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Editon's Note =

The Pi Mi Epsifon Jowwal was (Soundedin 1949 and &5 dedicated to
underghaduate and beginning graduate students interested 4in
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A UBIQUITOUS PARTITION OF SUBSETS OF R"

by Donald John. Nicholson
lowa State. University

We are about to embark on an adventure into the beauty of
mathematical inquiry. The journey will begin with a simple yet
wonderful property of the real numbers, and in the end we will arrive
at an elegant result: a ubiquitous partition of subsets of Rn,

i.e., a partition in which every element of the partition has a non-
empty intersection with each neighborhood (abbreviated nbd) in the
space.

The path will lead only through Euclidean spaces, so each space
must be understood to be a subspace of R®. When nbds are mentioned,
they refer to nonempty intersections of open subsets of R® with the
space. V& will use the symbol X to represent the closure in B of a
set X, X' to denote the set of limit points in R of X, and then
define X' = X' - X. Finally, Ur(xo) is the set of all points whose
distance from X is less than I, and Br(:co) is its closure. Now let
us begin.

Let Q and P be the rational and irrational numbers respectively,
and let U be a nonempty interval in R. Both In@ and UNP are infinite
no matter how small U is. Consequently, each point of (N@ isa limit
point of the set, but there must always be irrational limit points as
well. It is this property which we shall generalize in the following
definition.

Definition 1. A space X is a Grunowix space* iff Vnbd U in
X, U -X#48.

Proposition 1. 1f X is a Grunowix space, then X is dense in itself.

Proof. Let x0 be an isolated point in X. Then {xo} is anbd of X

in X. But {xo} - X =4, thus Xis not a Grunowix space.

* - see excerpt from a letter by the author at end of the paper

If X is a Grunowix space, then XcX’, but X # x'. This raises a
question: what kind of space is x™ Before answering, let us define

a new concept.

-

Definition 1. Two spaces X and Y are mutually dense iff X =Y. An~ -
arbitrary collection of spaces is mutually dense iff they are mutually
dense in pairs.

lemma 1. Let X and Y be disjoint spaces. Then the following are
equivalent: (a) X =Y, (b) xc¥” and ycx", and (c) xcY' and Ycx'.

Proof. Suppose X = Y. Then XcY and Y<X, and since X and Y are
disjoint, Xc¥" and Ycx". Note that x"<x' and Y"<Y’, hence X<y’ and
Y<X'. But this implies that X<Y¥ and Y<X, so X<¥ and Ycx. This returns
us to our original supposition that X = 7.

Lemma 2. 1f X is a Grunowix space, then X = X"

Proof. By the definition of X", X and X" are disjoint, and X"cX';
therefore, to satisfy Lemma 1 we need only show that Xc(x"”)’. Let

X eX and let U be a nbd of X inR"'. Then3r>0 > U (z )<U. Now
choose r' 3 g<r'<r; this will give us Ur'(xo)cBr'(xo)CUr(xo)CU'
Observe that UT,(xo)ﬂXCBP,(aco), and UP,(xO)ﬂX isanbd of X in X, so
that, since X is a Grunowix space, Ur,(:co)nX - X # 4., Thisimplies
that Br-’(xo) and thus U contain pointsin X"; it follows that X is a

limit point of X”. Since X is arbitrary, we infer that xc(x"”)’.

Theorem 1. Let X and Y be mutually dense, disjoint spaces. Then X

and Y are Grunowix spaces.

‘Proof. Let acoeX and | et U be a nbd of z, ing*. By Leamma 1 XcY¥' and
Ycx' , thus 3 yosUﬂY 3 ¥, is a limit point of UNX. This implies that
yerﬂX - X; since UNX is an arbitrary nbd ofxoin X, X is a Grunowix
space. By a similar argument Y is a Grunowix space.

Lemma 2 and Theorem 1 answer our question: if X is a
Grunowix space, then so is X"; e.g., Q and P are Grunowix spaces. But
Theorem 1 has a much more interesting consequence: every collection
of spaces which is mutually dense and pairwise disjoint is a collection
of Grunowix spaces, and we shall see that such a collection is a




ubiquitous partition of its union.

Let us construct such a collection. Let r, se(0,1) and define
p-s iff ZagrsaQ. It should be a simple exercise for the reader to show
that - is an equivalence relation and hence partitions (0,1). Let [r]
and [s] be distinct equivalence classes in the partition of (0,1).
Then [r] and [s] are disjoint. Furthermore, ZOQPSEP; i.e., 3 pe:P33=rP.
Since peP, 3 {qi} i:]cQ 39,77, thus pq'b.—)1p=s. Each l,,qie[r'] , thus s
isalimit point of [r] as is every element of [s]. Similarly, every
element of [Pl is alimit point of [g], thus [_P\:m by Lemma 1, and
[r] and [8] are Grunowix spaces by Theorem 1. Note that each
equivalence class is countable, whereas (0,1) is uncountable, thus
{[rl:re(0,1)} is uncountable.

The above partition is interesting in that the elements are
mutually dense; they are like chemically inert gases in a closed
container at thermal equilibrium. Just as the molecules of each gas
distribute themselves throughout the container, every nbd in (0,1)
contains points from every equivalence class; i.e., the partition is
ubiquitous.

Let us define a Grunowixz partition as a partition consisting of

mutually dense spaces. By Lemma 1 and the definition of a limit point,
this is equivalent to the definition of a ubiquitous partition. Thus
every Grunowix partition is ubiquitous, but no other partition is;
this is the beauty of the Grunowix space.

DO NOI BLINK! W are about to show how to construct Grunowix
partitions of an infinite number of spaces by using only three

theorems and our partition of (0,1)!

Theorem 2. Let {Xa:aaA} where A is an indexing set be a Grunowix
partition of X, and let f:X»Y be a continuous bijection. Then

{f(Xx ):aeA} is a Grunowix partition of Y.

Proof. The bijectivity condition insures that {f(Xa):asA} will be a
partition of Y. If x EX) and a#b, 3 {xi};__o]ch Yz . Since fis
continuousy f(mi)—zf‘(aco), thus f(Xa) and f‘(Xb) are mutually dense. It

follows that {f‘(Xa):aaA} is a Grunowix partition of Y.

Theorem 3. Let {Xi.l:aeA} be a Grunowix partition of the i'th factor
a - .
space of X=X oK 2o 0 2K Then {Xlx...xxim...xxn.aeA} is a Grunowix

partition of X.

Proof. iet a,bed and a_;-éb. Then X:=XZ,Z Now Xlx. . :z:sz ..xXn=Xlx. . achf
a .
. . .:an—Xlx.. :c?x . .xXn—Xlx.. T SaEp .aan, thus {Xlx.. ..’L‘XI..’X:. . .a:Xn.asAl

is a mutually dense collection of spaces. Since they are disjoint “and”
their union is X, they form a Grunowix partion of X (we will call this-

a Grunowix partition of X in the-i'th factor space or i'th coordinate).

Theorem 4. Let {Xa:asA} be a Grunowix partition of X, and B an open
subset of X. Then {XaﬂB:aaA} and {X NB:aeA} are Grunowix partitions

of B and B respectively.

Proof- Here we will use the equivalence of the definitions of Grunowix
and ubiquitous partitions. Nw ¥ erX, Y nbd U of z, in X, and V ae4,
Unxa#ﬂ' Since B is open in X, each nbd in B isa nbd in X, thus ¥
erB, Y nbd U of z, inB, and ¥V ad, Uﬂxa#a. But Unx =UﬂXaﬂB, thus
{XaﬂB:aeA} is a Grunowix partition of B.

Now let x eB” and U a nbd of z, in X. Then UNB##, and since B

isopen in X, UNB is open in X, so that UﬂBﬂXa#ﬂ ¥ agA. Since

UanxacUnEnxa, {xanﬁ;aeg} is a Grunowix partition of B.

These three theorems are our tools for constructing Grunowix
partitions. W may construct a Grunowix partition of any open subset
of &* or its closure by collecting the intersections of the set with
each element of a Grunowix partition of R®. A Grunowix partition of
)i may be easily constructed by mapping (0,1) homeomorphically onto
one or more factor spaces of R* and using Theorem 3. Look how many
spaces we can ubiquitously partition with a simple equivalence relation
on (0,1)!

We would like to make one final observation. Constructing a
Grunowix partition of ol by partitioning one or more of its factor
spaces imposes a variety of geometric structures on the connected
components of the elements of the partition. Since the elements of a
Grunowix partition of R are totally disconnected, a Grunowix partition
of R3 in one coordinate will consist of elements whose components are
parallel planes, in two coordinates the components will be parallel e
lines, and in three coordinates the components will be point's. In
general the components of the elements of a Grunowix partition of B’




inm of its coordinates will be n-m dimensional hyperplanes.

There is more. W may use any curvilinear coordinate system in
R* to construct a Grunowix partition so long as each point has unique
coordinates. By using spherical or cylindrical coordinates we may have
a Grunowix partition of R3 whose elements consist of concentric spheres
or coaxial cones or cylinders. The mysteries of the Grunowix space
know no bounds!

The purpose of Flgure listo aidin V|suaI|Z|ng the Grunowix
partition {Q y R -Q } of R

and since it is countable, R -Q i s connected.

The element Q is totally disconnected,

A very rough description
of the partition is a countable collection of infinitesimal "boxes"
enclosing points. Hw exquisite! And it all began with the property of
the real numbers that every interval contains infinitely many rationals

and irrationals.
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EXCERPT FROM A LETTER

... Theidea of a Grunowix Apace arose from an undergraduate topology
homework problem in neference 3. The problem L{s Exerncise 1-28 on page 25:
prove that the. set of rationals as a subspace of the reals 8 not Local-
£y compact.

When 1 §inally decided what property of the set of rationals prevented
it §rom being Locally compact, it struck Me en being very fascinating.

1 asked the instructon iF,this propernty had a name. He. knew of none., so
1 generalized the. propenty and tried t 0 come up with a name myseld. M
wife suggested inventing a woad, s0 we tried constructing wornds with a
schabble boarnd and Letten tifes, and 'Grunowix' was the. §inst construc-
tion we could pronounce.

M oniginal deginition fon the. Grunowix Apace. was formulated different-
Ly, but it was equivatent to the present one. If ny papait. deveid of
neferences, Lt it. only because none of the. math professons 1 was ac-
quainted with coutd steer me toward any souwrces that helped me with this
intenesting Apace, nor did any searching on ny part uncover any useful
neferences. 1 wen forced to develop the. definitions and proposditions on
ny own;, £t required working manq months aid wandering down some blind
alleys, but 1 an pleased with the results and what 1 Learned grom the.
expendience. It hen made ne Love mathematics.

1 would tike to thank Pi. Donald Sanderson of ITowa State. University for
the. muttitude of, occasfons on which he Listened to nme sont out and try
to ctarify ny ideas and for being kind and patient encugh to read and
constructively cruiticize flve vernsions .of this paper ..,
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Editor's note: This paper was prepared while the author was a senior
undergraduate majoring in mathematics and physics at lowa State Univer-
sity. Donald presented the paper at the National Meeting of Pi M1 Epsilon
in Albany, NY in August 1983 and has entered the paper in the Journal's.
National Paper Competition. The competition is open to students who have
not received their master's degree at the time of submission. Papers may
be submitted to the Editor at any time.

Sincerely,
Donald John Nichofson




THE SQUARI LI C QUADRI LATERAL

by Ceayton M. Dodge

Univensity of Maine

and Jack Garfunkel
Queensboro Community Coflege

One must admit that the quadrilateral cannot compete with the
triangle in producing theorems in plane geometry. In this Journal,
(7(1981)317-329 and 7(1982)453-u464), we have previously introduced

two new quadrilaterals, namely, the equilic quadrilateral and the

bow-tie quadrilateral. W now add another new quadrilateral, which

we will call squarilic.

Defdnition | Quadrilateral ABCD (not necessarily convex) is squarilic

if AB=CD andangle B+angle C= 90°. see Figures 1A, 1B and 1C.

FI GURE 1A

FI GURE 18

FI GURE 1C

Theorem | If a simple quadrilateral is both cyclic and squarilic, it

is an isosceles trapezoid with its base angles equal to 45°.

Proof: The proof is immediate. If the squarilic quadrilateral is
inscribed in a circle, AD is parallel to BC and the theorem follows.
That the restriction to simple quadrilaterals must be included
is shown in Figure 2, in which we see a cross cyclic quadrilateral that
is not an isosceles trapezoid with base BC. Curiously, it is an
isosceles trapezoid with bases BD and C4, as the reader may wish to

prove.

FI GURE 2
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Theorem 2. The midpoints of the diagonals and the midpoints of the
sides BC and AD of a simple squarilic quadrilateral ABCD are vertices

of a square,

FI GURE 3

Proof. Refer to Figure 3. Let MZ’ MZ’ MS’ M4 denote the midpoints of
BC, AC, AD, and BD, respectively. Since the line segment joining the
midpoints of two sides of a triangle is parallel to the third side and
equal to one-half that side, we have,

MM, = % AB, and MM, parallel to AB,
MM, = % AB, and MM, parallel to AB.

Similarly, we have,

MM,

M3
Since AB = (D, M1MZM3M4 is a rhombus. Furthermore, because AB is
perpendicular to CD (extended), M1M2M3M4 is a square.

% D, and M1M4 parallel to CD,

% ¢p, and MMy parallel to CD.

Questfiou., Wha figure is obtained in Theorem 2 when the quadrilateral
is not simple?

Deginition 2. Squares BCGH, ADEF, DCJK, and BALM, erected on the sides
BC, AD, DC, and BA of squarilic quadrilateral ABCD, and squares ACNP
and DB@R erected on the diagonals AC and DB are said to have first
orientation if they are all similarly oriented and if the interiors of
square BCGH and the triangle formed by the sides BC, AB, and ¢D of the
squarilic quadrilateral have a nonempty intersection. |f any of these
six squares has the opposite orientation, then it is said to have
second orientation. Figures 4A, 4B and 5 show these orientations.

FI GURE 4B

First orientation squares
on a cross squarilic
quadril ateral

11

FI GURE 4A

First orientation squares
on a simple squarilic
quadril ateral

FI GURE 5

Second orientation squares
on a cross squarilic
quadril ateral
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Theonem 3. |If first oriented squares are constructed on sides AD and
BC of squarilic quadrilateral ABCD, then these squares have the same
center.

FIGURE 6

Proof. Let O be the center of square ADEF and O the center of BCGH
Since a 90° potation about O carries A to D and since AB is perpendicular
to DC, the rotation carries AB to DC, as shown in Figure 6. Similarly,

a 90° rotation about O' carries B to ¢, hence AB to DC. Thus these

two rotations are identical and O = 0’.

Theorem 4. If first orientation squares are constructed on sides AB
and CD of squarilic quadrilateral ABCD, the join of their centers
bisects side 4D, and is parallel and equal to BC

FIGURE 7

13

Proof. Refer to Figure 7. Since AB and CD are equal and perpendicular.,

squares AGHB and EFDC are congruent with sides parallel. Thus, AKDL
is a parallelogram. Hence its diagonals bisect each other. Since BK

and CL are equal and parallel, BCLK is a parallelogram so that BC and

ILL are parallel and equal.

Theonem 5. If second orientation squares ACGH and BDEF are erected on
the diagonals of squarilic quadrilateral ABCD, they will have the same
center.
A
D

FIGURE 8

Proof. Refer to Figure 8. Let O he the center of the square on BD

and O' the center of the square on AC. A 90° rotation about O carries

D to B, hence p¢ to BA.
to A, hence DC to BA

Similarly, a 90° rotation about O' carries ¢

Thus these rotations are identical and O = O,
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Theorem 6. If first orientation squares are erected on sides 4B and
AD and a second orientation square is erected on side DC of squarilic
quadrilateral ABCD, then the centers of these squares are vertices of
an isosceles right triangle with right angle at the center 01 of the
square on AD.

FIGURE 9

Proof. Let the squares on sides AB and CD have centers 02 and 03.

Since angle BAO, = angle DO, and angle 0,48 = angle 0,0c = 45°, then
angle 0,40, = angle 0500, -
triangle 03I:Ol and a 90° rotation carries 02A01 to OSDOJ' Therefore

0201 = 0301 and 0201 is perpendicular to 0301.

Before stating the next theorems, we remind our readers of some

Hence, triangle OZAOZ is congruent to

transformation theory. Ve let

-1
Pp . Pp , and op

denote a counterclockwise quarter turn (through 900), its inverse
clockwise quarter turn, and a halfturn, respectively, each about point
P as center. Also let

AB

15

denote the translation through vector AB.
W have that

2

_ -1
Pp =9p and that Pp Pp and %

are each the identity map. .
In general, the product of two rotations is a rotation through
the sum of the two angles of the given rotations or, if that sumis a
multiple of 3600, a translation. In particular, let ABCD be a
counterclockwise square where C is the midpoint of each of the two
segments BF and DE, as shown in Figure 10. Then ;
= T

L) = Pp(B) = E, so =T =

PcPa PePa DE = 2pCct

Similarly,
Pe P4 = Tgr T Temc
If two rotations Py and Py have the same angles and if there are
points 4 and B such that
pl(A) =B and pZ(A) =B
and i f the centers of the rotations both lie on the same side of line
AB, then these rotations have the same center.
Finally, using the ideas above, it is not difficult to show that,

if pP'po - pRpS—l, then segments Pg and RS are equal in length and

perpendicular.
E B
A
£ D
FIGURE 10
Theorem 7. |f first orientation squares are erected on side AD (and

having center 0) and on diagonals AC (center P) and BD (center R) of
squarilic quadrilateral ABCD, then the centersP, 0, and R are
collinear, O is the midpoint of PR, and PR is equal to and parallel to

one of the diagonals of each of the squares erected on sides D and 4B.
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FIGURE 11

Proof. In Figure 11 we see that
-1 _ -1 _ _ _
PR pO(A’ = ppPp (D) = QO(B) =C and pP(A) = C.
Now pOpR_] e is a counterclockwise quarter turn such that O is the

midpoint of the segment joining R to its center. It follows that P
and that center coincide; that is, O is the midpoint of PR. Since

B _1(D) = C, then RP is equal and parallel to diagonal DE of the
O"R
first orientation square on side CD, which square is congruent to and
has sides parallel to the squares on side AB.

Theonem 7a. 1f second orientation squares are erected on sides AD
(having center Tl and BC (center V) of squarilic quadrilateral ABCD,
then the midpoint of the segment of centers TV is the common center U

17

of the two second orientation squares erected on the diagonals AC and
BD. Furthermore segment TV is equal to and parallel to the other
diagonal (from that of Theorem 7) of the squares on €D and AB.

A i

FIGURE 12

Proof. Referring to Figure 12. we have that

-1 _ -1 _ _ -
prU pT(D) = prU (4) = DV(C)J_ B and DU(D) B,
so U is the midpoint of TV. Also DVDU_ (A) = B, so TV is equal to
and parallel to a diagonal of the square of side AB, the other diagnonal
from that of Theorem 7.
For our final theorem, we could not resist the temptation of

going all out and constructing squares on each of the four sides and
on both the diagonals.

Theorem 8. If first orientation squares are constructed on each side

and on both diagonals of squarilic quadrilateral ABCD, the centers of
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these squares (when joined) form a squarilic quadrilateral.

N
M S
H
E W
- -2
Y -\ )
,"‘: Vi \
- ~ \ \
t’ A S . \\ \
d’ \\\ R \ R
e &o&oimimfinie o - - e s . {
X ) Z
B C

FIGURE 13

Proof. Let the centers of the squares on sides AB and CD and on
diagonals AC and BC be X, Z, W and ¥, and let the common center of
the squares on sides BC and DA be V, as in Figure 13. The
-1 T -1 _
Py pW(A) =D _and PyPy (A) = D,

so the translations pz JpW and prX— are equal. Then WZ and XY are

equal and perpendicular.

Theonem Ba. The centers of the squares erected both ways on AB and on
CD form another squarilic quadrilateral directly congruent to ABCD and

parallel to it. A halfturn carries one to the other.

Proof. The line of centers of the two squares having AB as a side is
congruent to AB and perpendicular to it. Similarly for the line of
centers of the squares on CD. It follows that these two lines are the

equal sides of a squarilic quadrilateral.

19

Surely, more properties of this prolific quadrilateral can be
found. However, it will be more interesting to consider various degen-
erations of the quadrilateral. As to be expected, we will obtain
theorems about triangles.

Let squarilic quadrilateral ABCD degenerate so that angle ADC:=.
1800_, as in Figure 14.

FI GURE 14

Probfem 1. In right triangle ABC, right angle at A, AC>AB, a point

D is chosen on AC so that AB = CD.

Show that squares erected upward

on AD and on BC have the same center.

See Figure 14.

Proof.

The above follows directly from Theorem 3.

Using the same degeneration, we have the following:

Probfem 2. Wth the same hypothesis as in problem 1, show that if out-
ward squares are constructed on AB and on DC the join of their centers
bisects AD. See Figure 15.
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FI GURE 15

Proof. The proof follows from Theorem 4.

Other properties of this right triangle can be found by applying

the theorems proved before. W will, however, proceed with another degen-

eration. Let the squarilic quadrilateral ABCD degenerate so that
angle BCD = 0°.  Thus, point D is on BC and angle B = 90°.

Probfem 3. In right triangle ABC, right angle at B, D is a point on BC
such that AB = CD. Show that the centers of squares erected on AB, AD,

and on DC, as in Figure 16, are vertices of an isosceles right triangle.

Proof. The above follows from Theorem 6.
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FI GURE 16
Again, we will let the reader discover other properties of this
right triangle by applying the theorems proved here. Instead, another
degeneration will be considered.

Let the squarilic quadrilateral ABCD degenerate so that the point
D falls on side AB. Here angle BDC = 90° and side AB equals altitude CD
of triangle CAB.

Probfem 4. In triangle ABC with altitude CD = 4B, squares are erected

downwardly on AC and on BD. Show that these squares have the same cen-

ter. See Figure 17

Proof. The proof follows from Theorem 5.
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FIGURE 17
Again, we will not belabor the point, but we let the reader dis-

cover other propoerties of this triangle by applying others of the the-

orems proved here.

Finally, we can degenerate our quadrilateral negatively. That is,

by making angle ABC = 90° + ¢ and angle BCD = - 8, as in Figure 18. All

the properties of the squarilic quadrilateral hold for this negative quad-

rilateral. For example, from Theorem 7, we get the centers of squares
erected on BD, AC and AD align.
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FIGURE 18

Concfusion. Hence. another quadrilateral has been added to the manv
already existing. This article illustrates a method of discovery.
Mawy high school and college students are looking to do projects in
mathematics. Our advice is: create a simple configuration, make
accurate sketches, try to discover and then try to prove properties

of your configuration.

GRAFFITO

In most sciences one generation teans down what anothen ha built and
what one has established another undoes. In Mathematics alone each
generation builds a new story to the old structure.

H. Hankel [1839-1873)
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ASYMPTOTI C SOLUTI ON OF THE PROBLEMS
OF ERDOS AND SIERPINSKI CONCERNI NG M/N

by J. L. Brennen
10 Phittips Road
Pato Atto, CA 94303

Abstrhact. For each m the rational m/n can be written as the sum
1/x + J/y + 1/z of three unit fractions, except possibly for a set of
values of N of asymptotic density O.

1. Introduction. For eacht =1, 2, ... , an interval containing 1/t

inits interior is exhibited that contains no rational expressible as
the sum of three (or s, preassigned) unit fractions. Yamamoto (1964)
proved the existence of such an interval. Stewart and Web (1966)
proved that every interval contains such rationals.

In 1950, Erdds conjectured that every rational 4/n (I < n) (with
numerator 4) can be written as the sum of three unit fractions. Sier-
pifiski (1956) made the same conjecture concerning §/# (2 < n). |In this
article the conjectures of Erdss and Sierpifiski are verified in the
asymptotic sense: if there are any exceptional values of »n, they exceed
108 and have density O.

2. Density of Number m/n Expressible as E? I/Xi' The results of this

section are largely known, though not so explicitly as here outlined.

Let Sk be the set of rationals expressible as a sum ZI; 1/x7.,

ITsxysxys ... x5 Ak:SkU {0}.
Thus 4, = {0}, 4; = {0,1,1/2,1/3, ... }. It is easily seen that
if k>0 the derived set (of limit points) of Ak iSAk 1 Theorem 2.01

follows immediately.

Theorem 2.01. For each k, the set Sk of rationals expressible as the aum
of k unit fractions is nowhere dense (in the reals or in the rationals).
This theorem is due to Stewart and Wedb (1966) who attribute the
argument to H. J. S. Smith (1875).
The interval (23/24, 41/42) contains no rational expressible as
the sum of three unit fractions. The proof of Theorem 2.02 is left to

the reader.
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Theornem 2.02. Define dl =m+1, dZ = m2 +m+ 1, ... . Norational

in the interior of the interval

(1/m - 1/[md1d2...ds], 1/m)

can be written as the sum of S unit fractions.

Additional problems are given at the end of this article.

3. The Conjectures of Endos and. Sienpinski. In 1965 Yamamoto proved
that 4/n = 1/x + 1/y + 1/z has a solution when n = 5(mod 24). Hence
if n has a factor = §(mod 24) there is also a solution. The sieve
method shows that the doubtful cases comprise at most mt=1 {1 - -2——4—5:5
of the integers. Since the infinite product diverges to O, Erdos’
conjecture is asymptotically correct.

Yamamoto has now verified Erdds' conjecture for 1 < n < 108.

In 1964, Stewart proved that 5/ = 1/x + 1/y + 1/z has a solution
when n = 13(mod 1260). A similar sieve shows that the Sierpifski
conjecture is asymptotically correct.

Stewart verified Sierpifiski's conjecture for 2 < n < 109.

4. Proof of a Generalization of the Conjectures of Exdbs and Sienpinski.

Theonem 4.01. If m is any fixed positive integer and if n varies through

the positive integers, the equation
(4.01) m/m = 1/x + 1/y + 1/z

has a solution in positive integers x, ¥, 3 except possibly for a set
of values of n of (asymptotic) density O in the set of all integers.

Proof. W consider separately the residue classes n = ml + t(mod m),
ie. t=1,2, .... m-1. (The case n = ml is trivial, since 1/1L = 1/(1+1)
+ 1/10(1+1)1 = 1/(1+1) + 1/(11+1+1) + 1/{L(l+1)(L1+1+1)1.) For each
fixed value of t, we shall show that, for almost all values of 1
(for almost all n) (4.01) has a solution.

Let p > m he any prime in the arithmetic progression
p s -1(mod m-t). Set L =pu* r, where r is the positive integer
(0<r<p) that satisfiesmr t t = 0(mod p). For this value of 1, we find
n=mpu+mrt t. Wesetz=putrtil andpt1l=uwimt). Ifve

choose y = wnx/p, 3 = wnx, clearly y, z are integers. Also,
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1/x+ 1/y + 1/z = 1/x + p/wnx + 1/wnx
(1/x) (n#m-t) /n

(1/x)m(putmr+1) /m = m/n

At this point, we need a lemma

Lemma 4.02. (Chandrasekharan) The number of primes p in the arithmetic
progression (m-t)h - 1 (h = j, j+1,...) isinfinite, and the sum of

their reciprocals diverges.

Conollary 4.03. The infinite product 11(I-1/p) (taken over the primes
described in the lemma) diverges to O.

We return to the main argument. Number the primes in the
arithmetic progression of the lemma pys p2, For 1 = pyu + r,
there is a solution to (4.01), so that at most 1 - l/pz of the integers
7n in the residue class (Z nod m) remain in doubt. OF these remaining
values of »n, at most 1 - 1/p2 of them are in doubt. Thus in the
residue class (t mod m) the proportion of doubtful values of # is
ﬂ(l-l/pi). The corollary above states that this proportion is
asymptotically 0, as claimed in the theorem.

I't seems a hard problem to prove that for all sufficiently
large integers n, the Erdss conjecture (or its generalization) is
true. But this conjecture does seem to be correct. (The conjecture

has to be verified only for prime values of z.)

5 Probfema.

5.01. Prove that 2/3=1/3 + 1/3 = 1/2 * 1/6 is the largest rational
that can be written in two ways as a sum of two Egyptian fractions.
Wha is the largest rational m/n that can be expressed as 1/x t 1/y and
also as 1/z + 1/w, with x, y, a, W all different?

5.02. Note that 3/7 = 1/4 + 1/7 + 1/28 = 1/3 + 1/11 + 1/231. Prove
that 1=1/3 + 1/3+ 1/3=1/2 * 1/4 + 1/4 is the largest rational

that can be expressed in two ways as the sum of three Egyptian fractions.

Wha is the largest rational with similar properties, but with all

si X denominators different?

5.03, Note that 3/280 = 1/95 + 1/19-280 = 1/96 *+ 1/12-280. Find other
rationals (if there are any) expressible in both forms 1/x * 1y =
1/(x+1) + 1/z, a~zx + 1.
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A
5.04. Is there a rational expressible simultaneously in the three
forms (u, v, w, t >x + 2)

/et 1y +1/2 = 1/(x+1) + 1/t 1/t = 1/(x+2) * 1/ut+ 10 2

5.05. What is the largest rational expressible in three different ways
as the sum of two Egyptian fractions (a) if the six denominators must -

all be different? (b) without this restriction?

5.06. Below the interval (23/24, 41/42), but still inside (0, 1), what
is the next entire (longest) interval J such that no rational in J can

be written as the sum of three Egyptian fractions?

5.07. What are the longest, second longest, third longest subintervals
of (0, I) that contain no point expressible as the sum of three Egyptian

fractions?

5.08. Let Jl’ J2, ««. be an infinite set of mutually disjoint intervals,
all included in (0, 1), such that no rational in any of them can be
written as the sum of three Egyptian fractions. Prove that the length of
J approaches 0 as v + =,

5.09. The same as 5.08, but with "three" replaced by "seven."
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Editor's note - Dr. Brenner invites readers to work on the problems
which he has proposed. He will be pleased to correspond with students
concerning them. He writes that in problem 5.04 "the % just means that
the problem is quite a bit harder than the others, and maybe not even

suitable for an undergraduate. |t acts as a warning."
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ST. JOHN'S UNIVERSITY/COLLEGE OF ST. BENEDICT
ANNUAL P MU EPSILON STUDENT CONFERENCE

March 29 and March 30, 1985

This annual conference is open to all students and teachers - not only
to members of Pi Mi Epsilon. The program will consist of several
student presentations and two major addresses by the featured speaker,
Professor |. N. Herstein of the University of Chicago. Professor
Herstein's talks will be for student audiences.

The conference provides an excellent forum in which students who have
been working on independent study or research projects can present
their work to their peers.

If you have any questions concerning the student paper program or the
free on-campus housing arrangements during the conference, contact
either Professor Gerald E. Lenz (612-363-3193) or Professor Michael D.
Gass (612-363-3192), Department of Mathematics, St. John's University,
Collegeville, MN 56321.

Additional information will be available in January.
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A THEOREM ON HOMOTHETIC SIMPLEXES
by M. S. Ktamkin
University of, Alberta

In a recent note in this Journal (7(1983)518-522) Ejsenstein

established the following theorem in three different ways:

Theorem: Let AABC be any triangle.

Let O = (p,q) be an interior point of AABC.

Let K be the point of intersection of the medians of MOB.

Let L be the point of intersection of the medians of ABOC.

Let M be the point of intersection of the medians of A40C.
Then ALMK is similar to AABC, the ratio of a side of AIMK to the
corresponding side of AABC is 1/3, and the corresponding sides are

parallel.

Using vectors, one can obtain a simpler proof which generalizes

easily to simplexes.

> > > > > > > )
If A, B, C, O, K, LiM genote vgcto_gs tg thg coLreggondJ:ng N

>
points, then immediately 3K = A + g +t0,3L=B+C+0, 3 =C + A+ 5
Since; - E = (E - E)/S, etc., it follows that ALMX is homothetic (in-
versely) to A4BC with ratio of similitude 1/3. The point O need not lie
in the interior of AABC; in fact, it need not even be in the plane of
AABC. Additionally, we can easily find the center of homothecy H of the

two triangles. It is the point of concurrency of the lines AL, BN and
CK. Thus

FA B+ + 0=

H=4+ x(————é——— A)

> > >
where ) is an appropriate constant. Since H must be symmetric in A, B
+
and ¢, 1 - A = \/3 or » = 3/4, giving
> > > -

N
ug = A + B + C + O.

For simplexes in E‘n, let the vertices be AO, Al, ..., A and let P be ai
arbitrary point, not necessarily in £ Then the simplex whose vertices

are the n * 1 centroids of the n t 1 simplexes determined by each face of
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the given simplex and P is homothetic to the given simplex with ratio of
similitude 1/(n+1). Letting Ci’ i=01a,2, ... ,n, denote the ver-

tices of the derived simplex, it follows that

> - > ->

c. = (3 - Ai t P)/(n+1)
- > -> >

where S = Ao +A1+ +An'

The rest follows from

A +
Ci Cj (Aj - Ai)/(n+ 1).

This example is a good illustration that one should always be on
the lookout for an appropriate representation. Here, the vectorial rep-

resentation was most appropriate.
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“Tonn l‘2€‘ [VIXN}

The drawing above, posed as a hebus, is one of, several which delighted
membens of the Nonth Centnal Section of the Mathematical Association
of, America at ity Fall Meetings at Moorhead State Univensity in Moon-
head, MN. Aze you able to supply the. captton? Deciphen the. rebus?
The drawing above and that on page 32 axe the wonk of Thomas J. Reinan,
a senion mathematics majon at Moorhead State.

For contributon's caption, bee page 39.
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ARCTAN 1 + ARCTAN 2 + ARCTAN 3 = I

by Leon Bankod{
Los Angeles, California

The Fall 1983 issue of the Pi Mu Epsilon Journal (page 592)

contains a simple trigonometric proof that
aretan 1+ avetan 2 t arctan 3 = .

An alternate proof based on elementary Euclidean geometry i s offered

here.
G
A D
B c

F

In the figure, F is the midpoint of the side BC of square ABCD.
Triangle GAD, congruent to triangle FCD, is described externally on side
AD, as shown. It is easily seen that GD is an isosceles right triangle.

Then angle GB = arctan 3, angle GD = arctan 1, and angle DFC =

arctan 2, with the result that the sum of the arctangents is equal to I

Editor's note - Dr. Leon Bankoff was Problem Editor of the Pi M1 Epsilon
Journal from Fall 1968 through Fall 1981. In his article " Reflections of
a Problem Editor,"” which appeared in the Fall 1975 issue of this journal,
Dr. Bankoff cites desirable qualities of a solution to a problem. His
ABCD's of Elegance are A for Accuracy, B for Brevity, C for Clarity and
D for Display of Insight, Ingenuity or Imagination. Dr. Bankoff's solu-
tion which appears above is an excellent example of how to meet these

criteria.
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ANOTHER REBUS BY REINAN

“Tom KGeivan

For contrnibuton's caption, see page 39.
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Award Cerntificates

Your Chapten can meke use Of, the. Pi Mu Eps.ifon Award Centificates avail-
able. to help you recognize mathematical achievements of your hitude&.

Hatching Préize Fud

1§ your Chaptern presents awards for Ouistanding Mathematical Paperns on
for Student Achievement .£n Mathematics, you may apply to the. National
Office fon an amount equaf tothat spent by your Chapter up to a maximum
of §ifty dolLlars.

Postens

Asupply of 10" by 14" Fraternity Crests ane available. Ore in each
colon combination will be sent free to each Chapter upon request.
Additional postens are available at the following rates

(1)  Punple on Gofdenrod Stock ........ $1.50/dozen

(2)  Punple on Lavender on Gol 'nnrod .. $2.00/dozen.

Send requests and ondens to Dr. Richard A Good, Secretary-Treasuren,
Department of Mathematics, Univensity of, Maryland, College Park, MD 20742
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PUZZLE SECTION

Edited by
Joseph D. E. Konhausen

The PUZZE FECTION i s for the enjoyment of those readers who are
addicted to working doublecrostics or who find an occasional mathematical
puzzle attractive. W consider mathematical puzzles to be problems whose
solutions consist of answers immediately recognizable as correct by simple
observation and requiring little formal proof. Material submitted and not
used here will be sent to the Problem Editor i f deemed appropriate for the
FRCHEVI DEPARTVIENT.

Address all proposed puzzles and puzzle solutions to Prof. Joseph
D. E. Konhauser, Mathematics and Computer Science Department, Macalester
College, St. PauZ, Minnesota 55105. Deadlines for puzzles appearing in
the Fall Issue will be the next February 15, and for puzzles appearing i n
the Spring Issuew || be the next September 15.

Mat hacrostic No. 19

Proposed by Joseph V. E. Konhausen
Macalester College, St. Paul, Minnesotfa

The puzzle on the following two pages is a keyed anagram. The
219 letters to be entered in the diagram in the numbered spaces will be
identical with those in the 25 keyed words at the matching numbers. The
key numbers have been entered in the diagram to assist in constructing
the solution. When completed, the initial letters of the words will give
the name of an author and the title of a book; the completed diagram will

be a quotation from that book. For an example, see the solution to the
last mathacrostic in the SOLUTIONS part of this section.



1 D|2 K 3 4 5 6 vi7 Qf8 9 Sj10 A 11 T
12 B 13 14 15 16 17 Y|18 ©Ljl9 V{20 21 H|22 R 23 o©
24 B|25 W[26 27 28 29 30 V|31 Q32 33 F|34 GI35 T

36 N{37 38 39 40 41 Uf42 K|43 44 T|45 E|46 G
47 Mj48 I 49 50 51 52 W 53 K|54 55 U|56 X|57 B

58 W|59 60 61 62 63 D|64 F 65 66 L|67 W|68 P|69 O
70 I|71 X|72 73 74 75 © 76 D77 78 X 79 H|B0 E
81 B|82 V|83 84 85 86 Y|87 D 88 89 U|90 S|91 G|92 A
93 0194 0Q}95 96 97 98 99 U|100 C|101 102 Fl103 V 104 P
105 0}106 sj107 108 109 110 v 111 Tf112 113 A|114 H|115 L|116 I
117 M|118 Njll9 120 121 122 B|123 uU|124 125 W|l26 L|127 R
128 Fj129 K|130 131 132 133 G 134 L|135 136 A{137 J|138 M
139 H{140 C}1l41 142 143 144 145 T l4e U|147 148 M|149 L|150 V

151 p|152 153 154 155 E{156 I 157 158 Q159 L 160 A
161 F|l62 E|163 164 165 166 V 167 W|1l68 169 S 170 D|171 M
172 F|173 G174 175 176 177 H{178 T|179 J 180 R|181 X|182 G{183 Q
184 v|185 P[186 187 188 189 Q190 v|191 192 R 193 X|194 B
195 @ 196 197 198 199 200 P|201 Vv 202 203 T|204 J|205 W[206 H
207 N|208 L 209 210 211 212 R{213 wW|214 L|215 216 B|217 N|218 Q219 V

DEFINITIONS
A. zygal (comp.}
B.

M.

. Ca

. witches'

. On and ,

a pattern whose regular repetition
fills the plane

one alternative to nothing

" _._.__ provides a fiendishly
fertile field for famous fruitless

follies.”
Frank Harar

y
The Four Color Problem ...

(2 wds.)
the imaginative projection of a
subjective state into an object so
that the object appears to be
infused with it

catchword; slogan; platitude;truism

where Ernest Lawrence Thayer's
hero stood (3 wds.)

Church's elegant and powerful
symbolism for mathematical proc-
esses of abstraction and generali-
zation (comp.)

the culmination or highest develop-
ment of a thing

a socially inept, foolish or
ineffectual person (slang)

a factory for the production of
opera (2 wds.)

3Cr,(810,) 55 an emerald-green

calcium-chromium garnet

controller of current events
all things considered

an instrument for determining the
concentration or particle size of
suspensions by means of transmit-
ted or reflected light

said of a cut which divides a line
segment in "extreme and mean ratio"

peg and disk puzzle brought out in
1883 by Edouard Lucas (3 wds.)

broom

in relativity, an occurrence at
both a specific time and a
specific place

the card player who first receives
the cards in a deal (2 wds.)

the upside-down bird

in A Study in Scarlet, Watson to
Holmes on an article by Holmes on
observation and deduction, "What

! 1 never read such rubbish
inny life." (2 wds.)

D'Arcy
Thompson's work on the relation of
physical and biological principles
tomathematical laws (2 wds.)

Archimedes' work in which he
reveals his modus operand!
isto

to the devil as the atheist

God

113 196 160 38 136 92 10

81 24 194 122 72 57 12 216
186 100 13 49 27 140

151 108 4 170 76 87 1 147 54
45 5 1 155 124

211 168 128 20 109 172 102 161 64 33

133 1 I 17 191

50 177 198 26 5 114 139 206 39 97 8 21
T01 79

/U199 1o 84 438 130 156 U8 o9 110

153 204 137 179

53 42 2883702 129

115 18 149 66 134 214 126 208 159

171 148 107 138 15 47 215 117

217 207 141 "73 118 "36
105 3 144 175 188 75

"68 165 200 32 185 104

183 152 189 195 163 218 135 158 94 31 7 197

192 37 112 22 14 61 212 180 132 127

169 106 43 9 90

TTT 203 35 154 145 40 85 11178 44

123 142 41146 89 55 99 74

190 210 110 166 6 30 120 174 62 95 82 19
103 150 184 201

205 143 67 52 167 ~58 I25 ~25 213 I76

771181157 56 193 78

86 110 187 77 210 51 17 06 131 164
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SOLUTIONS

Mathacrnosiic No. 78. (See Spring 1984 Issue) (Proposed by Joseph V. E.
Konhausen, Macalesten College, St. Paul, Minnesota)

Words:

A. Automata J. In a Nutshell S. Rosetta Stone
B. Gordian Knot K. Nicholas Cusa T. Oval

C. Archimedean L. Finesse U. Cybernetics

D. Rotatory M. Ilcosahedron V. Ensconced

E. Dudeney N. Neutral W. Sunflower

F. Incident With 0. Inductive X. Sluff and Ruff
G. Neat P. Threshold Y. Escalade

H. Ergodic Q. Enthymeme Z. Snowball

I. Refutation R. Pousette

First Letters: A GARDINER INFINITE PROCESSES

Quotation:  The 4ideas presented were not all Cauchy's own, but he
selected ~ ~ M afundamental and carefully forumulated idea {such a
the. notions of, Zimit, convengence and continuity in an intervall, and
used thebe. t 0 construct the gramework fon analysis on the. basis of
nigonous deduction atone.

Sofved by:  Jeanette Bickley, Webster Groves High School, Mo, Victor G.
Feser, May College, Bismarck, ND; Robert Forsberg, Lexington, MA;
Robert C. Gebhardt, County College of Morris, Randolph, NJ; Allan Gil-
bertson, Wheaton, MD; Dr. Theodor Kaufman, Nassau Hospital, Mineola, NY;
Henry S. Lieberman, John Hancock Mutual Life Insurance Co., Boston, MA;
Donald C. Pfaff, University of Nevada-Reno, NV; Robert Prielipp, The
University of Wisconsin-Oshkosh, WI; Stephanie Sloyan, Georgian Court
College, Lakewood, NJ.

Puzzle Editon's Note: In the definition of word E., the proposer used

the dates (1847-1930) which appear in the dedication to Dudeney in the
Dover reprint of his Anusenents in Mathematics. Bob Prielipp pointed
out that the dates (1857-1931) are given in Eves' An Introduction to the
History of Mathematics, Fifth Edition. According to Seripta Mathematica,
Volume 1, (1931), Henry Dudeney was born on April 10, 1857, and died on
April 24, 1930. May he rest in peace.
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COMMENTS ON PUZZLES 1 - 7, SPRING 1984

Five readers responded to Puzzfe #]1. Three-space can be
separated into sixteen parts by placing a sphere with its center at
the center of a cube and such that the sphere is tangent to all sixteen
edges of the cube. Responses were received from ten readers for Puzzle
#7. Samples include 1/2 * 3845/7690 = 1 from Allan Gilbertson, 13/26 +
485/970 = 16/32 t 485/970 = 31/62 + u85/970 = 1 from Victor G. Feser and
Emil Slowinski, 38/76 + 451/902 = 1 from Henry Rosche III, 45/90 +
138/276 = 1 from Edward Aboufadel, 48/96 + 135/270 = 1 from Marc J. Coch-
ran. The examples, 57/92 + 140/368 = 1 and 96/102 *+ 34/578 = 1, in which
the fractions are not both equal to one-half, were submitted by John H.
Scott and Paul Barnard, respectively. Four examples of the following type
were sent by Robert Prielipp: (s + 5)/(1 + 8+ 9) + (0 +6)/(2+ 3+ 7).
For Puzzle #3, Prielipp submitted

AP+ et )22 et - @2kt 6)d = a3k + 1),
which has zero summands for k = -5, -3 and -1. A representation for

3(2k t+ 1) which avoids zero summands for these values of k is

0% - -3+ (k- 9% -k - 0P = 3k + 1.
Of course, the second representation has zero summands for k = 0, 2
and 4, but together the two representations provide a solution. Is there
a single representation which solves the problem? Among references sent
by Prielipp is a paper by Schinzel and Sierpinski entitled Sur les sommes
de quatre cubes which appeared in Acta Arith., 4 (1958), 20-30. Four
readers responded to Puzzle #4. Using just two colors, the edges of a
regular tetrahedron can be colored in twelve distinguishable ways. Six
of the colorings are shown below. The other six can be obtained by

switching colors.
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All eleven responders to Puzzle #5 determined that the light signal was
on for seven minutes and then off for seven minutes and concluded that
at 2:00 PM. the light signal would be off. In a gentle jibe at the
proposer's wording of the puzzle, Robert C. Gebhardt wrote "My students
would answer 'Yes'." The proposer found the puzzle in an NCIM publica-
tion, Mathematical Challenges, compiled and annotated by Mannis Charosh.
Only John H. Scott supplied an answer to Puzzle #6. He produced a set
of twelve points arranged so that three colors are not sufficient for
coloring all the points of the plane so that no two points spaced one
unit apart are colored alike. A simpler example, shown below, using
just seven points, was given by Leo and Willy Moser in the Canadian
Mathematical Bulletin, Vol. 4, No. 2 (1961) in the sole response to a
problem which they had proposed. They proved that every set of six points
in the plane can be colored in three colors in such a way that no two
points unit distance apart have the same color and that six cannot be

replaced by seven.

All twelve respondents to Puzzle #7 supplied the correct answer - stamp
denominations of 1, 4, 7 and 8. Puzzfe #7 is a very special case of a
more general, and rather difficult, problem: Given n and m, determine
a set of n denominations such that sums of m (or fewer) of these denom-
inations can produce the consecutive integers 1, 2, , K, where K is

as large as possible. In Puzzfe #7 n = 4, m= 3 and K = 24. An early

reference for the postage stamp problem is R. P. Sprague's Unterhaltsame
Mathematik, published by Braunschweig in 1960. An English translation by
T. H. 0'Bierne (1963) was published by Blackie and is now available from

Dover. The book contains several very nice problems.
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List of solvers: Edward Aboufadel (2, 5), Paul Barnard (1, 2, 5 7),

Marc J. Cochran (2, 7), Mark Evans (5, 7), Victor G. Feser (1, 2, 4,

5 7), Robert C. Gebhardt (5, 7), Allan Gilbertson (2, 7), John M.
Howell (1, 5), Ralph King (5), Brian Kopacz (7), Glen E. Mills (2, 4

5 7), Thomas Mitchell (7), Robert Prielipp (2, 3, 7), Henry Rosche 111
(1, 2, 5, 7), John H Scott (1, 2, 4 5 6, 7). and Emil Slowinski

(1, 2, 4, 5).
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PUZZLES FOR SOLUTION

1 Proposed by John M. Howell, Littlenock, California.

a. Using four colors, in how many distinguishable ways can one
color the edges of a square if pieces are not permitted to be turned
over?

b. By matching edges, form the squares into a rectangle.

c. Omitting the squares with four different colors, assemble

the remaining ones into a square.

2. Proposed by J. P. E. Konhauser, Macalesten Coflege, St. Pauf,
Minnesota..

It is not true that 3957 = 2648. Without using any mathematical
symbols, reposition the eight digits to form a true statement. The odd
numbers must remain to the left of the equals sign and the even to the

right.

3. Pnoposed by J. P. E. Konhauser, Macalester Coflege, St. Pant,
Minnesota

The trio of positive integers {5, 20, 44} has the property that
the sum of any two of its members is a perfect square. Can you find a
set of four distinct positive integers such that the sum of any three

is a perfect square?

|
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4. Proposed by J. 0. E. Konhauser, Macalester College, . Pauf,
Minnesota.
In a certain mathematical system the elements a, b and c satisfy
the relations
aba = a, bab = b, ab = ba and ac = ca.

Using only substitution and associativity, show that bc = cb.

5. Proposed by J. 0. E. Konhausenr, Macalester College, St. Paul,
Minnesota.

If the numbers 1 through 6 are arranged in a "ring" as shown
below then the six sums obtained by adding neighbors are primes.

What is the largest integer N for which you are able to arrange the

numbers 1 through N in a "ring" with the same property?

6. Proposed by J. V. E. Konhauser, Macalesten Collfege, . Pout,
Minnesota.

Does there exist a set S consisting of six positive integers,
none exceeding 24, such that the numbers in the 63 non-rmpty subsets

of S have sums which are different from one another?

7. Proposed by J. V. E. Konhausex, Macalester College, St. Pauf,
Minnesota.

A positive integer N>1 is said to be a balanced number i f the
number of primes between 1 and N is equal to the number of composites
between 1 and N. For example, 10 is a balanced number. Is there a

largest balanced number? If so, find it.

GRAFFI TO
Problems wonthy of, attack prove their wonth by hitting back.

Piet Hein
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PROBLEM DEPARTMENT

Edited by Clayton W. Dodge
University of,Maine

This department welcomes problems believed to be new and at a
level appropriate for the readers of this journal. Old problems
displaying novel and elegant methods of solution are also invited.
Proposals should be accompanied by solutions i f available and by any
information that will assist the editor. An asterisk (*) preceding a
problem number indicates that the proposer did not submit a solution.

All communications should be addressed to C. w. Dodge, Math.
Dept., University of Maine, Orono, ME 04469. Please submit each
proposal and solution preferably typed or clearly written on a separate
sheet (one side only) properly identified with name and address.
Solutions to problems in this issue should be mailed by July 1, 1985.

Corrections

558. [Fall 19831 Proposed by Richard |. Hess, Palos Verdes,
California.

Let ABCD be a quadrilateral. Let each of the sides AB, BC, CD,
DA be the diagonal of a square. Let E, F, &, H be those vertices of
the squares that lie outside the quadrilateral. That is, EAB, FBC,
GCD, and HDA are directly similar isosceles right triangles with apexes
E F G, H. Prove that EG and FH are perpendicular. See the figure

below. (The correction is that the triangles are similar - Ed.)

E




Correction to an editorial note. In the Spring 1984 issue
following Solution IT for problem 518 (page 675) we remarked that
Michael Ecker is Problem Editor for Popular Computing. He is actually
a contributing editor/columist for Popular Computing and also for
Fyte . He is Problem Editor for the AMATYC Review.

Problems for Solution

574. Proposed by S. E. Ducer, Rogue Bluffs, Maine.
Although there are many solutions to this unfortunate base 8

alphametric, there is only one prime MOOD. Find that MOOD.

NOT
IN
_THE
MOOD

575. Proposed by Charles U. Trigg, San Diego, Califonnia.
The sum of the digits of a two-digit integer N is § and the
product of the digits is P. One of the differences ¥ - § and ¥ - P

is a square and the other is a cube. Find N and show it to be unigue.

576. Proposed by David Tuy, Rensselaer Polytechnic Institute,
Tnoy, NV VYonrk.

Prove the following for all natural numbers »:

(a) 1) + 20y + 303 + . .. #nll) = ™
12(?) t 22 + 33(2) +.. .+ nZ(Z) =22 4 1),
BB+ A =R s

%#(b) for each positive integer p there exists a polynomial g{n)}
of degree p that:
(1) PP LY+ A = P,
(ii) gf(n) has integral coefficients and leading coefficient I,
(iii) when p > I is odd, then g(n) is divisible by nz;
(iv) when p > 2 is even, then g(n) is divisible by n(n * 1).
*577. Proposed by David E. Penney, The University of Geo-igia,
Athens.

In the 3x3x3 cubical array below, the sum of the eight digits

in each of the eight 2x2x2 corner cubes is a fixed rational multiple
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(100/13) of the integer in the center. Does there exist such an array
of the integers from 1L to 27 in which the eight corner sums are the
same integral multiple of the integer in the center? [See Problem 504

(Fall 1981) for a similar two-dimensional problem].

Top: Center: Bottom: -
24 12 Z 2 19 1 A 11 2%
10 3 7 17 13 18 9 4 8
20 15 23 6 16 5 21 14 22

578. Proposed by Emmanuel 0. C. Imonitie, Noithwest Missourd
State University, Maryville.
Given that X and y have opposite signs, solve the simultaneous
equations
xtytay=-5 and x2+y2+acy =49
579. Proposed by R. S. Luthar, University of Wiscomsin Centex,

Janesville.
Prove that for any positive integer n,

M) < o+ 1),
580. Proposed by Bob Prielipp, University of Wisconsin-Oshkosh.

Let a, b, and ¢ be the lengths of the sides of a triangle and

let s be its semiperimeter. Prove that
(a/2)%b/2)0(c/2)° > (s - a)%(s - B)Ps - Of

581. Proposed by Stanfey Rabinowitz, Digital Equipment Co-ip.,
Nashua, New Hampshire.

If atriangle similar to a 3-4-5 right triangle has its vertices
at lattice points (points with integral coordinates) in the plane, must

its legs be parallel to the coordinate axes?

582. Pnoposed by Walten Blumbeng, Coral Springs, Florida.
In triangle ABC with sides of lengths a, b, and ¢, we are
given that b82 cos B = ca2 cos C = ab2 cog A. Prove that triangle ABC

is equilateral.

583. Proposed by Joe Pan Austin, Emony University, Atlanta,
Geongda.
An urn contains n balls numbered 1 through n, which are drawn

one at a time without replacement. Let X be the first number drawn.




Yy

Let y be the first number drawn that is larger than x if X < »n and |l et
y=0if x =n. Let N be the draw which gives the y value if X < n
and let N==n*1 if x =n. Find Elyl and E[N].

584. Proposed by Jack Garfunkel, FLushing, New Vork.

Let ABC be any triangle with base BC. Let D be any point on
side AB and E any point on side AC. Let PDE be an isosceles triangle
with base DE, oriented the same as ABC, and with apex angle P equal to

angle A. Find the locus of all such points P.

585. Pnoposed by Victon G. Fesen, Mary College, Bismarck,
Nonth Dakota..

The saum of 17 cents can be made up in exactly six ways:
(o, 0, 17), (0, 1, 12), (0, 2, 7}, (0, 3, 2), (1, 0, 7), and (1, 1, 2},
where (d, n, pJ) denotes the numbers of dimes, .nickels, and pennies,
respectively. Find a value of n > 1 such that n cents can be made up
in exactly n ways and show that that » is unique. Yau may use pennies,
nickels, dimes, quarters, half dollars, and dollars, as needed.

586. Propesed by Robert C. Gebhardt, Hopatcong, New Jersey.

R X 2 8 %
For what X does J = 1+% $E 5L
n=0 (2n)! ar  4r 6! 8!

converge and what is its sum?
Sol utions

239. [Spring 1970, Fall 1983] Proposed by David L. Silverman,
Beverly Hitls, California.

A pair of toruses having hole radius = tube radius = 1 are
linked. a) Wha is the smallest cube into which the toruses can be
packed? b) Wha convex surface enclosing the linked toruses has the
smallest volume? ¢) Wha convex surface enclosing the linked toruses
has the smallest area? 4) Wha is the locus of points in space equi-
distant from the two links?

Comment by Harwny L. Nelson, Livermone, California.

A solution to part (a) is given in the solution by R. Robinson
Ronve to Problem *117, Journal of Recreational Mathematics, 9(1),
1976-77, 32-36.
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403, [Fall 1977, Fall 1983] Proposed by David L. Silvesman,
West Los Angeles, California.

Two players play a game of "Take It or Leave It" on the unit in-
terval (0,1). Each player privately generates a random number from
the uniform distribution and either keeps it as his score or r'ejecte;: -
it and generates a second number which becomes his score. Neither
player knows, prior to his owmn play, what his opponent's score is or
whether it is the result of an acceptance or a rejection. (However,
variants based on modifying this condition, either unilaterally or
bilaterally, are interesting).

The scores are compared and the player with the higher score

wins $1.00 from the other.

a. Wha strategy will give a player the highest expected score?

b. Wha strategy will give a player the best chance of winning?

c. |If one player knows that his opponent is playing so as to
maximize his score, hov much of an advantage will he have if he employs

the best counter-strategy?

Solution by Hawry L. Nelson, Livermore, California.

a. The highest expected score is .625 which arises from the
strategy: Take the first number if it is 2 .5, otherwise take the
second. Then the expected score is

(1 -=x)((1+=x)/8) % x01/2),
where 1 - X is the probability that the number will be greater than =,
(1 + x)/2 is the memn of all such numbers, and =(1/2) is the pro-
bability the first number is rejected times the mean value of the
number obtained on the second try. By elementary calculus we see that
this function maximizes at x = 1/2, for which the expected value is
.625. Arny other strategy will give a lower expectation.

b. The correct strategy for maximizing winning is to reject
all numbers less than the expected value that the opponent's strategy
gives him. If his strategy is to reject all values less than m,
where m = .61803...is the reciprocal of the golden mean x = 1.61803..
which is found by solving 1/x =1 * X, then there is no better strategy
than to use it yourself and no expectation of winning. Should he,
however, adopt some other strategy known to you, then you obtain a
best winning ratio if you compute his expectation for that strategy

and use that number as your rejection criteria.
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For example, should he reject all numbers less than .625 (per-
haps because he feels you are rejecting all less than .5), your best
strategy isto reject all numbers |ess than .6171875, which is the
expectation for his strategy.

c. As stated above, the best strategy against .5 is .625. The
advantage gained is less than 12%6. In 200 trials you would expect to
win 101 and lose 99 times. In a computer simulation of over 2 million
trials I won 50.4% of the time.

ALso sofved by PETER A. GRIFFIN, California State. Univers.ity,
Sacnamento, and RICHARD I. HESS, Rancho Palos Verdes, California.

419. [Spring 1978, Fall 19831 Proposed by Michael W. Eckex,
City Univernsity of, New York.

Seventy-five balls are numbered 1 to 75 and are partitioned
into sets of 15 elements each, as follows: B ={1, ..., 15}, | =
{16, ..., 304, N=1{31, ..., 48, G= {46, ..., 601, and
Q= {61, ..., 751, as in Bingo.

Balls are chosen at random, one at a time, until one of the
following occurs: At least one from each of the sets B, 1, ¢, O has
been chosen, or four of the chosen numbers are from set N, or five of
the numbers are from one of the sets, B, I, G O.

Problem: Find the probability that, of these possible results,
four ¥'s are chosen first. (Comment: The result will be approximated
by the situation of a very crowded bingo hall and will give the likeli-
hood of what bingo players call "an N game,” that is, bingo won with
the winning line being the middle column N).

Sclution by Van Pru Ving, China, Maine.

V¢ win with an ¥ game if we draw from 0 to 4 B's, from 0 to 4
I's, from0 to4 G's, and from 0 to 4 0's, but no more than three of
those four letters, and 3 N's, in any order, followed by a final fourth
N.  Thus we see that an N game can occur in a minimum of 4 draws or a
maximum of 16. W represent the various possibilities as ordered
triples (z, y, 3) of integers with 0 < 3 <y <x <4 Each such triple
represents the selection of x balls from one of the letters B, I, ¥, G,
and O, selecting y balls from a second of those letters, and z balls
from a third of those letters. Also 3 n's are selected. These

x+y+3+3 balls can be rearranged in any order. Finally, the (x+y+z+4)th

L7

ball must be another N. Hence, selecting
BNINGBBNGBN

is an N game designated by (4, 2 1) since there are 4 B's, 2 G's, and
1 | in addition to the necessary 4 ¥'s, one of which terminates the
sequence. T
The number of ways of choosing an (x, y, 2) N game is given by
multiplying together:

a) 15-14-13-12 = 32760 for the four N's;

b) 15-14-...-(16 - x), if x > 0, for the number of ways of
choosing the first x balls;

e¢) 4, if x >0, since there are four letters (B, I, G and 0)
from which to choose the letter for the first X balls;

d) 15-14- ... (16 - y), if y > 0, for the next y balls;

e) 3, if y> 0, sincethey balls must be chosen from one of
the remaining three letters;

£) 15140 ... (16 - z), if z > 0, for the next z balls;

g) 2, if 2>0, since there are two letters left to choose from;

h) 1/2, if x =y or if x = & , since the order of choosing like
numbers of balls is immaterial;

i) 1/3, if X = z, for the same reason as (h);

3y (3 tx +y 1 a)l/(x! y! a! 3!) for the rearrangements
(combinations) of the first 3+x+y+z balls.

Nw it is easy to program a computer or to calculate by hand all
(z, y, 2) probablilites. The sum of all such probabilities is
0.123493...., the desired probability. A BASC program follows.

10 T=0

20 FOR Z
30 FOR Y
40 FOR X
50 P=546
60 FOR N

wol Il
AL LNS

70 FOR N= =p* (16-N) /N: NEXT

80 FOR N=1 P=P* (16-N) /N: NEXT

90 FOR N=1 TO 3+X+Y+Z: P=P*N/(76-N): NEXT
100 P=p/(72- X- Y- 2)

110 IF X>0 THEN P=p*4 ELSE 170

120 |F Y>0 THEN P=p*3 ELSE 170

130 |F 2>0 THEN P=p*2

TO
TO
TO
TO
TO
TO

4
4

4

X P=p*(16-N)/N: NEXT
Y Pp=

z
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140 IF X=Y THEN P=P/2: GOTO 160
150 IF Y=Z THEN P=p/2

160 IF X=Z THEN P=P/3
170 PRINT X; Y; &, P
180 T=T+P

190 NEXT X

200 NEXT Y

210 NEXT 2

220 PRINT "TOTAL ="; T

Also so0lved by OXKAR FEICHTINGER and WILLIAM A. HALTEMAN
(fointly), Univensity of Maine, Oronc, and RCHARD |. HESS Rancho
Patos Vendes, California. Pantial solution by ROGER KUEHL, Kansas City,
Missowri. One dncomrect sofution was also recedved.

524. [Fall 1982, Fall 1983] Proposed by Morris Katz, Macwahoe,
Maine.

Solve this holiday alpametric for a real prime XMAS

MERRY
XMAS
DODGE

71. Comment by Alan Wayne, Pasco-Hernando Community College,
Florida.

Since DODGE = 60647, it is evident that DODGE is a prime figure,
corning from rational forebears, since DODCE is neither the am nor the
product of two squares. [Not even three spares! - 7d.]

Editonial note. Wayre also pointed out that the usual word
for this type of problem is alphametic or cryptarithm, whereas we have
used the term alphametric (with an r) in this department. This is the
editor's om whimsy since alpha-metric seems to describe the type of

problem quite well.

*525. [Fall 1982, Fall 1983] Proposed by John M. Howell,
Littlerock, California.

An equilateral triangular prism is used as a die. \whg must
the ratio of the sides be so that the probability of falling on a

triangle is the same as falling on a rectangle?

L9

1. Comment by the proporen.

| proposed this problem to a summer class some years ago and a
student from Colombia came up with a mathematical solutiony which |
have misplaced. Empirical results showed the ratio of the side of the
triangle to the other side of the rectangle to be about 1.6. -

11. Sofution adapted grom that submitted by Richard 7. Hess,
Rancho Palos Verdes, California.

If tumbling is assumed to have no effect, then the condition
to be met is that each face subtend 4n/5 solid angle as seen from the
center of gravity. The true effect of tumbling or rotational velocity
is not easy to determine and it is not clear whether it would favor

the rectangular or the triangular face. A

A =
L=

In the equilateral spherical triangle ABC of the accompanying
figure, let the sides (arcs) BC, CA, AB intercept central angles of
measure 8, b, ¢, and let the angles of the triangle have measures 4,
B, ¢. Let D be the midpoint of arc BC, so spherical triangle ABD has
a right angle at D and so that #A = #B/2. Then triangle 4ABD must have
spherical excess 727 (=2n/5). That is,

B+ B/2t 90° - 180° = 729,
so that B = 708° and B/2 = 54° . Now, by Napier's rules,

a _cos (B/2) _ cos (B/2) _
€O T = "gin B = 2 sin (B/2) cos (B/2)
1 1

= 2sin (6/2) - 2 sin a0 - -618034,

so a = 103.65459° = 4BoC.
Let A meet BC at F and let G be the foot of the perpendicular
from 0 to AF. Then G is the centroid of plane triangle ABC, G5 is
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half the width of the rectangle, and BF is half its length. \Without

loss of generality we | et the sphere have radius.|. Then, from
triangle OBF,

BF = B Sin BOF = sin 51.827292° = .7861514.
Since

1= 25 = 2 V3) = 0077694,
then

@B = Vo4 - iG° = /T = 8240454 = JI759546 = .4194695.

Therefore the ratio of the length to the width of the rectangle

.7861514
.4194695

Editonial note. Howell presented a table of empirical results

= 1.8741564.

from 100 tosses of dice with ratios from 1.04 to 2.00, which showed a
solution somewhere between 1.5 and 1.6 and another solution at about
1.87.

536. [Spring 1983, Fall 1983] Proposed by Martha Mattics,
Veazie, Maine.

A recent alphametric in Crux Mathematicorum [1982: 77, problem
721] asks one to show that, in base ten,

TRIGG i s three times WRING

In defense of the Dean of Numbers, solve these alphametrics independ-
ently of each other:

(a) TRIGG X 3 = RIGHT in base eight where the digit 3 can be
reused,

(b) TRIGG = 3 X RIGHT in base ten where the digit 3 can be
reused, and

(¢) TRIGG X 7 = RIGHT in base seventeen.

Solutdion by Glen E. MiLLs, Pensacola Junion College, Florida.

(a) We see that T =7 or 2. If 7= 2, then G = 6 and 3G + 2 =
H (mod 8) impliesH= 4. Nw 37 + 2 = G (mod 8) demands that 1 = 4.
Since H= 4, we have a contradiction. Therefore T=1. Nw G= 3,
H=2 1 =6 and R= 4. The restoration then is

14633 x 3 = 46321 base 8.

(b) HereR=1, 2, or 3. If R=3, then T =9 but then we
must carry more then O to the last column, contradicting T = 9. If
R=1,thenT=3, 4, or5. If R=1and T =3. thenG =9, so # =3,

a contradiction. ForR =17 and T= 4 we have G= 2 soH=7and I = g,
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whence g = 4, another contradiction. W cannot have T = 5 =ince then
G= 5 also. Hence we haveR =2 and T=6, 7 or8 ForR =2 and
T=6we have G= 8, whence H= 9 and | = 6, a contradiction. ForR =2
and T = 8 we have G= 4, so H= 4, again a contradiction. Thus we must
have R= 2 and T = 7, in which case G=1, H= 3, and | = 4. The .
restoration is
72411 = 3 x 24137 base ten

(c¢) In this alphametric we have T = 1 or 2. OtherwiseR is
greater than a single digit. W construct a table of multiples of 7
in base seventeen and note that each possible last digit is obtainable
uniquely as a digit times 7. Then, for T = 2 we must have G= 10, so
H=6, 1 =13, and R= 6. But then the last product gives R = 16, so
we cannot have 7 = 2, Hence T=1, G=5, H=3, 1 =15, and R=11
The restoration is

111 15 5 5x 7=11155 3 1 base 17.

Also Aolved by JEANETTE BICKLEY, Webster Groves High School, MO,
MARK EVANS, Lowisville, Ky VICTOR G. FESER, Mary CoflLege, Bismarck, ND,
RICHARD |. HESS, Rancho Pafos Verdes, CA, DAVID INY, Rensselaern Poly-
Zechnic Institute, Thoy, NY, ROGER KUEHL, Kandas City, MO, SUSAN
SADOFSKY, Bhrockton, MA, MICHAEL J. TAYLOR, Indianapolis Power & Light
Co., IN, CHARLES W. TRIGG, San Diege, CA, HAO-NHIEEN QUI W ({part b
only), Lafayette, IN, KENNETH M. WILKE, Topeka, KS, and the PROPOSER.

547. [Fall 19831 Proposed by Monnis Katz, Macwahoc, Maine.
Solve this musical alphametric.
SING
IN
THE
WAYNE
Sofution by Charles W. Trnigg, San Diego, California.
Immediately W=12, § =9, and A = 0. Then
G+ N=10,
H+I+1=10,
I+T+1=Y+10and 2 <y < 6.
Nw {G, ¥} = {2, 81, {3, 7} or {4, 6} and {H, I} = {2, 7}, {3, 6}
{4, 5} Nw we examine the possibilities for (¥, 7, 1, H), eliminating
(6, 8, 7, 2), (5, 8 6, 3), (4, 8 5 4), (4, 6, 7, 2), (3, 8 4, &),




52

(2, 8, 3, 6), (2, 7, 4, 5), and (2, 5, 6, 3). The four remaining pos-
sibilities, (4, 7, 6, 3), (3, 7, 5, 4), (3, 5, 7, 2), and (2, 6, 5 4),

yield eight solutions:

9682 9582 9764 9573
68 58 76 57
735 _746 528 648
10485 10386 10368 10278

and the four sums obtained by interchanging the values of G and N

ALso sofved bg MARK EVANS (parntial sofution), Louisvifle, KY,
VICTOR G. FESER, Mary College, Bismarck, NP, RICHARD |. HESS, Rancho
Palos Vendes, CA, GIENN E MILLS, Pensacola Junion College, FL, BOB
PRIELIPP, Univensity of Wisconsin - Oshkosh, KENNETH M. WILKE, Topeka,
KS, and the PROPOSER.

548. [Fall 1983) Proposed bq Paul A McKfueen, Charlotte,
Nonth Carolina.
Arrange the ten digits in a row, e.g.

dl d2d3d4d5d6d 7d8d9d1 0’

so that the following conditions are satisfied: the number d2d3d4 is

divisible by 2, d3d4d5 is divisible by 3, d4d5d6 by 5, d5d6d7 by

7, d6d7d8 by 11, d7d8d9 by 13, and the number d8d9d10 divisible by 17.

Sofution bq Glen E. M{LLs, Pensacofa Junior College, Florida.

Since 5 divides d4d5d6, then d6 =0 or 5; but if d6 = 0, then

d7 = dB since 11 divides d6d7d8' Therefore dé. =5  Nwlist all

multiples of 17, of 13, and of 7 between 010 and 990 that consist of
three distinct digits. Comparing these numbers we find that 357289

and 952867 are the only possibilities for d5d6d7d8d9d10. The former

sequence yields four solutions 4160357289, 1460357289, 4106357289, and
1406357289, and the latter produces two more solutions 4130952867 and
1430952867.

Also solved by MARK EVANS (71 scfution), Lowisvifle, KY, VICTOR
G. FESER (2 scfutions), Mary College, Bismarck, NU, ROBERT C. GEBHARDT,
Hopateong, NJ, RICHARD |. HESS, Rancho Palos Verdes, CA, STEPHANIE

SLOYAN, Georgian Court College, Lakewood, NJ, CHARLES W. TRIGG, (4 s0fu-

tions) San Diego, CA, KENNETH M. MILKE, (4 sofutions) Topeka, KS, and
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the PROPOSER (4 solutions).

549. [Fall 1983] Proposed by R. S. Luthar, University of
Wisconsin Center, Janesville.
If a, b, ¢ are positive numbers prove that -

a b e 5 1om
b +ec + e+ a * a+ b 21

[For an interesting related problem see Problem 356 in The Pentagon,
Spring 1983, p. 120.1
|. Sclution bq Walter Blumbenrg, Cornal Spfz,éggé, Florida.

The following relation is known: Let § = ) m. , where n > 2
n i=1
m. "
i : . .
and al | m, > 0. Then Z 5. 2 o with equality if and only
=1 (2
if all mi are equal. Let n = 3, ml = a, mz = b, and m3 = c¢ to get the
inequality
a b c

3 L — b=
b+e " s+a a+b32,W|thequallty|ffa—b—c.

Finally we note that 3/2 > 10w/21.

TI. Sclution bq BilL 0Lk, CLintonville, Wisconsin.

If u and v are positive numbers, then it is well known that

Y & L »
v u -

Lettingp=b t ¢, g=eta andr=atb, we apply the above in-
equality top and Q, tog and »r, and to r and p, obtaining

qt+r - r +p + p+ q > 6,

p q r =
g+r-p r+p-gq p+tqg-r 3
% * 2q * or 2z

which reduces to

a + b + e >3 10w
b+e e +a a+b —2

ITI. Sofution bg Edwin M. Klein, Univernsity of Wisconsin,
Whitewater.
We prove the stronger inequality that the left side of the

given inequality is greater than or equal to 3/2. Clearing of
fractions and simplifying, we get the equivalent inequality

3 3 3 2 2 2 2 2

2a” +2b” + 2¢” > a2b+ab +ae+ac + be + be”,

This inequality follows from three applications of
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x4 y3 > xylx +y),

which in turn is proved by multiplying each side of the inequality by
(x-y)% > 0
x ty.

Also sofved by LEON BANKOFF, Ldb Angefes, CA, JACK GARFUNKH,,
Flushing, NY, MURRAY S. KLAMKIN, University of Atberta, Edmonton,
Canada, HENRY S. LIBBERMAN, John Hancock Mutual Life Insunrance Co.,
Boston, MA, BOB PRIELIPP, University of Wisconsin - Oshkosh, KENNETH M.
WILKE (fwo so0futions), Topeka, KS and the PROPFOSER

BANKOFF found the inequality in V. A. Krechmar, A Probfem Book
i N Algebra, tr. by Victor Shiffer, Mir Publishers, 1974, Solution to
Problem 27, pp. 408-7. GARRUNKHE. gave the reference: 0. Bottema,
Geometrnic Inequalities, p. 15. WILKE used Exercise 25 on page 51 of
Chrystal, Afgebra, 7th ed., 1964, part 11.

550. [Fall 19837 Proposed by 1. R. Hess, Washington, D. C.

How many different Pythagorean triples have a side or hypo-
tenuse equal to 10407

Solution by Edwin M. KLein, University of Wisconsin - White-
water.

a0 a7 %2 a

In n has prime factorization n = 2 Py Py , then the

creePy
number of Pythagorean triangles having n as a leg is

.- (Zao - 1)(2a1 + 1)(2a2 + 1)...(2ak +1) -1
2

a, a, a abbzb

. . _ L, 071 U ' i
while if n =2 Ay Qg -+ q, T Ty 0ol where the g’s are primes of

the form 4s + 3 and ther's are primes of the form 4s + 1, then n s the
hypotenuse of
(2271 + 1)(2b2 + 1)"'(2bv + 1) - 1
H =
2
such triangles. See Albert H. Beiler, Recreations in the Theory
of Numbers, Dover (1964), pp. 116-117. Thus 1040 = 2% 5-13 is the leg

of 31 such triangles and the hypotenuse of another 4, for a total of
35 triangles.

Also sofved by VICTOR G. FEER (partial sofution), Mary Coflege,
Bismarck, ND, RCHARD |. HESS, Rancho Palos Vendes, CA, JOHN M. HOWELL
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(parntial solution), Littlerock, CA, GLEN E MILLS Pensacola Junion
Coflege, FL, TM MOORE {partial solution), Bridgewater State College,
MA, |. PHILIP SCALIS (partial solution), Bridgewater State College,
MA, KBENNETH M. WILKE, Topeka, kS, and the PROPOER

551. [Fall 1983] Proposed by Robert C. Gebhardt, Hopatcong,
New Jersy.

If k isthe largest odd integer not exceeding the positive
integer n, n > 2, prove that

H I 2 k
cosz—g—ﬁ+eos‘g—;—+coszg%+. +cos§%=%-

Solution by Mwuay S. Klamkin, University of ALberta, Edmonton,
Canada.

Considering the parity of 7, we have to show that

n .
2 (25 - )n _ n
(1) z goE° ~damm = 5 for n even,
Jg=1
“ 2 (25 - 1)x o - 1
(2) Jzz cos 2(en = 1) = 7 for »n odd.

Using 2 0082 X =1t cos 2x, the above equations reduce to

n o
(1') Z‘ cos L&?Z-—n—l)l =0,
J=1
n ”
’ (8 - 1)~ 1
(') 1l ey T T3
g=1

Both results follow immediately from the formula

n
z cos (2] - 1)x =
41

sin 2nx
2sin X

k)

which is easy to prove by clearing of fractions and replacing each re-

sulting left side product using the formula
2sinucosv=sinfutv)-sin(v-u.

The resulting sum of sine terms collapses to g7»n 2nx.

Also solved by FRANK P. BATTLES Massachusetts Maritime Academy,
Buzzards Bay, RUSHL EULER, Noathwesit Missouri State University,
Manyvitle, RCHARD |. HESS Rancho Pafos Verdes, CA, BOB PRIELIPP,
Hopatcong, NJ, KENNEH M. WILKE, Topeka, KS, and the PROPOSER
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. _ n+1 + n .
552. [Fall 19831 Phopohed by Afbert White, St. Bonaventwre This shows that ¢, = (2 (-1)°}/3 forn > 1. Thus ve find that
Univensity, New Yohk.
% 2n+1 + (-)"
Leta,=1anda =2a .+ (-1)" for n > 1. Find lm —=9 = 1 lim =——0nby - L
1 n n-1 ) nro 2 T3 moe ant 3"
a, Also solved by SYLVAIN BOIVIN, Universite du Quebec a S
Lt W Chicoutimi, Canada, RUSSELL EULER, Nonthwest Missouni State Univeasity,
Manyville, MARK EVANS, Louisvifle, KY, MARTIN P. GELFAND, University
1 Sotution by Edward M. KLein, Univensity of Wisconsin- of Pennsylvania, Phifadelphia, RICHARD 1. HESS, Rancho Palos Verdes,
Whitewater. CA, HENRY S. LIEBERMAN, John Hancock Mutuaf Life Insurance Co., Boston,
We show by mathematical induction that MA BOB PRIELIPP, Univensity of Wisconsin-Oshkosh, |. PHILIP SCALISI,
" % Bridgewaten State Coflege, MA, HARRY SEDINGER, St. Bonavenfure
(*) a, = ?-——’;—(i)— Univensity, NY, HAO-NHIEN QUI W, Purdue Univensity, Lafayette, IN,
This equation is clearly true for n = 1. Assuming (*) holds for as KENNETH M. WILKE, Topeka, KS, and the PROPOSER.
we have *553. [Fall 1983] Proposed by Jack Garfunkel, Flushing, New
m1 272 4 ar-1)" 4 30-1)"
a = 2a + (-1) = - Yohk.
n+1 n 3
Given a triangle ABC erect equilateral triangles BAP and ACQ
n+2 n n+2 n+l . . . .
_2 + (-1) (2 -3) _2 + (-1) outwardly on sides AB and CA. Let R be the midpoint of side BC and
5 8 let G be the centroid of triangle ACQ. Prove that triangle PRG is a
R .
so (*) holds also for a1 and our proof of (*) is complete. Hence 300-60°-90° triangle.
1im % _ Lim i (-Z)n)/3 1 Sofution by Leon Bankodf, Los Angeles, California.
N~ 2n+1 N0 2n+1 — 3 Let T be the midpoint of side AC. W have AG = 2(GT) with
11. Solution by Murray S. Klamkin, University of Alberta, J4GT = 60°. Also PA = BA = 2(RT) with 3 (P4,4B) = 3 (PA,TR) = §0°.
Edmonton, Canada, and Tam Moonre, Bridgewater State College, Massachu- Hence #PAG = 4RTG and, since PA/RT = AG/TG = 2 it follows that tri-
setts, (independently). angles RIG and PAG are similar. Thus the corresponding sides of
Set a, = 1. Then a, - Zan_l = (-1)" form > 0. Let triangles RIG and PAG are inclined at a 600 angle, with the result
7 n that 3PGR = 60°. Since FG = 2(RG), triangle ARG is a 30°-60°-90°
Flael = %9 * ar® * agp Foe- * og T triangle. See the accompanying figure. Furthermore this proof and
so that we have . . . . . ()
2 3 n n its notation are valid for all species of triangles. When 9BAC = 907,
flx) - 2xfte) =1 -2tz -xX+. . .+ -1)"" +. . o :
the proof is trivial.
Therefore P
_ 1
(1 - 2x)f(x) = TEE

By partial fractions we have

fle) = 25— 4 S8

A
. G
o o 3 n+1 n
=27 e Ly oot -y AU \/ \/\/
=0 n=0 n=0 B
2 c

o
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ALso salved by LEON BANKOFF (second solution), LA Angeles,
CA, RICHARD I . HESS, Rancho Pafos Vendes, CA, HENRY S. LIEBERMAN,
John Hancock Mutuat Life Insurance Co., Boston, MA MURRAY S. KLAMKIN,
Univernsdity of Alberta, Edmonton, Canada, BILL OLK, Ce&intonvilie, WZ,
and WILLIAM H. PEIRCE, Stenington, CT.

555. [Fall 1983] Proposed by Richard D. Stratton, Colorado
Springs, Colonado.

Eighteen toothpicks can be arranged to form six congruent
equilateral triangles. Rearrange the toothpicks to form sixteen con-
gruent equilateral triangles each of the same size as the original six.

Amalgam of sofutions submitted independently by VICTOR G. FESER,
Mary Coflege, Bismarck, Nonth Dakota, ROBERT C. GEBHARDT, Hopatcong,
NwW Jensey, GORDON D. GLENN, Eastern Washington University, Cheney,
RICHARD . HESS, Rancho Palos Verdes, California, JOHN M. HOWELL,
Littlenock, California, GLEN and PATRICR MILLS, Pensacola, Florida,
HARRY SEDINGER, St. Bonaventunre University, NwW Yonk, HAO-NHIEN OUI VU,
Purdue University, Lafayette, Indiana, and the PROPOSER.

The figure is a stellated regular tetrahedron, a regular
tetrahedron constructed with six toothpicks with another regular
tetrahedron constructed of three additional toothpicks on each of its
four faces. See the figure (by Glenn) in which the original tetra-
hedron is shown with solid edges.

556, [Fall 1983] Proposed by Richard 1. Hess, Palos Verdes,
California.
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A normal pair of unbiased dice give a total of 2 through 12
according to the distribution 1, 2 3 4 5 6, 5 4 3 2, 1. Hw
should you change the spots on the dice so that the sums 2 through 12
and only those sums still occur but with as uniform a distribution as=
possible? (Minimize the aum of the squares of the deviations from
completely uniform).

7. Amalgam of solutions submitted {ndependently by Mark Evans,
Louisvitle, Kentucky, and John M. Howefl, Littlerock, California.

Leave one die unchanged and | et the other die have three faces
numbered 1 and three faces numbered 6. Then the distribution will
be three of each aum except 7 and six 7's. Since the average frequency

is 36/11 , the sum of the squares of the deviations is

1008/11)% + 1(30/11)% = 990/121 = 8.1818 . . .
77. Sofution by the Proposer.
Let the first die have sides numbered I, 2, 3, 6 7, 8 and for
the second die I, 1, 2, 3, 4 4. The resulting frequencies are 2, 3,
4 4, 3 4, 3 4 4 3 2 for the sums 2, 3, 4 5 6 7 8 9 10, 11,
12 respectively. The am of the squares of the deviations is

2014/11)% + 403/11)% + 5(8/11)% = 6.1818. . . .

Editornial note. Although the proposer's solution is the best
of those submitted, none of the solvers even attempted to prove his
solution minimal. Howell suggested that the distribution would be
perfectly uniform if one die were labelled 1, I, 1, 6, 6 6, and the
second die had just 5 sides labelled I, 2, 3 4, 5. This second die
can be realized by using an ordinary die and tossing over again

whenever a 6 appears.

*557, [Fall 1983] Proposed by Pauvre Fish, Seal Beach,
California.
It is known and easy to show with elementary calculus that

1
J a:4(1—x)4 dx_2_2_"
0 2 T7 :

Find a definite integral whose value iS% - e, where € is the base

of natural logarithms.
Summary o4 solutions by FRANK P BATTLES {a}, Massachusetis

Maritime Acadermy, Buzzands Bay, RUSSELL EULER (b}, Northwest Missouri
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State Univemsity, Manyville, MARK EVANS (e}, Lowisvitle, Kentucky,

ROBERT C. GEBHARDT {c), Hopatcong, Nawv Jensey, BILL OLK (c), CLinton-

ville, Wisconsin, BOB PRIELIPP (d), Univensity of Wisconsin-Oshkosh,

and HARRY SEDINGER (b} and (e), SX. Bonraventure Univensity, New York.
Each of the following integrals is equal to 123/71 - e

193/71-e
(a) j dx:
o
1
193
(b) J (W - ¢) dx,
o
T 122 =
(ec) j (_ﬁ -ev) dx,
o
m(193/71)
(d) j e” dx, and
o
4 70z
(e) (122z" " - &) dx.
o

Editonial note. 1t was hoped that some delightful integral such
as the given one for 22/7 - = would be found. Perhaps some clever
reader will still discover an elegant integral for the desired
193/71 - e,

559. [Fall 1983] Proposed by Sidney Penner, Bronx Community
College, New York.

"This is quite amazing," said B. "My bingo card does not con-
tain a BINGO, but if | cover one more square, regardless of its
location, then | will have a BINGO."

a) Wha is the maximum number of covered squares on B's card?

b) Wha is the minimum number?

Recall that a bingo card isa 5 X 5 matrix with the center square
already covered at the start of the game. A BINGO can occur in 12
ways, by covering the 5 squares of any row, column, or diagonal.

Solution by Edwin M. Klein, University of Wisconsin, Whitewater.

a) There can be at most 20 covered squares, since each row must
have at least one uncovered square. |f the bingo card is represented
by a 5§ X 5 matrix C, then the 20-square maximum can be attained by un-

covering only elements ¢ c c

172 Cag> C392 Cyso and Cgge
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b) If 10 or more squares are left uncovered, then there must
be two rows (and also two columns) with at least two elements of each
uncovered. Then only eight of the twelve BINGOs can be realized by
covering one more square, contradicting the fact that at least ten
must be attainable, since covering different squares produces different-
BINGOs. Therefore at most nine squares can be uncovered and at |least
16 must be covered. This minimum case is illustrated by uncovering
the entire first row and first column of the card.

ALso so0fved by MARK EVANS, Lowisviffe, KY, RICHARD |. HESS,
Rancho Palos Vendes, CA, GLEN E. MILLS (partial solution), Pensacola
Junion College, FL, and the PROPOSER.

560. [Fall 1983] Proposed by Leon Bankoff, Ldb Angeles,
California

Two proofs of a Problem 10713 appeared in the 1391(pp. 34-35)
1892 (p. 79) issues of the Educational Times. Unfortunately, neither
proof is valid. The problem and its supposed proofs are stated below

with wording somewhat modernized for clarification. Find all errors.

Problem 10713. Proposed by W. J. Greenstreet, MA  In a given
circle the radii OA and 0B are perpendicular. Let the circle on OB as
diameter have center 0! and let 0’4 cut this new circle in point D.
Then AD is the length of the side of a regular decagon inscribed in
the given circle. Also, let the tangent AQ to the new circle cut the
given circle again at P. See the diagram above. Then AP is the
length of the side of a regular pentagon inscribed in the given circle.
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1. Sofution by R Knowfes, M.A., Professor Zerr, and othens.
Take OA and OB as coordinate axes. Then.the equations for the
circles are
x2iyf=c®  and X2+ yP-ey=o
Nw (407)% = 56274 and
AD = A0' - 0'D = ( V5 - 1)e/2,
which is equal to the side of a regular inscribed decagon. Let
he + ky = 02 be a chord of circle (0) that is tangent to circle (0')
and equal to the side of the inscribed pentagon. Because it is a tan-
gent, we have
h? + &% = (k - 20)°.
The condition that this chord equals the side of the pentagon is

(k - 20)% = 26%(3 - /5).
whence
kK= (3 - /5)e or k=(1+/5)e.
The latter value makes h impossible. Therefore there is only one real
chord of circle (0}, tangent to circle (0'), which is equal to the
side of the inscribed pentagon.
11. Sclution by the Proposer.
Let OA = ¢. Then 00’ = ¢/2 and -

AD = A0' - 0'D = e /1 + tan® o0’ -

e _c _
§—2N5 1)
=2—Z (Vs - 1) = 2¢ sin 180,

so A is a side of the inscribed decagon. Nw AP2 = AD2 te

[ casey's Euclid, iv. 10, Prob. €]. Therefore

2
ap? = (g - 2/5) +

ap=Lc o o5 =2 sinZGO,

2
so AP is the side of the regular inscribed pentagon.

1. Solution by the Proposer.

Ve first dispose of Solution I by R. Knowles. In the given
figure we have that tan 9040’ =1/2 and tan J0AP = tan 23040' = 4/3.
Since J4APC = 900, then APC is a 3:4:5 right triangle. Since AP/AC
is rationaly then AP cannot be the side of a regular in-pentagon,
which is known to be irrational with respect to the diameter AC.
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For Solution II we note that 3040’ = are tan 1/2 = 26.565.. .
Then 40AP = 53.130.. .° and #P0A = 73.34.. .°. If PAis the side of a
regular in-pentagon, however, then ¢P0A should be equal to 72°.

11. Solution by Mowrnis Katz, Macwahoc, Maine.

Let x = sin 18°. Then

cos 18° = /1 - &%, sin 36°= 2z/1 - 2,

2 18° = 1 - 222,

cos 36° = cosz 18° - sin
and

Sin 72%= 4o/l - 2(1 - 2%%) = cos 18%= /1 - o
Because .1:2 # 1, we must have

(1 - 2x%) = 1, dz - 6x° =1, and 8z° - 4z + 1= 0,
which has roots (V5 - 1)/4, 1/8, and (-¥5 - 1)/4, the first of which
issin 78°. If wetake ¢ = 0A =1, then‘the side of the regular in-
scribed decagon is 2 sin 18° = (/5 - 1)/2 and that of the pentagon is

2 sin 36° = ¢ sin 18° cos 18° = (/10 - 2/5)/2
since (V5 - 1)(/5 + 1) = 4.

Nw o4 =1, 00! =1/2, 0'A=V/5/2, and AD = (V5 - 1)/2, so M is
indeed the side of the regular inscribed decagon. Nw drop perpen-
dicular R to line AP and draw OP. Since triangles AOO and A@0' are con:=
gruent, then J04R = 23040!. % have that

cos OAR = cosZOAO’ - si n20A0’ —£_1_3,

Because OA = OP, then triangle OAP is isosceles and AP = 24R = 6/5
and not the side of the regular pentagon.

The question asks us to find all errors. So far we have un-
covered the truth. Nw we must uncover the errors. A check shows
that Solution I, as stated, is almost true; every statement is
correct, except that by symmetry there is another such chord symmetric
to 00. In fact the positive value of h is 2/#/§ - 2. The error is
that the line hx + ky = 1 does not pass through (I, 0J), that is,
point A. This occurs only when h = ¢, so it is a different chord-
tangent that has the desired length. In solution 11, the equation

AP2 = AD2 + 02 , quoted from Casey's Euclid, is not true.




1984 NATIONAL PI MU EPSILON MEETING

The National Meeting of the Pl MJ EPSILON FRATERNITY was held
at the University of Oregon in Eugene on August 16 through August 18.
Highlights were a reception for members and guests’ a Dutch Treat

Breakfast and the Annual Banquet, at which Past-President E. Maurice
Beesley was honored. The J. Sutherland Frame Lecture was given by

Professor John L. Kelley, University of California, Berkeley and

entitled "The Concept of Plane Area."

Professor Frame has served Pi Mu Epsilon as Associate Editor

of the Journal, as Secretary-Treasurer General and as Vice-Director
General. He was Director General during the period 1957-1966. During
one of the paper sessions he gave a brief history of the fraternity.
He is the author of "Fifty Years in the Pi Mi Epsilon Fraternity,"
Pi Mu Epsilon Journal, Vol. 3, No. 10, 1964.

The program of student papers included:

Complements -- Mathematical y
Speaking

Finding the Center of Complaints

Solving Non-Linear Systems oOf
Equations

Morey and Math:  An Investigation
of Linear Economiec Models

DeaZings i n n-Dimensional
Geometry

Wedging Those Vector Integral
Theorems

4 Mathematical Model of Voter
Participation

Lestie Youngdaht
Ohio Delta
Miami Univensity

Michael H. Cox
West Vinginia Beta
Marshall Univessity

Debonah Whitfield
Ohio X
Youngstown State University

Renee L. Larson
South Dakota Gamma
South Dakota State Univensity

Kanin Remingfon
Minnesota Delta
College of St. Benedict

Calvin Johnson
California Larbda
University of California, Davis

Mary Beth Dever
12Linois Epsilon
Nosathenn 12LLnois Univensity
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Number Nine Patrick Tamen
Nonth Carolina Eta
Appalachian State University
Graph Measure in Euclidean Jodg Tnout
n-Space South Carofina Ganma

The College of Charteston

David W. Barnette
Nonth Carnolina Delita
EA Canclina Univernsdity

Finite LapZace Transforms

AWy to Generate Arbitrarily Jeffrey Michael Kubina
High-Order Root-Finding Methods Ohio X¢ ) )
Youngstown State University

Samuelson's Interaction Between Suguna Pappu
the Accelerator and the Multiplier Ohio Delta
Miami University

Benjamin L. Marshatl
Arkansas Beta
Hendnix Coflege

Commutativity and Distributivity:
Different Perspectives

» 1985 NATIONAL P| MU EPSILON MEETING

1t 4s time tO be making plans to send an undergraduate delegate
on speaker from youn Chapten to the Annual Meetiing of Pi Mu Epsifon
in Laramie, Wyoming i n August 1985, Each student who presents a paper
will heceive Zravel support up to $500. Each delegate, up to $250.
Onky one speaker on delegate can be funded grom a singfe chapter, but
othens ane encouraged to attend. Fon details, contact Dh. Richard A
Good, Secretary-Treasuner, Deparntment of Mathematics, University of
Manyland, College Park, MD 20742,

’ REGIONAL MEETINGS

Many regional meetings of the Mathematical Association of America
rnegulanly have sessions fon the presentation of student papens. 1§ two
on more colleges and at Least one Local chapter of Pi Mu Epsdilon help
sponson, on panticdpate in, such sessions, financial help up to $50 s
available. Wnite to Da. Richand A Good, Secnretary-Treasuren, Depart-
ment of Mathematics, Univernsdity of Manyland, College Pank, MD 20742
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GLEANINGS FROM CHAPTER REPORTS

ARKANSAS BETA (Hendrix College). The Undergraduate Research Program
continued to be very active. Seniors Karen Anderson, Diane Crockett,

Ben Marshatl and Grey Williams presented papers at the Oklahoma-Arkansas
MAA Meeting at Arkansas Tech University in Russellville in March. Karen
and Diane gave talks at North Texas State University in April. Diane,
Ben and Grey presented their papers again in April at the Annual Hendrix-
Sewanee- Southwestern Math Symposium in Memphis. Guest speakers during
the school year included Walter Smifey from Systematics, Inc., Jewty
Mauldin, president of Arkansas Power and Light, Hendrix graduate, David
Sutherland, now studying at North Texas State University in Stillwater,
Dn. Jim Choike from Oklahoma State University in Stillwater and Dr. Tim
Wnight of the University of Missouri at Rolla. The McHenry-Lane Fresh-
man Math Award was given to Gary Thacker. The Hogan Senior Math Award
was shared by Karen Andenson and Grey Williams. The Phillip Parker Under-
graduate Research Award was given to Ben Marshatl.

DISTRICT CF COLUMBIA ALPHA (Howard University). Mh Hari Thariani was

presented with an award for his performance in the Elbert F. Cox Under-
graduate Mathematics Competition. The Competition perpetuates the mam-
ory of Dr. Elbert F. Cox, the first black American to receive the Ph. D.
degree in mathematics.

MASSACHUSETTS GAWWA (Bridgewater State College). During the winter of
1983-1984 the membership met weekly with the faculty advisor, Thomas E.
Moore, for problem solving sessions. In the spring, the chapter spon-
sored a mathematics week, "Women in Mathematics and Computer Science."”
The speakers included men and women from both the business and academic
worlds.

MINNESOTA GAWA (Macalester College). Along with the annual game night,
film showing and spring and fall picnics, the chapter sponsored invited
talks by Professorn Frank Harary on "Graph Theoretic Models in the Phys-
ical and Social Sciences," Professon Genald Bergum on "Interesting but
Unsolved Problems in Number Theory,” and Professor Michaef Tangredi on
"Volterra's Population Models." A T-shirt sale was a very successful
fund-raiser.

MINNESOTA ZETA (Saint Mary's Col]ege)_ Featured colloquium speakers
were Dr. Dick Jarvinen on "Vasectomy and the Death of Euler," Sisfer
KathEeen Sullivan on "Infinitesimals Revisited," Judith Knapp on
"Trigonometric Substitutions as an Integration Technique,” and Batbara
J. Candaon on "Mathematical-Musical Applications for the Classroom.”
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MISSISSIPPI ALPHA (The University of Mississippi). After a year of
inactivity, Mississippi Alpha has regrouped. During the spring 1984
ssemester, monthly meetings were held. Twenty new members were initiated.
Highlights were a talk on job prospects in mathematics by Da. WilLiam R.
Thott and a spring finale cook-out.

NBV JERSEY BETA (Douglass College). Math Career Day on November 19 -
featured talks by math majors now holding positions as computer program-
mer, teacher, financial analyst and actuary. In invited talks, Richard -
Portenr discussed a possible model for love (and hate) and Dx. Jean Tag-
Lor discussed the mathematics of soap films. The chapter continued its
tradition of offering free tutoring in mathematics courses. A new event
was a prize exam for area high school mathematics teams held jointly with
the Newv Jersey Alpha (Rutgers University) chapter.

NEW YORK ALPHA BETA (LeMoyne College). Eifeen Poiani, Pi Mu Epsilon
Councilor (and now President-Elect), represented the fraternity at the
chapter installation ceremonies in October. Thirty-six students, grad-
uates and faculty were inducted. In March, Professon Steven Brams of
Nev York University spoke on "Biblical Games."

N YORK PHI (State University of Mew York at Potsdam). The invited
speaker at October ceremonies inducting 40 new members was Dr. Hawiis
Schlessingen, a chapter alumnus, who spoke on "What is Mathematics?' In
April, 36 new inductees were welcomed to membership. Dr. Richard
DefGuidice, Dean of the School of Liberal Studies, was principal speaker.
The school year ended with the annual picnic.

NEW YORK OMEGA (Saint Bonaventure University). Activities included the
showing of the films " Symmetries of the Cube” and "Space Filling Curves."
Invited lecturers were Progesson L. F. Lardy on "Computing the Zeroes of

a Polynomial," Professon David Hanson on "Some Unexpected Results in Coin
Tossing,” and Gary Myeas on "Uniquely Intersectable Graphs - an Open Prob-
lem." Students James Brahaney and Janet McMahon shared the Pi Mu Epsilon
Award at the university's annual Honors Banquet. Joan Cugeff was recog-
nized for honorable mention.

NORTH CAROLINA KAPPA (North Carolina Agricultural and Technical State
University). Dua. John Tofle, University of North Carolina at Chapel Hill,
spoke on "Optimization." One hundred twenty-five students representing 40
schools participated in the chapter-sponsored State Regional High School
Geometry Contest which is to become an annual event.

PENNSYLVANIA BETA (Bucknell University). For the 12th consecutive year
the chapter sponsored the John Steiner Gold Mathematical Competition for
students from area high schools. Seventy-five students representing 26
schools participated. The competition was established to discover and
encourage mathematical talent. The competition honors Professor Gold
who served the fraternity as Secretary and/or Secretary-Treasurer from
1927-1947 and later as Councilor. At the annual initiation banquet,
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Professor James Dudziak spoke on the "Kakeya-Besicovitch Needle Problem."
The Pi Mu Epsilon Fraternity Prize, awarded to the'member of the gradu-
ating class whose work in mathematics has been outstanding, was presented
to John L. AfLen.

SOUTH CAROLINA GAWMA (The College of Charleston). Activities included
helping to conduct the annual Math Meet at The College of Charleston for
1200 high school students from South Carolina and neighboring states.
Students, faculty at the college and at nearby institutions gave talks
on a variety of mathematical topics. Speakers included PA. Rose Hamm,
Dn. AL Panish, Anthur Squillante, John Trout and PA. Hunshefl Hunt.

TEXAS IOTA (University of Texas at Arlington). The chapter had a very
successful year with twelve lectures on mathematics outside the class-
room. Speakers were from E-Systems, General Dynamics, Rockwell Inter-
national, Mobil Oil and Texas Instruments.

VIRGINIA GAWA (James Madison University). The chapter recognized Pamefa
Ficalora with its Outstanding Senior Award for scholastic achievement in
mathematics and service to Pi Mu Epsilon.

WEST VIRGINIA BETA (Marshall University). Guest speakers were PA. Melton,

a former faculty member, and Reginafd Spencer from the Placement Center.
A tutoring file was established. The annual book sale was a successful
fund-raiser. Four students attended the 67th Annual Meeting of the MAA
in Louisville. Six students attended the spring meeting of the Ohio Sec-
tion of the MAA with the support of Pi Mu Epsilon Marshall University.
Mike Cox presented a paper at the student paper session. The chapter's
Annual Job Fair with a panel of representatives from local businesses
and industries was a big success. The annual Math Competition, supported
by Pi Mu Epsilon and the Marshall University Foundation, awarded $500 in
cash prizes to highest scorers. The competition is open to outstanding

high school students in West Virginia and the Tri- State Area who have been

chosen to participate by their teachers.

’ ATTENTION — FACULTY ADVISORS

74 youn chapten's nepont hene? 14 not, please considen
shaning a summany Of, youn chapten's activities with other
members of, the graternity. Accounts of, programs which have
been successful at your Lnstitution are especially welcome.
Send copies of, yowr report tO PA. Richard A. Good, Secretary-
Treaswren, Deparntment Of, Mathematics, University of Maryland,
College Pank, MD 20742 and to Dr. Joseph P. E. Konhausex,
Editer, Mathematics and Computer Science Department, Macalesten
College, St. Paul, MN 55105.
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YOUR BADGE — a triumph of skilled and highly trained Balfour
craftsmen is a and dy bol in a changing world.

Official Badge
Official one piece key
Official one piece key-pin
Official three-piece key
Official three-piece key-pin
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WRITE FOR INSIGNIA PRICE LIST.
An Authorized Jeweler to Pi Mu Epsilon
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IN CANADA L. G. BALFOUR COMPANY, LTD.

Pl MU EPSILON JOURNAL PRICES

PAID IN ADVANCE ORDERS:

Members: $ 8.00 for 2 years
$20.00 for 5 years

Non-Members:  $12.00 for 2 years
$30.00 for 5 years

Libraries:  $30.00 for 5 years (same as non-members)
Back Issues $ 4.00 per issues
Complete volume $30.00 (5 years, 10 issues)

All issues $210.00 (7 complete back volumes plus current
volume subscription)




