly  dependent on x ,  with f ( x ,  y ( x ) )  iden t ic-  

a l l y  zero. Assume t h a t  the  curve C = { ( x  x  ) \ f (x1 ,x2 )  = 0 )  caq be 1' 2  
r a t i o n a l l y  parametrized. Then h ( x ,  y ( x ) ) &  can be found. 

Proof .  Let x  = x l ( t ) ,  x2 = x 2 ( t )  be the  parametr izat ion of C. 

Note t h a t  x  = x  ( t ) ,  y  = x  ( t )  i n  t h i s  case;  make t h i s  s u b s t i t u t i o n  
1  2  

i n t o  t h e  i n t e g r a l .  One g e t s  / R ( x ( t ) ,  X 2 ( t ) ) ( 2 ) d t ,  which has a 

r a t i o n a l  integrand.  We can now apply t h e  theorem. 

The above proposi t ion seems t o  be cons t ruc t ive ,  too;  t h e  only 

h i tch  is i n  parametrizing t h e  curve C. In  p a r t i c u l a r ,  t h e  immediate 

question is: Which curves C can be r a t i o n a l l y  parametrized, and how? 

I f  f ( x  , x  ) = a? + bx2 Â c, s o  t h a t  the  degree of  f  i s  one and C is  a 1 2  
l i n e ,  then c l e a r l y  C may be r a t i o n a l l y  parametrized; xl = b t  + z l ,  

x2 - a t  + an, where ( z l , ~ )  is any po in t  on C. In t h i s  case y ( x )  = 

a  b  
x  ( x  ) = - (-)x - (Ã‘ is  a l i n e a r  funct ion of x  and any r a t i o n a l  expres- 2 1  

s i o n  i n  x  and y  can be immediately reduced t o  a r a t i o n a l  funct ion of  x  

alone,  so  t h e  above process is not t o o  enl ightening.  

Fortunately,  the re  is  one o ther  l a rge  c l a s s  of  curves which can 

be parametrized. 

T ' t ~ p ~ i L b L o n .  Any conic C ( i . e . ,  defined by f ( x  1' x  2  ) = 0 where 

f (x1 ,x2 )  is of degree 2 )  can be r a t i o n a l l y  parametrized. 

Proof .  Let me presen t  two proofs  of t h i s  s ta tement ,  one a lgebra ic  

and one geometric i n  s p i r i t .  The f i r s t  s t e p  of  t h e  a lgebra ic  proof i s  

t o  change coordinates  from ( x  , x  ) t o  ( x , y )  s o  t h a t  f ( x  , x  ) becomes 1 2  1 2  

x  2  2  
g(x ,  y )  = - J- - 1  the "standard form" f o r  a conic.  This is  a 

a 

a
2  

b
2  

l i n e a r  change of coordinates ,  s o  t h a t  i f  we can parametrize g ( x , y )  = 0 

by r a t i o n a l  funct ions,  we w i l l  be ab le  t o  t ranspor t  t h i s  parametr izat ion 



to ffx1,x2). The second step is to explicitly parametrize the standard 

conic g(x, y) = 0. Here is one way. 

2 2 2  
z =  a k F a  2 2 2 3  t 

Y = =  2ab2t 

b k a t  b ka t 

A more geometric proof is afforded by following the hint of the circle 

example. Pick any point P on the conic C. Parametrize the lines 

through P by their slopes: if P = (xo,yo), let Lt be the line y - y = 
0 

t(x - x ) through P with slope t. Now intersect L with the conic C; 
0 t 

one will get two points, one of which is P, the other is P = (x(t), t 
y(t)); it is not hard to see that x(t) and y(t) are rational parametri- 

zation~ of the conic C. 

Q.E.D. 

Note that in the above argument, one might want to use a vertical 

line sometimes where the slope "is infinity". This leads naturally into 

some elementary concepts of projective geometry, which I do not wish to 

discuss at this time. 

As promised by our theorem, a proposition about parametrizing 

curves should give us a nice application to integrals. Here's the re- 

sult for conics restated for this purpose: 

Coto&khg. For any numbers a, b and a, the integral 

can be found (where R(x ,x ) is a rational expression in two variables). 
1 2  

Proof. If y =b2 + bx + a, then y is algebraically dependent on 

x; ffx,y) = y 2  - ax2 - bx - a is identically zero. Since f(x,y) has 

degree 2, the curve f(x ,x ) = 0 defines a conic, and therefore may be 
1 2  

rationally parametrized. Now the theorem applies. 

Q.E.D. 

In our course on techniques of integration, a lot of time is spent 

developing methods for handling integrals involving + bx + c, but 
the general result above is very rarely brought out into the open -- I 
think it should be. 

As long as we're here... 

Parametrizing conics has been fun for millenia. Let 

our parametrization of the circle 

2 
= 1?-- I /  = - 2 t 
1 + t 2 '  1 + t 2  

Note that if t is a rational number, then x and y will both be rational 
u numbers also. So what? Well, write t = --, with u and v integers. Then, v 

clearing denominators, we see that 

and x 2 

words, 

2 2 2  + y 2  = 1 means that (v2 - u2)' + ( 2 u ~ ) ~  = fu + v ) . In other 
2 2 2 2 

(v - u , Zuv, u + u ) is a Pythagorean triple. Moreover, it is 

an elementary theorem from number theory that all Pythagorean triples 

come this way. This very geometric approach to number theory was pio- 

neered by the Greek Diophantus, and has been refined into some amazing 

results relating the geometry of solutions to equations and the number 

theory which naturally arises. 

But back to integration. Recall the following magic trick for 

integrating an expression involving sin8 and cos6 : make the substitu- 

tion 6 = Zarctanft). Why does this work? A little trigonometry and 

differentiation formulas (including the dreaded half-angle formulas) 

will produce 

and so this substitution replaces the trigonometric integrand with a 

rational integrand, and now we use the theorem. From our vantage point, 

this amazing and ad hoc substitution, which at first glance works "be- 

cause it works", is seen as exactly substituting the rational parametri- 

zation of the circle which we've become quite familiar with for the 

trigonometric parametrization x = cos 9, y = sin 6. Hence we have the 

following (without any magic!): 

CokoUMy. If R(x 1 2  ,x ) is a rational expression in two variables, 

then / ~ ~ ~ ~ 6 ,  sin6)d8 can be found. 



Recall the hyperbolic functions sinhCx) and cosh(x), so called 
2 2 because they give a parametrization of the hyperbola x - x2 = 1; 

2 2 cosh (x) - sinh fx) = 1 for any x , so (cosh(x) , sinhfx)) always 

lies on the unit hyperbola. We now know that the unit hyperbola can 

also be rationally parametrized by 

Our main theorem now yields the following immediately. 

CcJh~Uafl-y. If R(x ,X ) is any rational expression in two vari 
1 2  

ables, then /~(coshfx) , sinh(x))dx can be found. 
J 

(Using the chain rule it is easy to see that dc = --% using the 
above substitutions for cosh(d and sinhfx).) 1 - t  

This just about exhausts the applications of the existence of 

rational parametrizations for conics to the theory of integration. Can 

we proceed to higher degree curves? Well, there curves which are 

not conics, but which can still be rationally parametrized: 

E x .  y = sfiq satisfies f(x,y) = yq - sf E 0. This is para- 

metrized by x = tq, y = if. Hence, 

CcJh~-!.hh~. fi(x,giq)dx can be found, where R(x x ) is any 
1' 2 

rational expression in two variables. 

2 2 E ~ m p & .  The lemniscate ffz,y) = fx + y2)2 - (x - y2~: 0 (draw -- 
this!) has a rational parametrization 

To find this, one intersects the lemniscate C with a circle C centered 
t 

at ft, -t) of radius 42t, so that 0_ = (0, 0) is on C .  In fact, COCt 

consist of gand one other point Pt, which has the above coordinates. 

The above example looks like I'm just showing off -- maybe that's 
right. Finding parametrizations for plane curves is not easy, and in 

fact most curves u(x,y) = 0) EOJ ke rationally parametrized! One 

example is y2 - x3 - 1 = 0, which defines the algebraic function y = 

you might try to prove that y2 - x3 - 1  = 0 can't be rationally para- 

metrized. 1 One corollary of our discussion, then, is that14 
- -3 1 t x d x  

can't be expected to be found with our present techniques. In general, 

the integrals involving the square root of a cubic polynomial inx are 

classically called elliptic (they arise in computing various quantities 

associated to an ellipse, e-g., arclength, etc.) and can't be solved in 

closed form using elementary functions. Now we know why: behind the 

whole problem lies an unparametrizable curve! 

The problem of parametrizing curves actually led to the invention 

of topology. Assume {ffx,y) = 0) is parametrized. This gives a nice 

continuous function from {t-space} to {solutions to f(x,y) = 01, send- 

ing a typical t to fxft),y(t)). There's nothing in all of the above 

discussion which says that t can't be a complex number instead of just 

a real number; after all, we went "backward" to rational t's for a 

number-theoretic application -- why not go "forward" to complex t's? 
Recall that {complex t-space} is a 2-sphere, if you add the point at - 
(which, again, we saw earlier was not unreasonable). So the above para- 

metrization can be viewed as a nice continuous function from the 2-sphere 

to complex- solutions (x, y) to ffx,y) = 0. Therefore, intuitively, these 

complex solutions better look pretty much like a sphere. However, in 

lots of examples, this solutions set doesn't look anything like a sphere. 
3 For example, the complex solutions to y2 = 1 + x made up, topologically, 

a torus. So there seems to be a real topological obstruction here to - 
parametrizing this curve, and the attempt to understand this phenomenon 

led to the development of modern topology. 

It turns out that the general curve of degree at least 3 (i.e., 

ffx,y) has degree >. 3) cannot be rationally parametrized; however, there 
are special curves which can be, as the examples above illustrate. The 

general problem of the existence of rational parametrizations of plane 

curves ultimately led to the flowering: of the field of algebraic geome- 

try, and is quite complicated. 

Have we then simply substituted one field of ignorance for another? 

No, not really. I think we have isolated the essential problem, which 

is one of parametrization, not integration, and along the way elucidated 

many of the standard results of integration theory, all in terms of one 

basic idea. This kind of overview can only benefit any student of this 

subject, can put into its proper perspective the more mundane aspects 



of t h e  techniques of in tegra t ion ,  and hopefully motivate both s tudent  

and teacher  with a broader p i c t u r e  of t h e  f i e l d ,  

One l a s t  highly b e n e f i c i a l  s i d e  e f f e c t  t o  t h i s  approach is  t h a t ,  

on t h e  horizon of  t h i s  sub jec t ,  which seems t o  some, a t  first glance, 

t o  be a "dead end" mathematically, we see  t h e  following t o p i c s  r i s i n g  

t a n t a l i z i n g l y  out  of  t h e  mist: 

- t h e  theory of conics 

- number theory,  and diophantine equations 

- topology 

- complex var iab les  

- higher  a n a l y s i s  

- a lgebra ic  geometry. 

This is  a l a r g e  p a r t  of modern mathematics! Do a l l  hard problems ( l i k e  

why I c a n ' t  i n t e g r a t e  everything)  l e a d  t o  such unexpected, d iverse  

a reas?  I don' t  know, but  even one example is an occasion f o r  celebra-  

t i o n  by a lover  of mathematics. 
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LITTLE KNOWN COMPUTER LANGUAGES 

Au-tfioh Unknown 

PASCAL, FORTRAN, COBOL -- these  programming languages a r e  well  known and 

{more o r  l e s s }  wel l  loved throughout t h e  computer industry.  There a r e  

numerous o t h e r  languages, however, t h a t  a r e  l e s s  well  known y e t  still 

have ardent  devotees. In  f a c t ,  these  l i t t l e  known languages general ly  

have t h e  most f a n a t i c  admirers. For those who wish t o  know more about 

these  obscure languages -- and why they a r e  obscure -- we presen t  t h e  

following catalog:  

--SIMPLE--SIMPLE is an acronym f o r  Sheer I d i o t s  Monopurpose Programming 

Linguis t i c  Environment. This language, developed a t  t h e  Hanover College 

f o r  Technological Mis f i t s ,  was designed t o  make it impossible t o  w r i t e  

code with e r r o r s  i n  it. The s tatements  a re .  the re fore ,  confined t o  

BEGIN, END and STOP. No matter  how you arrange the  s tatements ,  you c a n ' t  

make a syntax e r r o r .  

--SLOBOL--- SLOBOL is b e s t  known f o r  t h e  speed, o r  lack of  it. Although 

many compilers allow you t o  t ake  a cof fee  break while they compile, 

COBOL compilers allow you t o  t r a v e l  t o  Bolivia t o  pick t h e  coffee.  

Three o r  four  programmers a r e  known t o  have died o f  boredom s i t t i n g  a t  

t h e i r  terminals  while wait ing f o r  a SLOBOL program t o  compile. Weary 

SLOBOL programmers t r y  t o  re tu rn  t o  a r e l a t e d  {but i n f i n i t e l y  f a s t e r }  

language, COCAINE. 

--VALGOL--- From its modest beginnings i n  Southern Cal i fo rn ia ' s  San 

Fernando Valley, VALGOL is  enjoying a dramatic surge of  popular i ty  

ac ross  t h e  industry.  

VALGOL commands include REALLY- LIKE, WELL AND Y'NOW. Variables a r e  

assigned with t h e  =LIKE and "TOTALLY operators .  Other operators  include 

t h e  "California  Booleans," FERSURE and NOWAY. Repeti t ions o f  code a r e  



handled i n  FERSURE loops. Here is  a sample VALGOL program. 

LIKEiY'NOW {INEAN} START 
I F  
A = LIKE BITCHEN AND 
B = LIKE TUBULAR AND 
C = LIKE GRODY**N4 
{FERSURE}**Z 
THEN 
FOR I = LIKE 1 TO OH MAYBE 100 
DO WAH + {DITTY**Z} 
BARF {I}  = TOTALLY GROSS{OUT} 
SURE 
LIKE BAG THIS PROGRAM 
REALLY 
LIKE TOTALLY {Y'NOW} 

VALGOL character ized by its unfriendly e r r o r  messages. For example, 

when t h e  user  makes a syntax e r r o r ,  t h e  i n t e r p r e t e r  d i sp lays  t h e  message 

GAG HE WITH A SPOON! 

--LAIDBACK---Historically, VALGOL is a der iva t ive  of  LAIDBACK, which was 

developed a t  t h e  {now defunct} Marin County Center f o r  T 'a i  Chi, Mellow- 

ness and Computer Programming, a s  an a l t e r n a t i v e  t o  t h e  more in tense  

atmosphere i n  nearby S i l i con  Valley. 

The Center was i d e a l  f o r  programmers who l i k e d  t o  soak i n  hot  tubs while 

they worked. Unfortunately, few programmers could survive there  f o r  

long, s ince  t h e  Center outlawed pizza and RC Cola i n  favor  of  bean curd 

and Per r ie r .  

Many mourn t h e  demise of LAIDBACK because of its reputa t ion  a s  a gen t le  

and nonthreatening language. For example, LAIDBACK responded t o  syntax 

e r r o r s  with t h e  message: SORRY NAN- I CAN'T DEAL BEHIND THAT. 

-- SARTRE---Named a f t e r  t h e  l a t e  e x i s t e n t i a l  philosopher, SARTRE is an 

extremely uns tmctured  language. Statements i n  SARTRE have no purpose, 

they j u s t  a re .  Thus, SARTRE programs a r e  l e f t  to  define t h e i r  own 

funct ions.  SARTRE programmers tend t o  be boring and depressed and a r e  

no fun a t  p a r t i e s .  

--FIFTH---FIFTH is a p rec i s ion  mathematical language i n  which t h e  data  

types r e f p r  t o  quant i ty .  The data  types range from CCi DUNCE- SHOT and 

JIGGER t o  FIFTH {hence t h e  name of t h e  language}, LITER- MAGNUM and 

BLOTTO. Commands r e f e r  t o  ingred ien ts  such a s  CHABLIS- CHARDONNAY- 

CABERNET- G I N i  VERNOUTHi VODKA, SCOTCH and WHATEVERSAROUND- 

The many versions of  t h e  FIFTH language r e f l e c t  t h e  sophis t i ca t ion -and  

f i n a n c i a l  s t a t u s  o f  i ts users .  Commands i n  t h e  ELITE d i a l e c t  include 

VSOR and LAFITE, while commands i n  the  GUTTER d i a l e c t  include HOOTCH 

and RIPPLE. The l a t t e r  is a f a v o r i t e  o f  f r u s t r a t e d  FORTH programmers 

who end up using t h i s  language. 

--c--- This language was named f o r  t h e  grade received by i ts c r e a t o r  when 

he submitted it a s  a c l a s s  p ro jec t  i n  a graduate programming c l a s s .  C- 

is  b e s t  described a s  a "low leve l"  programming language. In f a c t ,  t h e  

language general ly  requ i res  more C-statements than machine-code s t a t e -  

ments t o  exerc i se  a given task .  In t h i s  respec t ,  it is  very s i m i l a r  

t o  COBOL- 

--LITHP---This otherwise unremarkable language is dis t inguished by t h e  

absence of an "S" i n  i t s  charac te r  s e t .  Programmers and users  must 

s u b s t i t u t e  "TH". LITHP is sa id  t o  be usefu l  i n  prothething l i t h t t h .  

--DOGOÃ‘Ã‘Develop a t  t h e  Massachusetts I n s t i t u t e  of  Obedience Training, 

DOG0 heralds  a new e r a  of  computer- l i terate  pe t s .  DOG0 commands in r lude  

SIT, STAY, HEEL and ROLL OVER. An innovative f e a t u r e  o f  DOG0 is "p~ppy  

graphics," a small cocker span ie l  t h a t  occasional ly leaves a deposi t  a s  

he t r a v e l s  ac ross  t h e  screen. 

--FOCUSALL---a language d e s i g n ~ d  t o  run on small DEC machines with 

minimal memory. I t s  only supported d i s t r i b u t i o n  is paper t ape ,  f o r  

loading i n  from an ASR-33 te le type .  This takes 20 minutes, a f t e r  which 

t h e  user is greeted with t h e  message: 

CONGRATULATIONS! YOU HAVE JUST LOADED FOCUSALL! 

The i n t e r p r e t e r  is then ready t o  accept any va l id  command. Th- only 

va l id  command is :  

LOAD FOCUSALL 

which causes the  system t o  once again load t h e   interpret^^- from paper 
tape.  



The power o f  t h e  language comes f r o m  t h e  f a c t  t h a t  preceding a command 

with a statement l i n e  causes it t o  be s t o r e d  a s  a program l i n e  f o r  l a t e r  

execution a s  i n  t h e  following example: 

100 LOAD FOCUSALL 
110 LOAD FOCUSALL 
150 LOAD FOCUSALL 

The pronunciation o f  t h e  name is much more f l e x i b l e  than t h e  language 

i t s e l f .  You pronounce it according t o  your mood. Actually, t h e  name 

came f r o m  a combination o f  DEC FOCAL, a PDPB DELIGHT, and t h e  h a b i t  we 

Optics Lab types  i n  days o f  yore had o f  r e f e r r i n g  t o  a l e a d  engineer 

a s  "Focus Man" {should be  "Focus Person"".}. Somebody would then chime 

out :  "and h e ' s  gonna focus every chance he gets!" 

-PINBOL---PINBOL is b e s t  known f o r  t h e  chance involved i n  making its 

program run. Three t r i e s  a t  running a r e  allowed, a f t e r  which t h e  

message "GAIIE OVER- INSERT QUARTER AND TRY AGAIN" is displayed. 

Some allowable PINBOL i n s t r u c t i o n s  and t h e i r  meanings are:  

LEFT FLIPPER I1 l o g i c a l  Lef t  Shi f t  
RIGHT FLIPPER I l l o g i c a l  Right S h i f t  
SHOOT Try to Run 

PINBOL is known t o  be extremely addict ive.  Those who a r e  f luen t  PINBOL 

programmers a r e  known a s  PINBOL WIZARDS. 

--FASTBOL---commonly known a s  a QUICKIE. Er ror  messages include: 

"COIIPUTUS INTERRUPTUS-" A c lose ly  r e l a t e d  language is NOONER- 

--GERITOL---This language is character ized by t h e  h a b i t s  o f  i ts  ardent  

users. Ins t ruc t ions  f requent ly  f o r g e t  t h e i r  funct ion while executing 

and conclude with t h e  "I USED TO KNOW THATn condit ion code. Loops tend 

t o  repea t  f requent ly a t  sporadic i n t e r v a l s ,  even when not  in f la ted .  

ANOTHER DAY AT THE RACES 

I n  preparing a presentat ion o f  "A Day a t  t h e  Races" by William 

Tomcsanyi (Pi Mu. Epsilon JowmZ, Spring 1982) f o r  our  chapter  o f  P i  Mu 

Epsilon, West Virginia  Alpha, I came across  a s impl i f i ca t ion  of  t h e  pro- 

cedure which reduces t h e  ca lcu la t ions  i n  M r .  Tomcsanyi's a r t i c l e .  

The impetus f o r  t h i s  s impl i f i ca t ion  was M r .  Tomcsanyi's attempt t o  

solve a n  8 x 8 matrix represent ing every horse i n  an eight-horse race ,  

which if successful  would have shown t h a t  it is possible  t o  b e t  on every 

horse i n  a given r a c e  and come ou t  ahead no matter  which one wins. H i s  

example produced negat ive r e s u l t s ,  ind ica t ing  no so lu t ion ,  b u t  he s t a t e d ,  

"There probably does e x i s t  some combination of  odds t h a t  would somehow 

y i e l d  p o s i t i v e  r e s u l t s  t o  t h e  e i g h t  equations." 

I n  f a c t ,  t h i s  conjecture is not  t rue .  To prove t h a t  it is  not ,  

two important r e l a t i o n s  a r e  used: 

I )  The SUB of  t h e  b e t s  placed on each of  t h e  horses is  constant  

throughout t h e  problem: 

x  + x , + .  . . + x g = S .  1 

11)  The sum o f  t h e  f r a c t i o n s  o f  t h e  t o t a l  pot  b e t  on each horse 

as computed from t h e  odds is g r e a t e r  than one. 

The second o f  these  occurs because t h e  t r a c k  and t h e  s t a t e  t a k e  a por t ion  

of  t h e  t o t a l  amount b e t ,  l eav ing  l e s s  than 100% f o r  t h e  winner's pool. 

Typically, t h e  winners' pool would be about 

80% of t h e  t o t a l ,  but  t o  be a s  general  as 

possible ,  l e t  us  say t h a t  t h e  t o t a l  be t  by 

everyone a t  t h e  t r a c k  i s  B and t h e  winners' 

pool is US, where k < 1.00. P i c t o r i a l l y ,  

t h e  winners' pool would look l i k e  t h i s :  

Track's percentage 

Winners ' 
pool 

Now, t h e  odds on each horse a r e  computed based on t h e  amount b e t  

on t h a t  horse compared t o  t h e  t o t a l  winners' pool. I f  t h e  odds a r e  a 

t o  1, then a = (kB - h)/h, where h is t h e  t o t a l  amount b e t  on t h a t  horse,  



or  ( a  + 1)  = KB / h . I n  an idea l  race,  where t he  winners' pool were 100% 

of t he  amount bet ,  we would have (a  + 1 )  = B / h, or  I/ ( a  + 1 )  = h/ B ,  

the f rac t ion  of the t o t a l  which was bet on t h i s  horse. Here, though, we 

have 1 / (a + 1)  = h /kB, and the  sum of t he  eight  f rac t ions  i s  greater  

than one: 

Let us now go back t o  the  8 x 8 system used by M r .  Tomcsanyi, 

l e t t i n g  ai = the  odds on horse i and P = the desired p r o f i t ,  a s  before, 

but changing x.  t o  the  t o t a l  dol la r  amount t o  be bet  on horse i, instead 

of the  number of $2. bets .  The revised matrix i s  a s  follows: 

a -1 -1 -1 -1 -1 -1 -1 
1 
-1 a2 -1 -1 -1 -1 -1 -1 

-1 -1 a -1 -1 -1 -1 -1 
3 

-1 -1 -1 a,, -1 -1 -1 -1 

-1 -1 -1 -1 a5 -1 -1 -1 

-1 -1 -1 -1 -1 a -1 -1 
6 

-1 -1 -1 -1 -1 -1 a7 -1 

-1 -1 -1 -1 -1 -1 -1 
I 

Notice t h a t  each row i s  jus t  an expression f o r  t he  p ro f i t  a s  the 

amount won minus the amount l o s t .  Since the amount l o s t  i s  the t o t a l  

amount bet  minus the amount bet  on the  winning horse, a simple means of 

writing each row equation would be 

a.x .  - (S - x . )  = P, 
2 2  

or  fai + l ) x  = P  + S. i 

This i s  ea s i l y  solved f o r  x; giving 

P + S  x -- . 
i - a + I  i 

To f ind  5,  we use t h i s  formula t o  subs t i tu te  fo r  each xi i n  I: 

(P + S) ( - + -  + . . . +  - ) = S .  a l + l  a 2 + l  a& 

From 11, the  sum of the  1 / (  a; + 1 )  's is  greater  than one. We 

showed t h a t  t h i s  number was 1/ k . Thus 

Since we have chosen P t o  be posi t ive and k i s  l e s s  than one, it 

follows tha t  S  must be negative. Thus there  i s  never any way t o  be t  on 

every horse i n  a race  and come out ahead no matter who wins, even i n  an 

idea l  s i t ua t ion  where the  t rack  takes nothing f o r  i t s e l f .  It is a simple 

matter t o  generalize t h i s  argument fo r  any s i ze  race. 

But the s teps  used i n  t h i s  argument do more than ju s t  prove t h a t  

no solution ex i s t s  involving every horse i n  the  race; some in teres t ing  

s ide  benefi ts  f a l l  out along the  way. We can now 

1 )  Determine whether there  ex i s t s  a combination of be ts  yielding 

a posi t ive solut ion fo r  any number of horses l e s s  than the t o t a l ;  

2) Estimate the  t o t a l  amount which must be bet  t o  produce the 

desired p r o f i t  before the individual  amounts a re  computed; and 

3 )  Find the  individual be ts  with a minimum of calculations. 

Taken together,  these form a three- step process which is  a s  gen- 

e r a l  a s  the  matrix form and, once you ge t  used t o  it, a s  simple t o  com- 

pute a s  the  general form of t he  3 x 3: 

1 )  You wish t o  be t  on nhorses  i n  the  race. Compute 

I f  t h i s  sum is  l e s s  than one, there  ex i s t s  a posi t ive solution. 

2 )  Using the  sum above a s  g,  plug it in to  the  equation 

1 P  = ( - - 1) S and solve f o r  S. You may choose any value f o r  
a 

P, but the bigger P  is,  the  bigger S  becomes. 

3 )  Once you have chosen Pand computedS, compute the amount t o  

bet on each horse by 

With t h i s  three-step system, it i s  jus t  a s  easy t o  bet on four o r  

f i ve  horses a s  on three,  and since t he  calculat ions a r e  shor ter ,  it can 

a l l  be done using l a t e r  odds. 
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ABSTRACT 

In  t h i s  note, the inequal i t ies ,  which are sa t i s f i ed  by the deter- 

minants o f  the posit ive de f in i te  solutions of the discrete algebraic 

Rioaati and Lyapunov matrix equations, are presented. The resul t s  give 

lower bounds for the  product o f  the eigenvalues of the matrix solutions. 

Also for a discrete Lyapunov equation, we present an algorithm to  deter- 

mine wider what conditions a posit ive diagonal solution will ex i s t .  I f  
a l l  the conditions care sa t i s f i ed ,  the algorithm also provides such a 

diagonal solution. 

The discrete algebraic Riccati and Lyapunov matrix equations have 

been used widely in various areas of engineering system theory, particu- 

larly in control system theory. The techniques of solving these equa- 

tions numerically are well-established [ 4 ] .  Those techniques are mostly 

iterative algorithms which require making an initial guess of the solu- 

tion. So if these initial guesses are chosen wisely, one can save a lot 

of unnecessary computations. Therefore, to obtain precise estimates of 

the "sizes" of the solutions, we provide here lower bounds for the deter- 

minants of the matrix solutions of the two equations. Also for the dis- 

crete Lyapunov equations, we address the question of the existence of a 

positive diagonal solution for this equation and derive an algorithm to 

provide such a solution if all the conditions are satisfied. 
T In the following, the notations x , \.(x), t v  f x )  and 1x1 denote 

the transpose, eigenvalue, trace and determinant of the matrix x , re- 
spectively. Also for our derivation later, we will make use of the fol- 

lowing results [I ,3]. 

i) For any n x n  matrices L and H with L  > 0 

ii ) 

iii ) 

For any real n x  n matrices R and S such that R = > 0, - 

For any m x n  matrix Y ,  n x m  matrix 2 ,  n y n  matrix W and rnxm 
matrix x ,  we have the following property 

[w + Z X - ~ Y I - ~  = w-I - w - l z [ z  + Y W - ~ Z ] - ~ Y W - ~  (3) 

11. THE RICCATI EQUATION 
In this section, we derive a lower bound for the determinant of 

the discrete algebraic Riccati matrix equation 

P = A ~ P A  - A ~ P B ( I  + ~ P B ) - ' $ P A  + Q (4) 

where A, P,  Q& ", B d x  m, Q = QT > 0. Here we assume 1 ~ $ 1  2 \Q\ 
and the matrix A  is stable, therefore the solution matrix P  is positive 

definite. 

Thwhem 1. The determinant of the positive definite matrix solu- 

tion P  of equation (4) satisfies the following inequality 

IPI 

where M = 

-1 T 
P r o o f .  Using (3) with W = P-I ,  Z = B, x = I and Y  = B , (4) be- 

comes 

P = ~ ~ 1 p - l  + B ~ A  + Q  (6) 

Multiplying (6) by [ P -  + BB^] from the left yields 

1  
Computing the traces of both sides of (7) and using (1) with L- = 

T 
[ P -  + ~ $ 1 ,  H = A  and rearranging terms, we have 



T Now using (2) with R = P  and note that 1x1 = I/ \x-1 and tr(x) = trfx 1 ,  

(8) becomes 

1/n 
nlBf12'11/nlp12/n - Mlpll/n - nIQI - (9 

Solving (9 ) for 1 ~ 1 ' ~  , we get the inequality (5 1. 

Ill. THE LYAPUNOV EQUATION 

A. Lower Bound for the Solution of the Lyapunov Equation 

Setting B = 0 in (4), the result is the discrete algebraic 

Lyapunov matrix equation 

T P = A P A + Q  (10) 

and we present the following theorem. 

Thtotem 2 .  The determinant of the positive definite matrix solu- 

tionP of equation (10) satisfies the following inequality 

Proof. Multiplying (10) by P-I from the left and computing the 

traces of both sides yield 

n = ~PCP'A~PA) + tr~p"'~) (12 1 
T Then, using (1 ) with L = P and H = A and noting that Ai ( A )  = \-(A ), we 

have n 

~P(P-Q) 2 n - \\.(A) \ 2 
i=l 

Substituting R = P -  and S = - into (2) leads to 
I Q I ' ~ ~  

Rewriting (14), we get the inequality (11). 

B. Positive Diagonal Solution of the Lyapunov Equation 

It is well-known that the solution of the discrete algebraic 

Lyapunov equation (10) exists if and only if A is a stable matrix, i.e., 

\\!A) 1 < 1 [5] . However, we are concerned here with the question of 

whether or not there exists a positive diagonal matrix solution P. In 

other words, given a real square stable matrix A, we pose the problem: 

Find the conditions on A such that a positive diagonal matrix P exists 
T 

where A PA - P < 0. Such a matrix has been used widely in the stability 

analysis, control theory and many of its applications [6,7]. In the 

following sections we present an algorithm to determine under what con- 

ditions such a matrix P will exist and if a11 the conditions are satis- 

fied, the algorithm also provides the value of P. 

1. Derivation of the algorithm 

The following definitions are needed for our derivation. 

a) x
T 

= ( r , x  2 --., xn) 
b) P = diag fx,xy . . . , xn) 

c) E =  { e d ,  llell = I 1  

d) &E is an eigenvector corresponding 

With the above definitions, 

T T 
= max e (A PA - V ) e  
eeE 

- . . . , en) 
1 I 

let 

= max ffx,e) 
ee-E 

T 
We observe that a diagonal matrix P > 0 exists such that A PA - P < 0 if 

and only if we can find a point XEX such that hfx) < 0. So the problem 

now is to determine whether or not such a point 2 exists. Before a 

search algorithm is derived, we need to point out some properties of 

h(x). 

Let be an interior point of X and 



then it has been shown [2] that 

and 

T- h ( x )  2 x g  , for all xeX 

2. The search procedure 

a) Start with xleX and compute h ( x l ) .  If h f x l )  < 0,  stop; 
T otherwise compute g ,  and choose x2^X such that x  g  
2 1 < O  

b) Compute h f x k ) .  If h f x k )  < 0,  stop; otherwise compute a 
T and choose x k l  EX such that ( x k l  )gi < 0  where i = 1, 

2, ..., k  

To choose xk+l , we need to solve a minimax problem 

Let 
T S  A min max { x  gi) 

x e x  1 < . i < . k  

Note that 

Sk < 0  

T h f x )  2 x  gi, i = 1, 2, ..., k  

So 
max h f x )  2 T 

1  < i  < k  ^ g i ' ^ k  

If Sk < 0, stop; otherwise find x' where 
k  

Then 

& = bx, + sgs k  

To find x; , let 

then 

xi  = qkxk + ( 1  - q k Z k  

So, we can compute x  k+1 using the following formula 

c) Compute gk+l , replace k  by k+1 and go back to step b. 

The convergence criteria of the above algorithm is estab- 

lished [2] as stated below: 
If at any iteration, hfx , )  < 0  (or Sk = 01, the algorithm 

stops, indicating definitely that there is a point X E X  such 

that h f x )  < 0  (or no xeX exists such that h f x )  < 0 )  . If neither 

condition occurs and k  + - , then the algorithm converges as 
Sk + 0  implying that h f x )  2 0, for all x d .  

Also as shown in [2]  , instead of solving the minimax prob- 
lem (19), one can obtain the same result by solving the following 

problem, using linear programming techniques. 

Let S  - - max Z 
- x ,z  

Subject to 

3. Examples 

a) Let A = 



and h(x l )  = -.35 < 0 -Ã  ̂ stop.  

A is diagonal ly s t a b l e .  

b )  L e t A =  [" -::I, x l =  
2 . 4 7  

T 4.35 -1.9Â 
then A PA - P = 

.32 1 
and h f x  ) = 5.18 > 0 + continue. 

1 

T x g1 2 0, f o r  a l l  x d  

A i s  not diagonal ly s t a b l e .  

CONCLUSION 

The i n e q u a l i t i e s  (5) and (11) make it possible  t o  est imate lower 

bounds f o r  t h e  determinants of t h e  d i s c r e t e  a lgebra ic  Ricca t i  and Lya- 

punov matrix equations. These bounds do not requ i re  A t o  be nonsingular 

and only r e q u i r e  a few matr ix computations. These computations can even 

be f u r t h e r  s impl i f i ed  by comparing t h e  f i r s t  and l a s t  terms of  (1 )  in-  

s tead  of t h e  middle term. However, t h e  t igh tness  of t h e  bounds may r e-  

duce considerably. Also t h e  condit ions f o r  which a p o s i t i v e  diagonal 

so lu t ion  of t h e  d i s c r e t e  Lyapunov equation e x i s t s ,  a r e  presented. I f  

a l l  t h e  condit ions a r e  s a t i s f i e d ,  such a so lu t ion  w i l l  a l s o  be provided. 
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THE FUZZY PLANE 

b y  ChfLUt0phe.i Roehmeh 
Uvtivuui-ity ox Dayton 

In t h e  e a r l y  1930's Lukasiewicz published severa l  papers describ-  

ing a  many-valued log ic .  [I] A proposi t ion p was allowed t o  have a  

t r u t h  value [designated T(p)] f o r  any r e a l  number from zero t o  one, i n-  

c lus ive .  One and zero played t h e  r o l e s  of t r u e  and f a l s e ,  respec t ive ly .  

The l o g i c  can be used t o  wr i te  axioms f o r  the  fuzzy plane i n  which t h e  

proposi t ion "point p  is  on l i n e  I" i s  allowed t o  vary i n  t r u t h  value 

from zero t o  one, inc lus ive .  

Suppose proposi t ions p  and q a r e  given with t h e i r  t r u t h  values T(p)  

and T(q) ,  The negation of p ( - p ) .  conjunction of p and q(.pA<?)? dis junc-  

t i o n  of p and q(.pVq 1. implicat ion of p t o  4 (p + q  1. and equivalence of 

p  and 4 (p<-~7) ,  have t h e i r  t r u t h  values calculated by t h e  following 

r u l e s :  [l, p. 361 

The axioms of t h e  p ro jec t ive  plane, which a r e  found i n  most books 

on pro jec t ive  geometry, a r e  given below: 

1. Given two d i s t i n c t  po in t s ,  a  unique l i n e  is on t h e  two po in t s .  

2 .  Given two d i s t i n c t  l i n e s ,  a  unique point  is on t h e  two po in t s .  

3 .  There e x i s t  four  po in t s  such t h a t  no t h r e e  of them a r e  c o l l i n e a r .  

The axioms can be general ized t o  t h e  axioms of  t h e  fuzzy plane. Le t t ing  

t h e  proposi t ion "point p  is  on l i n e  I" be designated " P I P ,  t h e  fuzzy 

plane is as follows: 

1. Given two d i s t i n c t  po in t s  p  and p 2 ,  a unique l i n e  I  determines 

t h e  maximum possible  value of  ~ [ ( p ,  I I ) / \  f p 2 1  I ) ] .  

2.  Given two d i s t i n c t  l i n e s  I  and A n ,  a unique po in t  p  de t  1  
t h e  maximum possible  value of T [  ( p  I I 1 ) A  f p  I % ) I .  

3 .  There e x i s t  four po in t s  p1 ,p2 ,p3 , and p4 and no l i n e  such 

one o r  more of  t h e  following cases  hold: 

i. [T ( p l  I k ) A ( p 2  I l ) / \ (p3  I s . ) ]  2 b 

ii. [T ( p l  I f J A ( p g  I l t . ) A f p 4  I I ) ]  2 h 

iii. [ T  ( p l  I ! . ) A f p 3  I I ) A  f p 4  I I ) ]  2 h 

iv .  [T ( p  I k ) A ( p 3  I i ) A ( p 4  I I ) ]  2 h 

A s  is done t o  show consistency of  t h e  axioms f o r  t h e  p ro jec t ive  

plane, a  model s h a l l  be used t o  show consistency of  t h e  axioms f o r  t h e  

fuzzy plane. For such a  model l e t  one use seven po in t s  and l i n e s .  The 

t r u t h  value f o r  "p  I ti1' fi, j = l J  . . . 7 )  is given by an incidence 

matr ix i n  which t h e  real-valued funct ions $ij  and $; j  a r e  sub jec t  t o  

t h e  following r e s t r i c t i o n s :  

i )  0 5 $ . . ( t )  < h f o r  a l l  t â I R  
Â¥<-. 

i i )  % < .  $ . - ( t )  <: 1  f o r  a l l  t â I R  
t'a 

The incidence matrix is  a s  follows: 



Let t h e  incidence matr ix be l a b e l l e d  D . The following theorem can now 

be shown. 

Thwiem. The seven-point plane with incidence matrix D s a t i s f i e s  

t h e  axioms of  t h e  fuzzy plane f o r  each t ? IR 

Proof. Axiom 1. Given two po in t s  pi and p such t h a t  i # j and 
3 

Â¥i j = 1, ..., 7, a comparison o f  column vectors  f o r  p and p revea l s  
i 3 

t h a t ~ r p ~  I q A f p j  I !LK)] = rn in [T(~^  I %), (pi I kK)] 2 is f o r  a 

unique l i n e  I (K = 1, . . . , 7). K 
Axiom 2. Given t h e  two l i n e s  !Li and 9.. such t h a t  i # j 

3 
and i, j = 1, . . . , 7, a comparison o f  row vectors  f o r  8.i and ! L j  shows 

t h a t  T[(% I pK)A fS. . I pK)] = min[~^ I )̂ , fpK I !L .)I >_ is f o r  a 
3 3 

unique point  p fK = 1, . . . , 7). 
K 

Axiom 3. Consider t h e  po in t s  p1 , pz, p3, and p . 
6 

Case 1. T[fp1 I S.g)Afp3 I ly)] = min[$zlft), $z3(t)] >. b f o r  each 

t â IR. But Tfp2 I fnZ) < h. Hence T[fpl I !.g)Afp3 I !t,2)/\fp2 I !L2)]<k- 

Case 2. T[fpl I l l ) A  Cp2 I = min[$ll ft), h f t ) ]  Â¥> is f o r  each 

t e IR. ~ u t  ~ ( p ~  I < is. Hence ~ [ f p ~  I l^/\(p2 I P ~ ) A ( P ~  I 11)1<%- 

Case 3. ~ [ ( p ~  I t g ) A  fp3 I !LA = min[*21 f t ) ,  i))23(t)lfor each 

t ? IR. But Tfp6 I lg) < b. Hence r[fp1 I lz)Afp3 I wO I q< ls' 
Case 4 .  T[fp3 I fp2 I = r n i n [ ' ~ ' ~ ~ ( t ) ,  ^iy2(t)'l >. % f o r  each 

t â IR. But Tfp6 I < b. Hence T[ fp3 I g7)Afp2 I c7)A (p6 I !L7)'1 < b- 

The seven-point plane with incidence matrix D is an example of  a 

fuzzy plane. The example es tab l i shes  t h e  consistency of  t h e  axioms f o r  

t h e  fuzzy plane, a genera l iza t ion  of the  p ro jec t ive  plane. 
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AN ANALYSIS OF MONOPOLY 

by  tho ma^ CheVIA.eh 
and Cathy Vandvidoid 

Em-t CmoLLna Un-iveA^^y 

For as long as games have existed, man has tried to discover ways 

to consistently win at them. Whether it be backgammon, blackjack, or 

tic-tac-toe, people have sought systems to help them win a larger pro- 

portion of games than might otherwise be expected. This trend has in- 

creased with the advent of the computer and its capability to work on 

large samples of data quickly. Following this lead. we examined the 

game of Monopoly in order to establish which strategies are more success- 

ful as well as the advantages of going first. 

The game of Monopoly has been around in one form or another since 

1932, when Charles Darrow, an unemployed heating-equipment salesman, 

drew out the original game. Darrow experimented with the game by play- 

ing it with his wife and neighbors. Shortly afterwards. orders for the 

game started coming in, and Darrow decided to offer it to Parker Bros. 

for distribution. After initially rejecting Monopoly, Parker Bros. 

changed its mind and bought the rights in 1934. Since then. over eighty 

million sets have been sold world-wide, and Parker Bros. now sponsors a 

world's championship complete with a $5,000 prizn. 

We were assigned a project to develop a computer program in Pascal 

which would execute predetermined strategies for the buying, developing, 

and mortgaging of the various properties in Monopoly. We utilized a 

records system which kept track of each player's assets, property hold- 

ings, which properties were still unowned, etc. After each player's 

movement, subroutines handled the player's options to buy or to mortgage 

property as well as whether or not to build houses or hotels. Two other 

subroutines dealt with the results of drawing either a Chance or Communi- 

ty Chest card (i.e., whether a player paid out or received money and 

whether or not he moved his token around the board.) 

In order to keep the program from becoming too large, we incorpo- 

rated a few ~im~lificaticns into the game. For example. if a player 

went to jail, he automatically paid $50 on his next turn and moved on. 

If a player drew a "Get Out of Jail Free" card, the bank bought the 

card for $50 and the card was returned to its respective pile. No - trad- 
ing of property between the players was allowed. Finally, the gamewas 

played until one player went bankrupt or until 150 turns had elapsed. 

If the second condition occurred, the results of the game were examined 

to determine if the game was a draw of if one of the players had a win- 

ning position. 

We experimented with four basic strategies. First was the "Bar- 

gain Basement" strategy where the player buys any unowned property he 

lands on so long as he has enough cash on hand to pay for it. The rea- 

soning behind this strategy is to prevent your opponent from obtaining 

a monopoly while at the same time obtaining one or more properties to 

develop later. The second strategy was the "Two Corners" strategy. It 

calls for the purchase of any property (the orange, red and yellow) be- 

tween Pennsylvania Railroad and the Go to Jail space at any time and 

the purchase of other properties which can be developed when more than 

$1,000 is available. Owning these properties means that your opponent 

should land on at least one of your properties on every trip around the 

board. 

The third strategy was the "Controlled Growth" plan. It calls 

for the buying of property whenever two conditions were met -- the color 
group landed on had not yet been split by the two players and $500 was 

available to the player. This plan allows for growth yet leaves enough 

capital to develop a monopoly when it is acquired. 

The final strategy we tried was the "Modified Two-Corners." It 

follows the same basic plan as the "Two-Corners" with the added factor 

of buying Boardwalk-Park Place group. All of the plans involve the prop- 

erties which could be developed. Additionally, all four called for the 

purchase of railroads and/or utilities whenever they were landed on. 

In actual play the "Two-Corners" led the "Bargain Basement" in a 

one-hundred game series with a total of 54 wins, 27 losses, and 19 draws. 

Next the "Controlled Growth" played the "Two-Corners" and won the one- 

hundred game series with a record of 57-34-9. Lastly, the "Controlled. 

Growth" strategy played the "Modified Two-Corners" strategy. In two 

one-hundred game series, the overall record was 88-79-33 in favor of the 

"Controlled Growth" plan. However, the second series was practically a 



draw with only a one win advantage for the leader. 

An analysis of some of the games played revealed some of the short- 

comings of the strategies involved. The first strategy fell short be- 

cause it left no money for the building of houses, while the opponent 

usually had money on hand and developed his property first. The second 

strategy allowed the opponent too many opportunities to gain a monopoly, 

while it realistically tried for only three color groups, a task which 

is relatively easy to block. The last two plans went quite some way in 

order to minimize these weaknesses and succeeded fairly well. 

To measure the desirability of each property, we developed a value 

function to determine a numerical value of each property's usefulness. 

We took a frequency distribution of the number of times that each prop- 

erty was landed on and multiplied each frequency by the basic rent of 

the property. We then divided the product by the cost of the property. 

The values of the function ranged from 15.82 for Mediterranean Ave. to 

123.76 for Water Works; the mean was 59.76, the median 54.33, and the 

standard deviation was 24.89. After Water Works, the highest property 

was the Electric Co., with a rounded value of 121. The next three pro- 

perties were all railroads -- BE0 at 93, Reading at 91, and Pennsylvania 

at 89. Rounding out the top ten properties were Boardwalk at 79, Short 

Line RR at 70, Illinois, Tennessee, and Pacific Aves. at 64, 57, and 56, 

respectively. The least valuable properties were Mediterranean Ave., 

Oriental at 34, Baltic and Vermont Aves. at 35, and Connecticut at 36. 

Similar functional values were determined for each of the groups 

of properties. The highest value belonged to the Orange color group 

with a value of 970.15. The lowest value of 569.84 belonged to the Dark 

Purple group. The mean for the groups which could be developed was 

760.81, the median was 754.34, and the standard deviation was 129.28. 

A complete ranking of the groups is as follows: Orange - 970; Lt. Blue - 

899; Red - 770; Lt. Purple - 768; Dk. Blue - 740; Yellow - 737; Green - 
632; and Dk. Purple - 570. On a similar scale the Railroads had a value 

of 685 while the Utilities had a value of only 306. 

We also investigated the advantage of going first in Monopoly. To 

test the advantage, each player went first for fifty games out of every 

one-hundred game series. We then calculated a differential score, that 

is the number of losses subtracted from the number of wins. The average 

differential score increased by 6.5 points when a player went first as 

opposed to when he went second. Our sample involved four sets of one- 

hundred game series with two players per game. 

In order for everyone here to become Monopoly Moguls, we offer the 

following suggestions: If your opponent offers you the chance to go 

first, take it. Buy around the board in a defensive manner (that is at 

least one property per group)'. When trading begins, trade for the 

Orange-Red corner as well as for the Lt. Blue properties. They are 

landed on most frequently and offer the best return. The railroads and 

utilities offer a good chance for the buyer to raise some cash with 

which he may later develop other properties. Finally, whenever your 

opponent has a hotel on Boardwalk, never, we repeat, never land on it 
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DOES (a+ib)(c+id)  EQUAL A REAL NUMBER? 

A well  known r e s u l t  i n  complex ana lys i s  is t h a t  i f  t h e  pure imagi- 

nary number i is r a i s e d  t o  a power equal t o  i t s e l f ,  where i = /^Y , one 

obtains  an i n f i n i t e  number of  so lu t ions .  However, when t h e r e  is a r e -  

s t r i c t i o n  of t h e  argument from [0,2-n), it i s  seen t h a t  

This amazing and i n t r i g u i n g  r e s u l t  of  an imaginary number r a i s e d  

t o  its own base gives r i s e  t o  t h e  question: What condit ion must two com- 

plex numbers, a+ib and c+id, meet such t h a t  

(c+id) 
= E ,  

where a, b, c,  and d a r e  a l l  r e a l  numbers, and E is a r e a l  number > 0 . 
To answer t h i s ,  look a t  

fa+ib) (c+id) = exp[ (c+id) tn(a+ib) ] = E . (1) 

From bas ic  complex ana lys i s ,  it is  known t h a t  a complex number, 

a&b, can a l s o  be represented i n  i t s  po la r  form a s  r exp f ie ) ,  where 

r = d m  and e = arctan (b/a),  where 8 E 10 ,2-n). Thus, 

= exp\_(einr - ed) + i(dknr + c e ) ]  

= [exp(cinr - 6d)][cos (dinr + ce) + i s i n f d t w  + c e ) ]  . 
From t h i s ,  

E = [exp(olnv - 6d)][cosfdinr + c e ) ]  

Since exp(oS.m - ed) # 0, then sin(dtnr + c6) = 0 o r  dinr + c9 = nn, 

where n is an in teger .  Also, s ince  E is a p o s i t i v e  number, and t h e  

argument of  complex numbers r e s t r i c t e d  from [0,2n), n must be zero. 

Therefore, i f  t h e  number ( ~ + i b ) ( & ~ )  i s  t o  be a p o s i t i v e  r e a l  

number, E , then 

2 2 $ in(a + b + c arctan @/a) = 0. 

Notice, a l s o ,  t h a t  i f  t h i s  occurs, then 

-i 
To i l l u s t r a t e  t h i s  formula, consider  2 . In  t h i s  case  a = c = 0, 

and b = d = 1, thus  

i 
which s a t i s f i e s  t h e  condit ion f o r  equation (1). Thus, i. is a r e a l  

number : 
2 2 ii = exp [ in(a + b - d arctan (b/a)]  

= exp [ 0  - arctan ( I / o ) ]  

= exp ( - n/2) , 

a r e s u l t  which was assumed a t  t h e  onse t  of  t h i s  paper! 

Challenge t o  the Reader: Can you find any other "interesting" 

fa+ib)(e+id) that -is a positive real? I f  you can, send your results to 

the Editor and we will publish them i n  the neat issue. 
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ARCTAN ? + ARCTAN 2 + ARCTAN 3 = ir 

Consider 6 i n  the  r i g h t  t r i a n g l e  i n  Figure 1. 

Figure 1 

1 )  t a n  v- = 1 so  Arctan 1 = . 4 

8 + L  2 
s o  Arctan 2 = - 2 

l r - e  
s o  Arctan 3 = - 

2 

v 6 1 1 l r 6  Therefore, Arctan 1 t Arctan 2 + Arctan 3 = - + - + 7 + - - - =  . 
4 2 . 2 2  

A CURIOUS R A T I O  OF K-STARS 

b y  M-tchae-C Eh en&twi 
CBM EducJa,tionaJL Centm, Son Antonio 

T h i ~ t w i .  Given a  regu la r  polygon of n-sides, n  >. 5,  l e t  a  "k-star" 

be t h e  polygon toge ther  with k t r i a n g l e s  added on. (The t r i a n g l e  added 

on is formed by extending t h e  l e f t  and r i g h t  s i d e s  of two consecutive 

v e r t i c e s .  ) 

Let P and A be t h e  perimeter and a rea  of a  k -s ta r  respec t ive ly .  k  k 
Then 

Proof. Let A* be t h e  a rea  of one of t h e  t r i a n g l e s  added on. Let 

b  be t h e  length of a  s i d e  of t h e  polygon. 

1 Then 

Po = nb Pk = (n-k)b + Ski 

! 

Where I is t h e  length of a  s i d e  of  a  t r i a n g l e  o ther  than b 

We need t o  show - * = nb-kbi2kz is  i d e n t i c a l l y  t r u e .  A. A0+kAA 

The equation i s  t r u e  i f  and only i f  

n b A  + nbkA = n b A  - kbAo + 2kIAo , 
o r  

nbAA = (22-b)Ao , 



Consider an i n t e r i o r  t r i a n g l e  with point  Q a t  t h e  cen te r  of  t h e  

polygon. The polygon is composed of n of these  t r i a n g l e s .  

2 2 2 360 Then b  = a + a2 - 2cZ c o s y  

2 l-cos- ( 

So A = % d m ,  t h e  a rea ,  

Now consider t h e  appended t r i a n g l e  

b 

NOW a = 180 - (n-2) (180) = 
n n 

and 

A A = - b  i v T  cos 

Then t h e  r i g h t  s i d e  of  I) above i s  

nb m A~ = 
360 

cos- n 

= A. . 
So I) is  es tab l i shed  and there fore  



CHAPTER REPORTS 

ALABAMA DELTA ( ~ n i v e r s i  t y  o f  South A1 abama) The speaker at the 
induction ceremony was faculty member Pk06,  Leon M d C b .  PJL06. M d C b  
presented a lecture on T"Te Primitive Roots o f  Unityrr. 

ARKANSAS BETA (Hendrix C011 ege) The undergraduate resea~ch program 
was once again very active and several Henrix students attended the 
Mid-South Mathematics Colloquium at Memphis State on Febr-uary 18, 1983, 
and at the Oklahoma-Arkansas MAA meeting at the University of Oklahoma 
in Norman on March 18-19, Kahen A n d m o n f  B k n c a  ffcahnf and  Kahen 
sh,&&y presented their papers. Also these three plus Mikc? A 4 c C L ~ ~ k a n  
presented their papem at the Conference on Undergraduate Mathematics 
held in Stillwatery Oklahomay April 15-16. The Annual Hendrix-sewanee- 
Southwestern Math Symposium was held at the University of the South in 
Sewanee on rbpril 29 where K m e n  A n d m o n f  &nca ffeahn, and Kahen 
S h W e y  again presented paper-s . 
Several students received awards at the Honors Convxation in May: 
McHenry-Lane Freshman Math Award was given to John C ~ p p e n  and K a t h y  
Phunty ;  Hogan Senior Yath Award was shared by B h n c a  f f m n  and Kahen 
S W e y ;  The P h i l l i p  Parker Undergraduate Research Award was given to 
K m e n  S h h l e y .  Kahen S W e q  also received the President ' S  Medal . 
The Chapter heard the following papers: Report on the Uational Pi Mu 
@si lon  meeting 7zeld i n  Toronto, Canah bg Dana payne; rr.?3nployment 
and Graduate School Strategies for Math Majorsrr by VJL. C e d  h4cUeh~noU; 
"What I s  Combinator ie~?~~ by V k .  V m y n e  C o U i n h ;  IrImage Processing and 
Guportunities for Math Graduates Interested i n  Applied Mathematicsf

r by 
Mahk Bunton; f f Interest ing Problems i n  Greek Mathematicsrr by U k .  Rob& 
C.  E h f i n g m ;  "Humanistic Mathemticsrr by V k .  Ch& S p d z ;  rfThe G a m  
Function and Log-Convexityff by K m e n  A n d w o n ;  rfContinued Square Roots

f

' 
by B.~CWICLI f f ~ n ;  rrProperties o f  Separating Point i n  Continua" by htike 
McCLmkan; r r ~ o  h n h e n t a l  Equations Arising ,from Notational Ambiguities 
i n  Caleulusr~ by K m e n  S M e y ;  frIntroducing the Concept o f  Integrationrf 
by ~ ~ e A  G k h ;  "Isaac h'ewton, The Manrr bw UJL. Bkyant ;  and 
frForecas t ing  Using the Box-Jenkins hYethodolo.gy by Uk . Rob& Bakeh. 

CONNECT1 CUT BETA (Un ivers i t y  o f  Har t fo rd )  The Chapter heard P ! ~ o h .  
Wh.xk4 C o r n i ~ m t  of Weslevan Universitv s~eak on rfSome Undecidable 
Gustions i; ~athematics;!. The following students won Departmental 
Awards : A n t o n i o  A n a d ,  Uebka  Bahb&, uan.ic[  BOW^^^, p a d  S U ~ V L L ~ J L ,  
and hfahy L a m o n .  

GEORGIA BETA (Georgia Tech) Aiahy K .  S h e 6 d L d d  won The Outstanding 
Graduate i n  Mathematics Award. 

ILLINOIS ALPHA ( U n i v e r s i t y  o f  I l l i n o i s  The Chapter organized an 
information seminar for undergraduates and heard three talks during the 
1982-83 school year. Pkod. K w n &  S t o l # ~ h y  spoke on IfKing Solomon, 
the Alabama Paradox, and Mathematics Justice. I r  Pk04 .  Lee  Rub& 
presented a talk entitled IrThe Logic o f  Dif ferential  Equationsrr. And, 
PJLvd. H e i t t i  H d b m h  spoke on "Wi l l im  Rmen Hamilton and the 
Beginnings o f  Modern Alge3ra ' I .  

KENTUCKY GAMMA (Murray S ta te  Un ive rs i t y )  The Chapter heard talks by 
A!.khdc Wh?!uc,  Phd? Bkyan,  and ht ike So&q.h all of Mumay State. hh. 
S0kty.h qoke OF rrShorteuts i n  Multiplicationr'. 

LOUISIANA KAPPA (Louisiana Tech) sponsored The Annual Calculus Contest 
which was won by G e o k g i a  G e o h g i o u ~  with second   lace awarded to 
f f m ~ e i n  Sa&. 

MASSACHUSETTS DELTA (Un ivers i t y  o f  Lowel 1 ) conducted The Annual 
Mathematics Day f o r  Area High Schools. Approximately 1000 students 
and teachers attended. In conjunction with thTs event, the following 
presentations were given: IfThe TAB-FUNCTION i n  BASIC Language" by 
V k .  R a o d  h4. Fkeyke; ffFo~r-Color Mav Problemff by U k .  Joyce  W ~ ~ r n . h ;  
rrDynmics 0.f Tennisrf by Pkod. S .  J .  Bodok; "Freshrrtan Calculus a t  
University of Lowellrr by PhoA. P. Condo; rWinning a t  the Racetrack: 
Luck or Mathemtiesfr by P J L O ~ .  Edwaxd F .  B d d y g a ;  rWathemtics and 
Computer Science

f

r by P J L O ~ .  A.W. V o m ;  I f  m y  We Exist i n  Three 
Dimensional Spacefr by V k .  John Bkode; f'Leaming Arithmetic i n  a Foreign 
Languageff by UJL. Ken Levmheuk;  "An Easier Way t o  Graph Polar Curvesfr 
by Pk06 .  Tom Kudzm;  Logical and Chronological Development o f  OW 
Nwnber Systemff by V k .  W.P. CopLey. 

MINNESOTA ZETA (Sa in t  Mary's Col lege) had a vepy active year in which 
the following presentations were given: rrIntemctive Data Analysis t o  
an Air Pollution and Mortality Modelrr by Uk .  Gahy M c V o d d ;  %farkov 
&insr' by S u e  BluAh; and frSpeculations on the Source or Rigor i n  Greek 
&themt icsr f  by D a v i d  W i i o n .  

MISSOURI BETA (Washington U n i v e r s i t y )  'he main activity of the Missouri 
Beta Chapter of Pi Mu Epsilon was a Math Contest for area high school 
students. Othe~ activities included talks about actuarial careers by 
representatives from General American Life in the Fall and Spring. Also, 
at the end of the year a banquet, with elections, was held. 



MONTANA BETA (Montana S t a t e  Un ivers i ty )  There were two chapter  meetings 
a t  which i n v i t e d  t a l k s  were given. These were: rrGeometric SoZutions 
to AZgebmic PrwbZemsrr by Vk. A f i e n  Hub;  and rWathematicaZ B i l l i a ~ d s ~ ~  
by Uk. Jack R o b i ~ o n ,  Washington S t a t e  University. 

NEW JERSEY THETA (Trenton S t a t e  College) ?he Chapter sponsored the  
following s p e c i a l  lectut-es: rrEinsteinrs SpeciaZ and GenemZ Theories 
of  Re la t i v i t y  = HistoricaZ Perspectivesrr bq Uk. John N o m h ,  Princeton, 
N J ;  r!4rt i f iciaz IntezZigencerr by Vk. Ck&eh Goldbc?Ag, Trenton S t a t e  
College; rrTopozogy Can Get Wildrr by Uk. Edp!he Woo&u,(,(; and rrCornputa- 
t i on  o f  CircuZa~ A r e ~ s  by the BabyZonias and Egyptiansrr by Uk. Siegdhied 
Uaenhch. 

NEW YORK PHI (Potsdam) Uk. P h i l i p  Sc- spoke a t  t h e  F a l l  induct ion.  
H i s  t a l k  was e n t i t l e d  rrFrwm Potsohm tu Ph. D. h h &  Bokden won the  
coveted Clarkson Memorial Award f o r  t h e  highest  four  year o v e r a l l  gt-ade 
point  average. This i s  t h e  consecutive year t h a t  t h i s  graduating 
sen ior  awat-d has been won by a member o f  t h e  chapter .  Graduating 
chapter  members fared well ou ts ide  t h e  d i s c i p l i n e  of mathematics, a l s o .  
C y n t k h  P e d m e n  won t h e  t o p  award i n  the  Department o f  Administration 
and Management; Ck&fine SXocbcUaede,t i n  Chemistry; Joan 1anmzz.i 
i n  Computer and Informat ional  Sciences, and Skmon Sc~mch2ek S c h o m k u ~ ,  
chapter secre ta ry ,  i n  Economics. 

NEW YORK OMEGA (Sa in t  Bonaventure) The Chapter was given t h e  following 
presentat ions:  rrRmsey Theoryrr by Pkod. Jack Ghave,t, Syracuse Univet-sity; 
rrVsing TechnoZogy t o  I v m v e  Man - Covuter  Intemctionrr by Ah. W&~JL 
UOkU@, Manager o f  Systems Performance and Technology Transfer a t  IBM; 
r'SeZected Problems and Their Methods of SoZutionrr by Pkod. Rdpk King; 
and "The Towez>s o f  Hanoi Puzzle - an ApvZication o f  Math Inductionrr by 
Pkod. Ch~~&eh Uiminke .  The P i  Mu Epsilon Award was presented t o  
8 e ~ w u ~ ~ d  Sampbon, with honorable mention t o  Jane SZolahbki. 

NEW YORK ALPHA ALPHA (Queen ' S  College) Meard t h e  following papers : 
rrTmp-Door Functio?zs and Secret Codesrr and explained how number theory 
and prime numbers a r e  used i n  t h e  development of  s e c r e t  codes, bq uk. 
KenneXh 8 .  K M a ;  rrVsing the Computer Language BASIC i n  the Math 
CZassrwomrr by Vk. R o d d  1 .  Ro.thenbc?Ag. Linda H e c k n  and Hal O J ~ n b X g n  
were the  r e c i p i e n t s  o f  The 1983 TIME p r i z e  f o r  excellence i n  Mathematics 
and se rv ice  t o  the  NY Alpha Alpha Chapter. 

OHIO NU (Un ivers i ty  o f  Akron) ~t t h e  I n i t i a t i o n  and Awards Banquet3 
t h e  Chapter presented an award t o  Linda Chmg f o r  her  mathematics p ro jec t ,  
rrChi Souared P r e d k t s  the Crab W C Z l r r .  G U d d  McCoq, Mw Fmnk, and 

- 7 - - - - ~  - -~ 

&b& W m  received t h e  Samuel Sel by ~ a t h e m a t i c i .  schoiarship.  Award 
f o r  1982-83. Va. Kennu% C d n b  o f  Kent S t a t e  University presented 
an i n t e r e s t i n g  and very enl ightening t a l k  e n t i t l e d  IrHoW t o  KmnJ mere  
You Are i n  th M i M e  o f  Nowhererr. 

OHIO THETA (Xavier  Un ivers i ty )  The r e c i p i e n t s  of  t h e  Richard J .  
Wehrme~er P i  Mu Epsi lon Award a r e  John F h o p M ~ i  and Stewen K m z k a b .  
It was-awarded to '  them f o r  t h e i r  excel lence i n  problem solving.  

OHIO XI  (Youngstown S t a t e  Un ivers i ty )  Several members at tended t h e  
National Meeting held i n  Toronto, Canada where m 4  .khu&Ui, a 
graduate s tudent ,  gave a t a l k .  Various speakers on Math r e l a t e d  top ics  
v i s i t e d  t h e  club. A n n W e  T&Lwofino, a sen ior  math major from Westminster 
College spoke about her  recen t  semester spent  i n  France; Ah. c q u  
M& demonstrated construct ion of  geometric models; and Dk. Bhahan 
~ U d U t k ~  o f  Cleveland S t a t e  University gave an en te r ta in ing  t a l k  on rriVwnber 
Theonvtrr. Other a c t i v i t i e s  included t u t o r i n g  sess ions  f o r  a r e a  high 
school s tudents  p e p a r i n g  t o  t a k e  a na t iona l  mathematics t e s t .  The 
chapter  helped with the  f a l l  Ohio Section M.A.A. meeting held on t h e  
Youngstown S t a t e  University campus. Several members at tended t h e  
Spring meeting with 2 o f  our s e n i o r  members present ing papers. 

SOUTH CAROLINA DELTA (Furman u n i v e r s i t y )  The Chapter sponsored t h e  
seventh annual Furman Un ivers i ty  Mathematics Tournament; 360 s tudents  
represent ing 57 high schools par t i c ipa ted .  Ua. Ian  P. Schagen, a 
v i s i t i n g  professor  from Loughbomugh University o f  Technology, 
Le ices te rsh i re ,  England, spoke on rrMatkematical Modeling i n  El Field 
DeveZopment ". 

SOUTH DAKOTA BETA (South Dakota School o f  Mines and Technology) 
smnsored an undergraduate seminar s e r i e s  on Recreational Mathematics. - 
The Chapter heard papers on rrFactoring Large !hunbersrr bq J m U  -%ndUu; 
rr&deZrs Theoremrr bq Uk. EdutaJcd Cohdn; and rrFour Jewels o f  Number 
Theoqrr bq Uk. Dawd 8&eM. The Chapter sponsored a p resen ta t ion  by 
industry interviewers  on IrThe A r t  of  Interviezdingrr. Chapter members 
a l s o  gave t u t o r i n g  sess ions  f o r  Freshman and helped with t h e  35th 
Annual West River Mathematics Contest.  



REPORT OF THE 1983 

ALBANY MEETING 

The Program f o r  the 1983 Meeting o f  the P I  MU EPSILON FRATERNITY 

was he1 d a t  SUNY i n  A1 bany on August 9 through August 11 of 1983. 

The program included: 

A BASIC P r o g m  for the Schredering 
Equation 

Subset Selection 

Tuo Ancient Greek Construetion 
Rvblems i n  Euclidean and Hyperbolic 
Geometq 

What L%fferenee Does it Make? 

The Gvnma Function and Log-Convexity 

A Vbiqui tous Partition of Subsets 
o f  9 

Leo Moser ' s  Theorem 

Exploratory Duta Analysis Using 
Microcomputers 

Cqptogrqhy -- The Scieree of 
Secre t Writing 

David Van Bmckle  
F l o ~ &  Th& 
U n i v m L t y  0 6  Cent tal  F l o ~ d a  

Jack M .  R a u  
Oklahoma Behz 
Okhhoma S m e  UnLvemiXy 

U h u h  Saghahi 
John C m o l l  UnLvmiXy  

Kmen Andmon 
h k a n h a  Be.& 
Henfix  College 

Donald John Nichohon 
T o w  Alpha 
T o w  s m e  U L v m m  

Thomm TenHoeve 111 
AtLchLgan UeLta 
Hope College 

PUZZLE SECTION 

E u e d  by 
Jobeph U.E. K o n h a u a  

This Department i s  for the enjoyment of those readers who are 
addicted t o  mrking &ublecrostics or who find an occasional mathematical 
puzzle a t twe t i ve .  We comider mathematical puzzles to  be problems 
whose solutions consist of answers immediately recognizable as correct 
by simple observation and requiring l i t t l e  formal pmof. Material 
submitted and not used here w X l  be sent t o  the Problems Editor i f  
deemed appropriate for that Department. 

Address a l l  proposed puzzles and puzzle solutions to  Prof. Joseph 
Konhauser, Department o f  Mathemtics, Macalester Col lege, S t .  Paul, 
Minnesota, 55205. Deadlines for puzzles appearing i n  the Fall Issue 
h l l  be the next February 25, and for puzzles appearing i n  the Spring 
Issue will be tk next September 25. 

Mathacrostic No. 17 

SubnLtXed by Jobeph U.E. K o n h ~ e h  
Macdeb$en Col lege,  SX. P a d ,  MLnnuoxk 

Like t h e  preceeing puzzles, t h i s  puzzle (on the  following two 

pages) is a keyed anagram. The 227 l e t t e r s  t o  be entered i n  t h e  d i a g ~ a m  

i n  t h e  numbered spaces w i l l  be i d e n t i c a l  with those i n  t h e  28 keyed 

words a t  t h e  matching numbers. The key numbers have been entered i n  

t h e  diagram t o  a s s i s t  i n  cons t ruc t ing  your so lu t ion .  When completed, 

t h e  i n i t i a l  l e t t e r s  w i l l  g ive t h e  name o f  an author  and t h e  t i t l e  of  a  

book; t h e  completed diagram w i l l  be a  quotation from t h a t  book. (See an 

example s o l u t i o n  i n  t h e  so lu t ions  s e c t i o n  o f  t h i s  Department.) 

The J. Sutherland Frame Lecture was given by Ptod. Hemq L .  Atcfet, 

of t h e  University of Ca l i fo rn ia ,  David and e n t i t l e d  "How to Discover 

am? h u e  Theorems : A Demonstration with Paztitions. 



DEFISITIUNS 
A. a sweet cordial of the 

Mediterranean region 

B. latest in an indefinitely 
numerous sequence 

C. double dagger 

D. a rabbinical academy 

E. arsenic trioxide 

F. supposing that not 

G. a small grayish European 
warbler 

H. mess; predicament (3 wds.) 

I. like in quality, nature or 
status 

J. ~ungarian march by unknown 
composer in honor of a national 110 74 154 191 213 13 88 
hero revered by Magyar patriots 

WORDS 

------- 
180 199 77 207 121 34 18 

--- ------ 
2 189 103 58 175 146 216 29 206 

------ 
93 28 76 223 130 184 

------- 
83 64 193 71 116 24 167 

- - - - - - - - 
8 78 70 42 56 132 27 98 

------ 
47 164 192 157 89 39 

---------- 
32 151 50 6 221 147 156 62 20 177 

--- 
67 45 179 % ~ i % ~ ~ ~ % ~ ~  
----- 
152 46 171 26 220 

K. exposure to the rays of the sun 
12 69 178 144 99 196 125 43 200 140 

L. about 8.669 cubic inches, a 
British volume measure 

M. mirage, especially one seen at 
the Strait of Messina (2 wds.) 

N. gelatin prepared from the air 
bladders of sturgeons 

0. roughly, one is to a minute as 
a minute is to 1140 centuries 

P. a fossil footprint 

Q. something difficult to dispose 
of, solve, or decide about 

R. mate 

S .  Franklin P. Adams's coinaqe 
for a name that sounds like 
its owner's occupation 

T. a four-bit word 

U. irregular short poem or chant 

V. a space between regular and 
normal 

W. able to flourish in a salty 
soi 1 

X. pretentious nonsense; clap- 
trap: drivel 

Y. aversion to mental work 

2 .  ludicial investigation, 
usually before a jury 

a. umbilic (2 wds.) 

b. riqnt-handed 



SOLUTIONS 

Afa-thac~ob-fccc No. 76. (See Spring 1983 I ssue)  (Phopobed by T lnodot  

Kauttnan, M.D. , Na6bau H o t p i A d ,  M-tneoia, L . I . ,  Mau Yo&) 

Words: 

A .  Rotator 
B. obbl igato 
C.  Tobacco 
D. Harebrained 
E. Might-be 
F. Acquit ta l  
G .  Nannander 
H .  Shasta 

Horseshoe 
Obsequies 
Ran 
Toothache 
Love-40 
Internecine 
Frequent 
Exxon 

Off and on 
Floccule 
Equably 
Great whites 
Acquiescent 
Loquacity 
Offer tory 
Sex-linked 

F i r s t  Le t te r s :  (Tony) ROTHMAN: (The) SHORT LIFE OF E(var i s te )  GALOIS 
- from S c i e n t i f i c  American 

Quotat ion:  The. boiuti.on t o  t h e  g e n v w l  quadftoJULc, OJL becond-deglee, 

equation a x  + bx + c = 0 ,  known t o  the. Bab@owW.n~, t e q u h Â £  the. 
extw.i^twn of, t h e  ~ q u w t t  l o o t  of a func t ion  of  t h e  we f@c ien t^ ,  namely 

2 b - 4m. Hence, t h e  g e n e a d  quad ta t i c  equahion -LA to ivabie .  by 

fuldJLcat&. 

Solved by: Jeane t te  Bickl ey, Webster Grove High School, Missouri; 

Betsy Curtis, Meadville, Pennsylvania; Victor  G. Feser, Mary College, 

Bismarck, North Dakota; Robert Konhauser, Macalester College, S t .  Paul,  

Minnesota; Roger Kuehl, Kansas City, Missouri; Henry S .  Lieberman, 

John Hancock Mutual Life Insurance Co., Boston, Massachusetts; S i s t e r  

Stephanie Sl oyan, Georgian Court College, Lakewood, New Jersey ;  and 

The Proposer and The Editor.  One unsigned so lu t ion  was received.  

COMMENTS ON PUZZLES 1 - 7 (See Spring 1983 I ssue)  

The unique answer t o  Puzzh? has 541, 149 and 216 a s  r o w s  from 

top t o  bottom i n  t h a t  order .  Fourteen readers  respond t o  # I .  The 

so lu t ion  requ i res  j u s t  a b i t  of  t r i a l  and e r r o r .  For Puz& ^ 2 ,  only 

four  c o r r e c t  responses were received. A l l  were equivalent  t o  t h e  

arrangement of p o i n t s  i n  Figure 1 ,  which i s  e s s e n t i a l l y  t h a t  o f  L.M. 

Kelly, a s  given by H.M. Croft  i n  ltImi.&noe Incidents",  Eureka, October, 

1967. A second arrangement i s  obtainable by drawing t h e  e q u i l a t e r a l  

t r i a n g l e s  inwardly on t h e  s i d e s  of  t h e  square a s  i n  Figure 2. 

Figure 1 Figure 2 

Nine readers  responded cor rec t ly  t o  Puzz&? ^3. A so lu t ion  is obtain-  

a b l e  without t r i a l  and e r r o r .  For example, Robert C.  Gebhardt l e t  

M - MUM and n = BER, leading 307m = 692n. Since 307 and 692 a r e  

r e l a t i v e l y  prime, m = 692 and n = 307. P u z z k  #4 drew responses from 

t h i r t e e n  readers .  The puzzle is well-known and most con t r ibu tors  

supplied t h e  two best-known so lu t ions ,  which a r e  shown i n  Figure 3. 

But Jim Gasparri and Phil Shepherd showed t h a t  t h e r e  a r e  i n f i n i t e l y  

many poss ib le  s i d e  views. Three o f  t h e i r  drawings a r e  reproduced i n  

Figure 4.  



Figure 3 F igure 4 

Fourteen responded to P u z z l k  ^ 5 .  Despite some claims to the contrary, 

there are two solutions. Puz& #6 drew ten responses, several with 

much detail and a few with some hand-waving. Readers wishing a copy 

of a detailed solution to #6 should communicate with the Puzzle Editor. 

P u z z l e  ^7 drew eight responses. There are only two correct answers, 

namely (1, 2. 6, 7, 9, 14, 15, 18, 20) and (1, 3, 6, 7, 12, 14, 15, 

19, 20). V i c t o r  G. Feser observed that if one of the sequences is 
reversed and added termwise to the other, the sums have the common 

value 21. Surprised? For a proof that there are no other correct 

answers, see the paper "Integers, No Three i n  Arithmeti.~ Progressionr' 

by Chiang and MacIntyre,  Mathematics Magazine, May-June, 1968. 

List of Solvers; Paul Aslanian 141. Jeanet te  B ick ley  ( 1 ,  2 ,  3 ,  4 ,  5 ,  
61,  David Brady ( 7 1 ,  Janda S .  Cook ( 1 ,  5 ,  7 1 ,  Betsy Cur t i s  141, 

Vic tor  G .  Feser ( 1 ,  3 ,  4 ,  5,  6 ,  7 1 ,  Robert Forsberg ( 4 1 ,  Jim Gasparri 

( 4 1 ,  Robert C. Gebhardt 11, 2 ,  3 ,  4 ,  51 ,  David I n y  ( 1 ,  3 ,  5 ,  6 ,  7 1 ,  

Ralph King ( 4 ,  5 1 ,  Roger Keuhl ( 1 ,  2 ,  3 ,  4 ,  5,  6 ,  7 1 ,  Glen E.  M i l l s  

( 1 ,  3, 5 ,  6 ,  7 1 ,  Thomas M .  M i t c h e l l  ( 7 1 ,  Bus Petrakos ( 7 1 ,  John H. Scott  

1 ,  2 ,  3 ,  4 ,  5 ,  6 1 ,  P h i l i p  Shepherd ( 7 ,  3 ,  4 ,  5 ,  6 1 ,  Emil Slowinski 

( 1 ,  3 ,  5,  6 ,  7 1 ,  B i l l  Spencer ( 4 1 ,  B i l l  Taylor  ( 4 ,  5 ,  61 ,  David Marland 

( 1 ,  5 ,  71 and Danny Ying ( 1 ,  5 ,  61 .  

- - .- 
PUZZLES FOR SOLUTION 

1. P ~ o p o ~ e d  b y  1.3.  Good, V^Ag.inia PotyZechnLc I n A t i t a t e ,  

Black% b m g  , V h g - D M A .  

An eight-inch cube has a one-inch cube removed from one corner, 

and another one-inch cube removed from the opposite corner. Can the 

resulting body be constructed out of 170 blocks each being one inch by 

one inch by three inches? 

2. P m p o ~ e d  b y  Joheph  K o n h a u e k ,  Ma&alutÂ£ C o U e g e ,  S-t. P d ,  

Attnnuota.. 

Using only standard arithmetical symbols, write the number 4 using 

three 7's. 

3. PmpoAed b y  J o ~ e p h  K o n h m e k ,  MacAfuZek  C o U e g e ,  S t .  P a d ,  

K n n u o t a .  

From the 7 x 7 square, delete the four 2 x 3 rectangles marked X. 

Dissect the remaining swastika-like region into five pieces which, with- 

out being turned over, can be reassembled to form a 5 x 5 square. 

4. VtopoAed b y  J o ~ e p h  Konhaubek, MacAfuteA.  C o U e g e ,  SZ .  P a d ,  

Hinnuo-ta. 
3 

Find unequal positive integers a, b, and c such that a + b3 = c4. - 



5. Pmpobed by Jomph Konhcuum, Haoo . I?~ tv t  Cot tage,  S t .  POLL!., 

AUnnaAo-ta. 

Sketch a graph (a  f i n i t e  c o l l e c t i o n  of  nodes and a r c s )  such t h a t  

exact ly t h r e e  a r c s  terminate a t  each node and such t h a t  it is  not 

possible  t o  co lor  t h e  a r c s  with t h r e e  co lors  so t h a t  no two a r c s  a r e  

t h e  same co lor  terminate  a t  t h e  same node. 

6. Pkopo~ed by Joseph Konhamvt,  MacaSLÂ£~t CoUege,  S t .  P a d ,  

htuin&~o-ta. 

On a c i r c l e  of circumference 21 inches,  what is t h e  smallest  

number o f  marks which can be located so t h a t  f o r  each in teger  n from 1 

t o  20 inc lus ive  t h e r e  a r e  two marks (Not necessar i ly  neighbors) which 

a r e  separated by n inches measured along the  a r c  of  t h e  c i r c l e ?  

7. P/iopobed by Jobeph Konhcuuvt, M a c a l u t v i  CoUege,  S t .  P a d ,  

AhnaAo-fa. 

The e igh t  numbers ( 2 ,  3,  4,  6 ,  9, 14, 22, 31) have sum 91 and t h e  

property t h a t  taken two a t  a time t h e  28 sums obtained a r e  a l l  d i f f e r e n t .  

Are you a b l e  t o  f ind  e i g h t  pos i t ive  in tegers  with sum l e s s  than 91 with 

t h e  same property? 

NOMINATING COMMITTEE 

Elect ions f o r  t h e  National Off ice rs  w i l l  be held t h i s  Spring. 

The Nominating Committee is: 

J .  SuthVii.and Fname, Cha-itman 

Michigan State University 

Rt-chmd Andaee 

University of Oklahoma 

E .  A U a n  VavÂ¥LS 

University o f  Utah 

The committee s o l i c i t s  recommendations from t h e  membership. 

Contact any of t h e  above committee members with your suggestions. 

PROBLEM DEPARTMENT 

E d i t e d  b y  Ctayton 01. Vodge 
UniuehbLty 0 6  M d n e  

This department welcomes problems believed t o  be new and a t  a 

level appropriate for the readers of th i s  j o w l .  Old problems dis- 

playing novel and elegant methods of solution are also invited. Pro- 

posals should be accompanied by solutions i f  available and by any in- 

formation that w i l l  ass is t  the editor. An asterisk (*) preceding a 

problem number indicates that the proposer did not submit a solution. 
A l l  comnications should be addressed to  C.W. Dodge, Math. Dept., 

University of Maine, Orono, ME 04469. Please submit each proposal and 

solution preferably typed or clearly written on a separate sheet (one 

side only) properly identif ied with name and address. Solutions t o  

problems i n  th i s  issue should be mailed by July 15, 1984. 

No problem i s  ever closed. Even when a solution 'has been pub- 

lished, th is  department i s  s t i l l  interested i n  Â¥M information and w i l l  
gladly consider any comments you may wish to  submit. 

From time to  time it seems appropriate t o  publish a l l  problems 

that remain unsolved, las t  done the fall of 2968. Currently, through 

1982, there are twelve such proposals for which solutions are needed. 

These are l is ted below. 

120, [Spring 1960, Fall 19681 Ptopobed by Michael G o i d b w ,  

WahJLngton, V.C. 

1. A l l  t h e  orthogonal p ro jec t ions  of  a sur face  of  constant 

width have t h e  same perimeter.  Does any o ther  sur face  have t h i s  

property? 

2. A sphere may be turned through a l l  o r i e n t a t i o n s  while re-  

maining tangent t o  t h e  t h r e e  l a t e r a l  surfaces of  a regu la r  t r i a n g u l a r  

prism. Does any o ther  surface have t h i s  property? Note t h a t  a solu-  

t i o n  t o  (2 )  is a l s o  a so lu t ion  t o  (1 ) .  

136. [Fall 1961, Fall 19681 P/topobed by Hit ihael  GoSLdbvtg, 

Waiih-Lngton, V.C. 



What is t h e  smallest  convex a r e a  which can be r o t a t e d  continu- 

ously within a regu la r  pentagon while keeping contact  with a l l  t h e  s i d e s  

of  t h e  pentagon? This problem is  unsolved but  has  been solved f o r  t h e  

square and e q u i l a t e r a l  t r i a n g l e .  For t h e  square, it is t h e  regu la r  tri- 

a r c  made of  c i r c u l a r  a r c s  whose r a d i i  a r e  equal  t o  t h e  s i d e  of  t h e  square. 

For t h e  t r i a n g l e ,  it is  t h e  two-arc made o f  equal  60Â a r c s  whose r a d i i  

a r e  equal t o  t h e  a l t i t u d e  of  t h e  t r i a n g l e .  

144. [Fa1 1 1962, Fa1 1 19681- Pkopo~ed by Hu&eyLn VennA, Kan- 
iSJULlLi, Etegfi,  Kdz., Turkey. 

Find t h e  shape of  a curve o f  l eng th  L ly ing  i n  a v e r t i c a l  plane 

and having its endpoints f ixed  i n  t h e  plane, such t h a t  when it revolves 

about a f ixed  v e r t i c a l  l i n e  i n  t h e  plane, generates a volume which when 

f i l l e d  with water s h a l l  be emptied i n  a minimum of  time through an o r i -  

f i c e  of given a r e a  A a t  t h e  bottom. (Note: The proposer has obtained 

only t h e  d i f f e r e n t i a l  equation of  t h e  curve.) 

190. [Spring 19671 PtopoAed by J o ~ e p h  h h i n ,  Suddwn, N.Y. 

If u, V, t, n, u, q, k, and r a r e  d i s t i n c t  nonzero i n t e g e r s ,  

f ind i n f i n i t e l y  many so lu t ions  t o  t h e  Diophantine equation 

4 4 4 8 4 4 4 8  w + v  + t  + n  = u  + q  + k  + r  

where U, V, u, andq  a r e  each a hypotenuse of  some Pythagorean r i g h t  

t r i a n g l e .  

239. [Spring 19701 Pkopohed by David L. SJULvvman, BeveAty 
w, CaLHon.nA.ii. 

A p a i r  o f  to ruses  having hole rad ius  = tube rad ius  = 1 a r e  

l inked.  a )  What i s  t h e  smallest  cube i n t o  which t h e  toruses can be 

packed? b )  What convex sur face  enclosing t h e  l inked to ruses  has t h e  

smallest  volume? c )  What convex sur face  enclosing t h e  l inked toruses 

has t h e  smallest  area? d )  What is  t h e  locus of  po in t s  i n  space equi- 

d i s t a n t  from t h e  two l i n k s ?  

278. [Spring 19721 Ptopohed by  Paut E&&, Univ&u^ty 0 6  
WateAtoo, Ovita/u.o, Canada. 

Prove every in teger  < n! is t h e  sum o f c n  d i s t i n c t  d i v i s o r s  

of n! Try t o  improve the  r e s u l t  f o r  l a r g e  n; f o r  example, l e t  f ( n )  be 

t h e  smal les t  in teger  s o  t h a t  every i n t e g e r  5 n! i s  t h e  sum of f ( n )  o r  

fewer d i s t i n c t  d iv i sors  of  n. We know f ( n )  c n. Prove n - f ( n ) +  - .  

403. [Fall 19771 P m p o ~ e d  by Vav-Ld L .  S^tue~nan, U e J i t  LOA 

A n g e l a ,  CaLLdomu.0.. 
Two players  play a game of  "Take I t  o r  Leave It" on t h e  uni 

t e r v a l  ( 0 , l ) .  Each player  p r iva te ly  generates  a random number f r  

uniform d i s t r i b u t i o n  and e i t h e r  keeps it a s  h i s  score o r  r e j e c t s  it and 

generates a second number which becomes h i s  score.  Neither player  knows, 

p r i o r  t o  h i s  own play, what h i s  opponent's score i s  o r  whether it is  

t h e  r e s u l t  of  an acceptance o r  a re jec t ion .  (However, var ian t s  based 

on modifying t h i s  condit ion,  e i t h e r  u n i l a t e r a l l y  o r  b i l a t e r a l l y ,  a r e  

i n t e r e s t i n g  ) . 
The scores  a r e  compared and t h e  player  with t h e  higher score 

wins $1.00 from t h e  other .  

a .  What s t r a t e g y  w i l l  g ive a player  t h e  highest  expected score? 

b. What s t r a t e g y  w i l l  g ive a player  t h e  bes t  chance of  winning? 

c .  If one p layer  knows t h a t  h i s  opponent is playing s o  a s  t o  

maximize h i s  score,  how much of  an advantage w i l l  he have i f  he employs 

the  best  counter- strategy? 

419. [Spring 19781 Ptopobed by b4Lchae.i W .  Eden., C-Lty UnLveJc- 
od New Yo&. 

Seventy-five b a l l s  a r e  numbered 1 t o  75 and a r e  p a r t i t i o n e d  i n t o  

s e t s  of 15 elements each, a s  follows: B = {I, -, 2-51, I = U6, -, 301, 

N = {31, --,451, G = {46, -. ., 601, and 0 = {61, .--, 7-51, a s  i n  Bingo. 

B a l l s  a r e  chosen a t  random, one a t  a time, u n t i l  one of  t h e  f o l-  

lowing occurs: A t  l e a s t  one from each o f  t h e  s e t s  B, I, G, 0 has been 

chosen, o r  four  o f  t h e  chosen numbers a r e  from s e t  S ,  o r  f i v e  o f  t h e  

numbers a r e  from one o f  t h e  s e t s ,  B ,  I, G, 0. 

Problem: Find t h e  probabi l i ty  t h a t ,  of  these  possible  r e s u l t s ,  

four  N ' s  a r e  chosen f i r s t .  (Comment: The r e s u l t  w i l l  be approximated 

by t h e  s i t u a t i o n  o f  a very crowded bingo h a l l  and w i l l  give the  l i k e l i -  

hood o f  what bingo players  c a l l  "an N game," t h a t  is, bingo won with t h e  

winning l i n e  being t h e  middle column N). 

423. [Spring 1978, Spring 1979, Spring 1980, Spring 19811 Pm- 
p o ~ d  by Rich& S. Field, Santa. Monica, CaLLdo/mMi. 

Find a l l  s o l u t i o n s  i n  pos i t ive  in tegers  o f  t h e  equation 
D - B = 8, where D is a prime number. 



*456. [Fall 1979, Fall 1980, Spring 19811 Phopobe-d by P a n t  

~ h d i i ~ ,  Spacebhip  ~cwth. 

Is there  an i n f i n i t e  path on v i s i b l e  l a t t i c e  po in t s  avoiding 

a l l  (u, v)  where both u and V a r e  primes? (The proposer o f f e r s  twenty- 

f i v e  d o l l a r s  f o r  a so lu t ion) .  

"Let me r e s t a t e  problem 456. I want a path on v i s i b l e  l a t t i c e  

points  (with r e l a t i v e l y  prime coordinates)  which does not pass  through 

a point  ( p ,  q )  where both coordinates a r e  primes and where both coordi- 

nates  tend t o  i n f i n i t y .  Explanation: ( u ,  V )  has four  neighbors, 

( u  + 1, v), (u - 1, v ) ,  (u,  v+l), (u, V - I ) ,  and a point  can be joined 

only t o  one of i ts neighbors. 

' I  o f f e r  50 d o l l a r s  f o r  a path which goes through v i s i b l e  l a t -  

t i c e  p o i n t s  and avoids ( r ,  q )  and moves monotonically away from the  

or ig in ,  i . e . ,  (u ,  V) can be joined only t o  ( u  + 1, v )  o r  (u, v + 1) .  

The s t a r t  of  t h e  path can be any (u ,  v )  = 1. I pay a l s o  f o r  a non- 

existence proof .  I do not  know t h e  so lu t ion  and I apologize f o r  t h e  

unclear ly and i n c o r r e c t l y  s t a t e d  problem 456. My o ld  age and s t u p i d i t y  

is, I be l ieve ,  adequate explanation and excuse." 

493. [Spring 19811 Phopohed by K e - n n h  M .  UUke . ,  Tope-ka, 

Ko)z6a&. 

Determine t h e  g r e a t e s t  power which divides n!.  Prove t h a t  f o r  

n > 21 it is a square. (This is a restatement of  problem 467 [Spring 

19801.) 

*525. [Fall 19821 P h o p o ~ e d  by John M. Hme-&Â£ 

C ~ 0 u u . a .  

An e q u i l a t e r a l  t r i a n g u l a r  prism is used a s  a d i e  

r a t i o  of  s i d e s  be s o  t h a t  t h e  p robabi l i ty  o f  f a l l i n g  on 

the  same a s  f a l l i n g  on a rectangle? 

CORRECTION 

What must t h e  

a t r i a n g l e  is  

536. [Spring 19831 Phopobe-d bg Mswtha Mcvt-Uchli, Ve-az&, M&e. 

A recen t  alphametric i n  Crux Mathematicorm [1982: 77, problem 

7211 asks one t o  show t h a t ,  i n  base ten ,  

TRIGG is  t h r e e  times WRONG. 

In  defense o f  t h e  Dean o f  Numbers, solve these  alphametrics independ- 

e n t l y  of  each other:  

( a )  TSIGG X 3 = RIGHT i n  base e i g h t  where t h e  d i g i t  3 can be 

reused, 

(b )  TRIGG = 3 X RIGHT i n  base t e n  where t h e  d i g i t  3 can be - -  - - 
reused, and 

( c )  TRIGG X 7 = SIGHT i n  base seventeen. 

[par t  ( a )  was erroneously l i s t e d  with a wrong base.] 

Problems f o r  Sol ution 

547. Phopobed by M o d  K&, k d o c ,  k k z h ~  

Solve t h i s  musical alphametric. 

SING 
I S  

THE 
WAYNE 

548. P m p o ~ e - d  by T a u t  A. McKÂ¥laee.n C h d o t t e - ,  N o d  Cmof ina .  

Arrange t h e  t e n  d i g i t s  i n  a r o w ,  e.g. 

so  t h a t  t h e  following condit ions a r e  s a t i s f i e d :  t h e  number d2dyd., 

is d i v i s i b l e  by 2 ,  d d d 5  is  d i v i s i b l e  by 3, d4dd6 by 5, d&d7 by 

7,  d 6 7 8  d d by 11, d7d8dg by 13, and t h e  number d8dgdln d i v i s i b l e  by 17. 

549. P h o p o ~ e d  by R. S .  Uuthah, UWLue-u.Â¥Lt of, WLkcofbflJLn CUnteA. 

J a n u  uJUULe-. 

If a ,  b, c a r e  p o s i t i v e  numbers, prove t h a t  

 or an i n t e r e s t i n g  r e l a t e d  problem see Problem 356 i n  The Pentagon, 

Spring 1983, p. 120 I. 
550. Phopobed by I ,  R. H u b ,  Uabtmig-ton, U.C.  

How many d i f f e r e n t  Pythagorean t r i p l e s  have a s ide  o r  hypote- 

nuse equal t o  1040? 

551. P q o b e d  b y  Rob& C.  Ge-bhmdt, HopuXcong, New J e ~ n e - y .  

I f  k is t h e  l a r g e s t  odd i n t e g e r  not  exceeding t h e  p o s i t i v e  

in teger  n ,  n ? 2 ,  prove t h a t  



552. Plopo&e.d b y  Albwt  @kite, S t .  BonaventuAe. U n h e u L t g ,  
New Yo&. 

Let a1 = 1 and a = 2 a 1  + (-if1 f o r  n > 1. Find 

*553. Plopobed b y  Jack Gcui6unke^., F a k i n g ,  New Yohk. 

Given a t r i a n g l e  ABC e r e c t  e q u i l a t e r a l  t r i a n g l e s  BAP and ACS 

outwardly on s i d e s  AB and CA. Let R be t h e  midpoint o f  s i d e  BC and 

l e t  G be t h e  cen t ro id  of t r i a n g l e  ACQ. Prove t h a t  t r i ang leFRGis  a 

30Â°-600-90 t r i ang le .  

554. Pnopo~ed  by ChanJiu W .  Tuigg.  Sun O-tego, C W o M w J . .  
The S.P.F.A. (Society f o r  Persecution of  Feline Animals) 

es tab l i shed  a P U R R 

F R E E  

A R E A a t  its headquarters.  

I n  t h e  word square each l e t t e r  uniquely represen ts  a decimal 

d i g i t ,  and each word and acronym represents  a square in teger .  What 

a r e  these squares? 

555. Phoposed by  Ttinhawi V. S-frio-t-fon, Colaha.do Sphingb, 
coidha.do. 

Eighteen toothpicks can be arranged t o  form s i x  congruent 

e q u i l a t e r a l  t r i a n g l e s .  Rearrange the  toothpicks t o  form s ix teen  

congruent e q u i l a t e r a l  t r i a n g l e s  each of  t h e  same s i z e  a s  t h e  o r i g i n a l  

s i x .  

556. Phopo6ed b y  Hichmd 1 .  H m ,  P a b b  V e h d u ,  CaU.tohwLa. 
A normal p a i r  of  unbiased dice give a t o t a l  of  2 through 12 

according t o  t h e  d i s t r i b u t i o n  1, 2, 3, 4, 5, 6 ,  5 ,  4, 3, 2 ,  1. How 

should you change t h e  spo ts  on t h e  dice s o  t h a t  t h e  sums 2 through 12 

and only those sums s t i l l  occur bu t  with a s  uniform a d i s t r i b u t i o n  a s  

possible? (Minimize t h e  sum o f  t h e  squares of  the  deviat ions from 

completely uniform). 

*557. Pmpobed b y  Paiwhe F-cih, S e a l  Beach, Ca^&o-ln^a. 
I t  is  known and easy t o  show with elementary calculus t h a t  

193 
Find a d e f i n i t e  i n t e g r a l  whose value is ~ , r -  - e ,  where e is t h e  base 

of  n a t u r a l  logarithms. 

558. Pmpobed b y  Richand I .  H e b ~ ,  P&b Vekde^, CaU&oIWA.a. 
Let ABCD be a q u a d r i l a t e r a l .  Let each of  the  s i d e s  AB, BC, CD. 

DA be t h e  diagonal of a square. Let E, F ,  G,  H be those v e r t i c e s  of  

t h e  squares t h a t  l i e  outs ide t h e  q u a d r i l a t e r a l .  That i s ,  EAB, FBC, 

GCD, and HDA a r e  d i r e c t l y  congruent i s o s c e l e s  r i g h t  t r i a n g l e s  with 

apexes E, F ,  G ,  H. Prove t h a t  EG and FH a r e  perpendicular.  See t h e  

f igure  below. 

559. P m p o ~ e d  b y  S idney  P m w ,  Bhonx Commuftuy C o U i g e ,  NW 

Yo&. 
"This is q u i t e  amazing," s a i d  B.  "My bingo card does not  con- 

t a i n  a BINGO , b u t  if I cover one more square, regard less  o f  i ts 

loca t ion ,  then I w i l l  have a BINGO." 

a )  What i s  t h e  maximum number o f  covered squares  on B's card? 

b )  What i s  t h e  minimum number? 

Recall t h a t  a bingo card is  a 5 X 5 matrix with t h e  cen te r  square 



already covered a t  t h e  s t a r t  of t h e  game. A BINGO can occur i n  12 ways, 

by covering t h e  5 squares of any row, column, o r  diagonal. 

560. Pwpobed b y  Leon Bankodd, Lob A n g e h ,  CaLido/uu.a. 

Two proofs of a Problem 10713 appeared i n  the  1891 (pp.  34-35) 

1892 (p. 79) i s sues  o f  t h e  Educational Tines .  Unfortunately, 

n e i t h e r  proof is va l id .  The problem and i ts supposed proofs a r e  s t a t e d  

below with wording somewhat modernized f o r  c l a r i f i c a t i o n .  Find a l l  

e r r o r s .  

Problem 10713. P-topobed b y  W .  J .  Gme.nb0ce.e.t. M. A. In  a given 

c i r c l e  the r a d i i  OA and O? ar'e perpendicular.  Let t h e  circle on 3b AS 

diameter have center  0' and l e t  O'A cu t  t h i s  new c i r c l e  i n  point  D. 

Then AD is t h e  length o f  the  s i d e  o f  a regu la r  decagon inscr ibed i n  the  

given c i r c l e .  Also, l e t  t h e  tangent AQ t o  the  new c i r c l e  cu t  the  given 

c i r c l e  again a t  P. See t h e  diagram below. Then AP is  the  length o f  

t h e  s i d e  of  a r e g u l a r  pentagon inscr ibed i n  t h e  given c i r c l e .  

I .  S o h t i o n  b y  R. K n d u ,  M. A., P w 6 .  Zm, and o - t d e ~ ~ .  
Take OA and OB a s  coordinate axes. Then the  equations f o r  t h e  c i r c l e s  

a r e  
2 2 x + z j 2  = c2 and x + z j2  - cg = 0. 

Now ( ~ 0 ' ) ~  = 5c2/4 and 

AD= AO' - O I D =  ( 6 -  l ) a / 2 ,  

which is equal  t o  the  s i d e  of  a regu la r  inscr ibed  decagon. Let 

2 
hx + ky = a be a chord of  c i r c l e  ( 0 )  t h a t  is tangent  t o  c i r c l e  ( 0 ' )  

and equal t o  t h e  s i d e  of  t h e  inscr ibed  pentagon. Because it is a tan-  

gent, we have 

2 2 2 
h + k  = f k - 2 ~ ) .  

The condit ion t h a t  t h i s  chord equals t h e  s i d e  of  t h e  pentagon is 
2 2 

(k - 20) = 2c  ( 3  - 6), 
whence 

k - ( 3  - / S ) c  o r  k = ( 1  + file . 
The l a t t e r  value makes h impossible. Therefore t h e r e  is only one r e a l  

chord of  c i r c l e  ( 0 ) .  tangent t o  c i r c l e  (0'). which is equal t o  t h e  s i d e  

of t h e  inscr ibed  pentagon. 

I I .  SotILtLon b y  the Pn .opo&~~ .  

Let OA = a. Then 00' = e/2 and 

2 2 2  
so  AD is  a s i d e  of  t h e  inscr ibed  decagon. Now AP = AD + a 

[casey's E w l i d ,  iv .  10, Prob. 61. Therefore 

2 a 2 2 
AP = $6 - 2 6 )  + a ,  

s o  AP is  the  s i d e  

522. [Fall 
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of t h e  regu la r  inscr ibed pentagon. 

Solutions 

19821 Phopobed b y  C d d a  W .  T a g ,  San V i e g o ,  

Arrange n ine  consecutive - d i g i t s  i n  a 3-by-3 a r r a y  s o  t h a t  each of 

the  s i x  th ree- dig i t  i n t e g e r s  i n  t h e  columns ( read  downward) and rows is 

d i v i s i b l e  by 17. 

Atvatgum 06  ioÂ¥eu-fct.on ~ubim-tted ^.nde.pendewtiy b y  Bob PÂ¥K.eJU.pp Uni,ue~&-Uty 

06 Wi-6conh.t.n- O ~ h k o b h ,  and Kennnth. M .  WJULke., Topeka,  Kanbai . 
F i r s t  l ist  a l l  th ree- dig i t  mult iples  of 1 7  t h a t  do not  contain 

a repeated d i g i t :  017, 034, 051, ..., 986. We a r b i t r a r i l y  s e l e c t  a 

number from the  l i s t  f o r  t h e  top  row and another with t h e  same i n i t i a l  

d i g i t  and no o ther  common d i g i t s  f o r  t h e  l e f t  column. To avoid dupl i-  



ca t ion  of e f f o r t  we take t h e  column number g r e a t e r  than t h e  row number. 

A systematic  search then produced t h e  following arrays:  

2 0 4  3 0 6  4 2 5  9 1 8  

3 5 7  7 8 2  7 3 1  3 0 6  

8 1 6  4 5 9  6 8 0  5 2 7 .  

The a r rays  formed by interchanging rows and columns a l s o  s a t i s f y  our  

i n i t i a l  condit ions.  Since 051 and 085 a r e  a c t u a l l y  two-digit numbers, 

t h e  first two a r rays  a r e  eliminated. The second and four th  a r r a y s  a r e  

el iminated because they do no t  contain nine consecutive integers .  

Hence t h e  unique so lu t ion  is  t h e  t h i r d  a r r a y  (and i ts  transpose). The 

o thers  a r e  "near misses." 

AÂ£4 so lved  bq  RHONDA L. AULL, Ckkm6on UnLveuLtq,  SC, VICTOR G. 

FESER, Wy CoUege, 3L&m<vick, NU, ROBERT C. GEBHARDT, Hopatwng, NJ, 

J I M  GOEKE, SJ ,  S t .  LOULA, MO, DAVID INY,  R e ~ e - t e e ~  Poty-te.chn^.c IvUlAt.- 

Â¥tile T m y ,  NY, RANDY ISTVANEK, Kenosha, W T ,  TIMOTHY C. KEARNS, Ccvtha~- 

pin ,  VA, ROGER KUEHL, Kansas dutq,  ?0, ROBERT G. LOGAN, MtddJLe>kom, NJ, 

PAUL A. McKLUEEN, ChaMJLotte., N C ,  LINDA J.  MILLER, Hope CoUnge, HoUand, 

MI, NATHAN RUD, S t .  Otaf, CoUe-ge Pmbiem SoLuLng Gmup, Notth^i.e.td. MN,  

JANE E.  STOLARSKI, S t .  Bonaven-tuAe, UwLveviiAq, NY, THOMAS F. SWEENEY, 

Rubs& Sage Co&ge, Thoy, NY, and the. PROPOSER. " N e t ~ i  MtAbl' s o h -  

ti on^ w m e  6ound b q  KATHLEEN GRECO, Rancho PcJLos Vtulu, CAP GLEN E.  

MILLS, Pen&aco.to Jun^.oh CoUe.ge., F L ,  ELIZABETH A. SWIFT, C w o i w i a .  

S-to-te Univeu-Utf, Long Beach, and. THEODORE G. ZAVALES, R @ e u  UwLveh- 

A*, N e m  Bhun~MU.ck, NJ. 

523. [Fall 19821 Phoposed by Sta.nieq RubÂ¥moWiLtz Uig.Uat Equip- 

ment Cow, ,  MevuWa.ck, Nw HampbtuAe.. 

Let ABCD be a parallelogram. Erect  d i r e c t l y  s i m i l a r  r i g h t  

t r i a n g l e s  ADE and FBA outwardly on s i d e s  AB and DA ( s o  t h a t  angles ADE 

and FBA a r e  r i g h t  angles) .  Prove t h a t  CE and CF a r e  perpendicular.  

I .  SottLti-on b y  Leon Bonfeoj})}, LOA A n g d a i ,  CttÂ£t.6oAn^.a. 

ED/AD = AB/BF + ED/BC = DC/BF. kEDC = kCBF. Therefore AEDC - 
ACBF. (ED 4 BC A DC i FBI + EC i FC. u3*. 

*Why waste words? 

TI .  S o t u t i o n  by the Pmpobeh. 

We prove a more general  r e s u l t .  I f  ADE and FBA a r e  d i r e c t l y  

s imi la r  t r i a n g l e s  and ABCD is  a parallelogram, then t r i a n g l e  FCE i s  

d i r e c t l y  s i m i l a r  t o  t r i a n g l e s  ATE and FBA . 
Iden t i fy  vectors  i n  t h e  plane with complex numbers. Let A b e a t  

the  o r i g i n  and l e t  po in t s  B and D be represented by t h e  complex numbers 

b and d respect ively.  Let k be t h e  complex representat ion of  t h e  s t r e t c h-  

r o t a t i o n  t h a t  c a r r i e d  A% t o  &. Then & = kd. Then fa = b/k and fc = 

F% + B? = b/k + d. Also E? = E% + L% = kd + b. Now k FZ = b + kd = 2, 
so t r i a n g l e  FCE is d i r e c t l y  s i m i l a r  t o  the  two given t r i a n g l e s .  

AÂ£A soived by  EDWARD S. DOLAN, Seaauau~ti, NJ, JACK GARFUNKEL, 

F&tifct-ng, MY, EMMANUEL, O.C. IMONIT IE ,  Novthwut  MUAOU/M. Studs. U n h l -  

s-Uy, MahquUte., DAVID INY,  RenA.ia&ie~. PoLq-technlc I ~ i t U u t e ,  Thoq, MY, 

ROGER KUEHL, K w o i  CLtq, MO, HENRY S. LIEBERMAN, John Hancock MuÂ¥to 

l i d e  I n i .  Co., BoA-ton, MA, BOB PRIEL IPP,  UwLveu-Ltq 0 6  whcon~in-Obhkobh,  
CHARLES W. TRIGG, San %ego, CA, and the. PROPOSE!? [second s o l u t i o n ) .  
Sot.uti.ofi5 to .5pecUnt c m  wehc bubtnittcd bg RALPH KING, S a i n t  Bclna- 

v e n t m e  Unive.uity,  MY, and QUYEN NGUYEN, A h o n  U n i v ~ , - i t ~ / ,  OH. 

524. [Fall 19821 Ptopomd by MoA/LLA Katz,  Uawmhoc, Maine 

Solve t h i s  holiday alphametric f o r  a r e a l  prime XMAS. 

NRRY 

XMAS 

DODGE 

Sot l i t ion b y  Uow-id Tnq, Re.n~s&&h PotytuchnLc T ~ t i t u J t p . ,  T m q ,  
Nw Yolk .  

We note t h a t  D = M + 1 and R + M + (possible  carry) = 10 + d. 

Hence R = 1 and t h e  "possible  carry" is 0. Now S is 3 ,  7, o r  9, and G 
\ 

is  A + 1 o r  A + 2. Using t h i s  information it is  easy t o  el iminate  a l l  

p a i r s  (E ,  Y )  except (8, 7). Two p o s s i b i l i t i e s  r e s u l t :  47118 + 6409 = 

53527 which is el iminated because 6409 = 1 3  17  29, and the unique 

so lu t ion  
57118 

Atlio &otved by  VICTOR G. FESER, MoAq CoUege, &<-4mOAcfe, NO, J I M  a 
GOEKE, SJ ,  S t .  LO&, MO, RANDY ISTVANEK, Kenosfca, WI, ROGER KUEHL, 

K a n ~ a s  du ty ,  MO, GLEN E.  MILLS, Pen&acoLa JuWLoh CoUege., F L ,  S t .  Oia6 
P m b h  Solving Ghoup, S t .  Ow CoUege, No&f&e.f!d, MM, CHARLES W. 



TRIGG, San Viego, CA, and. t he  PROPOSER. Two eVioneou^ &otation& w e m  

tiubnitted. 

526. [Fal l  19821 Pkopobed by MoAALA Katz, Mawahoc, Maine. 

Solve t h i s  alphametric i n  base twelve, with apologies t o  J . A . H .  

Hunter. 

SUE 

EIGHT 

PUTTY 

Sotation by ChaAtu U .  T^u-gg, Sun V-Lego, CaJU.f,o'WA.a. 

Represent the  " dig i t s"  ten  and eleven by X and L ,  respec t ive ly ,  

and the  base twelve by B .  Immediately we have I = L, U = 0, E + 1 = P, 

H + 1 = T ,  E + T = Y + B ,  a n d S + G = T + B .  T h e n E 5 9 ,  T 2 4 ,  and 

T i 7. Now tabula te  t h e  p o s s i b i l i t i e s  f o r  H, T, E, P, and Y.  I n  each 

case, among the  unassigned d i g i t s  there  must be two such t h a t  S + G = 

T + B. This i s  poss ib le  i n  only one case,  except f o r  t h e  interchange of 

X and 7, shown below: 

XO 8 

8L 745 

90551. 

AAso iotued by MARK EVANS, LoILUivJiUe, K Y ,  VICTOR G. FESER, Mcmy 

CoUege, KLiimmck, NV, DAVID INY, R e n 5 b U t a . s ~  P o ~ c h n i c  InbtUvJLe, Ttoy, 

N Y ,  ROGER KUEHL,  KWUA CiAj, MO, GLEN E .  MILLS, Pen&acoÂ£o JuIK.ok CoUege, 

F L ,  BOB PRIELIPP, UnbeuÂ¥Lt of, U^Sicon&^.n-hhkoih, KENNETH 14. WILKE, 

Topeka, KS, and the  PROPOSER. 

527. [Fall 19821 Pmpohed by Gxegoq Uulczyn, Buckn&U. UrLLveb 

ti-, Lwh b i q ,  Penai ytvOWLa. 

Find the  volume o f  t h e  l a r g e s t  rectangular  para l le lep iped  with 

upper v e r t i c e s  on the  sur face  and lower v e r t i c e s  on the  xy-plane t h a t  
x 2  2 can be inscr ibed i n  t h e  e l l i p t i c  paraboloid - + aÃ = 2h - 2s .  
a2  b 2  

Solution by tkny S. Ltebe/mm, John Hancocfe Mutual. w e  Inb. Co., 
Bobton, AfaAbachu-6C.fctA. 

The upper v e r t i c e s  o f  t h e  para l le lep iped  form a rec tangle  in-  

scr ibed  i n  an e l l i p s e  and with s i d e s  p a r a l l e l  t o  t h e  coordinate axes. 

Let (x, y ,  z ) be t h e  coordinates  o f  t h e  upper ver tex  i n  t h e  f i r s t  

octant .  Then t h e  volume o f  t h e  para l le lep iped  is V = 4 x p .  Since we 

2 2  2 2  
have z = h - fx /a + y /b ) /2 ,  then 

and s i m i l a r l y  2 2 "-. aY - Ã‘ %) . 
2a 2b 

S e t t i n g  these  f irst  p a r t i a l s  equal  t o  zero we see t h a t  t h e  n o n t r i v i a l  

c r i t i c a l  po in t s  (with n e i t h e r  x  nor y  equal  t o  zero)  derive from 

2 2 2 2 
h =+ and h = Ã ‘ Ã ‘  

So. 2a2 2b
2 

Now s u b t r a c t  th ree  times each equation from t h e  o ther  t o  solve f o r  X 

and y  , obtaining 

x =  Â¡ m and y m .  2 

Since a t  t h e  two extremes z = 0 and 2 = h we have V = 0 and s ince  V is 

c l e a r l y  p o s i t i v e  f o r  intermediate  values of  z ,  V a t t a i n s  i t s  maximum a t  

an i n t e r i o r  c r i t i c a l  po in t ,  t h e  po in t  found above. Hence t h e  maximum 

volume must be 

A^io b o h d  by DAVID DELSESTO, No. Scvitua-te, RI, ROBERT C .  GEB- 

HARDT, Hop&ong, NJ, TIMOTHY C. KEARNS, CathaA.txh, VA,  and the  PROPOSER. 

528. [Fall 19821 Pmpobed bq Abn k j n e ,  PUACO-tkmando Communi- 

Â¥t CoUege, Ft0Iu.d~. 

In  the  s e t  o f  n a t u r a l  t r i a n g l e s ~ t h a t  is, t h e  s e t  of  t r i a n g l e s  

with s i d e  lengths t h a t  a r e  integers- - consider ,  f o r  ins tance ,  t h e  t r i o :  

(19 ,  24, 351, (15, 29, 34) and (14, 31, 33). Ca l l  t h i s  t r i o  a " size 

t r i p l e t " ,  because t h e  th ree  t r i a n g l e s  have t h e  same perimeter  and t h e  

same area.  Since t h e  common area  i s  l e a s t ,  t h i s  is  t h e  smallest  s i z e  

t r i p l e t .  What is t h e  next l a r g e r  s i z e  t r i p l e t ?  

Sotation by Vav'id, I m f ,  Renbbetaek PotytechLc Ia i tUute ,  Tmy,  - 
N u  Yo&. 

The next  l a r g e r  s i z e  t r i p l e  i s  (24, 25, 411, (17, 33, 401, and 

(15, 37, 38) ,  found by computer. These f i r s t  two s i z e  t r i p l e s  a r e  of  



even perimeter and smal les t  i n  terms o f  perimeter a s  well. The smallest  

s i z e  double is (15, 8, 8)  and (14, 14, 31, bu t  i n  terms of  perimeter  is  

(4, 11, 11) and (7,  7, 12). 

Furthermore, by a s l i g h t  modification o f  Foster  and Robins' solu-  

t i o n  t o  problem E 2872  h he A m e r i c a n  MatViematica.1 M o n t h l y ,  vol. 89, no. 

7, August-September 1982, pp. 499-5001, we can cons t ruc t  t e n  t r i a n g l e s  

o f  equal  perimeter and a rea ,  (1242700, 830280, 5790201, (1246032, 752250, 

6537181, (1245675, 765765, 640560), (1182675, 1101360, 3679651, (1186770, 

1093950, 3712801, (1206660, 1047540, 397800). (1219920, 1001130, 430950), 

(1233180, 928200, 490620). (1236495, 901680, 5138251, and (1246440, 

729300, 676260). 

A&Ao boived by ffie PROPOSER. 

529. [Fall 19821 Pmpobed by S W e y  Rab^nowUz, V-ig-Utat Equip- 
ment Cohp., MevU.mack, Nan HampbluM.. 

Show t h a t  there  is no "universal  f i e l d"  t h a t  contains  an isomor- 

phic image o f  every f i n i t e  f i e l d .  

Solut ion by Tom Maone., 6IU.dgettfo-te.k S t a t e  CoUege,  Ma&~acAu&e-tt&. 
I f  such a "universal  f i e ld"  ex is ted ,  then i ts  un i ty  1 is nonzero 

and is t h e  un i ty  element f o r  a l l  t h e  subf ie lds .  By assumption there  a r e  

subf ie lds  of  c h a r a c t e r i s t i c  2 and 3. Hence we have both 1 + 1 = 0 and 

1 + 1 + 1 = 0, s o  1 = 0, a contradict ion.  

AÂ£a ~ o l v e d  by MICHAEL W. ECKER, Penre&ylva.Ma Stcvte. UrU,velit-t/ty, 
Uofithington Scwmton Cornpub, and the PROPOSER. 

530. [Fall 19821 Phopo~ed by Leon Banko6& Lob Ange^-a, 

Catifi0lM.a. 

In  the  accompanying diagram, AB (= Sr) is t h e  diameter of  c i r c l e  

( 0 )  and AC 1= 2 r  the  diameter of  c i r c l e  f O 1 )  , D is a po in t  on dia- 1  
meter A C ,  and the  half-chord DQ perpendicuar t o  AC c u t s  t h e  c i r c l e  ( 0  ) 1  
a t  P. The c i r c l e s  fW of rad ius  p a  and (W ) of rad ius  p 2  a r e  tangent  1  2  
t o  c i r c l e s  ( 0 )  and ( 0  ) and touch PQ on opposi te  s ides .  Show t h a t  1  
p / p 2  = rl/r.  

I.  S o l d o n  by Hentuj S .  Lie-be~man, John Hancock M u t u a l  U & e  
Ire&. Co., Bo-iton, hbbachi i~e-Ya .  

For i = 1  and 2  we apply the  law of cosines t o  t r i a n g l e s  WiOIO 

t o  g e t  
2  2  f *) (OWi) = (O1Wi) + ( 0 ~ 0 ) ~  - 2 f 0 1 W i )  f O ~ O ) c O s w i O I O .  

Since t h e  project ions of W1 and W  2  a r e  a t  dis tances p1 and p2 from D, 

we have t h a t  

0 1 2  w cos W2O10 - o w  cos W I O 1 ~  = p + p2 . 
Also 0 1  0 = r - r l ,  OWi = r - pi ,  and 0 W .  = v + p i ,  i = 1 ,  2  . 1 2  1  

Now s u b t r a c t  equations f * )  t o  ge t  

2  
1 0 ~ ~ 1 ~  - f o w l )  = ( 0 1 w 2 ) 2  - f ~ ~ w ~ ) ~  - 2 f O 1 0 ) f p 1  + p 2 ) ,  

f r  - p212 - ( r  - p 1 j 2  = ( 5  + p 2 ) 2  - ( r  + p112 - 2 ( r  - r l ) ( p l  + p a ) ,  

which reduces t o  
r p 2  

2 r p l  = 2 r 1 p 2 ,  whence - = - . 
2- O1 

11.  Solut ion by the Phopo-iek. 
Let dl and d2 denote the  d i s tances  of  W1 and W  from the  r a d i c a l  

a x i s  o f  c i r c l e s  ( 0 )  and ( 0 , )  ( t h e i r  common tangent a t  A ) .  Let CB f=  2 v 2 )  

be the  diameter of t h e  c i r c l e  ( O y ) .  

It is known [casey, Sequel t o  E u o l i - d ,  p. 1181 t h a t  i f  a var iab le  

c i r c l e  touches two f ixed  c i r c l e s ,  i ts  rad ius  has a constant  r a t i o  t o  t h e  

perpendicular from i ts  c e n t e r  onto t h e  r a d i c a l  a x i s .  So 

the e c c e n t r i c i t y  of t h e  e l l i p s e  whose f o c i  a r e  0 and 0 ,  and whose major 

a x i s  is  A 0 2 .  Then 

Hence we have 

the  required result. 



A U o  botued by E r i c  C. Nummela, N w  England Co-tCege, HenLkef i .  

NH. 

531.  [ F a l l  1 9 8 2 1  Pmpobed by Robert  E. Meggimon, U ~ u v e u i t y  

o< 1UJLno.&. 

Prove, without using mathematical induct ion,  t h a t  

2- 6 -  10- 14. . . (4n - 2) = (n + I )  (n+2). . . (2n). 
I .  A d g a m  0 6  w e n t i . a U y  b i m i t a A  botut iom> by VICTOR E. BLOOM- 

FIELD, BeUe.vue, Wah ing ton ,  DAVID DELSESTO, No. Se^CuaJLe, Rhode Ih land ,  

CHARLES R. DIMINNIE,  St. Bonavewtuke U f U . v e ~ i ^ y ,  NY, MICHAEL W .  ECKER, 

P e w  y l v a n i a  State. U h e ~ i i t y ,  Wo/rffct.ng-Con Sckanton Campiu , RUSSELL 

EULER, N o > v 0 w u t  Huiboufu. S-tote Uni.ve&ty, M m y v i U e ,  JACK GARFUNKEL, 

FA^h^ig, N w  Yo&, ROBERT C. GEBHARDT, Hopatcong, NJ, JOHN M. HOWELL, 

UJuLe~~ock . ,  CcLUfioIWA.a, TIMOTHY C. EARNS,  Cathmp in ,  Vikg^u.a, HENRY 

S. LIEBERMAN, John Hancock Mwtiwt. @ 1 ~ .  Co., Bobton, MA, PETER A. 

LINDSTROM, No& Lake Cortege, Uu-tng, TX, QUYEN DINH NGUYEN, Unive .uUy  

o< A h o n ,  OH, BOB PRIEL IPP ,  U v ^ v e u i t y  ofi W^c.o^n-Ohhkobh, HARRY SED- 

INGER, S-C. Bonaventuke UfU.ve~iLt-y, NY, KENNETH M. WILKE, Topeka, KS, and 

t h e  PROPOSER. 

We have 

2 . 6 . 10 - 14 . . - . -  (4n - 2) 
- = (2 - 4 . 6 -.... (4n - 2)(4n))/(4 8 - 12 Â¥--.-(4n) 

= 22n (2n)!/~"(n!) = (2n)!/n! = (n + l)(n + 2)-.-(272). 

11. S o t u t i o n  by P a d  A. McKlue.e.n. C h d o t t e ,  N o d  Cahot ina,  

We have 

(n + l)(n + 2) . - *  (2n) = n!(n + l)(n + 2) (272) 
n! 

532 .  [ F a l l  1 9 8 2 1  Pkopobed by Uovu^ totz, M a d o c ,  Maine, and 

ChoAJLu W .  T a g ,  San Diego, C m o i n . L x .  

From a square g r i d  of  s i d e  17 ,  a l t e r n a t e  squares  a r e  removed t o  

form a s ieve .  Dissect t h i s  s ieve  i n t o  fewer than a dozen pieces and 

reassemble them i n t o  a square of  s i d e  15 .  See problem 4 9 1  [ S p r i n g  1982,  

page 4211 .  

Solu^LLon ul i ing 1 0  p k c u  by David I nq, R ~ i h & t . a . m  PoQtechnA-c 

An eleue.n-pie.ce b o t u t i o n  ittu pnovide-d by t h e  P ' i o p o ~ e n ~  . 



533. [Fal l  19821 Phopo~ed b y  V .  0 .  Fan-tUA, Aie.xand^La., 
V i m g i d a .  

It  i s  known t h a t  cance l l ing  t h e  s i x e s  i n  t h e  proper f r a c t i o n  

16/64 y i e l d s  t h e  equivalent  f r a c t i o n  1/4  i n  lowest terms (problem E24, 

September 1 933, The American Mathematical Monthly). Find o r  charac te r ize  

a l l  proper f r a c t i o n s  having 3- digi t  numerators and 3- digi t  denominators 

t h a t  reduce t o  lowest terms by cance l l ing  t h e  same d i g i t  from numerator 

and denominator. 

I. S o l u t i o n  b y  Vowid Tny, R e n ~ ~ e A x e ~  P o l y t e c h d c  Initutu^te, 
Tkoy,  New Yohk. 

There a r e  two c l a s s e s  of  so lu t ions :  

(1)  Ã‘Â = where b = a + c = d + e and ac/de is a proper f rac -  She de 
t i o n  i n  lowest terms. In  t h i s  case a f a c t o r  of  11 is divided o u t ,  and 

ab 0 
0 )  ,3_g = 2 where ab/de is a proper f r a c t i o n  i n  lowest terms. 

Here a f a c t o r  of  10 is divided out .  

T I .  Comment b y  Bob PditJLi.pp, U h e h b - c t y  0 6  WLticon~ira-Obhkobh. 
Here a r e  some references r e l a t e d  t o  t h i s  problem: 

1. R.P. Boas, "Anomalous Cancellation," pp. 113-129 of  Mathe- 

matical Plums, ed i ted  by Ross Honsberger. The Mathematical Association 

of  America, 1979. (Seven addi t iona l  references t o  t h i s  problem a r e  given 

on page 129). 

2. Charles W. Trigg, Solut ion t o  Problem 434, Mathematics Maga- 

zone, 1961, pp. 367-368. 

3. Charles W .  Trigg, Solut ion t o  Problem 365, Pi Mu Epsilon 
Journal, 1977, pp. 372-374. [The editor of th is  department really should 
have spotted this  one! - ed . ]  

AÂ£A boLved b y  GLEN E .  MILLS, P e ~ l i a c o l a  J u d o &  C o l l e g e ,  F L ,  

CHARLES W. TRIGG, San V iego ,  CA, and the PROPOSER. T d g q  hupp t i ed  the. 
add i t i ona l .  h e . t m w c e :  

4. W. E. Buker , Solution t o  Problem 131 7, School Science and 

Mathematics, 34 (April 1934J, pp. 432-3. 

L a t e .  ioluAt.on t o  Phoblem 518 b y  DOUGLAS FRIEDMAN, U d v Â £ ~ ~ - i t t  06 
Pennh ylvafbLa., Ph^.a.d&i.phia. Lute. ~ o l u t i o n  t o  P h o b i w  520 b y  JOHN BAILEY, 
tUJUUsapb CoLLege, J a c h o n ,  M S .  
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