

PI MU EPSILON JOURNAL THE OFFICIAL PUBLICATION OF THE NATIONAL HONORARY MATHEMATICS SOCIETY

EDITOR

Joseph D.E. Konhauser

ASSOCIATE EDITOR

Clayton W. Dodge

OFFICERS OF THE SOCIETY

President: Eileen L. Poiani, Saint Peter's College

President-Elect: David W. Ballew, Western Illinois University Secretary-Treasurer:Robert M. Woodside, East Carolina University Past-President: Milton D. Cox, Miami University

COUNCILORS

Robert C. Eslinger, Hendrix College
J. Douglas Faires, Youngstown State University

Richard A. Good, University of Maryland

 Richard L. Poss, St. Norbert CollegeEditorial correspondence, including books for review, chapter reports, news items and manuscripts (two copies) should be mailed to EDITOR, PIMU EPSILON JOURNAL, Mathematics and Computer Science Department, MacalesterCollege, St. Paul, MN 55105 . Students submittingmanuscripts are requested to identify their college or university and their class or expected graduation date. Others are requested to provide their affiliation, academic or otherwise.
Problems for solution and solutions to problems should be mailed directh to the PROBLEMEDITOR Puzzle proposals and puzzle solutions should be mailed to the EDITVR.

The PI MU EPSILON JOURNAL is published at Macalester College twice a year-Fall and Spring One volume consists of five years (10 issues) beginning with the Fall 19x4 or Fall 19x9 issue, starting in 1949. For rates, see inside back cover.

AMESSAGEFROMTHEPRESIDENT COMMEMORATING THESEVENTY-FIFTHANNIVERSARY

OF PIMUEPSILON. INC

The year, 1989, marks the 75th Anniversary of the founding of Pi Mu Epsilon, Inc. and the 40th Anniversary of the establishment of the Pi Mu Epsilon Journal. Chartered in the State of New York on May 25, 1914, Pi Mu Epsilon Fraternity, Inc. began as a non-secret organization "to promote scholarship and mathematics" on college and university campuses and at qualified non-academic institutions. The name of this national honorary mathematics society was changed to Pi Mu Epsilon, Inc. in 1988 to reflect the coeducational composition of the organization since it originated.

Like the Panama Canal which officially opened in 1914, Pi Mu Epsilon unlocked the gates to recognizing student talent in the mathematical sciences that same year. Its membership now boasts over 90,000 individuals and 257 chapters across the United States.

Each year since 1952, Pi Mu Epsilon has been holding its National Meeting in conjunction with the Summer Meetings of the American Mathematical Society and the Mathematical Association of America. The Diamond Jubilee celebration will take place from August 7 to August 10, 1989, on the campus of the University of Colorado at Boulder.

The National Honorary Mathematics Society proudly dedicates this commemorative issue of the Pi Mu Epsilon Journal to the achievements and aspirations of all the outstanding students of mathematics who have been selected to membership in Pi Mu Epsilon and who will join its ranks in the future, as well as to the loyal Faculty Advisors, Faculty Correspondents, and National Officers who are the backbone of the organization. As the 21st century approaches, Pi Mu Epsilon remains committed to its tradition of serving the nation by recognizing promise in the mathematical sciences and by promoting scholarly activities in mathematics.

Eileen L Poiani
President
Pi Mu Epsilon, Inc.

COVERS

The front and back covers commemorating the 75th Anniversary of the founding of Pi Mu Epsilon were designed and prepared by Professor E. P. Miles, Jr., Florida State University, Tallahassee, Florida, at the FSU Muench Center for Color Graphics, on an INTERCOLOR 2427, DATAVUE, and PRINTACOLOR GP 1024.

Professor Miles presented the J. Sutherland Frame Lecture at the Summer Meeting of Pi Mu Epsilon in Pittsburgh, PA in 1981.

THEC. C. MACDUFFEEAWARD FOR DISTINGUISHEDSERVICE

On August 10, 1988, at the Pi Mu Epsilon National Meeting in Providence, Rhode Island, Dr. Milton D. Cox, was honored by Pi Mu Epsilon with the C. C. MacDuffee Award for Distinguished Service. This prestigious recognition, first bestowed in 1965 upon J. Sutherland Frame, is awarded "often enough to be recognized and seldom enough to be meaningful," according to the Pi Mu Epsilon Governing Council.

As Faculty Advisor of the Ohio Delta chapter at Miami University in Oxford, Ohio, for at least eighteen years, as Councilor of Pi Mu Epsilon from 1975 to 1981 and National President from 1984-87, Dr. Cox has continually contributed to the achievement of Pi Mu Epsilon's goal "to promote scholarship in mathematics." A sort of mathematical "pied piper," he journeyed over the years with many Miami University students - by van, auto, and train, to the annual Pi Mu Epsilon National Meetings at college and university campuses across the United States. His untiring efforts to stimulate student interest in mathematics have been rewarded both by an active Pi Mu Epsilon chapter on his home campus and by a substantial increase in the number of student papers presented at national meetings during his presidency of Pi Mu Epsilon.

Not content to wait for just one summer opportunity for Pi Mu Epsilon students to present papers, Dr. Cox has organized and directed fifteen consecutive Pi Mu Epsilon Student Conferences at Miami University. The sixteenth is scheduled for Fall 1989 These successful conferences continue to serve as models which have been successfully replicated on other campuses.

A graduate of DePauw University, the honoree received his master's and doctoral degrees from Indiana University, specializing in abstract algebra and field theory. At Miami University, he currently divides his time teaching as an Associate Professor of Mathematics and Statistics and serving as the Associate Provost for Teaching Effectiveness Programs. In addition, Dr. Cox coordinates the departmental honors program and chairs the Committee on Student Sections for the Mathematical Association of America's Ohio Section of which he is a past-president.

A member of Phi Beta Kappa, Dr. Cox has lectured on topics ranging from the theory of tiling to the ingredients of an undergraduate mathematics curriculum. He has brought to Pi Mu Epsilon and to its students a contagious enthusiasm for mathematics.

Pi Mu Epsilon is proud to add the name of Dr. Milton D. Cox to the list of recipients of the C. C. MacDuffee Distinguished Service Award.

1964	Dr. J. Sutherland Frame
1966	Dr. Richard V. Andree
1967	Dr. John S. Gold
1970	Dr. Francis Regan
1972	Dr. J. C. Eaves
1975	Dr. Houston Karnes
1980	Dr. Richard Good
1988	Dr. Milton D. Cox

AMS ESTABLISHES ANNUALPRIZE
President Eileen Poiani has announced that the American Mathematical Society has established a prize of up to $\mathbf{\$ 1 0 0 0}$ per year to promote undergraduate scholarship in mathematics. The prize money will be administered by Pi Mu Epsilon. Officers and councilors of Pi Mu Epsilon will determine how the prize money will be distributed.

Join in PI MU EPSILON'S DIAMOND JUBILEE CELEBRATION in Boulder,

Colorado, from August 7-9, 1989.

See your PI MU EPSILON advisor for details".

PIMUEPSILONCELEBRATES75 YEARS OF MATHEMATICALACTIVITY

> by J Sutherland Frame
> Michigan State University

1. Incorporation and Early Days.

The Pi Mu Epsilon Fraternity, incorporated on May 25, 1914, under the laws of the State of New York, is celebrating its 75th anniversary as a national mathematics honor society, with over 250 chapters in 45 states and the District of Columbia. It is a non-secret organization whose purpose is the promotion among students and faculty of scholarly activity in mathematics.

The Syracuse University Mathematics Club, which parented Pi Mu Epsilon, first met on November 30, 1903, at the home of Dr. W. H. Metzler, who was named Director of the club. Dr. Edward Drake Roe, Jr. was elected Vice-Director, Mary B. Quinlan Secretary and Mr. Carpenter Treasurer, as recounted in the archives at Syracuse University. During the next ten years the club carried on an active program with many student papers (preserved in the archives), directed in turn by Metzler, Roe, Warren G. Bullard, Floyd Fiske Decker, Daniel Pratt and Lapine Hall Price. At the tenth anniversary meeting on November 17, 1913, a committee chaired by Professor Roe was established to consider a possible revision of the club's constitution. Its report on December 7 presented four options, included in Professor Decker's historical article about Pi Mu Epsilon (Pi Mu Epsilon Journal, Vol. 1, No. 1 (1949), pp. 8-12). The second option "to reorganize the club as a professional fraternity" was approved. Thus Dr. Roe's influential ideas led to the establishment of Pi Mu Epsilon.

On March 2, 1914, a convention was held and a constitution was adopted. On March 23, the choice EnM was made among five sets of Greek letters proposed for the fraternity name, subject to changing the order of the letters to $\Pi \mathrm{ME}$. Eight faculty members and 42 students then took the following pledge and signed their names as charter members:

PLEDGE: I solemnly promise to give my best efforts to the improvement of my scholarship in all my studies and researches and especially in Mathematics; I will maintain a discreet silence concerning all the aims and obligations of this fraternity; I
will cheerfully accept advice and admonition as long as I am a member of the Fraternity.
Officers elected at the convention on April 27, 1914, were as follows: Professors E. D. Roe. Jr. and F. F. Decker Director and Vice-Director, undergraduates Helen L. Applebee and Purley J. Bentley Secretary and Treasurer, and Olive Evelyn .Jones Historian. Incorporation followed on May 25, 1914.

Additional chapters were chartered at the Ohio State University in 1919, at the University of Pennsylvania in 1921, and at the Universities of Missouri and Alabama in 1922. The officers of the Alpha Chapter at Syracuse University served as national officers until December 1922. when a national office was established. Additional information about the early days is included in Dr. Decker's article referenced above, and in J. Sutherland Frame's article "Fifty years in the Pi Mu Epsilon Fraternity" (Pi Mu Epsilon Journal, Vol. 3, No. 10 (1964), pp. 511-5).

2. Pi Mu Epsilon National Reports and Meetings

Pi Mu Epsilon has always considered its primary aim to be the encouragement of scholarly interest and activity in mathematics among undergraduate and beginning graduate students. This aim was fostered at first mainly by individual chapters, but partly by informal meetings of interested faculty and students, usually held once in three years at meetings of the Mathematical Association of America (MAA). The American Mathematical Monthly (the Monthly) recorded national meetings of Pi Mu Epsilon in 1938 and on January 1, 1942. Meetings without formal talks were held in 1945, 1948, 1953, and 1959. Pi Mu Epsilon activities were reported in the Clubs and Allied Activities section of the Monthly, a section edited from 1931 to June 1935 by F. M. Weida, from December 1935 to July 1938 by F. W. and Helen B. Owens, from August 1938 to August 1942 by E. H. C. Hildebrandt, from January 1942 to December 1946 by J. Sutherland Frame, and from 1947 to 1951 by L F. Ollmann.

In 1927 a vote of nine chapters on the question "Shall we have a National Publication for Π M E?" was 5 to 4 negative. Years later, in 1949, Pi Mu Epsilon launched its own journal, with Ruth Stokes of Syracuse as Editor, Howard C. Bennett as Business Manager, and J. Sutherland Frame, H. T. Karnes, N. H. McCoy, and R. J. Walker as Associate Editors. The Journal contains papers written by undergraduates and othets deemed to be of interest to them, as well as a puzzle section, a problem department,
chapter reports, invited addresses, and other items of interest to Pi Mu Epsilon members. New member lists were included until 1972.

Pi Mu Epsilon has been especially fortunate in having had a succession of outstanding problem proposers/solvers serve as Editor of the Journal's Problem Department. The first so designated was the late Leo Moser, who edited the department beginning with Vol. 1, No. 4. through Vol. 2, No. 7. Together, C. W. Trigg and Leon
Bankoff edited Vol. 2, No. 8. Murray S. Klamkin assumed the editorship with Vol. 2, No. 9 and continued for ten years. Leon Bankoff took over with Vol. 4, No. 9 and sewed through Vol. 7, No. 2. The next three issues were jointly edited by Bankoff and Clayton W. Dodge. Beginning with Vol. 7, No. 6, Dodge had been Editor.

Presentation of papers by students at Pi Mu Epsilon national meetings began at the national meetings of the $\mathrm{M} M$ and American Mathematical Society (AMS) at Michigan State University in 1952, continued at meetings at the University of Michigan in 1955 and at Pennsylvania State University in 1957, and has continued since 1960 at most subsequent Pi Mu Epsilon national summer meetings, held annually with few exceptions (1962, 1974). Student speakers are supported for their travel expenses, encouraged to submit their papers to the Journal for publication, and lured by prizes for the best papers published by students below or just at the master's level. To facilitate interaction between participants, Pi Mu Epsilon holds an informal get-acquainted reception the evening before student papers are delivered. A complete list of the papers presented appears as Appendix A to this article.

Most Pi Mu Epsilon national meetings have included a one-hour address by an invited speaker, notably that in 1972 at Dartmouth by President John Kemeny, entitled "Mathematical Models and the Computer" (Pi Mu Epsilon Journal, Vol. 5, No. 8 (1973), pp. 373-86). At the 1973 meeting of the Council, Past President J. C. Eaves proposed and the Council approved a motion that this activity be formalized in a series of annual addresses to be known as the J. Sutherland Frame Lectures. Past President Frame was asked to inaugurate the series in 1975, and deeply appreciates the honor. Appendix \mathbf{B} is a complete list of speakers and topics.

In 1964 a 50 -year history of Pi Mu Epsilon by Frame was printed in the Journal. We look forward to our 75th anniversary meeting at the University of Colorado in Boulder in August 1989.
3. Pi Mu Epsilon Financial Perspective.

In 1936 when national Secretary John S. Gold became national SecretaryTreasurer for Pi Mu Epsilon his office issued charters for \$10, and registration fees and certificates of membership for $\$ 0.25$ each. The latter two charges were combined into a $\$ 1$ initiation fee in November 1950. raised to $\$ 2$ in 1957. to $\$ 4$ in 1971. and to $\$ 10$ in 1986, due to increasing expenses. Pi Mu Epsilon has never charged its members annual dues, but does encourage subscriptions to the Journal, which are included for one year in the initiation fee.

In 1937, the L G. Balfour Company became the official jeweler for Pi Mu Epsilon, and in 1938 began remitting royalties on jewelry which totaled $\$ 3384.42$ from 1951 to 1954, and varying amounts in subsequent years. At first, 10-karat gold keys or key-pins were sold for $\$ 3.75$, but when the price of gold skyrocketed in the 1970's and the key price rose above $\$ 12$, Pi Mu Epsilon began ordering gold-plated pins in quantity from Balfour, and sold them to initiates for $\$ 5$ in 1972 and for $\$ 8$ beginning in 1979.

The first 4000-copy issue of the Pi Mu Epsilon Journal in 1949 cost $\$ 500$. Between 1950 and 1954 the Journal received $\$ 0.75$ of each $\$ 1$ initiation fee, which paid for a one-year subscription. Printing costs continued to rise. In 1973 the twoyear subscription price was increased from $\$ 1.50$ to $\$ 4$ for members, and from $\$ 2$ to $\$ 6$ for non-members and libraries; it was raised again in 1980 to $\$ 8$ and $\$ 12$ respectively for two years. In 1975-1976 the Journal income of $\$ 6108.90$ included $\$ 4000$ from the Pi Mu Epsilon treasury, and expenses were $\$ 5426.26$. In 19801981 Journal costs of $\$ 10,850.12$ were subsidized by $\$ 5000$ from the Pi Mu Epsilon treasury. Cash assets of Pi Mu Epsilon on June 30, 1988, totalled \$27,185.79.

In 1966 the Council approved a prize of $\$ 100$, to be awarded each year, for the best paper by an undergraduate that was published in the Journal. Beginning in 1971, first, second, and third prizes of $\$ 200, \$ 100$, and $\$ 50$ were awarded, and eligibility was extended to graduate students working on or just completing a master's degree. These awards were named the Richard V. Andree Awards by the Council in 1987. Of all the student-written papers, heretofore receiving first prizes, that of Donald John Nicholson on "A Ubiquitous Partition of Sets of $\mathbf{R}^{\mathbf{n}}$," which appeared in Vol. 8, No. 1, pip. 2-7, has been selected as "best" and is reprinted on pages 663-668.

Pi Mu Epsilon also encouraged local chapters by matching prize money up to $\$ 50$ per chapter and assisting financially with student participation in sectional meetings. But the largest financial support to students was transportation expense to national meetings. Travel subsidies totaling $\$ 486.21$ fo the 1952 summer meeting in East Lansing, Michigan, with student speakers, and $\$ 793.24$ for the December 1953 meeting in Baltimore for officers and delegates (no student speakers), was first based on full travel expense up to $\$ 60$ for speakers, and one-half rail fare plus lower berth up to $\$ 35$ for delegates. In later years travel subsidies were based on minimum airfare for a speaker, with half these amounts for a chapter delegate, subject, however, to maximums which rose from \$60 in 1952 to $\$ 150$ in 1964, \$300 in 1973, \$400 in 1977, \$500 in 1981. and $\$ 600$ in 1985.

In 1957 Pi Mu Epsilon contributed $\$ 300$ to help launch the Mu Alpha Theta high school math honorary sponsored by Dick and Josephine Andree. It contributed $\$ 500$ in March 1973 to the National Council of Teachers of Mathematics (NCTM) for its building fund, $\$ 500$ in 1981 to the NCTM toward a memorial to our past president Houston Karnes, \$3000 in 1978 to the MAA for its building fund, and $\$ 500$ in 1987 toward the endowed scholarshipin mathematics or computer science at the University of Oklahoma in memory of Richard V. Andree.
4. Pi Mu Epsilon growth in chapters and membership.

When national officers were first elected in 1922, there were five chapters of Pi Mu Epsilon (listed in section 1). When Dr. E. D. Roe, Jr., the first Director General, died in 1929 and was succeeded by Dr. Louis Ingold, there were 18 chapters. There were 31 chapters on April 1, 1936, when a new constitution was adopted and the offices of Secretary, Treasurer, and Librarian were combined in the office of SecretaryTreasurer, held by the former Secretary, John S. Gold of Bucknell. Griffith C. Evans succeeded F. W. Owens as Director General, and was followed by W. E. Milne in 1939 and Tomlinson Fort from 1942 to 1948. By fall 1949, when the Pi Mu Epsilon Journal was started, and E. H. C. Hildebrandt was Secretary-Treasurer, there were 48 chapters. Membership totals on April 1, 1951, and July 1, 1954, were 18,857 and 22,897 . At that time Richard V. Andree replaced J. Sutherland Frame as Secretary-Treasurerand three-year terms for National Officers began July 1 instead of April 1, to facilitate exchanges of files and information.

During C. C. MacDuffee's term as Director-General, 1948-1954, he installed
almost all the new chapters. His successor, S. S. Cairns, had a sabbatical leave in 1954-1955, and asked Vice-Director General Frame to act for him that year. By the end of Frame's three terms as Director General in 1966 there were 120 chapters, of which Frame had installed about 50. Membership in Pi Mu Epsilon increased by _ 25,198 from 1975 to 1986 when Richard Good was Secretary-Treasurer, and should exceed 90,000 by 1989. On April 1, 1989, there were 257 chapters.

The Constitution and By Laws of 1936 were revised in 1958, 1965, and 1972. A 1958 revision provided that the nominating committee appointed by the Director General should nominate three qualified candidates for the office of Director General, among whom the candidate with the second highest vote of the chapters should become Vice-Director General. Another significant change provided for the chartering of affiliate chapters at Pi Mu Epsilon at non-academic institutions. Only one such chapter was installed, at the urging of George Marks, at the General Electric plant in Evendale, Ohio, in 1958. It became inactive when Marks moved away. Constitutional revisions in 1965 changed the titles of Director General and Vice Director General to President and Vice President, shortened the pledge for initiates, and provided that charter petitions approved by unanimous vote of the Council did not require chapter approval. A 1972 revision changed the office of Vice President to President-Elect, at least one to be nominated, and provided for the automatic succession after a three-year term to a term as President, followed by a term as Past President and Council member.
5. Who were our National Council Members?

Lists of names and dates do not tell the whole story. So what do we know about the men and women who have served as Officers and Councilors of Pi Mu Epsilon? Back numbers of the Pi Mu Epsilon Journal provided added information. The reference (1/1/1-9/F49), meaning Vol. 1, No. 1, pp. 1-9, Fall 1949, refers to a photo and biography of the first Director General E. D. Roe, Jr., who was an astronomer as well as a mathematician. Director-General Griffith C. Evans served as Vice President of both the AMS and MM, and was AMS President in 1938-1940. Tomlinson Fort served as AMS Associate Secretary and later as Bulletin Editor. C. C. MacDuffee was M M President in 1945 and Frame served two terms (1950-1952 and 1958-1960) on the M M Board of Governors. R. H. Bing was M M President in 1961. Photos and biographies of C. C.
MacDuffee, W. M. Whyburn, J. S. Frame, S. S. Cairns and Sophia MacDonald appear in* (1/5/191-3/F51). Other portraits and biographies appear in (1/6/229-31/S52),
(1/8/331/S53), (2/1/1,31-4/F54), (2/6/279-81/S57), (5/7/356-8/F72), and (6/3/194-5/F75). Colton MacDuffee was born June 25, 1895, and died August 21, 1961, see ($3 / 5 / 213 / F 61$). Appendix C is a complete list of Officers and Councilors.

In 1957 Josephine and Richard Andree launched the high school mathematics honorary society Mu Alpha Theta ($2 / 8 / 394 /$ S58 $)$. Henry Alder and later J. C. Eaves (among others) served as Presidents. Cosponsorednow by the NCTM and MAA, Mu Alpha Theta now has over 1200 chapters and 40,000 members in 42 states, the District of Columbia, Puerto Rico, Canada, Germany, Japan, and Switzerland.

In 1965 J. C. Eaves proposed the C. C. MacDuffee Awards for Distinguished Service to Pi Mu Epsilon, described in (4/6/229/S67), and followed (4/6/2303/S67) by portraits of the 1966 honorees J. S. Frame, R. V. Andree and their wives. Subsequent honorees were former Secretary-Treasurer John S. Gold in 1967 (4/8/319-21/S68), Editor Francis Regan in 1970 (5/3/105-6/F70), Presidents J. C. Eaves in 1972 ($5 / 8 / 371-2 /$ S73), Houston Karnes in 1975 (6/3/123-4/F75), who died in March 1980, Secretary-Treasurer Richard Good in 1980 (7/3/149/F80), and Past-President Milton Cox in 1988 (8/10/634-5/S89).

After 21 years as Secretary-Treasurer, 1954-1975, Richard Andree served as President-Elect and then President, but died May 8, 1987 after a long illness. Richard Good was his able successor as Secretary-Treasurer 1975-1987 and now serves as a Councilor. In 1978 E. Allan Davis followed Houston Karnes as President. The four Councilors of 1975-1978 have all become national officers: E. Maurice Beasley, Milton Cox and Eileen Poiani as Presidents 1981-1984, 1984-1987, and 1987-1990. respectively, and Robert Woodside as Secretary-Treasurer 1987-1990. David Ballew, our Editor 1978-1984, is now President-Elect. Joseph Konhauser followed Ballew as Editor, Milton Cox is now Past-President, and Richard Poss, Robert Eslinger, and J. Douglas Faires are now Councilors. Under Eileen Poiani and her colleagues Pi Mu Epsilon should have a bright future.

APPENDIXA

STUDENT PAPERS

1952 .. Michigan State College Meeting
"modification of Infinite Series", Bevan K. Youse. University of Georgia
'Rapid Square Hoots", Charles D. Parker, Michigan State University
"almost Periodic Functions", JohnE. Hoffman. University of Oklahoma
"matrix Inversion", Verna Lair, University of Delaware
"matrix Extension". ©ALan 1. Goldman. University of Kentucky
"The G. C. D. Algorithm", WiLson M. Zaring, University of Kentucky
There were no meetings in 1953 or 1954.
1955 .. University of Michigan Meeting
"magic Squares", Walter w. Turner, Michigan State College
'Semigroups", Thomas Head, University of Oklahoma
"Elliptical Wheels on an Inclined Plane", James Finely, Jr., University of Georgia
"modern Developments in Additive number Theory", Roy Lisker, University of Pennsylvania
"Reorderings of Sets", Ronald Cleary, Syracuse University
"An Equation Concerning the Functional Exponent",Jofin Stallings. University of Arkansas
"Some Cayley Color Groups of Order Less Than Fifteen", Chih Han Saf, University of Illinois
"On Extensions of Kasnar's Circle", Manning i. Rose, University of Kentucky
There was no meeting in 1956.
1957 -- Pennsylvania State University Meeting
"Envelopes of Certain Families of Conics", Katharine Lipps, St. Louis University
"Mathematics in Turkish High Schools". Alii Tangoren, LouisianaState University
"Symmetry Groups and molecular Structure", J. S. Frame, Michigan State University
"On the Convergence of the Fourier Series",Tom Boefme, University of Oklahoma
"The Perpetual Calendar",Francis Felix, Pennsylvania State University
There were no meetings in 1958 or 1959.
1960 -- Michigan State University Meeting
"Koningsberg Bridge Problem", Fred Hewlett, University of Nebraska
"Filters and Ultrafilters", Johnadlen. Oklahoma State University
"月 Geometric Interpretation of the Solution of Some 3x3 Games",Virginia Thrasher, University of Buffalo
'On the number of Representations by a Cubic Polynomial modulo \mathbf{p} ", Stantey MLamangakis, Hunter College
"Bounds for Waring's Problem, modulo p", Sa m Lamonaco, St. Louis University
"The Construction of the Rffine Plane and its Rseociated Group in Terms of the Barycentric Calculus",'Jamesłerod, University of Alabama
"Characterizations of Certain Lattices", Cerafdine Jensen, University of Oregon
"Some Proparties of Prime Ilumbers", Andrew Soms. Michigan State University
1961 -- Oklahoma State University Meeting
"Conformally Elementary Points". Louis DeNoya, Oklahoma State University
"Transcendence of \mathbf{e} ", John Weelfs, Ohio University of Dayton
"月 Topic in modem Algabra",Charles \mathcal{M} Uuffins, Oklahoma State University
"General Solutions to the Linear Diophantine Equation in the Two Variables", Thurston Shook, Ohio State University

The AMS/AMM Summer Meeting was in Canada and there was no Pi Mu Epsilon Meeting in 1962.

1963 -- Boulder, Colorado Meeting
"Raabe's Test", Charles B. Huelsman, Miami University
"Some Recent number-Theoretic Research Using a High-speed Calculator", Kenneth E. Xloss, Carnegie Tech
"Definition of Vector Product and Topological Considerations", Robert Jay Buck, University of Buffalo
": Characteristic Property of Closed Subgroups of $\mathbf{E n}^{\mathbf{n}}$, Stephen E. Crick, Jr., Michigan State University
"The Rpproximation of Mormal Derivatives and the numarical Solution of the mixed Boundary Value Problem for Two Dimensional Laplace Equation", Sergei Kdalto, Portland State College
"Commutative Alternative Rings", Willia m A . Thedford, Oklahoma State University
"Catenary Rddition -- A method of Sequence Generation",Thomas William Cusick, University of Illinois
'Tauberian Theorems on the Fractional Function". M. ALan Feldstein, U.C.LA.
" \mathbf{B} Generalization of the Hiemann-Lebesgue Lemma", William E. Heireman, Georgia Institute of Technology

1964 -. University of Massachusetts Meeting
"Existence Theorems for Hyparbolic Partial Differential Equations", R. Brewster Knight, Georgetown University
'Theorem Proving on the Computer. . . the State of the Art", Carl Douglas Jensen, Florida State University
"Weierstrass Rpproximation Theorem", Jamesł. Opelka, DePaul University
'Rpplications of Contraction mappings", Richard \mathfrak{H}. Bouldinn, University of Alabama
" B Study of the Order Properties of non-Desarguesian Planes", Beveriy Welles, Denison University
"Generation of Content and measure Spaces", Howard Edward Evans, Franklin \& Marshall College
"Some of the Plane Figures Under the Direct motions", Hienry Lee Phiflips, Southern University
'Determinants in a Division Ring". wucciam a. Bridges, Jr., University of Connecticut
"mappings of Samigroups Associated with Ordered Pairs", Margaret Vitanza, SUNY at Buffalo, New York
"Sums of Rational numbers", William A. Webb, Michigan State University
"Subgroups of Rational numbers", ALan Schwartz, University of Wisconsin
"Transverse Stability of Vessels", JosephC. Zuercher, Marquette University
"Zeros. Identities, and Associativity in Groupoids",Jo hn nyeLundgren, Sacramento State College

1965 .. Cornell University Meeting
'The Solution of a Simple Differential Equation", Ralph Edwin Showafter, North Carolina State at Raleigh
"Rpplications of the Arithmetics of Simple QuadraticFields to Diophantine flnalysis". Hugh L. Montgomery, University of Illinois
'The numarical Study of a Boundary Value Problem with One Given Condition at Infinity",Carol Knudson, State University of South Dakota
"As Introduction to Topological Rings". David M. Arnold. Western Washington State College
"The Jordan-Schonflies Theorem", Richard C. Vile, Jr., Michigan State University
"Solutions of Equations in Finite Groups". Mark Benin-d, Tulane University
"The Schrodinger Wave Equation". atenn Thompson, University of Toledo
'Rddition Program for Turing machine",'JamesWoeppel, SUNY at Buffalo, New York
"Surveying on the Level: The Schroder-Bernstein Theorem", Frank R. Bernfart. University of Oklahoma
"Random Variables", Louis F. Kemp, Polytechnic Institute of Brooklyn
"An Extension of Liouville's Theorem". Kerb Sifverman. Syracuse University
1966 -- Rutgers - The State University Meeting
"Formal Power Series Over Commutative Ring with Identity", Jameswifliam Brewer, Florida State University
'Extensions of mean Value Theorem". Preston Dinkins, Southern University
"The Fundamental Theorem of Algebra", Paul J. Campbell, University of Dayton
"Pascal's Triangle Generalized and Polytope Geometry", Eric Richard Falsey, PomonaCollege
"Heciprocal Rddition", JamesWilliams, Carleton College
"The Study of a Recursive Sequence",James A. Wingert, John Carroll University
"Continued Fractions and the Geometry of moment Spaces", Thomas McChesney, : Denison University
"Construction of a Banach Space Using the Laplace Transform",Pedro J. Sanvedra. Georgetown University
"A. L. P. S.: Algabraic Programming System", Rafph Howenstine, University of Oklahoma
"Indices of Primitivity and Imprimitivy of a Cyclically Vertex-Symmetric Graph", -Alexander F. Hunter, Florida Presbyterian College
"Further Varieties of Faces of the Hexahexaflexagon". Robert L. Murson, Oregon State University

1967 -- University of Toronto Meeting
"Some Useful Results in Rpplications of Power Series Transformations to the Solution of Difference Equations", Ray A. Gaskins, Virginia Polytechnic Institute
"Generalizations of Sequences". William L. Reynolds, Florida State University
"Survey of Student flctivities to Increase Interest in mathematics and mathematical Sciences", Rout A. Deju. New Mexico Institute of Mining and Technology
" \mathbf{B} Preliminary Examination of Round-Robin Tournament Theory", Charles A. Bryan, John Carroll University
"R Functional Approach to the Singularities of Plane Curves", Richard 'J. Bonneau, College of the Holy Cross

1968 -- University of Wisconsin Meeting
"The Fibonacci Sequence: fln Introduction", Donaid F. Reynolds, Texas Christian University
": Representation Theorem for Bounded Finite Generation Processes", James Rosenburg, Pomona College
"Revision of monitor Using Rssembly Language", Arthur P. Staddon, Denison University
"Twin 'n-Primes"', George F. Grob, Georgetown University
"Series of Polygonal numbers", Michael C. Kopkas, John Carroll University
1969 -- University of Oregon Meeting
"Rational Points on Elliptic Curves", Bruce Rienzo, Rutgers University
"The Cantor Set", 'JerryLynn West, Southern University
"月 Semi-number System". Ann K. Mifler, Saint Louis University
"Determination of Polynomial Roots: A Construction", 'John Wallis, Texas Christian University
"Simplicia1 Decompositions of Convex Polytopes", Allan L. Edmonds, Oklahoma State University
"H Decimal Rpproximation to 'Pi', Utilizing a Power Series", T. Golian and, J. Fanmeken, Ohio University
"number Theory, Density of Quadratic [Ion-Residues in (I,[p])", Richard W. Johnson, East Carolina University
"Tauberian Theorems", Addison M. Fischer, West Virginia University
Topological Rings and Topologies on Rings", Gary Sargent, New Mexico Institute of Technology
"An Important Counterexample in the Field of Round Robin Tournament Theory", Anthony 'J. Kenzie, John Carroll University

1970 .. University of Wyoming Meeting
"Linear Programming", Margaret M. Lynch., St. Louis University
"Program for Finding Endomorphisms and Rssociated near Rings of a Finite Group", Rusself Schexmayder, University of Southwestern Louisiana
"Positive Definite matrices", Stephen M. Zemyan, University of Delaware _ - .
"newton and the Development of Calculus". Thomas R. Bingham, State University College of New York
"Wronskian Identities". Martin J. Swiatkowski, John Carroll University
"The Prime Divisors of Second Order Recurrences". P a d A. Cattin, CarnegieMellon University
Phinm Curious Yellow: The Golden Ratio". Linda Riede, University of Denver "Game Theory". Elliot Wiesner, Polytechnic Institute of Brooklyn
'Zero Divisors in an Enveloping Ring", Robert Ussery, East Carolina University
"On 'Rlmost Unitary Perfect' numbers", Sidney West Grafam, University of Oklahoma

1971 -- Pennsylvania State University Meeting
"Lonesome Points in a Topological Space", Bobby Beckom, East Carolina University
'Dieting: Ar Rpplication of Decision Theory", Rebecca Jane Klemm, Miami University
"The Legendre Polynomials". Barbara F. Beier, Fontbonne College
"n-5pace Generalization of the Pythagorean Theorem",Sister Carol Ann Dodd, Western Washington State
"Finite Mear Domains", Rusself Schexnayder, University of Southern Louisiana
"An Example of lion-numerical Analysis". Frederick C. Druseikis, University of Arizona
"The Unique Equilateral Triangle". Janet B. McDonald, State University of New York at Albany

1972 -- Dartmouth College Meeting
"K-Automorphisms of $K(t)[[X]]$ ", \mathcal{H} [ugh Barnett, East Carolina University "Integers That Rre a Function of Their Digits", Victor G. Feser, St. Louis University
"A General Test for Divisibility". Robb T. Koether, University of Richmond
"Eulerian numbers", Angela Kenison, Brigham Young University
"Characterization of the Differentiable Functions of a Quaternion Variable", Joseph'J. Buff, New York University
"Distributively Generated near Rings of Groups of Order <15", Kenneth R. Wadfand, Worcester Polytechnic Institute
"Happy numbers", Daniel Wensíng, John Carroll University
"Intuitionism (School of Intuition)". Beverly Waiters, Gonzaga University
'Goldbach's Conjecture", Chris Scussel, Michigan State University
"A Program to Determine the number of Topologies on a Finite Set", Roger \boldsymbol{w}. Foster, Miami University
"Computer Generated Random Vectors with Specified Dansity", Richard M. White, Miami University
"Complex Analysis", Romald Umble, Temple University

1973 -- University of Montana Meeting
"Some Slick Tricks with Fourier Series", Joseph Jonathan Buff, New York University
"nicaness of the Sucle and a Characterization of Groups of Bounded Order", San W. Jalley, Western Kentucky University
'flpplications of Finite Differences to the Summation of Series", H. Joseph Straight, State University of New York
"Partial Differentiation in metric Spaces". Roseann Morello, Seton Hall University
"Properties of CT-TopologicalSpaces", Daniel Campbell, Samford University
"Book Thickness and Graphs", David Keys, Louisiana State University
"A Look at Predator-Prey mathematical models", Raymond J. Marszafowicz, St. Peter's College
'Configurations of the Platonic Solids of Positive Genus". Kurt J. Scfmmeker, Michigan State University
"Some Properties of the Hermite Differential Equation", Shirley M. foreman, Prairie View A\&M College
'mathematics and Language", Vincy Fon. University of Kansas
"The fllgebras of Floating Point number Systems", P a d Uitasek May, University of Oklahoma
" \mathbf{B} Formal System for Quantification Theory", Mitchell Spector, John Carrol University
'The Theory of Queues", Kristine R. Hueseman and Cynthia M. Warren, St. Louis University
"Graphical flpproach to Game Theory", Evelyn Wallace Jenkins, University of East Carolina
"Bn Rll-Rule Rxiomatization of the Propositional Calculus", William David Froak, Occidental College
"Constructing Polghedron (Regular)", Karin Ann Stafara, St. Louis University
"Soap Films". Jack Eckfard. St. Louis University
'metric Topological Invariants and Some Elementary Consequences', Gerald Flyde Jaimovicfı, U.C.L.A.

The AMS/AMM Summer Meeting was not held and thus there was no Pi Mu Epsilon Meeting in 1974.

1975 -- Western Michigan University Meeting
"Sequential Convergence", Lynn L. Mineo, Eastern Carolina University
"The Philosophy and Proof of Godel's Incompleteness Theorem", Charles \boldsymbol{M}. 'Robins, Brooklyn College
"Continuous Пon-Differentiable Functions". 'Brent Hailpern, University of Denver
" A Proof of the Theorem that Ang Two Tape Turing machines may be Simulated by a One Tape Turing Machine". Zack D. Cox, Jr., University of North Carolina at Wilmington
"A Problem in Geomatry and Probability". John Q. Wafker. 12, Southern Illinois University at Edwardsville
"A Growth model for the Plastics Industry", Lawrence R. Rogers, Miami University
"The Busy Beaver Problem for Turing machines", Katfiken Marra, Manhattan College
. rent State
Florida
"mathematical models in nuclear Fuel management", Michaed P. Manafan, Michigan State University
"Calculus of Variations", John R. Andreozzi, Rhode Island College
"Distance and Interiority in a Boolean metric Space". M. Elizabeth Newton. St. Louis University
'numerical Solution of a lion-Linear Electron Conduction Equation with Boundary Values", James DeLucia, St. Joseph's College
"Snakes on the 7-Dimensional Cube",'Robert Myers, Hope College
1976 -. University of Toronto Meeting
"Chainable Continuum [lot Homeomorphic to an Inverse Limit on [0,1] with Only One Bonding map", Dorothy Marsh. University of Houston
"An Informal math Lab". Kevin Bucol, Creighton University
"[0,1] Is not Compact: A Discussion of the Hyper-Heals", Thomas Sweeney, St. Louis University
"On the Problem of the Lion and the man", Mark Showers, Southern Illinois University
"Ridge Regression", Dote Borowiak. University of Akron
"Fugue in $\mathbf{Z}^{\text {\# }}$ major", William Stone, University of Utah
"Fixed Point Theorems in metric Spaces". Carol Collins, East Carolina University
'fldditions and Con-actions to "Elementary number Theory in Certain Subsets of the Integers I and II'". William Lenhart and Karen McConloque, St. Joseph's University
"Topology on Geometries with Betweenness", Anees Rozzouk, Andrews University
"High School mathematical models". Elfen Fearn, St. Peter's College
"The Whitney Theory for Maps Between 2-Mlanifolds". Jane Fawkins, College of the Holy Cross
"On Difunctional and Circular Relations". ALma E. Posey, Hendrix College
"Operations Hesearch - An Approach to the Solution of Problems in the Urbana System",Elaine flowers, Alabama State University

1977 -- University of Washington Meeting
"Paradox in the Development of mathematics", Wayne Heym, Miami University
"The Value of mathematics in Pro-Legal Education". Bruce Fox. University of Illinois
"Commutative Rings and Fields", Kathryn Dourdelf, St. Joseph's University "Continuous Convergence of Functions", Â¥Robechilds, East Carolina University "Continuous Convergence in $\mathbf{C}(\mathbf{x})$ ", James $\mathbf{L} \mathbf{e w i s}$, East Carolina University " B Characterization of G Sets in metric Spaces", Jeff Thompson.. Cornell University
'How to modal for Politicians". Lonita B. Spivey, College of Charleston
'mathematical modeling of a Sewage Plant", John Gimber, Andrews University
"The Structure of the Solution Space of 5th Order Linear Differential Equations", Ernest Lowery, Prairie View A \& M University
"Sink-Like Structures in Compartmental Analysis"., James Beflinger, Southern Illinois University
" \mathbf{A} Computer flpplication of Linguistics", offfredo Carcia, St. Louis University
"Set Simplification Simplified", Date Watts, University of Denver
'The Effect of Finite Infinities on Rational numbers", Victor Meyer, University of Detroit
'mathematics Field Day", Kenneth pitz, Creighton University
"An Introduction to. and an flpplication of Elliptical Integrals", nark Goldsmith. Miami University
'flcceleration of Root Finding Algorithms Through Chebyshav Interpolation", Richard. Daughtery, Western Kentucky University
"Simple Continued Fractions", David Miyashiro, Ohio State University
'On Distance Attaining Sets", Robert Goggins, University of Mississippi
"月n Introduction to Coding Theory", Sill Feidler, Miami University
1978 -- Providence Meeting
"Why I like Graph Theory", Nancy L. Burger, State University of New York at Potsdam
"Calculation of the Period of the Lotka-Volterra Predator Prey Model", Kathy Stuewe, University of Tennessee
"The Unique Iumber 15".J. B. Zipperer, Jr., Armstrong State College
"B Paradox in Quantum Theory", Linda Whifeyman, Sam Houston State University
'Is It Possible to Lasa the 01' Magic?'". Douglas W. Boone, Miami University
"The Double Ferris Wheel Problem", albert E. Parish, College of Charleston
'The Use of Fractional Calculus in Solving Certain Difference Equations". David Challener, lowa State University
"Causes of math Anxiety at the University", Kathleen V. Walker, Southern Illinois University at Edwardsville
"lion-Linear fldditive Functions", jufie I). Anderson, Hendrix College
'The Converse of Lagrange's Theorem and Finite חilpotent Groups", Marcia James, East Carolina University
"matrix models in Biology", Michael Young, Portland State University
"multivariate Discriminant flnalysis and the Prediction of Loan Defaults", Nite Belfoit, University of Northern Florida
"Scaling in mammals", Timothy 0'Shea, St. Peter's College
"Concerning Irreducible Compact Continua", w. Dwayne Collins, University of Houston
"Exam Scheduling: An Example of math modeling", Carole H. Cook, Miami University
"Generalized Lipschitz Criteria for First Order Differential Equations". Mark L. Burton, Hendrix College
" \mathbf{A} method of Finding the Complement of a Sequence". Susan McClintock, East Carolina University
" A Pulse-Time model for mathematics Class Enrollments", Julie Tontgomery, Sam Houston State University
"Division Algorithms for Prime Factorization", John Anderson, Rose-Hulman Institute of Technology
"Problems: Stimulation to Research and flpplication", Steven From, Rose-Hulman Institute of Technology
"numerical Treatment of meteorological Data", aregory Battle, Washington University
"magit Card Squares, Cubes, and Hyparcubes". Bernard P. Smith, St. Louis University

1979 .- Duluth Meeting
'On Continued Fraction Representations of Liouville numbers", Michael Filaseta, University of Arizona
"Behavior of the Permanent of a Special Class of Doubly Stochastic Matrices", Pfoung =Anh $\boldsymbol{\nu}_{\mathbf{u}}$, University of Houston
"Physical models for Applications of Rational numbers in Reduces Form".'JoAnn Fiene, Southern Illinois University-Carbondale
"Topological Properties of the Generalized Long Line", Alic Enayat, lowa State University
"Enzyme Kinetics of Phanglkatonuria", C. P. Kuchinad, Marquette University
". A Hard (But Interesting) Problem", Michael L. Call, Rose-Hulman Institute of Technology
"Time as a Dymamical Variable in Quantum Physics", Stephen L. Ken, University of Tennessee-Knoxville
"Love Sonnet for a mathematician", Mark walker. South Dakota School of Mines and Technology
'Infinitesimals: Where They Come From and What They Can Do", Professor \mathfrak{H}. 'Jerome Keisler and 'JSutherland Frame, University of WisconsinMadison
"The Axiom of Choice", Jofnn B. Vaughn. St. Louis University
"The Kernel of the Laplace Transformation". David C. Sutherland. Hendrix College
"The Knight's Tour Problem", Gary Ricard. South Dakota School of Mines and Technology
" A Simple Proof of a Theorem by H. Scheffe". Peter Westfall. University of California-Davis
mathematics and the Boiling Points of Alkanes", Michael 'JSchefl, University of North Carolina at Charlotte
"Two Problems in number Theory", Janet Reiud. University of North Florida
"Uniform Algebras and Scattered Spaces", Robert C. Smith, University of Arkansas
" A Case flgainst Computer Crime", Lonnie Emard, Northwest Missouri State University
'measure Construction Using Cauchy Sequences", Stephen W. Semmes, Armstrong State College
"Cyclic numbers", Richard 0. Griffin, University of Lowell
"The Consaquances of Cauchy's Integral Theorem", Alfred Eart Byrum, East Carolina University
" in Infinite number of magic Squares". Stephen J. Hubert, Miami University

1980 -- University of Michigan Meeting
"Soma Sums of Sums", Annn Zabinski, College of St. Benedict
"Simulating Transformations in the Plans Symmatry Patterns Using the Tektronix 4051". James MoECheny, Hope College
": חew numeric fllgorithm To Solve Convolution Kernel Volterra Integral Equations", $A_{\text {Al }}$ Graham. University of Arizona
"Characterization of Primes". Kathlyn Nolan. University of Arkansas at Pine Bluff
"Resolution of Russell's Paradox", Christopher J. Roesmer, University of Dayton
"Equivalent Statements", Wood-Wai Lee, Lamar University
"flpplications of the Programmable Calculator in mathematics and Statistics", Daniel Pollak, Miami University
'mean Value Theorem Revisited", Larry N. Stroud, East Carolina University
"numerical Recovery of noisy Exponential Sums Using Generalized Differential flpproximation", Nersi Nazari, Southern Illinois University
"The Araa of a Triangle Formed by Three Lines". Michael L. Orrick, Macalester College
"Singular Functions",Sandra Cousins, Hendrix College
"Unpacking the Knapsack Algorithm", Mark Walker, South Dakota School of Mines and Technology
"Properties of the Infinite Symmatric Group". Stephen Semmes, Washington University
'Self-Taught Calculus", Marie Spetseris, College of Charleston
"English Soccer Predictions", Kevin SayLors, Pomona College
"Correctness Proofs For Flow Chart Programs". Bever[y J. Skeans, Marshall University
"Discrete Versus Continuous: Or, What is the Calculus of Finite Differences?", Michoel L. Cafl, Rose-Hulman Institute of Technology
"The Centralizer of a Linear Transformation", Douglas Eugene Jewett, Texas A\&M University
"Finite State Machines", Martha Blackwelder, Appalachian State University 'nested Interval Theorem With Two flpplications". Kurt L. Wiese, University of Arkansas
'Relativitg in Perspectivity', Wifliam Jerkeurst, Hope College
"Problems With Infinity", Michael \boldsymbol{K}. May, S.J., St. Louis University
1981 .. Pittsburgh Meeting
"Introduction to Box-Jenkins Time Series", Beth Snyder, Miami University
"Stokes' Theorem for QuaternionIntegral Operators", D a n Mogck, South Dakota School of Mines and Technology
": Look at Formal Theorg", Dean Sher, St. John's University
"An flpproximation to the normal Distribution", Edward D. Cowry, Western Washington University
"The Gamma Function and Extensions". Bro. Longinus Anyanwu. Morgan State University
"Dirichlat Integrals and Their flpplications", Ravi Salgia, Loyola University
"Transformation of Computer Programs into Functions", Brian Sumner, University of Denver
"A Complex Parabola in Four Dimensions", Robert Kear, West Carolina University
"Using the method of maximum Likelihood Estimation in Genetics", Margaret It-. Wallace, Miami University
"Hubik's magic Cubs", Kevin Saylors, Pomona College
"Descartas: Philosopher or mathematician?", 'JamesF. Goeke, s. 'J., St. Louis University
" \mathbf{H} non-Paramatric multiple Comparison Test for Differences in Variances". DearFollmann, Northern Illinois University
"The Relations of Differentiable Functions and the Power Series". Brian Bunsness, South DakotaSchool of Mines and Technology
"mazes and Their Passage". Dornna 1. Ford. Miami University
"mathematical Analysis of Inflation", ECias Kosmos, OklahomaState University
1982 -- University of Toronto Meeting
"Forward and Backward Eigenvalues", Kriss Schueller, YoungstownState University
"application of the Golden number to Fibonacci Algebra". Duane A. Cooper, Atlanta University Center
"The Influence of the math Meating on Hecruiting", Mario Spetseris, College of Charleston
Volume of an n-Dimensional Unit Sphere", Ravi Safgia, Loyola University
" A mathematical model for Paired-flssociate Learning". Dore Ann Cefentano. St. Peter's College
"tin Analysis of Monopoly Strategies", Thomas Chenier and Cathy Lynn Vandiford, East Carolina University
"Population Competition and Crop Yield", Donna 1. Ford, Miami University
"Approximating Partial Sums of the Harmonic Series", Karim K. Carter, University of Arkansas
"flpplication of Stochastic Control to Battlefield Replacements", Andrew Stump\$\$, Washington University
"Effects of Sir Pollution on Pulmonary Functions of Children". Deborah Pennell, University of Montana
": Geometric Analysis on the Relative Sizes of Classical Orthogonal Polynomials", Arthur W. Mifflin, Southern Illinois University
"The Stone-Cech Compactification in the Structure Space of a Distributive Lattice", Christopher M. Brislawn, Pomona College
"A mathematical Approach to Improving Your Backgammon Skills", Joan Hart, Miami University
"Estimating the Inclusion Radius of Polynomial Zeros", William R. Somsky, lowa State University
"Creating Kaleidoscopes", Mary Anne Bromelmeier. Miami University
"A Derivation of a Fifth Order Predictor-Corrector method". Eric D. Stutz, Rutgers University
"Computer Graphics in numerical Rnalysis", Daniel John Pierce, Northern Illinois University
"Peppermint Patty's Dilemma -- math Anxiety", Cathie Spino, Miami University
"Love and Psycho-mathematics", Richard R. Porter, Douglass College
"Investigations of maxfield's Theorem", Laura Southard, University of Oklahoma
'fllternative Tic-Tac-Toes", Kevin Saylors, Miami University

1983 -- Albany Meeting
" A BRSIC Program for the Schradering Equation", Mary alnne Bromedmeier, Miami University
"Subset Selection", David Van Brackle, University of Central Florida
"Two Ancient Greek Construction Problems in Euclidean and Hyperbolic Geometry", Jack ィM. Rau, Oklahoma State University
"What Difference Does it make?", Dariush Saghafi, John Carroll University
"The Gamma Function and Log-Convexity",Karen Anderson, Hendrix College
"A Ubiquitous Partition of Subsets of $\mathbf{A n}^{\mathbf{n} " .}$ Donald Jofn Nichofson. Iowa State University
"Leo Mosar's Theorem", Susan McDonalod Britt, East Carolina University
"Exploratory Data Analysis Using microcomputars", Thomas Tenłfoeve 212. Hope College
"Cryptography •• The Science of Secret Writing", Denise Vining, Miami University
1984 -. University of Oregon Meeting
"Complements -- mathematically Speaking". Leslie Youngdafi, Miami University
"Finding the Center of Complaints", Michael \mathfrak{H}. Cox, Marshall University
"Solving [Ion-Linear Systems of Equations", Deforah Witfield, YoungstownState University
"Money and math: An Investigation of Linear Economic models". Renee L. Larson, South Dakota State University
Dealings in n-Dimensional Geometry", Karin Remington, College of St. Benedict
"Wedging Those Vector Integral Theorems", Calvin Johnson, University of California-Davis
" \mathbf{A} mathematical Model of Voter Participation". Mary Beth Dever, Northern Illinois University
"number Пine", Patrick Tamer, Appalachian State University
"Graph measure in Euclidean n-Space", Jody Trout, The College of Charleston
"Finite Laplace Transforms", David w. Barnette, East Carolina University
" \mathbf{B} Way to Generate Arbitrarily High-Order Root-Finding methods", Jeffrey भicchael Kubina, Youngstown State University
'Samuelson's Interaction Between the flccelerator and the multiplier", Suguna Pappu, Miami University
"Commutativity and Distributivity: Different Perspectives", Benjamin L. Marshall, Hendrix College

1985 -- University of Wyoming Meeting
"Box-Jenkins Autoragressive Integrated moving Avarage Forecasting of Common Stock Prices", Milam W. Aiken, University of Oklahoma
" Bm Historical Look at Some Interasting Functions". George M. ALexander, St. John's University
"a Two-Dimensional lion-Linear Population Model", Kenneth Mark Alo, University of Houston-Downtown
" \mathbf{A} Shortcut to Solving Polynomial and Rational Inequalitites", Christa Blackwell, University of Oklahoma
"Create Your Dwn Geometry", David Cameron, Miami University
"metegame Theory and Political Behavior", Andrew Chin, University of Texas
Which Came First, the Explicit Formula for the Determinant or its Properties?", Kevin T. Christian. University of California-Davis
"Historic Geometric Problems Involving Compass and Straightedge Construction" Anthony Clacko, Youngstown State University
"lion-negative Integer Solutions of $\sum_{i=1}^{n} x_{i}=\mathbf{k}^{\mathbf{*}}$, Marie Coffin, South Dakota State University
"Some flpplications of the Gray Code", Henry L. Cufuer, YoungstownState University
"Using Extrapolation to Obtain flpproximations to 'Pi"', Raymond E. Flannery, Jr., Youngstown State University
" A Report on the Precision of Floating Point math Functions on Selected Computers". Jofin C. Flaspofifer, Georgia Institute of Technology
": Recursive Descent Scanner in LOGO". Mark E. Frydenberg, University of Hartford
"monte Carlo Studies in Statistical Research". Kathleen A. Steigefmann, Northern Illinois University
"Fooling Around with mother nature $\cdot \boldsymbol{A n}$ flpplication in Genetics", Jofin Greskovich, Miami University
"mysior's Example of a Regular Topological Space That is not Completely Regular", Elizabeth Stratton. Miami University
Some Hesults in the Theory of flmicabls Iumbers", James B. Hart, Hendrix College
'The Shifted पA fllgorithm in Real matrix Computations". Karafee Howell, Occidental College
'Sabermetrics". James D. Johnston, St. Bonaventure University
"Randomness and Complexity", Jorge 0 . Ochoa-Lions, University of Arizona
"Expanding a System of Propositional Logic", Mitchell Pollack, Bucknell University
Valuations on Monoids", Terry Reillly, University of Montana
"mathematical models in International Relations". Sandra R. Rogers, Auburn University
"Hidden Lines, The Unseen Graphic", Henry Rosche 121, Southeastern Louisiana University
"a microcomputer Application of Karmarkar's Polynomial-Time Algorithm for Linear Programming", Annuar Mofid Saffar, University of Missouri-Columbia
"From Lead Pipas to Telestar •• History and Applications of Fourier Analysis", James J. Shea, Worcester Polytechnic Institute
'network modeling in a Transportation Environment", Cynthia. M. Stuber, St. Norbert College
" \boldsymbol{B} General Solution Procedure for the Steady-State Probability of State-Homogeneous Production Line models". Karim Jofang-Sazi and Sencer Yerafan, University of Missouri-Columbia
" \mathbf{A} Phase-Plane Analysis of Coulomb Damping",'JohnTokar, Rose-Hulman Institute of Technology
"Dale's Cone of Experience and Improved math Teaching", Rob Walling, Miami University
"Lattices of Periodic Functions". Kirk Wetter, Hope College
"Boolean Idampotent matrices and flpplications",Sherry Wheeler, Alabama State University
"Figurate numbers". Terry Wiencek, Youngstown State University
"From Pac-man to the Dihedral Group, $\boldsymbol{D}_{\boldsymbol{4}}$: An flpplication of Group Theory to Video Games", Erik L. Wynters, University of New Hampshire

1986 -- University of California-Berkeley Meeting
"Generation of One million Prime numbers", Wilfiam O. Hans, Southeastern Louisiana University
": Proof of Primality Utilizing Farmat's Theorem", Sara S. Fagan, Marquette University
"Solving Linear Diophantine Equations Using Euclid's Algorithms", Kathy Kowell. Miami University
"Lame's Theorem and the Euclidean Rigorithm", Frederick Taverner, University of California-Davis
"月 Пaw Proof of a Lemma to the Quadratic Reciprocity Lam", David Claussen, Miami University
" \mathbf{A} Representation of Squares in Generalized Fibonacci Sequences", Russ Sfuttleworth, Wichita State University
'Class numbers of Cyclotomic Fields",'JohnE. Fischer, Jr., University of Pennsylvania
"Starting with Pascal's Triangle", Erlan Wheeler $\boldsymbol{2 1}$, Virginia Polytechnic Institute
"\$1000 Howard: Sam Loyd's 14-15 Puzzle".'JudithBorcfifewicz-Symalfa, St. John's University
'mathematical models in Population Genetics", Ridwan Tabbaa, University of Houston-Downtown
"Entropy of the $\mathrm{m} / \mathrm{G} / \mathrm{I}$ Queueing System". Milam W. 今Aiken, University of Oklahoma
"Estimating flge-Specific Fecundity of Soft Shell Clams", Anne Kochendorfer, Fairfield University
"An Objective Analysis of Rainfall Data". Thomas A. Kreitzberg, Drexel University
"The Absorbing Markov Process as Ripplied to a Random Behavior model", Bridget Moore, Miami University
'Linear-Time Three-Dimensional Graphics with Hidden Line Elimination", Jeffrey s. Bonwick, University of Delaware
" B Look at the DoD's Trusted Computer System Evaluation Criteria", Johin Flaspofiler, Georgia Institute of Technology
"The mathematical World of Cryptology", Barry Scfoch, Fairfield University
"Symbolic Computation". Emit 'JVoccheck, University of Delaware
"Does $\mathbf{a}_{\mathbf{k}} 1 / \mathrm{k}^{\mathbb{k}}$ Converge or Diverge?", Dawn \boldsymbol{A} Lisha Lott. Bucknell University
"Infinitesimals",FLunter Marshall;, Texas A\&M University
" B Mathod of Defining Infinitesimals and Extending Functions", Karen Sue Bilfings, Hendrix College
"Beauty from Boredom -• R Visa of Fractal Geometry", fun Shea, Worcester Polytechnic Institute
"Fractal Curves", Michaed J. Cullen, Marquette University
'The Dymamics of $F(z)=\mathbf{z}^{\mathbf{2}-1 ", ~ C o n n i e ~ L o u ~ O v e r z e t, ~ B o s t o n ~ U n i v e r s i t y ~}$
"The Equilic Quadrilateral",Rob Walling, Miami University
"Counting Rectangles in a multirectangular Region", Steven D. V an Lieshout. St. Norbert College
"Graphs Uniqualy Hamiltonian-Connected from a Vertex". Carolyn R. Thomas, St. Lawrence University
"Approximating the Solution to Ordinary Differential Equations Using Taylor Polynomial Expansions", Antfony CLacko, Youngstown State University
"Stability on a Finite Interval of Time-Average Differential quations Michaed \mathbf{P}. Perrone, Worcester Polytechnic Institute
"Pressure Rnalysis in a Biomedical Device", Paula sA. Michaels, Miami University
"The Iraq-Iran War", Conchita Minor, AlabamaState University
"Locating Emergency Facilities in Order to minimize Response Time", Craig 'JCole, Miami University
"The Effect of Einstein's Theory of Relativity on Interstellar navigation", James \mathbb{G}. Xirkfin. Mount Union College
"modeling a magnetic Oscillator", Bradtey O. Pad, Miami University
"Applications of Helly's Theorem to the flpproximation of Functions by Polymomials", Donna Vigeant, University of Lowell
"Using Residues to Evaluate Certain Infinita Series". Mark Fassell Smith, East Carolina University
"The Development of Outstanding Sacondary mathematics Students",Brian A. Twitchell. University of Maine

1987 .- University of Utah Meeting
"Detarministic and Probabilistic Fire Madels", Warren E. Blaisdell, Worcester Polytechnic Institute
"The Epidemiology of the RIDS Virus", Alaron Klebanoff, University of California-Davis
"The Strangely Attracted Bouncing Ball", Stephanie Ruth Land, University of Texas
"applications of Signal Processing", Debra Shure, University of Lowell
"Salf-Calibration of Complex Visibility Data from a Very Large Rrray of Antennas", -ALi Safaei-nifi, lowa State University
"Representations and Characters of Groups".Ken Chick, Miami University
"An Rlgebraic Construction of a Projective Geometry".Stephanie Dumoski, Occidental College
"The RSA Public Keg Cryptosystam: An flpplication for Modern Rigebra". Stephen Fiete, West Virginia University

16/64 $=1 / 4$ and Other n -Digit Cancellations". David A. Messineo, University of Hartford
"An fllgebraist's View of Competitive Games". Erlan Wheefer 21, Virginia Polytechnic Institute
"Perpendicular Least Square Entimators",Brian Ancterson. Western Kentucky University
"The Isoperimetric Inequality", Jeff Difler, University of Dayton
'Inverting a Pin in $\mathrm{H}^{\mathbf{2}} \mathbf{}$, Rusself Goofwin, University of Arkansas
"Fourier Series and the 'Best' mean Square flpproximation", MargaretM. Lineberger, East Carolina University
"Dynamic Programming Appliad to Computer Voice Recognition", Thomas Eugene Gibgons, St. John's University
"A Formal Sum method to the Traveling Salesman Problem", Jeffrey Horn, Marquette University
" B Bit of Checking and Correcting", Summer Quimby, St. Norbert College
" A Graphical Illustration of the Convergence of Karmarkar's Linear Programming fllgorithm", Josef S. Crepeau, University of Montana
The Existence of Eulerian and Hamiltonian Circuits in Graphs and their Line Graphs", Carol Parker. Hendrix College
"Circuit Spaces and Cut-Spaces of a Connected Graph". Michael Jackett, Miami University
'Yet Another Discussion of Graceful Graphs", Andrew P. Ferreira, Miami University
"Sub-Families of Venn Diagrams". Pfirifip Beymer, University of Oregon
"Soap Films as minimal Surfaces", Ceorge Matter, St. John's University
"Theology. mathematics and meaning". Mary Effe, St. Norbert College
"Curves Length minimizing Modula v in $\mathbf{n n}^{\mathbf{n}} \mathbf{"}$. Jeff Abrahamson, Massachusetts Institute of Technology
"nP-Completenass and the Traveling Salesman Problem", Melanie X. Breaker, Northeast Missouri State University
"The Classical Problems of flntiquity in the Hyperbolic Plane", Robert Curtis, University of California-Santa Cruz
"A Physical Derivation of the Well-Tempered musical Scale", Timothy Koponen, Aquinas College
"Games of Timing with Two or Three Players". Timothy P. Ronara, Moravian College
" \mathbf{A} Glimpse at the Theory of Restricted Choice",Scott \boldsymbol{K} rutsch, Rose-Hulman Institute of Technology

1988 .. Providence Meeting
"maximal Polygons for Convex. Periodic Tilings", Annette M. Matthews, Portland State University
"An Introduction to Equitransitive Tilings", Gerry Wuchter, Miami University
"Finding a Generator of a Finitely Generated Rbelian Group". David. L. fakes, Miami University
'The Cross Product in n-Space", Joed Adtkins, Rose-Hulman Institute of Technology
" \mathbf{B} Continued Fraction flpproach for Factoring Large numbers",Robert Coury, University of Washington

Perfect numbers. Abundant numbers, and Deficient numbers'. Sarah Jaylor, East Carolina University
'The Problem of the Traveling Salesman - \boldsymbol{A} study in Computational Complexity and Heuristic Algorithms". Douglas Calarus, The University of Montana
"Using Portable Intermediate Code in Compiler Construction". Paul Stodguill Dickinson College
'numerical Solutions for the Three-Dimensional Heat Conduction Equation", Charles Jabbour. University of Houston-Downtown
"Tha Effect of Intra-Cluster Correlations on the Regression Estimation in the Finite Population Inference", Dewi T. Safeh. Wichita State University
 University of Maryland-Baltimore County
"A Brute Force flpproach to Solving a Putnam Problem",Summer Quimby, St. Norbert College
'The Sturm-Liouville mathematical System". Lorie Ceremuga, YoungstownState University
"The Annihilation Operator", Marc Ahrendt, Elmhurst College
"Mathematical measures in the Rnalysis of Image", Clifford D. Krumvierda, Texas A\&M University
'Squaring a Square". Terry Henderschott, Miami University
'The Araa of Wasted Space in a Rosette Design". Beorge „Anderson. Miami University
"Some Results for Chromatic and flssociated Polynomials of Graphs",Laura Cuthbertson. Hendrix College
"Tha Gready Spy", Janelle Becker, St. John's University/College of St. Benedict 'Heuristic Arguments in mathematics", David. Petry, University of Oregon
"Removing the flbsolute from Relativity", Katic Coenen, St. Norbert College
'Dynamics of PDP models", George Asfifine, St. Lawrence University
" \boldsymbol{A} Venture into Chaos". ErLan Wheeler, Virginia Tech
'Fractals -- mathematical Chaos". Michael F. Marcon, McNeese State University

[^0]
APPENDIXB

APPENDIXC

J. SUTHERLANDFRAMELECTURES

The J. Sutherland Frame Lecture is named in honor of Pi Mu Epsilon's ninth president who served from 1957-1966. In 1952, Sud Frame initiated the concept and made possible the Pi Mu Epsilon student participation and student paper sessions at the Joint Summer Meetings of the AMS and MAA. Since then he has offered insights and inspiration to our student mathematicians at the summer meetings.

1988	Boris W. Schattscfineider "You, Too, Can Tile the Conway Wag"
1987	Cloyton W. Doodge "Reflections of a Problems Editor"
1986	Pout Faimos 'Problems I Cannot Solve"
1985	Ernst Snapper "The Philosophy of mathematics"
1984	Jofin L. Kelley "The Concept of Plane Araa"
1983	Henry oflder 'How to Discover and Prove Theorems: \& Demonstration with Partitions"
1982	Israel Halperin 'The Changing Face of mathematics"
1981	E. P. MOBS, Jr. "The Beauties of mathematics Revealed in Color Block Graphs"
1980	Richard A. Askey "Hamanujan and Some Extensions of the Gamma and Beta Functions"
1979	H. Jerome Keisfer "Infinitesimale: Where Theg Come From and What Theg Can Do"
1978	Herbert E. Robfirns "The Statistics of Incidents and flccidents"
1977	Ivan Niven "Techniques of Solving Extromal Problems"
1976	H. s. MacDonald Coxeter 'The Pappus Configuration and Its Groups"
1975	J. Suthertand frame "matrix Functions: 日 Powerful Tool"

NATIONALOFFICERSFOR PIMUEPSILON

	DIRECTORGENERAL	VICE-DIRECTOR- GENERAL	SECRETARY-	TREASURERGENERAL LIBRARAAN
1914-1915	E. D. Roo	F. F. Decker	Helen Appleb	P. J. Bentley Olive Jones

1922-1927	E. D. Roe, Jr.	W.. Houston	W. G. Bullard	Louisa Lotz	Mabel Kessler
1927-1928	E. D. Roe, Jr.	T. Fort	H. S. Everelt	Louisa Lotz	Mabel Kessler
1928-1929	E. D. Roe, Jr.	T. Fort	JohnS Gold	Louisa Lotz	Mabel Kessler
$1929-1933$	Louis Ingold	T. Fort	JohnS Gold	Louisa Lotz	Mabel Kesler
$1933-1936$	F. W. Owens	T. M. Putnam	JohnS Gold	E. R. Smlth	Mabel Kessler

The Offices of Secretary and Treasurer were combined and the Office of Librarian was discontinued.

SECRETARY-TREASURER

1936-1939	G.C. Evans	W. E. Milne	JohnS. Gold
1939-1942	W. E. Milne	Lincoln LaPaz	JohnS. Gold
1942-1945	Tomilnson Fort	H. H. Downing	JohnS. Gold
1945-1948	Tomllnson Fort	E.H.C. Hiidebrandt JohnS. Gold	
1948-1951	C. C. MacDuffee	D. R. Holt	E. H. C. Hlidebrandt

The PI Mu Epsillon Journal was first published in 1949 with Ruth Stokes editing the first issues

				EDTOR OFTHE PIMUEPSILONJOURNA!
1951-1954	C. C. MacDuffee	W. M Whyburn	J. S. Frame	Ruth Stokes
1954-1957	S. S. Calms	J. S. Frame	R. V. Andree	Franz Hohn
1957-1960	J. S. Frame	Orrln Frink	R. V. Andree	Francis Regan
1960-1963	J. S. Frame	R. H Bing	R. V. Andree	Francis Regan
1963-1966	J. S. Frame	H T. Karnes	R. V. Andree	Seymour Schuster(\& R. V. Andree In 1966-67)
1966-1969	J. C. Eaves	H. T. Karnes	R. V. Andree	Kenneth Loewen
1969-1972	J. C. Eaves	H T. Karnes	R. V. Andree	Kenneth Loewen
1972-1975	H T. Kames	E Allan Davls	R. V. Andree	David Kay
1975-1978	E Allan Davis	R. V. Andree	RichardGood	David Kay
1978-1981	R V. Andree	E Maurice Beasloy	RichardGood	David Ballew
1981-1984	E Maurice Beaslay	Milton Cox	RichardGood	David Ballew
1984-1987	Militon Cox	Eileen Polani	RichardGood	Joseph D. E Konhauser
1987-1990	Eileen Polani	David Ballew	Robert Woodslde	JosephD. E. Konhauser

COUNCLIORSOFPIMUEPSILON

1914-1922	Florence A Lane	Helen Mary Barnard	Edward Cottreil	AdolphSussman
1922-1926	E R. Hedrick	W. H. Roever	S. E Rasor	
1926-1929	R. D. Carmichaei			
1929-1933	E. D. Roe, Jr.	R. D. Carrnichaei	E. R. Hedrick	U. G. Mitchell
1933-1936	E. R. Hedrick	Tornlinson Fort	C. S. Latmin	Louis Ingold
1936-1939	W. C. Brenke	Alan Campbell	D. Lehmer	F. W. Owens
1939-1942	H H. Downing	W. W. Elliott	G. C. Evans	R. A Johnson
1942-1945	W. C. Brenke	P. J. Daus	E H. C. Hildebrandt	W. P. On
1945-1948	George Williams	C. A Hutchinson	C. H. Richardson	E. R. Smith
1948-1951	S. S. Calms	Torniinson Fort	J. S. Gold	A J. Kernpner
1951-1954	S. S. Calms H. C. Bennett	Tornlinson Fort	S. LMcDonald	Ruth Stokes
1954-1957	Wealthy Babcock H S. Thurston	R. F. Graesser H. W. Farnharn	S. L McDonald	Ruth Stokes
1957-1960	E H. C. Hiidebrandt	Harriet Griffin	R. L San Soucie	R. F. Graesser
1960-1963	\downarrow C. Eaves	Marion Fort, Jr.	Ivan Niven	Angus E. Taylor
1963-1966	Josephine Chanter	Roy Dublsch	Kenneth O. May	Francis Regan
1966-1969	LE. Bush	Roy Dublsch	Irving Reiner	R. H Sorgenfrey
1969-1972	LE. Bush	E Maurlce Beasiey	Irving Reiner	William Harkness
1972-1975	Gloria Hewitt	E. Maurice Beasley	Dale W. Lick	Eileen Polanl
1975-1978	Milton Cox	E. Maurice Beasiey	Robert Woodslde	Elieen Polani
1978-1981	Milton Cox	A. D. Stewart	Fredric Zerla	Elieen Poiani
1981-1984	David Barnetle	A. D. Stewart	Robert Esiinger	Eiieen Poiani
1984-1987	David Baliew	Virginia Tayior	Robert Esilnger	Robert Woodside
1987-1990	Richard Good	Richard Poss	Robert Esllnger	J. Douglas Faires

ROM THECONSTITUTIONOFPiMUEPSILON

ARTICLE VII
FORMS AND CEREMONIES
Section

"To Promote Scholarship and Mathematics"
Section 2. Insignia. The insignia of the fraternity
are the following:
Colors-Violet, gold, and lavender.
Seal-Round, design of pin raised in center. The words, Pi Mu Epsilon, Incorporated" around the edge.

$$
\begin{aligned}
& \text { Flower-Violet. } \\
& \text { Shield-Divided into four parts. In the upper right } \\
& \text { hand corner, the design of a conventionalized violet; in } \\
& \text { the lower right, a summation sign; in the upper left, an in. }
\end{aligned}
$$

Paper judged to be the 'best' since Studerat Taper Competition Gegan in 1968.

A UBIQUITOUS PARTITION OF SUBSETS OF R^{n}

by Donald John Nicholson
 Iowa State University

We are about to embark on an adventure into the beauty of mathematical inquiry. The journey will begin with a simple yet wonderful property of the real numbers, and in the end we will arrive at an elegant result: a ubiquitous partition of subsets of R^{n}, i.e., a partition in which every element of the partition has a nonempty intersection with each neighborhood (abbreviated nbd) in the space.

The path will lead only through Euclidean spaces, so each space must be understood to be a subspace of R^{n}. When nbds are mentioned, they refer to nonempty intersections of open subsets of $\mathrm{R}^{\boldsymbol{n}}$ with the space. We will use the symbol \bar{X} to represent the closure in R^{n} of a set X, X^{\prime} to denote the set of limit points in R^{n} of X, and then define $X^{\prime \prime}=X^{\prime}-X$. Finally, $U_{r}\left(x_{0}\right)$ is the set of all points whose distance from x is less than r, and $\operatorname{Br}(x)$ is its closure. Now let us begin.

Let \boldsymbol{Q} and \boldsymbol{P} be the rational and irrational numbers respectively, and let U be a nonempty interval in R. Both $U \cap Q$ and $U \cap P$ are infinite no matter how small U is. Consequently, each point of $U \cap_{Q}$ is a iimit point of the set, but there must always be irrational limit points as well. It is this property which we shall generalize in the following definition.

Definition 1. A space X is a Grunowix space* iff Vnbd U in
$X \quad U-X \neq 0$.

Proposition 1. If X is a Grunowix space, then X is dense in itself
Proof. Let \boldsymbol{x} be an isolated point in X. Then $\{x\}$ is a nbd of x_{0} in X. But $\left\{x_{o}\right\}-X=\varnothing$, thus X is not a Grunowix space.

[^1]If X is a Grunowix space, then $X \subset X^{\prime}$, but $X \#^{\prime}$. This raises a question: what kind of space is $X^{\prime \prime}$? Before answering, let us define a new concept.

Definition 2. Two spaces X and Y are mutually dense iff $\bar{X}=\bar{Y}$. An arbitrary collection of spaces is mutually dense iff they are mutually dense in pairs.

Lemma 1. Let X and Y be disjoint spaces. Then the following are equivalent: (a) $\bar{X}=\bar{Y}$, (b) $X \subset Y^{\prime \prime}$ and $Y \subset X^{\prime \prime}$, and (c) $X \subset Y^{\prime}$ and $Y \subset X^{\prime}$.

Proof. Suppose $\bar{X}=\bar{Y}$. Then $X \subset \bar{Y}$ and $Y \subset \bar{X}$, and since X and Y are disjoint, $X \subset Y^{\prime \prime}$ and $Y \subset X^{\prime \prime}$. Note that $X^{\prime \prime} \subset X^{\prime}$ and $Y^{\prime \prime \prime} Y^{\prime}$, hence $X \subset Y^{\prime}$ and $Y \subset X^{\prime}$. But this implies that $X \subset \bar{Y}$ and $Y \subset \bar{X}$, so $\bar{X} \subset \bar{Y}$ and $\bar{Y} \subset \bar{X}$. This returns us to our original supposition that $\bar{X}=\bar{Y}$.

Lerma 2. If X is a Grunowix space, then $\bar{X}=\overline{X^{\prime \prime}}$.
Proof. By the definition of $X^{\prime \prime}, X$ and $X^{\prime \prime}$ are disjoint, and $X^{\prime \prime} \subset X^{\prime}$; therefore, to satisfy Lemma 1 we need only show that $X \subset\left(X^{\prime \prime}\right)$ '. Let $x_{o} \in X$ and let U be a nbd of x_{o} in R^{n}. Then $\exists r>0 \rightarrow U_{r}\left(x_{0}\right) \subset U$. Now choose $r^{\prime} \quad \exists 0<r^{\prime}<r ;$ this will give us $U_{r},\left(x_{0}\right) \subset B_{r},\left(x_{0}\right) \subset U_{r}\left(x_{0}\right) \subset U$. Observe that $\overline{U_{r},\left(x_{o}\right) \cap X} \subset B_{r},\left(x_{o}\right)$, and $U_{r^{\prime}}\left(x_{o}\right) \cap X$ is a nbd of x_{o} in X, so that, since X is a Grunowix space, $\frac{U_{r^{\prime}}\left(x_{0}\right) \cap X}{}-X \# \emptyset$. This implies that ${ }^{B}{ }_{r},\left(x_{O}\right)$ and thus U contain points in $X^{\prime \prime}$; it follows that x_{O} is a limit point of $X^{\prime \prime}$. Since x is arbitrary, we infer that $X \subset\left(X^{\prime \prime}\right)^{\prime}$.

Theorem 1. Let X and Y be mutually dense, disjoint spaces. Then X and Y are Grunowix spaces.

Proof. Let $x_{O} \in X$ and let U be a nbd of x_{O} in R^{n}. By Lemma $1 X \subset Y^{\prime}$ and $Y \subset X^{\prime}$, thus $3 y_{o} \mathcal{E}^{\mathcal{U} \cap Y} 3 y_{O}$ is a limit point of $U \cap X$. This implies that $y_{0} \varepsilon \overline{U \cap X}-X$; since $U \cap X$ is an arbitrary nbd of x in X, X is a Grunowix space. By a similar argument Y is a Grunowix space.

Lemma 2 and Theorem 1 answer our question: if X is a Grunowix space, then so is $X^{\prime \prime}$; e.g., Q and P are Grunowix spaces. But Theorem 1 has a much more interesting consequence: every collection of spaces which is mutually dense and pairwise disjoint is a collection of Grunowix spaces, and we shall see that such a collection is a
ubiquitous partition of its union.
Let us construct such a collection. Let $r, \boldsymbol{s} \in(0,1)$ and define
$\boldsymbol{r} \boldsymbol{s}$ iff $\log _{r} \boldsymbol{s \in Q}$. It should be a simple exercise for the reader to show that - is an equivalence relation and hence partitions (0,1). Let $[r]$ and [s] be distinct equivalence classes in the partition of (0,1). Then $[r]$ and $[s]$ are disjoint. Furthermore, $\log _{r} s \varepsilon P$; i.e., ヨ $\left.p \in P\right\}_{s=r} P$. Since $p \in P, 3\left(q_{i}\right){ }_{i=1}^{\infty} \subset Q \rightarrow q_{i}+p$, thus $r^{q_{i+r^{p}}^{p}=s}$. Each $r^{a_{i}} \varepsilon[r]$, thus s is a limit point of $[r]$ as is every element of [s]. Similarly, every element of $[\boldsymbol{r}]$ is a limit point of $[s]$, thus $[\boldsymbol{r}]=[s]$ by Lemma 1 , and $[r]$ and $[s]$ are Grunowix spaces by Theorem 1. Note that each equivalence class is countable, whereas $(0,1)$ is uncountable, thus $\{[r]: r \varepsilon(0,1)\}$ is uncountable.

The above partition is interesting in that the elements are mutually dense; they are like chemically inert gases in a closed container at thermal equilibrium. Just as the molecules of each gas distribute themselves throughout the container, every nbd in (0,1) contains points from every equivalence class; i.e., the partition is ubiquitous.

Let us define a Grunowix partition as a partition consisting of mutually dense spaces. By Lemma 1 and the definition of a limit point, this is equivalent to the definition of a ubiquitous partition. Thus every Grunowix partition is ubiquitous, but no other partition is; this is the beauty of the Grunowix space.

DO NOT BLINK! We are about to show how to construct Grunowix partition's of an infinite number of spaces by using only three theorems and our partition of (0,1)!

Theorem 2. Let $\left\{X_{a}: a \in A\right\}$ where A is an indexing set be a Grunowix partition of X, and let $f: X \rightarrow Y$ be a continuous bijection. Then $\{f(X): a \in A\}$ is a Grunowix partition of Y.

Proof. The bijectivity condition insures that $\left\{f\left(X_{a}\right): a \varepsilon A\right\}$ will be a partition of Y. If $x o \in X a$ and $a \neq b, 3\left\{x_{i}\right\}_{i=1}^{\infty} \subset X_{b}{ }^{\ni} x_{i}+x_{0}$. Since f is continuous, $f\left(x_{i}\right) \rightarrow f\left(x_{o}\right)$, thus $f\left(X_{a}\right)$ and $f\left(X_{b}\right)$ are mutually dense. It follows that $\left(f\left(X_{a}\right): a \in A\right)$ is a Grunowix partition of Y.

Theorem 3. Let $\left\{X_{i}^{a}: a \in A\right\}$ be a Grunowix partition of the i'th factor space of $X=X_{1} x: X_{2} x \ldots x X_{n}$. Then $\left\{X_{1} x \ldots x X^{a} \cdot x \ldots x X: a \in A\right\}$ is a Grunowix
partition of X.
Proof. Let $a, b \subset A$ and $a \neq b$. Then $\overline{X_{i}^{a}} \overline{=X_{i}^{b}}$. Now $\overline{X_{1} x \ldots x X_{i}^{a} x \ldots x X_{n}}=\bar{X}_{1} x \ldots . x X_{i}^{\bar{a}}$
. . . $x \overline{X n}=\bar{\chi} 1 x \ldots . x X_{i}^{b} x \ldots x \bar{X}_{n}=\bar{X}_{1} x \ldots . x X_{i}^{b} \ldots x \chi_{n}$, th us $\left(X_{1} x \ldots x X_{i}^{a} x \ldots x X_{n}: a \varepsilon A\right\}$
is a mutually dense collection of spaces. Since they are disjoint and their union is X, they form a Grunowix partion of X (we will call this a Grunowix partition of X in the i'th factor space or i'th coordinate).

Theorem 4. Let $\{X: a \in A\}$ be a Grunowix partition of X, and B an open subset of X. Then $\{X \cap B: a \in A\}$ and $\left\{X_{a} \cap \bar{B}: a \varepsilon A\right\}$ are Grunowix partitions of B and \bar{B} respectively.

Proof. Here we will use the equivalence of the definitions of Grunowix and ubiquitous partitions. Now $\forall x E X, \forall \operatorname{nbd} U$ of x in X, and $\forall a \in A$, $U \cap X_{a} \neq \emptyset$. Since B is open in X, each nbd in B is a nbd in X, thus \forall $x_{o} \varepsilon B, \forall$ nbd U of x_{o} in B, and $\forall a \in A, U \cap X_{a} \neq \emptyset$. But $U \cap X_{a}=U \cap X_{a} \cap B$, thus $\left\{X_{a} \cap B: a \in A\right\}$ is a Grunowix partition of B.

Now let $x \in B^{\prime \prime}$ and U a nbd of x in X. Then $U \cap B \neq \emptyset$, and since B is open in $X, U \cap B$ is open in X, so that $U \cap B \cap X_{a} \neq \emptyset \forall a \in A$. Since
U $\cap B \cap X_{a} \subset U \cap \bar{B} \cap X_{a},\left\{X_{a} \cap \bar{B}: a \in A\right\}$ is a Grunowix partition of \bar{B}.
These three theorems are our tools for constructing Grunowix partitions. We may construct a Grunowix partition of any open subset of R^{n} or its closure by collecting the intersections of the set with each element of a Grunowix partition of R^{n}. A Grunowix partition of R^{n} may be easily constructed by mapping $(0,1)$ homeomorphically onto one or more factor spaces of R^{n} and using Theorem 3. Look how many spaces we can ubiquitously partition with a simple equivalence relation on (0,1)!

We would like to make one final observation. Constructing a Grunowix partition of R^{n} by partitioning one or more of its factor spaces imposes a variety of geometric structures on the connected components of the elements of the partition. Since the elements of a Grunowix partition of R are totally disconnected, a Grunowix partition of R^{3} in one coordinate will consist of elements whose components are parallel planes, in two coordinates the components will be parallel lines, and in three coordinates the components will be points. In general the components of the elements of a Grunowix partition of R^{n}
in \boldsymbol{m} of its coordinates will be $\boldsymbol{n} \boldsymbol{- m}$ dimensional hyperplanes
There is more. We may use any curvilinear coordinate system in $\boldsymbol{R}^{\boldsymbol{n}}$ to construct a Grunowix partition so long as each point has unique coordinates. By using spherical or cylindrical coordinates we may have a Grunowix partition of $\boldsymbol{R}^{\mathbf{3}}$ whose elements consist of concentric spheres or coaxial cones or cylinders. The mysteries of the Grunowix space know no bounds!

The purpose of Figure 1 is to aid in visualizing the Grunowix partition $\left\{Q^{3}, R^{3}-Q^{3 \prime}\right\}$ of R^{3}. The element Q^{3} is totally disconnected, and since it is countable, $R^{3}-Q^{3}$ is connected. A very rough description of the partition is a countable collection of infinitesimal "boxes" enclosing points. How exquisite! And it all began with the property of the real numbers that every interval contains infinitely many rationals and irrationals.

FIGURE 1
Part of $R^{3}-n^{3}$

1. Levine, Norman, OnSpaces Nowhere Locally Compact, Kyungpook Mathematics Journal, 22, No. 2 (December 1982), 167-173.
2. Munkres, James R., Topology: A First Course, Prentice-Hall, Inc., 1975.
3. Naber, Gregory L., Topological Methods In Euclidean Spaces, Cambridge University Press, 1980.

EXCERPT FROM A LETTER

.. The idea of a Grunowix space arose from an undergraduate topology homework problem in reference 3. The problem is Exercise 1-28 on page 25: prove that the set of rationals as a subspace of the reals is not localey compact.
When 1 finally decided what property of the set of rationals prevented it from being locally compact, it struck me as being very fascinating. asked the instructor if this property had a name. He knew of none, so I generalized the property and tried to come up with a name myself. My wife suggested inventing a word, so we tried constructing words with a scrabble board and letter tiles, and 'Grunowix' was the first construcscrabble board and letter
tion we could pionounce.
My original definition for the Grunowix space was formulated different\&, but it was equivalent to the present one. If my paper is devoid of references, it is only because none of the. math professors I was acquainted with could steer me toward any sources that helped me with this interesting Apace, nor did any searching on my part uncover any useful references. I was forced to devetop the definitions and propositions on my own; it required walking many months and wandering down home btind alleys, but 1 an pleased with the results and what 1 learned from the experience. It has made me love mathematics.

I would tike to thank Dr. Donald Sanderson of Iowa State University for the multitude of occasions on which he listened to me sort out and try to clarify my ideas and for being kind and patient enough to read and constructively criticize five versions of this paper ...

Sincerely,
 Donald John Nicholson

Editor's note: This paper was prepared while the author was a senior undergraduate majoring in mathematics and physics at Iowa State University. Donald presented the paper at the National Meeting of Pi M Epsilon in Albany, NY in August 1983 and has entered the paper in the Journal's National Paper Competition. The competition is open to students who have not received their master's degree at the time of submission. Papers may be submitted to the Editor at any time.

X-MATRICES: GENERALIZED COMPLEX NUMBERS

by Samuel Councilman

California State University, Long Beach
In introductory Abstract and Linear Algebra courses one encounters the familiar isomorphism between complex numbers and 2×2 matrices.

$$
a_{1}+a_{2} i \leftrightarrow\left(\begin{array}{cc}
a_{1} & -a_{2} \\
a_{2} & a_{1}
\end{array}\right)
$$

Thus all matrices of the form

$$
\left(\begin{array}{cc}
a_{1} & -a_{2} \\
a_{2} & a_{1}
\end{array}\right)=a_{1}\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)+a_{2}\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)
$$

yield a commutative subalgebra of $M_{2,2}(R)$, the algebra of 2×2 real matrices. A natural question is "can this be generalized to higher dimensions so as to obtain commutative subalgebras of Mn'" (R) for $n>2$?"

In even dimensions $n=2 k$ the matrix

behaves just like an "imaginary unit." $J^{2}=-\mathbf{I}$. Thus one may be inclined to consider matrices of the form $a_{1} I+a_{2} J$. But you can do better! The scalars a_{1} and a_{2} can be replaced by bisymmetric diagonal matrices that is, diagonal matrices which are symmetric with respect to the diagonal from the lower left to the upper right corner.

Definition. $\quad \mathrm{D}=\left(d_{i j}\right)$ is a bisymmetric diagonal matrix if and only if $d_{i j}=0$ for $i \neq j$ and $d_{i i}=d_{(n+1-i)(n+1-i)}$.

In $M_{2 k, 2 k}(R)$, consider the set of matrices of the form

$$
D_{1} I+D_{2} J=D_{1}+D_{2} J
$$

where D_{1} and D_{2} are bisymmetric diagonal matrices and J is the imaginary unit matrix defined above. Because of the pattern formed by the (possibly) non-zero elements, these $D_{1}+D_{2} J$ matrices may be called "X-matrices."

The set of X-matrices is obviously closed under scalar multiplication, and the commutative and distributive properties of matrix addition show that X -matrices add just like complex numbers:

$$
\left(D_{1}+D_{2} J\right)+\left(D_{3}+D_{4} J\right)=\left(D_{1}+D_{3}\right)+\left(D_{2}+D_{4}\right) J .
$$

To verify that X-matrices multiply like complex numbers, a preliminary observation is required: since premultiplication by diagonal matrix multiplies rows and postmultiplication multiplies columns, it is easily seen that

$$
D J=J D
$$

for any bisymmetric diagonal matrix D. With this result, a straightforward application of commutativity of matrix addition and the distributive law shows that X -matrices multiply exactly like complex numbers:

$$
\begin{aligned}
\left(D_{1}+D_{2} J\right)\left(D_{3}+D_{4} J\right) & =D_{1} D_{3}+D_{1} D_{4} J+D_{2} J D_{3}+D_{2} J D_{4} J \\
& =D_{1} D_{3}+D_{1} D_{4} J+D_{2} D_{3} J+D_{2} D_{4} J J \\
& =\left(D_{1} D_{3}-D_{2} D_{4}\right)+\left(D_{1} D_{4}+D_{2} D_{3}\right)_{J} .
\end{aligned}
$$

Since multiplication of diagonal matrices is commutative, this multiplication of X -matrices is also commutative, and in even dimensions $2 k$ the set of X-matrices $D_{1}+D_{2} J$ is a commutative subalgebra of $M_{2 k, 2 k}(R)$.

To complete the analogy with complex numbers, one should note that the X-matrix $D_{1}+D_{2} J$ will have inverse $\left(D_{1}^{2}+D_{2}^{2}\right)^{-1}\left(D_{1}-D_{2} J\right)$ just in case the bisymmetric diagonal matrix $D_{1}{ }^{2}+D_{2}^{2}$ is nonsingular (has no 0 elements on its main diagonal).

Since the imaginary unit matrix J fails to exist in odd dimensions, one may wonder whether analogous commutative algebras exist in $\mathrm{M}_{n, n}(R)$

instead of J (here $\left.E^{2}=I\right)$, and considering X-matrices of the form

$$
D_{1}+D_{2} E
$$

with D_{1}, D_{2} bisymmetric diagonal, one obtains a subalgebra with commutative multiplication

$$
\left(D_{1}+D_{2} E\right)\left(D_{3}+D_{4} E\right)=\left(D_{1} D_{3}+D_{2} D_{4}\right)+\left(D_{1} D_{4}+D_{2} D_{3}\right) E .
$$

These X -matrices $D_{1}+D_{2} E$ exist in all dimensions, behave much like complex numbers and are symmetric with respect to both diagonals.

Struggling through an $\epsilon-\delta$ proof of the continuity of a simple function, the instructor stopped, faced the students, and asked "Are there any questions?"

One student asked 'How much do we have to make to get an A?'
The instructor answered "Somewhere in the neighborhood of 85." 'How large is \in ?'"

A.R.Anmi-Móz

NOTE ON A WELL-KNOWN LIMIT
 by w. Vance Underhill
 East Texas State University

In the Spring 1986 issue of this journal Norman Schaumberger obtained the limit

$$
\lim _{n \rightarrow \infty} \frac{n \sqrt{n!}}{n}=\frac{1}{e}
$$

by use of the Mean Value Theorem. In that derivation, however, it was necessary to first establish an intermediate double inequality. Here is a shorter and quite different elementary approach to the same limit
 by either of the formulas

$$
\begin{align*}
& \frac{1}{R}=\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right| \tag{1}\\
& \frac{1}{R}=\lim _{n \rightarrow \infty} n_{\sqrt{\prime}} \bar{a}_{n}
\end{align*}
$$

provided the limit in (1) exists. Consider the series $\sum_{n=0}^{\infty} \frac{n!}{n^{n}} x^{n}$.
Using (1), a routine calculation shows that

$$
\frac{1}{R}=\frac{1}{e} .
$$

Using (2), we find that

$$
\frac{1}{R}=\lim _{n \rightarrow \infty} \sqrt[n]{\frac{n!}{n^{n}}}=\lim _{n \rightarrow \infty} \frac{n \sqrt{n!}}{n} .
$$

Therefore,

$$
\lim _{n \rightarrow \infty} \frac{n_{\sqrt{n!}}}{n}=\frac{1}{e} .
$$

$\mathrm{p}^{\mathrm{q}}>\mathrm{q}^{\mathrm{p}}$ VIA COORDINATE GEOMETRY
 by Norman Schoumberger
 Bronx Community College, Bronx, NY

In this note we offer a geometric proof of the familiar theorem that states that if (a) $q>p \geq e$, or if (b) $0<q<p \leq e$, then $p^{q}>q^{p}$.

To prove case (a), we observe that the graph of $y=\| n x$ is concave downward and that the tangent line, $y=x / e$, at $(e, 1)$ lies above the curve. Hence $x / e \geq \ln x$ for all positive x, with equality only in case $x=e$.

Putting $\mathrm{x}=e q / p$ in this inequality gives $\mathrm{q} / \mathrm{p}>\ln (e q / p)$, or

$$
\begin{equation*}
q-p>\ln (q / p)^{p} \tag{1}
\end{equation*}
$$

with strict inequality because $q / p \neq 1$
Since $p / e \geq 1$ and $q-p>0$, it follows that $(q-p) \ln (p / e) \geq 0$, or

$$
\begin{equation*}
\ln (p)^{q-p} \geq \mathrm{q}-\mathrm{p} \tag{2}
\end{equation*}
$$

Combining (1) and (2) gives the desired result
A special case of (a) is $\mathrm{e}^{\mathrm{m}}>\mathrm{m}^{\mathrm{e}}$.
In case $(\mathrm{b}), p-\mathrm{q}>0$ and $e / p \geq 1$. Hence $(p-q) \ln (e / p) \geq 0$ which gives the inequality in (2).

PROOFS WITHOUT WORDS

by Norman Schaumberger
Btonx Community College, Bronx, Ny

$$
\left(1+\frac{1}{n+1}\right)^{n+1}>\left(1+\frac{1}{n}\right)^{n} ;\left(1+\frac{1}{n}\right)^{n+1}<\left(1+\frac{1}{n-1}\right)^{n}, n>1
$$

COMMENT ON "COUNTINGBIT STRINGS WITH A SINGLE OCCURRENCEOF 00" **

by J. Sutherland Frame
 Michigan State University

Dear Professor Moore
I enjoyed reading your Pi Mu Epsilon Journal article (Vol. 8, No. 9, pp. 572-5) on "Counting Bit Strings with a Single Occurrence of 00 ," and was especially interested in the role played by the Fibonacci numbers.

Perhaps I overlooked it, or perhaps you did not notice that the sum $\mathbf{a}_{\boldsymbol{n}}$ in (*), p. 573, can be expressed as follows for $\mathrm{n}>0$

$$
a_{n}=\left((n+1) F_{n-1}+(n-1) F_{n+1}\right) / 5
$$

Proof: Let \mathbf{r} and \mathbf{r}^{\prime} denote the positive and negative roots of the equation $\mathbf{r}^{2}=\mathbf{r}+1$. Then for $\mathrm{n}>0$ we have

Thus

$$
\begin{aligned}
& r^{n}-r^{\prime n}+5^{1 / 2} F_{n}, \quad r^{n}+r^{\prime n}=F_{n-1}+F_{n+1} \\
& a_{n}=\sum_{k=1}^{n-1} F_{k} F_{n-k}=(115) \sum_{k=1}^{n-1}\left(r^{k} \cdot r^{\prime k}\right)\left(r^{n-k}-r^{\prime n-k}\right) \\
& 5 a_{n}=(n-1)\left(F_{n-1}+F_{n+1}\right)-2 \sum_{k=1}^{n-1} r^{n-k} r^{\prime} k \\
&=(n-1)\left(F_{n-1}+F_{n+1}\right)-2 r r^{\prime}\left(r^{n-1}-r^{\prime n-1}\right) /\left(r-r^{\prime}\right) \\
&=(n+1) F_{n-1}+(n-1) F_{n+1}
\end{aligned}
$$

Verification:

n	1	2	3	4	5	6	7	8	9	10	11
F_{n}	1	1	2	3	5	8	13	21	34	55	89
$(n+1) F_{n-1}$	0	3	4	10	18	35	64	117	210	374	
$(n-1) F_{n+1}$	0	2	6	15	32	65	126	238	440	801	
a_{n}	0	1	2	5	10	20	38	71	130	235	

I thought that this might interest you.
Sincerely yours,
J. Sutherland Frame
** ... printed with permission

IN PRAISE OF CALCULUS AND ACALCULUSLAMENT-POETRY

by Hubert Walczak

College of St. Thomas

In Praise of Calculus

Oh Calculus

You free me from the false and inexact
You elevate my mind to thoughts abstract

Oh Calculusl

My fountain of delight
You please me - when my answers come out rightl

A Calculus Lament

Oh Calculus

You fill me with frustrations
Plagues of limits, weird manipulations
Derivatives, those ghosts of vanishing fractions
Defy my most determined actions
Related rates, a mystery profound
Who cares how shadows move around?
Square roots, sines and secants, sources of my sorrow
I hope they all clear up - before that test tomorrowl

PUZZLE SECTION

Edited by Joseph D. E. Konfiauser
 Macalester College

The PUZZLE SECTION is for the enjoyment of those readers who are addicted to working doublecrostics or who find an occasional mathematical puzzle or word puzzle attractive. We consider mathematical puzzles to be problems whose solutions consist of answers immediately recognizable as correct by simple observation and requiring little formal proof. Material submitted and not used here will be sent to the Problem Editor if deemed suitable for the PROBLEM DEPARTMENT.

Address all proposed puzzles and puzzle solutions to Professor Joseph D. E Konhauser, Mathematics and Computer Science Department, Macalester College, St. Paul, MN 55105. Deadlines for puzzles appearing in the Fall Issue will be the next February 15, and for the puzzles in the Spring Issue will be the next September 15.

PUZZLES FOR SOLUTION

1. Tmposed By Man. Wayne, Holiday, FForida.

Restore the digits:
! - ***

2. 'Proposed $6 y$ Alan Wayne, Holiday, \mathcal{F} forida.

Devise a rule of formulation for the square array
932
$4 \quad 8 \quad 1$
$\begin{array}{lll}5 & 6 & 7\end{array}$
3. 'Proposed by the 'Editor.

Characterize the members of the set $\{1,3,4,9,10,12,13,27,28,30,31,36$ $37,39,40,81,82.84,85,90,91,93,94,108,109,111,112,117, \ldots$ \}
4. Tmposed by the Editor

A laddergram (shades of 1928). By changing just one letter at each step and not changing the order of the letters, one can go from SOUP to NUTS in just four (the minimum possible number) steps:
SOUP • SOUS - SOTS • NOTS • NUTS

In how few steps can you go from ONE to TWO?

5. Proposed by the 'Editor.

In a test of short-term memory, four participants (A, B, C, D) were shown cards numbered 1 through 4. Each card bore the picture of one of these common objects - a key, a comb, a book and a pen - each appearing on just one card. After two minutes, the participants were asked to pair card numbers and objects. The results are tabulated below on the left

	1	2	3	4
A	comb	pen	book	key
B	comb	book	key	pen
C	key	book	comb	pen
D	pen	comb	key	book

Three of the participants got exactly two correct matches and the fourth did not get any correct. Match the numbers and the objects.

6. Contributed.

Place the integers 1 through 15 in the 3×5 array (above right) so that the five column sums are equal and so that the three row sums are equal.

7. contributed.

The "transform" of an isosceles triangle with base angles \mathbf{B} is an isosceles triangle with vertex angle B. A "chain" is a succession of transforms. For example, the transform of the $80-80-20$ triangle is the $50-50-80$ triangle, and the transform of the latter is the $65-65-50$ triangle. If the first triangle is not equilateral, what is the length of the longest chain that can be formed in which all the angles of all the triangles have an integral number of degrees?

COMMENTS ON PUZZLES $1 \cdot 7$, FALL 1988

ALAN WAYNE submitted a program in BASIC for the solution of Puzzle \# 1. He determined "the only base ten prime (less than 100) which has the same period length in both base ten and base two and then also in bases four. eight, and sixteen is 71 (length 35)." WAYNE continued "In base thirty-two, the period length of 71 is 7 so the pattern does not continue." In a further remark, he says 'I mentioned this problem on a card to Samuel Yates, Delray, FL (author of Prime Period Lengths, 1975; and Repunits and Repetends, 1982) and he instantly wrote back ' ... I went directly to pages 98-99 of Beiler's book [Albert H. Beiler, Recreations in the Theory of Numbers, Second Edition, Dover Publications, Inc., New York, 19661 and looked to see which primes p had the same exponent to which $2,4,8,10$, and 16 belong $(\bmod p) \ldots$. Of course, this gives the instantaneous answer, $\mathrm{p}=71$. $^{\prime \prime}$

RICHARD I. HESS provided the additional computer-generated solutions 191, $311,359,479,599,719$ and 839 , with corresponding n values $95,155,179,239$, 299, 359 and 419 . Other responses to Puzzle \# 1 were received from BILL BOULGER, WILLIAMCHAU and EMILSLOWINSKI.

Puzzle \# 2 (see Figure 1) drew twelve responses. A composite of the solutions follows. "From the area condition, $(A B)^{2}=2(A M)^{2}$. From the perimeter condition, $2(A M)=2(A B \cdot A M)+B C$. It follows that $B C=(2 \sqrt{2} \cdot 2) A B$. The angle opposite side BC has measure $2 \sin ^{-1}[(B C) / 2(A B)]=2 \sin ^{-1}(\sqrt{ } / 2 \cdot 1) \simeq 48.94{ }^{\circ}$." Solvers were ALI AMIR-MOEZ, JEANETTEBBCKLEY, BILL BOULGER, WILLIAM CHAU, RICHARD DUNLAP, GEORGEP. EVANOVICH, MARK EVANS, RICHARDI.HESS, DONALDB. ONNEN, DON PFAFF, EMILSLOWINSKI and ALAN WAYNE.

Figure 1

Figure 2

Eleven readers submitted solutions to Puzzle \# 3 (see Figure 2). Only WILLIAM CHAU, RICHARD DUNLAP and RICHARD I. HESS avoided differentiation. CHAU's argument is given next. "Let \mathbf{x}, y and \mathbf{z} denote the lengths of $A X, A Y$ and $X Y$, respectively, where A is the vertex opposite the side of length 3 . Since the two portions separated by the line segment $X Y$ have equal area, it is clear that $2 x y \sin A=(3)(4)$. But $\sin A=315$, so $x y=$ 10. By the law of cosines, $z^{2}=x^{2}+y^{2}-2 x y \cos A$. But $x y=10$ and $\cos A=415$, so z^{2} $=x^{2}+y^{2}-16=x^{2}+y^{2} \cdot 20+4=(x-y)^{2}+4$. The minimum of z^{2}, or z, attains clearly at $x=y$. Therefore, the line segment $X Y$ is shortest when $A X=A Y=10 . "$ THOMAS MITCHELL solved the same problem for XY connecting the other two pairs of sides of the original 3-4-5 triangle. The lengths of minimizing segments turned out to be 46 and 243. MITCHELL commented"... the XY connecting the sides of lengths 4 and 5 is the shortest of the three. In each case, the minimum-length line segment $X Y$ is the base of an isosceles triangle. This is likely an intuitive clue which some would employ to solve the puzzle." To this point, here is RICHARD I. HESS' argument. "It must happen that $A X=A Y$ to minimize $X Y$. This can be seen by imagining otherwise and pivoting $X Y$ about its midpoint in a small increment. Areas won't change but length will change unless AX = AY." Comments, anyone? ALI AMIR-MOEZ generalized the problem by considering an arbitrary right triangle. Other contributors of solutions to Puzzle \# 3 were JEANETTE BICKLEY, BILLBOULGER, GEORGE P. EVANOVICH, MARK EVANS, EMIL SLOWINSKI and ALANWAYNE.

Puzzle \# 4 drew only two responses and one of these was incorrect. RICHARD I. HESS submitted the colorings in the two arrays on the left, where a "1" denotes one color and a " 2 " denotes the other. The coloring on the right is from Martin Gardner's New Mathematical Diversions from Scientific American, Simon and Schuster, New York, 1966. According to Gardner, other solutions are possible with different combinations of 1 's and 2's in the positions which are underlined in the array on the right.

| 1 | 2 | 2 | 2 | 1 | 2 | 1 | 2 | 2 | 2 | 1 | 2 | | 1 | 2 | 1 | 2 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | 2

HESS made the following assertions:

1. For a 3×3 square there are 20 ways.

2 For a 4×4 square there are 221 ways.
3. For a 5×5 square there are 338 ways.
4. For squares larger than 6×6 there are no ways.

He then asks "How about results for three colors or k colors or mxn rectangles?" HESS' results came "from a program written in BASIC on a PC."

Puzzle \#5 drew responses from twelve readers. The nine respondents with the correct answer $8 / 21$ were CHARLES ASHBACHER, BILLBOULGER, WILLIAM CHAU, RICHARD DUNLAP, GEORGEP. EVANOVICH, MARK EVANS, RICHARDI. HESS, JOHNM HOWELL and DONALDB. ONNEN. CHAD's argument was 'There are eight ways to locate three O's in the same row, column or diagonal. For each, we need six ways to locate the remaining five X 's and the one O . These total 48 ways. But overall we have ' 9 choose 4 ' or 126 arrangements of the X's and O's. So the required probabilty is $48 / 126=8 / 21$."

RICHARD I. HESS and JOHN M. HOWELL added that the probability of at least one column, row or diagonal with three X's is $7 / 9$. HESS further stated that the probability of both is $2 / 7$ and of neither is $8 / 63$.

Puzzle \# 6 asked for a rule of formulation for the 3×3 array with 1,6 and 2 in the first row, 5,4 and 9 in the second, and 8,7 and 3 in the third. JEANETTE BICKLEY observed "The numbers in row $1(2,3)$ each have three (four, five) letters and are arranged in alphabetical order." The same observation was made by DONALD B. ONNEN (who credited MIKE SANKNER with the solution), BOB PRIELIPP and ALAN WAYNE. In a second solution, WAYNE showed that

$$
a_{i j}=-6 i^{2} j^{2}+21 i^{2} j+51 i j^{2} / 2-31 i^{2} / 2-183 i \mathrm{i} / 2-24 j^{2}+143 i / 2+89 j-69
$$

where a_{ij} is the jth entry in the ith row.
VALERIEALBANO, JEANETTEBICKLEY, WILLIAMCHAU, RICHARDDUNLAP and RICHARD I. HESS all provided essentially the same dissection of the staircase-like piece in Puzzle \# 7 into three pieces which can be reassembled to form a square. Below, their dissection is shown at the left and their reassembly in the middle. A different dissection found by the Editor is shown at the right. The reassembly is left as an exercise.

The staircase-likepiece in Puzzle \# 7 has eight steps and can be dissected into three pieces which be reassembled to form a square. Given a staircase-like piece with nine (or some number other than eight) steps, are you able to dissect the piece into three pieces which can be reassembled to form a square?

Editor's Note: Apologies are due RICHARD I. HESS for overlooking his correct solution to Puzzle \# 7 in the Spring 1988 issue. In the FALL 1988 issue the Editor said that no correct solutions had been submitted when, in fact, HESS had supplied an infinity of them. In the Editor's solution one need only replace the number 15 by any positive number less than 30, say a, and the number 150 by $180-2$ a, then one has a set of nine points such that each is one unit away from exactly four others.

Solution to Mathacrostic No. 27 (See FALL 1988 issue.)

WORDS:

A endless cycles	J	iota	S	nephrolith
B limitrophe	K Newton's fluxions	T	Desargues	
C implicate	L functor	U Bernoulli		
D moiety	M immies	V etiolate		
E affright	N napiform	W ylem		
F oomph	O isothetic	Xorphic G red shift	P tetragrammaton	Y Nernst
H thwart	Q yttrium	Z disphenoid		
I optimal shape	R acuminate			

J iota
Newton's fluxions
M immies
N napiform
tetragrammaton
R acuminate

S nephrolith
Desargues
\checkmark etiolate
x Orphi
\boldsymbol{Y} Nerns
Z disphenoid

AUTHOR ANDTITLE: ELI MAOR TO INFINITY AND BEYOND

QUOTATION: The common theme of all Islamic art is geometric regularity, spatial rhythm, periodic repetition. Islam, with its central creed of an omnipotent God to all humans must humbly defer, found in the infinite pattern a supreme artistic expression of its philosophy.

SOLVERS: JEANETTE BICKLEY, Webster Groves High School, MO; CHARLES R DIMINNIE, St. Bonaventure University, NY; ROBERT FORSBERG, Lexington, MA; META HARRSEN, Neptune High School, NJ; DICK AND JOAN JORDAN, Indianapolis, IN; DR THEODOR KAUFMAN, Brooklyn, NY; CHARLOTTEMAINES, Rochester, NY; DON PFAFF, University of Nevada-Reno, NV; STEPHANIE SLOYAN, Georgian Court College, Lakewood, NJ; MICHAELJ. TAYLOR, Indianapolis Power and Light Co., Indianapolis, IN; and ALAN WAYNE, Holiday, FL.

Editor's Note: From the Random House Dictionary of the English Language, 2nd edition, Unabridged
immie $\cdot \mathrm{n}$. Informal. agate. [imitation) marble + - IE].
For clue, see page 97 of the April, 1988, Smithsonian Magazine.

Mathacrostic No. 28

Proposed by Joseph D. ©. Kpnfauser

The 277 letters to be entered in the numbered spaces in the grid will be identical to those in the 29 keyed Words at the matching numbers. The key numbers have been entered in the diagram to assist in constructing the solution. When completed, the initial letters of the Words will give the name(s) of the author(s) and the title of a book; the completed grid will be a quotation from that book.

Definition

A. a counter lake-away game played in China under he name tsyan-shidzi (picking stones) (2 wds.)
. dubbed "darts' and "kites" these quadrilaterals, properly arranged, provide non-periodic tessellations of the plane (2 wds .)
C. derived branch
D. inelegant
E. Greak word for a constructiontechnique using a marked straightedge
F. Mark Kac's expression for a sterile generalization
pursued for its own sake (2 Ms.)
. a coupling device that permits relative rotationa motion of the connected parts (2 wds .)
H. temporal reflection (2 wds .)
i. a commonly used cipher uncrackable wen In principle (2 wds. I comp.)
J. an authorized rule or standard
K. a zone of intergradalion between $\boldsymbol{c o c o l o g i c a l}$ communities
L. residue
M. first stated by Zermelo in 1904, its acceptance rejection reflects underlying philosophical conceptions about the nature of mathematics and mathematical existence (3 Ms.)
N. why the earty pages of a table of logarithms become (wds.)
O. to the physicist what a connection on a fibre bund Is to a topologist (3 Ms., 1 corn~.)
P. an Escher lithograph featuring three totally dirferent worlds built together into a unified whole
Q. "An intellectualis someone whose mind watches
R. axon
S. name for an encoding function thet can be deserted exactly while keeping its inverse secret
T. an imaginary roominghouse with o rooms (2 wds.)
U. Iis utilization enables the Voyager spacecraft to continue its journey through the solar system (2 wds .)
V. a statistical observation that is not homogeneous
with others of a sample
W. William Gospels space-fillingcurve based on an arrangement of seven congruent regular hexagons
X. a track or channel in which somethingrolls or
physicist for whom the annual Hungarian mathe matical competition, open to high school graduate
of that year, is named of that year, is named
2. wind-blown

Words

$\overline{2} \overline{3} \overline{6} \overline{52} \overline{2} 5 \overline{2} \overline{1} \overline{3} \overline{8}-\overline{2}-\overline{82} \overline{2} \overline{3} \overline{1} 188$

86 $\overline{2} \overline{4} \overline{4} \overline{4}-\overline{48} \overline{19} \overline{2} \overline{27} \overline{75}{ }^{---}$
$-5 \overline{56}-\overline{26} \overline{2} \overline{3} \overline{9} \overline{1} \overline{16} \overline{212} \overline{2} \overline{4} \overline{2} \overline{2} \overline{6} \overline{5}-\overline{96} \overline{14} \overline{4} \overline{260}-\overline{44}-\overline{228} \overline{216}$ $\overline{18} \overline{9} \quad \overline{62} 74 \overline{123} 175$
$\overline{13} \overline{9} \overline{64} \overline{14} \overline{47} \overline{248} \overline{17} \overline{2} \overline{30}-\overline{19} \overline{114} \overline{1} \overline{6} \overline{7} \overline{28} \overline{155}$

$\overline{112} \overline{23}-\overline{40} \overline{150} \overline{180} \overline{130} \overline{65} \overline{218} \overline{45} \overline{104}$
$-72-85-47$

$\overline{159} \overline{17} \overline{7}-\overline{27} \overline{2} \overline{1} \overline{9} \overline{2} 5 \overline{9} \overline{129}$
$\overline{119} \overline{125} \overline{66}-58 \quad \overline{200} \overline{93} \overline{266} \overline{140} \overline{161} 21$
$\overline{42109191133} \overline{166245}$
$\overline{170} \overline{2} \overline{4} \overline{0} \overline{36} \overline{10} \overline{0} \overline{0}-\overline{33} \overline{25} \overline{3} \overline{20} \overline{2}$
$2102209116518370-20-14$
$\begin{array}{llllllllll}46 & 88 & 246 & 38 & 13 & 178 & 238 & 224 & 254 & 31\end{array} 142211164$
 $-\overline{53} \overline{205}$

$\overline{2} \overline{0} \overline{7} \overline{8} \overline{2} \overline{2} \overline{4}-\overline{18}$
$\begin{array}{lll}196 \quad 51 & 92127 \\ \overline{2} 51 \\ 186\end{array}$

[^2]a. name given by T. H. O'Berme to the only rep-4 $\overline{108227} \overline{1} \overline{7} \overline{\overline{6}} \overline{1} \overline{49} \overline{1} \overline{5} \overline{4} \overline{217}$ pentagon

c. visual lllusion, devised in 1832 by a Swiss naturalist, which
depth (2 wds.)

${ }^{8} 2$	2 C	30	45	5		6 A	7 U		8 x		9 w	10 c	11 N	12 H
13 T ${ }^{1}$	14.5	15 E	16 M 1	17 L1	$18 \times$		19 G	20 S			22 B	23		24 A
25 W	26	270	28	29 U			31 T3	32 0	33 R	34 M		35 K	36 R 3	37
38 T	392	401		410	42 a	43 c			45		46 T	47	48	490
		51	52 C		53 U 5	540	558	56 F	57 N		58 P	59	60	
61 V	62 F	63 B		64 G	651	66 P6	67 8		68 W	69 D	70 5	71 N	72	
73 D	74	75	76 z	77	78 k	79 M	80 B	81 H		82 C	83 M		84 c	85
86 E 8	87 A	88 T	89	$90 \quad 0$	$91 \quad 5$	92 Y 9	93	94 V	95 w			97 U	98 c 9	99 B
100 R	101 A		102 M		104		105 H	106 b	1072	108 a	1090	110 c	111 M	1121
113 N	1146	1150	116 F		117 A 1	118 H	119 P1	120 M		121 K	122 M	123 F	124 c	125 P
126 D	127 Y 1	128 H	1290		13011	131 U 1	132 N	1330		134 A	135 H		1360	137 U
138 C	139 G		140 P 1	1412		142 T 1	143 A	144 F		145 U	146 B	147 G	148 D	149
1501		151 M	152 L		153 U 1	154 a 1	15561	156 K	157 V	158 H	1590	160 M	161 P	162 D
163 N	164 T		165 S	1660	167 H	1680		169 M	170 R		1710	172 G	173 W	
174 D 1	175 F ${ }^{1}$	176 a 1	177 c	178 T		179 N 1		181 k	82 W	1835	184 D		185 V	86 Y
	18761	188 C		189 F	190 W/	1910	192 E	1930	194 c	95 U	196 Y		1974	198 K
199 L		200P	201 D 2	202 R		203 b	2040	205 U	206 V	$207 \times$	208 L	2098	210 S	2117
212 7		213 c	214 b 2	215 N	/216 F2	217 a	218 \| 2	2190	2205	221 H		222 L	223 M	
224	225 z	226 A 2	227 a 2	228 F	229 N		230 B	231 C		232 H	233 V	$234 \times$	235 D	
236 C	237 A		238 T 2	239 F	240		241 A	242 F	243 b	244 E		2450	246 T	247 W
248 G	249 N	250 c		251 Y	252 C		253 R	254	255 z		256	257 H	258 8	2590
260 F		2610	262 A	263 D		264M	265 F	266 P	267 U		268 W	2690	270 U	
271 N	272 z	273 E	274 B 2	275		276	277 U							

Editor's Note: The grid for Mathacrostic No. 28 was prepared on a Macintosh II by Peter Bergstrom.

PROBLEMDEPARTMENT

Edited by Clayton W.'Dodge

University of Maine
This department welcomes problems believed to be new and at a Level appropriate for the readers of this journal. Old problems displaying novel and elegant metiods of solution are also invited. 'Proposals should.be accompaniedby solutions if available and by ay infonnation that will assist the editor. An asterisk. (*) preceding a problem number indicates that the proposer did not submit a solution.
$\mathcal{A l l}$ communications sfrould be addressed to $\mathcal{C} . \mathcal{W}$. 'Dodge, Math. Dept., University of Maine, Orono, ME 04469. Phase submit each proposal and solution preferably typed or clearly written on a separate sheet (one side only) properly identified with name and address. Solutions to problems in this issue should be mailed by December 15, 1989.

Problems for Solution

691. Proposed by Chartes 'W. Trigg, San Diego, California.

Find the smallest possible FACE on the largest possible CUBE of this addition alphametric:
$S I X$
$+\frac{F A C E}{C U B E}$
692. 'Proposed Gy Mofammad \mathcal{X} Azarian, University of Evansvilfe, Evansville, Indiana.

Solve the equation

$$
3\left(30^{x}\right)-6\left(15^{x}\right)-3\left(6^{x}\right)+6\left(3^{x}\right)+2\left(5^{x}\right)-10^{x}+2^{x}-2=0 .
$$

693. 'Proposed by 'Barry Brunson, 'Western Kentucky University, Bowling Green, Kentucky.

Solve the equation

$$
3 \cdot 2^{\log _{x}(3 x-2)}+2 \cdot 3^{\log _{x}(3 x-2)}=5 \cdot 6^{\log _{y}(3 x-2)}
$$

where $y=x^{2}$ (from Problem Book in High School Mathematics, A. Prilepko, ed. Mir Publishers, Moscow, 1982, p. 43, partial solution on p. 184).
694. \{Proposed by Rusself Euler, Nortiwest Missouri State University, Maryvilfe,

An ellipse has its foci at the vertices of a hyperbola and its vertices at the hyperbola's foci. Under what conditions, if any, will the ellipse and the hyperbola be orthogonal at their points of intersection.
695. 〈Proposedby Jack.Garfunkel, flushing, Newu York.

If $A B C$ is a triangle, prove that

$$
\sqrt{\sin A}+\sqrt{\sin B}+\sqrt{\sin C} \geq 6 \sqrt{\sqrt{3}} \sin \frac{A}{2} \sin \frac{B}{2} \sin \frac{C}{2} .
$$

696. 'Proposed by Robert C. Ge6fardt, Hopatcong, New Jersey.

Consider $\iint x y \sqrt{x^{2}+y^{2}} d A$, where the integral is taken over the region bounded by the y-axis and the semicircle $x=\sqrt{1-y^{2}}$ that lies in the first and fourth quadrants.

In rectangular coordinates we have

$$
\begin{gathered}
\int_{-1}^{1} \int_{0}^{\sqrt{1-y^{2}}} x y d x^{2}+y^{2} d x d y=\left.\int_{-1}^{1} \frac{y}{3}\left(x^{2}+y^{2}\right)^{3 / 2} \cdot\right|_{0} ^{\sqrt{1}-y^{2}-} d y \\
=\frac{1}{3} \int_{-1}^{1} y\left(1-y^{3}\right) d y=\frac{-2}{15} .
\end{gathered}
$$

In polar coordinates, however, we have

$$
\int_{-\pi / 2}^{\pi / 2} \int_{0}^{1} r^{4} \cos \theta \sin \theta d r d \theta=\frac{1}{5} \int_{-\pi / 2}^{\pi / 2} \cos \theta \sin \theta d \theta=0 .
$$

What is the correct answer? Explain the discrepancy.
697. Proposed by Keitf Goggin, Joseph Putfoff and John Ruebusch, St. Xavier High School, Cincinnati, Ohio.

Circle (B) is internally tangent to circle (A) at K and to diameter VAW at center A Circle (C) is internally tangent to circle (A) at \mathbf{Z}, externally tangent to circle (B) at LL, and tangent to segment AW at Y, as shown in the figure at right. Find the ratios of the areas of the three circles to one another. (This problem was adapted from an MAA test.)

698. 'Proposed by John M. Howell, Littlerock, California.

Find all solutions in integers
a) to the equation

$$
2^{n}=n^{x} .
$$

*b) to the simultaneous inequalities

$$
2^{n}>n^{x} \text { and } 2^{n-1}<(n-1)^{x}
$$

699. \{Proposedby Peter A. Lindstrom, North Lake College, Irving, Texas.

Let $\mathbf{A}(\mathbf{k})$ be the unpaid principal on a loan of $\$ A$ after the kth payment out of n equal payments has been made, so that $A(0)=\$ A$ and $A(n)=\$ 0$. Let ibe the interest rate per payment period and I be the total interest paid over the life of the loan. Show that

$$
\sum_{k=0}^{n-1} A(k)=\frac{1}{i} .
$$

700. 'Proposed $6 y$ R. S. Lutfiar, University Of Wisconsin Center, Janesville, 'Wisconsin.

Let $a, \mathbf{b}, \mathbf{c}, \mathbf{p}, \mathbf{q}, r$ be any positive numbers satisfying the equation $1 / \mathbf{p}+1 / \mathbf{q}+$ $1 / r=1$. Prove that

$$
\frac{a^{p}}{p}+\frac{b^{q}}{q}+\frac{c^{r}}{r} \geq a b c
$$

701. 'Proposed 6y $\mathcal{D m i t r y}$ P. Mavio, Moscow, USS.R.

Let L and B be nonnegative numbers such that $L \sqrt{3}+9 B=9 \sqrt{3}$. Prove that in any triangle ABC

$$
\begin{gathered}
\frac{\tan \frac{A}{2}+\tan \frac{B}{2}+\tan \frac{C}{2}}{\cot \frac{A}{2}+\cot \frac{B}{2}+\cot \frac{C}{2}} \\
\geq L\left(\tan \frac{A}{2} \tan \frac{B}{2} \tan \frac{C}{2}\right)^{2}+B\left(\tan \frac{A}{2} \tan \frac{B}{2} \tan \frac{C}{2}\right)
\end{gathered}
$$

with equality if and only if the triangle is equilateral.
702. 'Proposed 6y Dmitry P. Mavio, Moscow, U.S.S.R.

In right triangle ABC with right angle at C the altitude CD and the median CE are drawn. Determine the ratio of the sides containing the right angle if $A B=3 \bullet D E$ (from the SYMP-86 Entrance Exam).
703. 'Proposed by Cfiristopfier Stuart, \mathcal{N} (ew Mexico State University, Mesilfa Park., New Mexico.

$$
\text { If } f(x) \neq 0 \text { and differentiable, find } \operatorname{limit}_{h \rightarrow 0}\left[\frac{f(x+h)}{f(x)}\right]^{1 / h}
$$

SOLUTIONS

665. [Spring 1988] \{Proposed by John M. Howell, Littlerock, California.

An international committee translated the EINS-ZWEI-DREI problem, Problem 626 [Fall 1986, Fall 1987]. Even though the languages are all mixed up, there is a base ten solution in which O, D, and T, the initial letters of ONE, DOS, and TRE, are in increasing arithmetic progression. Find that solution

$$
\begin{array}{r}
O N E \\
D O S \\
+I R E \\
\hline S E X
\end{array}
$$

Solution by Thomas Mitchiell, Southern Illinois University at Carbondafe, Carbondafe,

 Illinois.The only possibilities for the ordered triple (O, D, T) are $(1,2,3),(2,3,4)$, and $(1,3,5)$. In any case, $E \neq 0$ and $E \neq 5$. Let $(O, D, T)=(1,2,3)$ and suppose $S=6$. Clearly X is even. If $X=4$, then $E=9$, so $N+R=6$, which is not possible. If $X=8$, then $\mathrm{E}=1$ or 6 , another impossibility. If $\mathrm{X}=0$, then $\mathrm{E}=7$ and $\mathrm{N}+\mathrm{R}=4$, again unobtainable. Thus we cannot have $S=6$.

If $(O, D, T, S)=(1,2,3,7)$, then X is odd. If $X=5$, then either $E=4$ and $N+\mathbf{R}=$ 12 or $E=9$ and $N+\mathbf{R}=16$, neither of which is possible. If $X=9$, the only other possibility, then $E=6$ and $N+\mathbf{R}=14$, another hopeless equation.

If ($\mathrm{O}, \mathrm{D}, \mathrm{T}, \mathrm{S}$) $=(1,2,3,8)$, then 2 must be carried from the ten's column, requiring that $N+R$ be at least 17 , which is not possible. Thus (O, D, T) cannot be $(1,2,3)$.

If $(O, D, T)=(2,3,4)$, then $\mathbf{S}=9$ and X is odd. If $X=1$, then $E=6$ and $N+\mathbf{R}=2$ which is not possible. If $X=5$, then $E=8$ and $N+R=4$, again not solvable. Finally, if $X=7$, then $E=4$ or $E=9$, neither case being admissible.

Hence $(O, D, T, S)=(1,3,5,9)$ and X is odd. Hence $X=7$ and $E=4$, which ieads to $N+R=2$. Then $(N, R)=(2,0)$ or $(0,2)$, and the problem has the two solutions:

| 104 |
| :--- | :--- | :--- |
| 319 |
| 524 |
| 947 | and | 124 |
| ---: |\quad| 319 |
| :--- |
| 947 |

Also solved by STEVE ASHER, MCNEiI Phannaceutical, Spring \mathscr{H} ouse, PA, CHARLES ASHBACHER, Mount Mercy Colfege, Cedar Rapids, IA, FRANK P. BATTLES, Massacfiusetts Maritime academy, Buzzards Say, ROY BENTON, Columbia Union College, TaKpma Park $\mathcal{M D D}$, WILLIAM BOULGER, St. Paul Academy, $\mathcal{M} \mathcal{K N}_{4}$ UNDERWOOD DUDLEY, DePaurw University, Greencastle, INN MARK EVANS, Louisviffe, icy, VICTOR G. FESER, Universityd May, Bismarck., \mathcal{N} (D) RICHARD I. HESS, Rancfio Solos Denies, CA, WADE H. SHERARD, Furman University, Greenviffe, SC, AMITABHA TRIPATHI, SUNVO at Buffafo, L J. UPTON, Mississauga, Ontario, Canada, H. J. MICHIEL WIJERS, Helmond, The Netherfands, and the PROPOSER
666. [Spring 1988] [Proposed by John M. Howell, Littlerock, California.

Five dice are rolled to form a "poker hand." Find the probabilities of the hands: no matches, one pair, two pairs, three of a kind, four of a kind, five of a kind, full house, and straight.
I. Sofution by Henry S. Lieberman, Waban, Massacfusetts.

We count the number of ways each "poker hand" can be accomplished, then divide by $6^{5}=7776$, the total number of permutations of the five dice, to get the desired probability.

Straight: There are 2 straights and $\mathbf{5 !}$ permutations of the numbers for $\mathbf{2 \bullet 5}$! = 240 ways of obtaining a straight.

No matches and no straight: There are $\mathbf{C}(6,5)=6$ subsets of five elements taken from the set $\{1,2,3,4,5,6\}$ and 5 ! permutations of the five subset elements. Since 240 of these are straights, then there are $605!-240=480$ "bust" hands.

One pair: There are $C(6,1)=6$ choices for the pair candidate and then $C(5,3)=$ 10 choices for the rest of the hand. Each hand has $5!/ 2!=60$ permutations, so one pair occurs in 6•10•60 $=3600$ ways.

Two pair: There are $\mathbf{C (6 , 2)}=15$ choices for the 'pair numbers and then $\mathbf{C}(4,1)$ $=4$ possibilities for the odd card. Since each hand has $5!(2!\cdot 2!)=30$ permutations, there are $15 \cdot 4 \cdot 30=1800$ two-pair hands.

Three of a kind: Similarly there are $\mathbf{C}(6,1)=6$ and $\mathbf{C}(5,2)=10$ choices for the triplet number and the remaining numbers and the hand has $5!/ 3!=20$ permutations, yielding 1200 hands.

Four of a kind: Here the numbers are $\mathbf{C}(6,1)=6, \mathbf{C}(5,1)=5$, and $5!/ 4!=5$, producing 150 hands.

Five of a kind: There are $\mathbf{C}(6,1)=6$ choices for this quintet.
Full house: There are $\mathbf{C}(6,1)=6$ choices for the triple and then $\mathbf{C}(5,1)=5$ for the pair. Each hand has $5 \mathrm{~V} /(2!\cdot 3!)=10$ permutations, so the full house occurs in 300 ways.

We summarize these results in the following table.

HAND	OCCURRENCES	PROBABILITY
No match - no straight	480	0.0617
One pair	3600	0.4630
Two pair	1800	0.2315
Three of a kind	1200	0.1543
Four of a kind	150	0.0193
Five of a kind	6	0.0008
Full house	300	0.0386
Straight	240	0.0309

II. Comment by James E. Campbelf, Indiana University at BCoomington, Bfoomington,

 Indiana.A challenging problem, but i would expect \#666 to be a bit more, urn, ... devilish1
$\mathfrak{A l s o}$ solved by CHARLES ASHBACHER, Mount Mercy College, CedarRapids, IA, JAMES E. CAMPBELL, Indiana University at Bloomington, UNDERWOOD DUDLEY, DePauzw University, Greencastle, INK RICHARD DUNLAP, Georgia Itch, Atfanta, MARK EVANS, Louisviffe, icy, RICHARD 1. HESS, Rancho Palos Denies, CA, JEREMY PARTIN, Hendrix College, Conway, AR and the PROPOSER.
667. [Spring 1988] Proposed by John M. Howell, Littlerock, California.

Each special die has one face with 1 spot, two faces with 2 spots each, and three faces with 3 spots each. Find the probability of tossing a sum of 8 with four special dice.

Composite of solutions submitted by Murray S. Xfamkin, University of $\mathfrak{A l b e r t a ,}$ Edmonton, Alferta, Canada, and Micfiael V. Williams, Wake Forest University, WinstonSalem, Nortf Carolina.

More generally, the probability $\operatorname{Pr}(\mathbf{s}, \boldsymbol{n})$ of a sum s with n special dice $(s \geq n)^{-}$is the coefficient of $\boldsymbol{x}^{\mathbf{5}}$ in the expression

$$
\left(\frac{x}{6}+\frac{2 x^{2}}{6}+\frac{3 x^{3}}{6}\right)^{n}=\left(\frac{x}{6}\right)^{n}\left(1+2 x+3 x^{2}\right)^{n}
$$

In particular. $\operatorname{Pr}(8,4)=\frac{214}{1296}=0.1651$.
Also solved by CHARLES ASHBACHER, Mount Mercy Colfege, Cedar Rapids, IA, STEVE ASHER, Mc Neil Pharmaceutical, Spring House, PA, WILLIAM BOULGER, St. Paul Academy, MON JAMES E. CAMPBELL, Indiana University at Bloomington, UNDERWOOD DUDLEY, DePauwUniversity, Greencastle, IN RICHARD DUNLAP, Georgia Tecfi, Atlanta, DAVID EHREN, University of 'Wisconsin, Mifwaukee, MARK EVANS, Louis\&, 天 天, ROBERT C. GEBHARDT, Hopatcong, $\mathcal{N O}$, RICHARD I. HESS, Rancho Palos Verdes, CA, PATRICK P. T. LEONG, Jofin Carrolf University, Cleveland, Oft HENRYS. LIEBERMAN, waban, MA, HENRY SCHAEFER, St. Bonaventure University, $\mathfrak{N} \mathcal{O}$, and the PROPOSER.

Asher, Dudley, Evans, and Hess each showed that the numbers of ways of obtaining the sums 4 through 12 with four special dice were $1,8,36,104,214,312$, 324,216 , and 81 , respectively, out of the total of 1296 possibilities.
668. [Spring 1988] Proposed 6y R S. Lutfiar, University of 'Wisconsin Center, Janesville, Wisconsin.

Evaluate the integral

$$
\int_{0}^{\pi / 2} \frac{2 \cos ^{3} x}{2-\sin 2 x} d x
$$

I. Solution By Murray S. Klamkin, University of $\mathfrak{A l b e r t a , ~ E d m o n t o n , ~ A l b e r t a , ~ C a n a d a . ~}$ By making the substitution $x=\pi / 2-\mathbf{t}$, we have that

$$
J=\int_{0}^{\pi / 2} \frac{2 \cos ^{3} x}{2-\sin 2 x} d x=\int_{0}^{\pi / 2} \frac{\cos ^{3} x d x}{1-\sin x \cos x}=\int_{0}^{\pi / 2} \frac{\sin ^{3} t d t}{1-\sin t \cos t}
$$

Thus we have

$$
2 J=\int_{0}^{\pi / 2} \frac{3}{1 \cdot \sin x \cos ^{x} x} d x=\int_{0}^{\pi / 2}(\cos x+\sin x) d x=2
$$

and $\mathrm{J}=1$.

More generally, if $G(a-x)=G(x)$, then the substitution $t=a-x$ verifies that
so that

$$
\text { if } J=\int_{0}^{a} \frac{F(x)}{G(x)} d x \text {, then } J=\int_{0}^{a} \frac{F(a-x)}{G(x)} d x
$$

$$
J=\frac{1}{2} \int_{0}^{a} \frac{F(x)+F(a-x)}{G(x)} d x
$$

For example, since

$$
\begin{aligned}
& \sin ^{5} x+\cos ^{5} x=(\sin x+\cos x)\left(1-\frac{\sin 2 x}{2}-\frac{\sin ^{2} 2 x}{4}\right) \\
& \int_{0}^{\pi / 2} \frac{4 \cos ^{5} x}{4-2 \sin 2 x-\sin ^{2} 2 x} d x=1 \text { also. }
\end{aligned}
$$

II. Solution By Amitabfa Tripatfi, SUNX at Buffalo, Buffalo, Neww York. We observe that

$$
\begin{gathered}
\frac{2 \cos ^{3} x}{2-\sin 2 x}=\frac{\cos ^{3} x}{1-\sin x \cos x}= \\
\frac{\cos ^{3} \times(1+\sin x \cos x)}{1-\sin ^{2} \times \cos ^{2} x}=\frac{\cos x\left(1-\sin ^{2} x\right)}{1-\sin ^{2} \times \cos ^{2} x \quad 1-\cos ^{4} \times \sin x} \times \cos ^{2} x
\end{gathered}
$$

so that we have

$$
\begin{array}{rl}
& \int_{0}^{\pi / 2} \frac{2 \cos ^{3} x}{2-\sin 2 x} d x \\
= & \int_{0}^{\pi / 2} \frac{\cos x\left(1-\sin ^{2} x\right)}{1-\sin ^{2} x \cos x} d x-\int_{0}^{1-\sin ^{2} x \cos ^{2} x} d x \\
= & \left.\int_{0}^{1} \frac{1-u^{2}}{1-u^{2}(1-u}\right) d u \int_{0}^{1} \frac{u 4}{1-u^{2}\left(1-u^{2}\right)} d u \\
= & \int_{0}^{1-u^{2}+u^{4}} \\
1-u^{2}+u^{4} \\
1 & 1 u=1
\end{array}
$$

III. Solution by Richiard I. Hess, Rancho Palos Verdes, Cafifornia.

We have that

$$
\begin{aligned}
& \frac{2 \cos ^{3} x}{2-\sin 2 x}-\frac{\cos ^{3} x}{1-\sin x \cos x} \\
= & \sin x+\frac{\cos ^{3} x-\sin x(1-\sin x \cos x)}{1-\sin x \cos x} \\
= & \sin x+\frac{\cos ^{3} x-\sin x+\cos x-\cos ^{3} x}{1-\sin x \cos x} \\
= & \sin x+\frac{\cos x-\sin x}{1-\sin x \cos x}
\end{aligned}
$$

By letting $\mathbf{u}=\pi / 2-x$ in the following integral \mathbf{J}, we find that

$$
J=\frac{\cos x-\sin x}{\pi / 2} d x=\int_{0}^{\pi / 2} \frac{\sin u \cdot \cos u}{1-\sin u \cos u} d u=-J
$$

so $J=0$. Now we have that

$$
\int_{0}^{\pi / 2} \frac{2 \cos ^{3} x}{2-\sin 2 x} d x=\int_{0}^{\pi / 2} \sin x d x+J=1+0=1
$$

$\mathcal{A l s o}$ solved fly FRANK P. BATTLES, Massachusetts Maritime Academy, 'Buzzards'Bay, ROY BENTON, Columbia Union Colfege, Takma Park, MD, DAVID G. CARABALLO, \mathcal{H} ilfside, $\mathcal{N} \mathcal{O}$, CHARLES R. DIMINNIE, St. Bonaventure University, $\mathcal{N} \cup$, UNDERWOOD DUDLEY, DePauw'University, Greencastfe, IN RICHARD DUNLAP, Georgia Tecfi, $\mathcal{A t f a n t a , ~ R O B E R T ~ I . ~}$ EGBERT, The Wicfita State University, KS, EDWIN M. KLEIN, University of Wisconsin,
 OsfKgsfh, G. MAVRIGIAN, Youngstown State University, OH, WADE H. SHERARD, Furman 'University, Greenville, SC, SAHIB SINGH, Clarion University of Pennsylvania, and the PROPOSER. One incorrectsolution was received.
669. [Spring 1988] 'Proposed by Mohammad K. Azarian, University of Evansvilfe, Evansvilfe, Indiana.

Let n be any positive integer. Show that $\prod_{k=n}^{2 n}(k!+1)$ has a factor greater than $\prod_{k=n}^{2 n} k$.

I. Solution by the 'Proposer.

For each positive integer k there is a prime p_{k} such that $p_{k} \mid(k!+1)$ and $p_{k}>k$. Hence

$$
\prod_{k=n}^{2 n} p_{k} \mid \prod_{k=n}^{2 n}\left(k^{\prime}+1\right) \quad \text { and } \quad \prod_{k=n}^{2 n} p_{k}>\prod_{k=n}^{2 n} .
$$

II. Sofution By Underwood Dudfey, De ${ }^{\text {Pauw University, Greencastle, Indiana. }}$

One answer would be to say that the given product has itself as a factor; another answer is that the last factor (2n)' $\mathbf{+ 1}$ of the given product also satisfies the stated conditions. Both answers are unsatisfying and lead one to suspect that the problem is not stated correctly. However, the first emendation that springs to mind -- "has a prime factor greater than" -- will not do, since the statement ls then false for $\mathrm{n}=2$. The problem thus remains a puzzle.

Also sofved by FRANK P. BATTLES, Massachusetts Maritime Academy, 'Buzzards'Bay,
 DUNLAP, Georgia Itch, Attanta, RUSSELL EULER, Norttiwest Missouri State University, Maryvilfe, MARK EVANS, Louisriffe, KV, VICTOR G. FESER, University of Mary, 'Bismarck $\mathcal{O} \mathcal{D}$, RICHARD 1 . HESS, Rancho Palos Verdes, CA, PETER A. LINDSTROM, North Lake Colfege, Irving, $\mathcal{D X}$, HENRY S. LIEBERMAN, Waban, $\mathcal{M} \mathcal{M}$, DON PFAFF, University of Novada, Reno, SAHIB SINGH, clarion University of Pennsyfvania, TOM, KIM, CAMMIE and CHRISTINE, Massachusetts Gamma, BridgewaterState College, andAMITABHA TRIPATHI, SUWO at 'Buffalo. Most solvers gave the solution (2n)I +1.

Clearly, the statement of the problem is inadequate and the editor should have caught the difficulty before it got into print. One rewording would be "has a factor that is a product of not more than $\mathrm{n}+\mathbf{1}$ primes and is greater than."
670. [Spring 1988] 'Proposed by Teter \mathfrak{M}. Lindstrom, North Lake Colfege, Irving, Texas.

If $F_{n}=2^{2^{n}}+\mathbf{1}$ is the nth Fermat number, find all values of n so that F_{n} and F_{n} - 2 are twin primes.
I. Solution By Mark Evans, Louisvilfe, Kentucky.

Clearly one integer in any three consecutive integers is divisible by 3 . Since $\boldsymbol{F}_{\boldsymbol{n}}$ -1 obviously is not, then either $\boldsymbol{F}_{\mathbf{n}}$ or $\boldsymbol{F}_{\mathbf{n}}-2$ must be divisible by 3 . Hence only $\boldsymbol{F}_{\mathbf{1}}-2$ $=3$ and $F_{1}=5$ are twin primes.
II. Solution by Safib Singfi Clarion University of Pennsyıvania, Clarion, Pennsylvania. The only twin primes of the famlly are 3 and 5 for $n=1$. The number $F_{n}-2$ is never prime when $\mathrm{n}>1$ because F_{m} divides $\mathrm{F}_{\mathrm{n}}-2$ whenever $\mathrm{n}>\mathrm{m} \geq 0$. See Burton, Elementary Number Theory^(1980), page 237.

Also soived by WILLIAM BOULGER, St. Pau(Academy, MAN, DAVID G. CARABALLO,
 Georgia Tech, Atlanta, DAVID EHREN, University of Wisconsin, Milwaukee, RUSSELL EULER, \mathcal{O} (orthwest Missouri State University, Maryvilfe, VICTOR G. FESER, University of Mary, 'Bismarck, $\mathcal{N}(\mathcal{D}$, RICHARD I. HESS, Ranctio Palos Verdes, CA, FRANK HUBENY, University of Maine, Orono, EDWIN M. KLEIN (2 solutions), University of Wisconsin, Whitewater, HENRY
S. LIEBERMAN, Waban, \%\&,THOMAS E MOORE, Bridgewater State College, \mathfrak{M}, PFAFF, University of Nevada, Rerro, BOB PRIELIPP, University of Wisconsin-Oshkosh, HENRY SCHAEFER, St. Bonaventure University, Jor, JOHN A SCHUMAKER, Rockford Colfege, IL, WADE H. SHERARD, Furman University, Greenviffe, SC, TOM, KIM, CAMMIE and CHRISTINE (2 sofutions), Massachusetts Qamma, Bridgewater State College, AMITABHA TRIPATHI, SUW at 'Buffalo, MICHAEL D. WILLIAMS, Wake Forest University, WinstonSalem, $\mathfrak{N}(C$, and the PROPOSER.
671. [Spring 1988] Proposed by 9. S. frame, Michigan State University, 'East Lansing, Mickigan.

Find all sequences of $2 k+1$ consecutive integers $a, a+1, \ldots, a+2 k$ such that the sum of the squares of the first $k+1$ of these integers is equal to the sum of the squares of the last k. That is, find a formula for $a=\mathbf{a}_{\mathbf{k}}$ as a function of k. For example,
$a_{1}=3$ since $3^{2}+4^{2}=5^{2}$.
Sofution By Mark Evans, Louisville, Kentucky.
Letting all the summations run from $\mathbf{i}=1$ to \mathbf{k}, we wish to have
so that

$$
a^{2}+\hat{A} £(+1)^{2}=\hat{A} £(+i+k)^{2}=\hat{A} £(+i)^{2}+2 \Sigma(a+i) k+\hat{A} £^{k_{2}}
$$

$$
a^{2}=2 \Sigma a k+2 \Sigma i k+\Sigma k^{2}=2 a k+k^{2}(k+1)+k^{3},
$$

$$
0=a^{2}-2 k^{2} a-2 k^{3}-k^{2}=(a+k)\left(a-2 k^{2}-k\right)
$$

and $\mathrm{a}=2 \mathrm{k}^{2}+\mathrm{k}$ (the 2 kth triangular number) or $\mathrm{a}=-\mathrm{k}$.
Also sofved by STEVE ASHER, MoNeil Pharmaceutical, Spring Mouse, $\boldsymbol{P A}$, FRANK P. BATTLES, Massachusetts Maritime 凡cademy, 'BuzzardsBay,WILLIAM BOULGER, St.Tad Fcademy, $\mathcal{M N} \mathbb{N}$ JAMES E. CAMPBELL, Indiana University at Bloomington, CHARLES R. DIMINNIE, St. Bonaventure University, $\mathfrak{N}(\mathcal{O}$, UNDERWOOD DUDLEY, \mathcal{D} ePauz University, Greencastle, ING DAVID EHREN, University of 'Wisconsin, Milwaukkee, RUSSELL EULER, Northwest Missouri State University, Maryviffe, VICTOR G. FESER, University of May, 'Bismarck, \mathfrak{N} (D) RICHARD I. HESS, Rancho Pafos Verdes, CA, FRANK HUBENY, University of Maine, Orono, HENRY S. LIEBERMAN, Waban, $\mathcal{M A}$, DON PFAFF, University of N(evada, Reno, BOB PRIELIPP, University of Wisconsin-Oshkosh, SAHIB SINGH, Clarion University of Pennsyfvania, AMITABHA TRIPATHI, $\boldsymbol{S U U N} \mathcal{V}$ at 'Buffalo, andthe PROPOSER.
672. [Spring 1988] 'Proposed by 'Barry Brunson, Western Kentucky University, Bowling Green, Kentucky.

Find a series representation for

$$
\int_{0}^{1} x^{x} d x
$$

Solution by Murnay S. XTamkin, University of $\mathfrak{A l b e r t a ,}$ Edmonton, $\operatorname{Alberta,}$ Canada. More generally,
673. [Sprlng 1988] 'Proposed by Stanley Rabinowitz, Alliant Computer Systerns, Littleton, Massachusetts.

Let $A B$ be an edge of a regular tesseract (a four-dimensional cube) and let C be the tesseract's vertex that is furthest from A. Find the measure of angle ACB.

Solution by Richard I. Mess, Rancfo Palos Verdes, California.

We take the n-dimensional simplex whose vertices are the points ($x, x, x, \ldots . x$) where each x is either a 0 or a 1 . We take $A=(0,0,0, \ldots, 0)$, a nearest neighbor $B=$ $(1,0,0, \ldots, 0)$, and the farthest point $C=(1,1,1, \ldots, 1)$. Then we have

$$
\cos A C B=\frac{(C-B) \cdot(C-A)}{|C-B||C-A|-} \quad(0,1,1, \ldots, 1) \cdot(1,1,1, \ldots, 1), \quad \sqrt{\frac{n-1}{n-1} \sqrt{n}} .
$$

For $n=4$ we have $\cos A C B=\sqrt{3} / 2$, so $A C B=30^{\circ}$. Angles for other values of n are now readily computed. For example, $A C B=45^{\circ}$ for the square ($n=2$) and $A C B=35.264 \ldots{ }^{\circ}$ for the cube $(\mathrm{n}=3)$.
\mathcal{A} lso solved by JAMES E CAMPBELL, Indiana University at Bfoomington, UNDERWOOD DUDLEY, DePauzw University, Greencastle, INNRICHARD DUNLAP, Georgia Tech, $\mathfrak{A t}$ fanta, HENRY S. LIEBERMAN, Waban, $\mathcal{M A}$, and the PROPOSER.
674. [Sprlng 1988] 'Proposed by Russell Euler, Nortfiwest Missouri. State University, Maryvilfe, Missouri.

Find necessary and sufficient conditions for the arithmetic mean of the roots of the polynomial equation

$$
a_{0} x^{n}+a_{1} x^{n-1}+\ldots+a_{n-1} x+a_{n}=0
$$

to be equal to the geometric mean of the roots.
Solution 6y 'Â£OPrielipp, University of Wisconsin-Osfikosf, Osfkosf, Wisconsin.
It is known that the sum of the roots of the given polynomial is equal to $-\mathrm{a}_{1} / \mathrm{a}_{0}$ and their product is $(-1)^{n} a_{n} / a_{0}$. Hence the arithmetic mean of the roots equals their geometric mean if and only if

$$
\left(-a_{1} / a_{0}\right) / n^{n}=\left((-1) a_{n} / a_{0}\right)^{1 / n}
$$

which can be rewritten as

$$
a_{1}^{n}=n^{n} a_{0}^{n-1} a_{n}
$$

\mathcal{A} lso solved by SEUNG-JIN BANG, Seoul, Korea, DAVID G. CARABALLO, $\mathcal{H i l l s i d e , ~} \mathcal{N O}$, JAMES E CAMPBELL, Indiana University at Bloomington, DAVID DELSESTO, \mathcal{N} (orth Scituate, RI, CHARLES R. DIMINNIE, St. Bonaventure University, $\mathcal{N} \mathcal{O}$, UNDERWOOD DUDLEY, Dełpauw University, Greencastle, INW DAVID EHREN, University Of 'Wisconsin, Mifwaukee, ROBERT C. GEBHARDT, Hopatcong, $\mathcal{N O}$, RICHARD I. HESS, Rancho Palos Verdes, CA, AMITABHA TRIPATHI, SUNO at Buffafo, and the PROPOSER.

Although this is a relatively simple problem, one must be careful to examine signs when taking roots. Thus, for example, $\left((-1)^{n}\right)^{1 / n}=(-1)^{n}$ and not $=-1$. Now, if all the roots are positive, then the stated condition implies that the roots must all be equal. If some of the roots are negative, of course their geometric mean must be a real number. Thus, if n is even, an even number of roots must be negative or a root must be zero. A nontrivial example is the quartic polynomial whose zeros are $3-3 \sqrt{10}, 3=$ $\sqrt{10}, 3+\sqrt{10}$, and $3+3 \sqrt{10}$.
675. [Spring 1988] 'Proposed by John \mathcal{H}. Scott, Macalester College, Saint Paul,

Minnesota.

Erect a semicircle on segment $A B$ as diameter. From point D on the semicircle drop a perpendicular to point C on AB . Draw a circle tangent to CB at J and tangent to the semicircle and to segment CD. Prove that angles CDJ and JDB have equal measures. See the figure below.

Solution by $\mathcal{H e n y ~ S . ~ L i e b e r m a n , ~ W a b a n , ~ M a s s a c h u s e t t s . ~}$
On pages 84 and 85 of Problems and Solutions in Euclidean Geometryby Aref and Wernick (Dover, 1968), it is proven that $\mathrm{AJ}=\mathrm{AD}$. From this it follows that ZADJ = $\angle A J D=\angle C J D$. But

Since $Z A D C$ and ZCBD are both the complement of $\angle B A D$, it follows that they are equal. Therefore ZCDJ = ZJDB
$\mathcal{A l s o}$ solved by JACK GARFUNKEL, flushing, $\mathcal{N O}$, RICHARD I. HESS, Rancfio Palos Verdes, CA, KING W. JAMISON, Middle Tennessee State University, Murfreesboro, G. MAVRIGIAN, Youngstown State University, Off, WADE H. SHERARD, Furman University, Greenvilte, $S C$, and the PROPOSER.

Sherard, whose solution closely parallels the featured solution, located the theorem that $A J=A D$ as problem 494 in this Journal [Spring 1982], proposed by Zelda Katz and solved by Henry S. Lieberman. Jack Garfunkel was one of the also-solvers. Also, this is not the first time that the editor of this Department has missed (related) problems that have appeared here previously
676. [Spring 1988] 'Proposed by John M. Howell, Littlerock, California. Show that, for $\mathrm{k}>0$,

$$
\sum_{i=1}^{n}\left[\prod_{j=0}^{k}(i+j)\right]^{-1}=\frac{1}{k \cdot k l}-\frac{1}{k}\left[\prod_{j=1}^{k}(n+j)\right]^{-1}
$$

Sofution by Safib Singf, Clarion University of Pennsylvania, Clarion, Pennsylvania. The left side of the given equation can be written as

$$
S=\sum_{r=0}^{n-1} \frac{r!}{(k+r+1)!}=\frac{1}{k} \sum_{r=0}^{n-1}\left(\frac{r!}{(k+r)!}-\frac{(r+1)!}{(k+r+1)!}\right)
$$

which is a collapsing series that reduces to

$$
S=\frac{1}{k}\left(\frac{1}{k!}-\frac{n!}{(k+n)!}\right)
$$

a form equal to the right side of the given equation.
Also sofved by UNDERWOODDUDLEY, DePauzu University, Grencastle, Iff RICHARD DUNLAP, Georgia Tecfi, Atlanta,MARK EVANS, Louisviffe, Iff, RICHARD I. HESS, Rancho Pafos Verdes, CA, MURRAY S. KLAMKIN, University of $\mathfrak{A l b e r t a , ~ C a n a d a , ~ H E N R Y ~ S . ~}$ LIEBERMAN, Waban, $\mathcal{M A}$, and the PROPOSER. Xfamkin pointedout that this resuft is welf known.
677. [Spring 198B] 'Proposed 6y Jack Garfunkel, Ffusfing, Now York. If A, B, and C are the angles of a triangle, then show that

$$
\frac{\cos A \cos B \cos C}{\cos \frac{A}{2} \cos \frac{B}{2} \cos \frac{C}{2}} \leq \frac{\sqrt{3}}{9} .
$$

Solution by Murray S. Kfamkin, University of Alberta, Edmonton, Rlberta, Canada.
The inequality is obviously true if any angle is greater than or equal to 90°, so we assume that the triangle is acute. Multiplying the numerator and denominator of the left side by $8 \sin (A / 2) \sin (B / 2) \sin (C / 2)$, we get

$$
\frac{[8 \sin (A / 2) \sin (B / 2) \sin (C / 2)] \cos A \cos B \cos C}{\sin A \sin B \sin C} \leq \frac{\sqrt{3}}{9} .
$$

This result follows from items 2.12 and 2.40 in Bottema et al, Geometric Inequalities, Noordhoff, Groningen, 1968:

$$
\sin \frac{A}{2} \sin \frac{B}{2} \sin \frac{C}{2}=\frac{r}{4 R} \leq \frac{1}{8} \text { and } \cot A \cot B \cot C \leq \frac{\sqrt{3}}{9},
$$

the latter Inequality valid only for acute triangles.
Also sofved by MARK EVANS, Louisviff, \mathfrak{N}, J. S. FRAME, Michigan State University, Lansing, RICHARD I. HESS, Rancfio Pafos Verdes, CA, EDWIN M. KLEIN, 'Universityof Wisconsin, Whitewater, YOSHINOBUMURAYOSHI, 'Portland,OR, BOB PRIELIPP, University of Wisconsin-Osfikosfi, AMITABHA TRIPATHI, $s \mathcal{W} \mathcal{V}$ at Buffafo, and the PROPOSER.
$\mathfrak{Z L}$ Lein, Murayosfii, and Tripatfii each pointed out that equality folds if and only if the triangle is equilateral.

$$
S=\int_{0}^{1} x^{a x^{r}} d x=\int_{0}^{1} e^{a x^{r} \ln x} d x=\sum_{k=0}^{\infty} \frac{a^{k}}{k!} \int_{0}^{1} x^{r k} \ln ^{k} x d x .
$$

It follows by integration by parts that

$$
\int_{0}^{1} x^{m} \ln ^{n} x d x=\frac{(-1)^{n} n!}{(m+1)^{n+1}}
$$

Thus

$$
S=\sum_{k=0}^{\infty} \frac{(-1)^{k} a^{k}}{(r k+1)^{k+1}}
$$

The given problem corresponds to the special case $a=r=1$.
Also sofved by SEUNG-JIN BANG, Seoul, Korea, FRANK P. BATTLES, Massacfusetts Maritime Mcademy, Buzzards Bay, DAVID G CARABALLO, Hillside, $\mathcal{O}(1)$ UNDERWOOD DUDLEY, \mathcal{D} ePauw University, Greencastle, Iff. RUSSELL EULER, \mathcal{N} (orthwest Missouri State University, Maryviffe, J. S. FRAME, Micfigan State University, Lowing, ROBERT C. GEBHARDT, Hopatcong, $\mathcal{N O}$, RICHARDI. HESS, Rancho Palos Verdes, CA, and the PROPOSER.
R. P. Boas, Seattle, WA, referred to Polya and Szegö, Problems and Theorems in Analysis, vol. 1, 1972 (English translation), p. 36, problem 160, which deals with 1 $\int_{0}^{1} x^{-x} d x$, which is essentially equivalent to our problem. Barry Brunson, Western ${ }^{0}$
Kentucky University, Bowling Green, quoted from "A Report from the Selberg Symposium," held in Oslo in June 1987, in the Mathematical Intelligencer 10 \#3, Summer 1988, 46-47:
"The birthday cake served ... was decorated with a formula for
which Selberg published a proof in Norsk Matematisk Tidsskrift
when he was 15 years old. ...

$$
\sum_{n=1}^{\infty} \frac{1}{n^{n}}=\int_{0}^{1} \frac{d x}{x^{x}}, n
$$

Edwin M. Klein, University of Wisconsin, Whitewater, and Bob Prielipp, University of Wisconsin-Oshkosh, each pointed out that the stated problem was problem A-4 in the 1969 William Lowell Putnam Mathematical Competition (see the August-September 1970 issue of The American Mathematical Monthly, pages 723 and 725). Prielipp also noted that on page 676 of the June-July 1971 issue of the Monthly C. D. Olds gives a detailed solution to this problem, including its numerical value $\mathbf{0 . 7 8 3 4 3 0 5 1 . . .}$

SLXTEENTH ANNUALL PI N U EPSITCN STUDENT CONFERENCE MLALL UNLLERSLTY, OXFORD, OHIO
Call for student papers and quests
Friday and Saturday. October 6 and 7. 1989
Held in conjuction with
The Conference on Issues in the Teaching of Calculus featuring Lida Barrett. Thomas Tucker. and Jerry Uhl

WE INVITE YOUTO JOIN US. THERE WILL BE SESSIONSOF THE STUDENT CONFERENCEON FRIDAY EVENING AND SATURDAY AFTERNOON FREE OVERNIGHT LODGING WILL BE ARRANGED WITHMIAMISTUDENTS. EACH STUDENTSHOULDBRING A SLEEPING BAG. ALL STUDENT GUESTS ARE INVITED TO A FREE FRIDAY EVENING

PIZZA PARTY SUPPER. AND SPEAKERS WILL BE TREATED TO A SATURDAY
AFIERNOON PICNICLUNCH. TALKS MAY BE ON ANY TOPIC RELATEDTO MATHEMATICS. STATISTICS. OR COMPUTING WE WELCOMEITEMS RANGINGFROM EXPOSITORY TO RESEARCH. INTERESTING APPLICATIONS. PROBLEMS. SUMMER EMPLOYMENT, ETC. PRESENTATION TIME SHOULDBE FIFTEENOR THIRTY MINUTES.

We need your title, presentation time (15 ar 30 min .), preferred date (fri. \propto Sat.) and a 50 (approx.) word abstract by September 28. Please send to Professor Milton D. Cox. Department of Mathematics and Statistics Miami University, oxford, Ohio 45056

The Conference on "Issues in the Teaching of Calculus" begins Friday afternoon. October 6. Contact us for more details.

TIME

 St. Norbert College

 St. Norbert College 'Fourth' Annual 'Fourth' Annual
 Pi flu Fpsilan Regional Conference
 October 27-28, 1989

Featured Speaker: J. Sutherland Frame Michigan State University

Sponsored by the St. Norbert College Chapter of Π ME in conjuction with the St. Norbert Math club $\Sigma \mathrm{N}_{\mathrm{A}}$

For information contact $=$
Rick Poss, St. Norbert College
De Pere. WI 54115
(414) 337-3198

INDEX TO VOLUME 8. Fall 1984-Spring 1989

No. 1	Fall 1984	$1-68$	No. 6	Spring 1987	$357-424$
No. 2	Spring 1985	$69-140$	No. 7	Fall 1987	$425-492$
No. 3	Fall 1985	$141-208$	No. 8	Spring 1988	$493-556$
No. 4	Spring 1986	$209-280$	No. 9	Fall 1988	$557-632$
No. 5	Fall 1986	$281-356$	No. 10	Spring 1989	$633-704$

AUTHOR INDEX
MMIR-MOEZ, ALI R. The Focal Distance of a Conic Section 246
AMIR-MOEZ, ALI R.. On Reduction of Conic Sections 576
ARTOLA. PAUL and RUTH BRISBIN Taxicab Trigonometry 89
AZARIAN. MOHAMMAD K., The Improper Integral \int sinxdx as an Alternating Series 521
317
BAJAJ PREM N. An Algorithm for Partial Fraction 317
BANKOFF, LEON. Arctanl + Arctan2 + Arctan $3=\pi$ 325
BENANDER. ALAN C.. A Graphical Approach to $\mathrm{e}^{\pi}>\pi^{\mathrm{e}}$
225
BERTRAM. RICHARD. Maximum Trigonometry 503
BOAS. R. P. The Sign of $e^{\pi}-\pi^{e}$ 522
BOYD. JAMES N. A Locus of Points from Convex Coordinates 508
BRENNER. J. L., Asymptotic Solution of the Problems of ErdOs and

Sierpiński Concerning M/N 24
BRENNER. J. L., Limits of Means for Large Values of the Variables 160
BRENNER. J. L. Marcel Riesz - An Anecdote 252
BRENNER, J. L. Paul Turán - Some Anecdotes 390
BRISBIN. RUTH and PAUL ARTOLA. Taxicab Trigonometry 459
BRUNSON. BARRY W. Lies. Spies. AIDS. and Drugs 164
CASHING. DOUGLAS L. and CHARLES R. DIMINNIE. Convergence of 377
CHAMBERS. KELLY ANN. The Isomorphism of the Lattice of CongruenceRelations on a Group and the Lattice of Normal Subgroups ofa GroupCHAN. WAH KEUNG. On the Largest RAT-free Subset of a Finite Set
of Points ..450
COFFIN. MARIE. Non-Negative Integer Solutions of $\sum_{i=1}^{n} x_{i}=k$. 108
COUNCILMAN. SAMUEL X-Matrices: Generalized Complex Number669
80
DEVER. MARY BETH. A Mathematical Model of Voter Participation 80
DICK. THOMAS. Of Exotic Integers and Quaternions -- An Introduction to Representation Theory 209
DIMINNIE. CHARLES R. and DOUGLAS L. CASHING. Convergence of Weighted Averages ...377
DINION, ROBERT. The Least Member Method. An Alternative to 170
DODGE CLAYTON W and JACK GARFUNKEL The Squarilic Quadrilateral 8
DODGE. CLAYTON W. and JACK GARFUNKEL. The Quasi-IsoscelesOLSKI. MARK J., Moses is Your Grandfather and Other
Applications ther Applications of the Geometric Serie 141
ECKOFF. JANET. Random Cantor Sets 311.

FRAME. J. SUTHERLAND. Pi Mu Epsilon Celebrates 75 Years of Mathematical Activity
FRAME. J. SUTHERLAND. Comment on "Counting Bit Strings with a Occurrence of $00^{\prime \prime}$
GARFUNKEL. JACK and CLAYTON W. DODGE. The Squarilic Quadrilateral . 8 GARFUNKEL. JACK and CLAYTON W. DODGE. The Quasi-Isosceles Quadrilateral
GEORGES. JAMES E. and ANNETTE M. MATTHEWS. Maximal Polygons for Equitransitive Periodic Tilings
GOOD. I. J.. A Common Misuse of "Denoted
JUNGREIS, IRWIN. The Correct Value of Pi
KEITH. SANDRA. A Horse of a Different Color: A Note on Induction .. 319
KENSCHAFT. PATRICIA CLARK. Job-Search Ideas for Math Majors (and their Mentors. Families. and Friends)
KHAMIS. H. J., On Buffon's Needle Problem Using Concentric Circles 368
KLAMKIN, M. S.. A Theorem on Homothetic Simplexes
KUBINA, JEFFREY M., Generating Arbitrarily High-Order Root-Finding Methods
LEARY F. C
LI. HUNG C., Average Length of Chords Drawn From a Point to a Circle
LINDSTROM. PETER A., A Note on Evaluating Definite Integrals by Substitution
MATKOVIC. DAVID J., The Chinese Remainder Theorem: A Historical Account
MATTHEWS. ANNETTE M. and JAMES E. GEORGES. Maximal Polygons for
Equitransitive Periodic Tilings
MAXFIELD. MARGARET W., The Best Cylinder for the Money
MERRITT, NANCIE L., The Actuarial Profession: One of the Best Kept
Secrets of the Business World...
MIDDLETON. KAREN P., The Role of Russell's Paradox in the Development of Twentieth Century Mathematics
Development of Twentieth Century Mathematics 234
of 00,.. 572
NICHOLSON. DONALD JOHN. A Ubiquitous Partition of Subsets of $\mathbf{R}^{\mathbf{n}}$. 2. 663
PEREL, WILLIAM M.. A Multiplier Problem
 Many-Valued Logics
RABINOWITZ, STANLEY. The Seven Circles Theorem 441
SCHAUMBERGER, NORMAN. A Variation of the Standard Proof of the Infinitude of Primes
SCHAUMBERGER. NORMAN. Three Familiar Results Via the Mean Value Theorem
SCHAUMBERGER. NORMAN. Another Approach to $\mathrm{e}^{\pi}>\pi^{\mathrm{e}}$.
SCHAUMBERGER, NORMAN. Extending a Familar Limit 392
SCHAUMBERGER. NORMAN. Using Areas to Obtain the AM-GM Inequality .. 461
SCHAUMBERGER. NORMAN. $\mathbf{p q}>$ q $^{\text {p }}$ Via Coordinate Geometry 673
SCHAUMBERGER. NORMAN. Proofs Without Words 674
SCHUE. JOHN R., Simplified Proofs for Some Matrix Theorems 169
SCHUE, JOHN. A Summation Formula ... 391
SNAPPER. ERNST, The Russell Paradox ... 281
SRIVASTAVA. H. M., Some Families of Convergent Series With Sums 292
SRIVASARA. H. M. Some
TRAINOR, PAUL. Mathematics as Guerrilla Warfare: The Case of Rene Descartes
UHLIG. SARAH. The Generalized Prismatoidal Volume Formula 455
UNDERHILL. VANCE. Note on a Well-Known Limit
VERDUCCI, JOSEPH S., You Can't Hurry Love or How Much More Must Art Wait?
WALCZAK. HUBERT. In Praise of Calculus and A Calculus Lament -
WARREN. DONA. The Creator
WELLER. KIRK. Lattices of Periodic Functions 321
WELLER. KIRK. Lattices of Periodic Functions 295
YANCEY. UIIF Edi Branch and Root
96
 425

TITLE INDEX

The Actuarial Profession: One of the Best Kept Secrets of the Business World. NANCIE L. MERRITT
The Adequacy of $\{\sim,-, \lambda\}$ for Gödel Many-Valued Logics. JOHN REID

PERKINS

 306Another Approach π. 251
The Answer is 1 - 1/e. What is the Question?. ELLIOT A. TANIS 387
Arctanl + Arctan2 + Arctan3 $=\mathbb{L}$ LEON BANKOFF 31
Asymptotic Solution of the Problems of Erdös and Sierpinski,
Concerning M / N, J. L. BRENNER Concerning M / N, J. L. BRENNER 24
Average Length of Chords Drawn from a Point to a Circle. HUNG C. LI 146
The Best cylinder for the Money. MArgarei W. Maxfield 581
Ihe Chinese Re
MATKOVIC 493
Comment on "Counting Bit Strings with a Single Occurrence of 00" J. SUTHERLAND FRAME. 675
A Common Misuse of.Denotedw. I. J. GOOD 675
520
Convergence of Weighted Averages. DOUGLAS L. CASHING and CHARLES R. DIMINNIE 377
324
The Correct Value of Pi. IRWIN JUNGREIS 324
Counting B 572
The Creator. DONA WARREN 321
588
Edge-Labelled Trees. JULIE YANCEY 588
96
Extending a Familiar Limit. NORMAN SCHAUMBERGER 392
The Focal Distance of a Conic Section. ALI R. AMIR-MOEZ392
246
Fractals: Mathematical Monsters. JENNIFER ZOBITZ 425
455
The Generalized Prismatoidal Volume Formula. SARAH UHLIG 455
KUBINA 103
A Graphical Approach to $\mathbf{e}^{\boldsymbol{\pi}}>\pi^{e}$, ALAN C. BENANDER 325
The Improper Integral $\int_{0}^{\infty} \operatorname{sinxdx}$ as an Alternating Series. MOHAMMAD K. AZARIAN 521
\qquad
Praise of
WALCZAK676
The Isomorphism of the Lattice of Congruence Relations on a Group and the Lattice of Normal Subgroups of a Group, KELLY ANN CHAMBERS 450
Job-Search Ideas for Math Majors (and their Mentors, Families, and Friends), PATRICIA CLARK KENSCHAFT 583
Lattices of Periodic Functions, KIRK WELLER 295
DINION ,.,.. DINION 170
459
Limits Sples, AIDS, and Drugs, BARRY W. BRUNSON

Limits of Means for Large Values of the Variables, u. L. BRENNER A Locus of Points from Convex Coordinates, JAMES N. BOYDA Mathematical Model of Voter Participation, MARY BETH DEVER
Mathematics as Guerrilla Warfare: The Case of Rene Descartes. PAUL TRAINOR 69mal Polyaons for Equitransitive Periodic Tilinàs, JAMES E.
GEORGES and ANNETTE M. MATTHEWS 503
Moses is Your Grandfather and Other Applications of the Geometric Series. MARK J. DUGOPOLSKI 141
A Multiplier Problem. WILLIAM M. PEREL 590
A New Proof of a Familiar Result. SYLVAN BURGSTAHLER 164
Non-Negative Integer Solutions of $\sum_{i=1}^{n} x_{i}=k$, MARIE COFFIN 108
Note on a Well-Known Limit. W. VANCE UNDERHILI 672
A Note on Evaluating Definite Integrals by Substitution. PETER ALINDSTROM516
Exotic Integers and Quaternions ma An Introduction to
Representation Theory. THOMAS DICK 209 教
On Buffon s Needie problem Using Concentric Circi
On Buffon s Needie problem Using Concentric Circi On Reduction of Conic Sections. ALI R. AMIR-MOEZ KRIN RAT-Free Subset of a Finite Set of Points. WAH357KEUNG CHAN
357
Paul Turán - Some Anecdotes. J. L. BRENNER
636
J. SUTHERLAND FRAME 636
$\mathrm{pq}>\mathrm{q}$ p Via Coordinate Geometry. NORMAN SCHAUMBERGER 673
674
The Quasi-Isosceles Quadrilateral. JACK GARFUNKEL and CLAYTON W.DODGE151
Random Cantor Sets. JANET ECKOF 311
The Role of Russell's Paradox in the Development of Twentieth Century Mathematics. KAREN P. MIDDLETON 234 281
The Russell Paradox. ERNST SNAPPER
The Russell Paradox. ERNST SNAPPER
The Seven Circles Theorem. STANLEY RABINOWITZ169
Simple SChU 522
Some Families of Convergent Series With Sums. H. M. SRIVASTAVA 292
The Squarilic Quadrilateral. CLAYTON W. DODGE and JACK GARFUNKEL 8
391
A Summation Formula. JOHN SCHUE 391
89
Taxicab Trigonometry. RUTH BRISBIN and PAUL ARTOLA 225
A Theorem on Homothetic Simplexes. M. S. KLAMKT 29
29
A Theorem on Homothetic Simplexes. M. S. KLAMKIN
250
250
Branch and Root. NORMAN WOO 380
Tree. Branch and Root. NORMAN WOO 663
Using Areas to Obtain the AM-GM Inequality. NORMAN SCHAUMBERGER 461
A Variation of the Standard Proof of the Infinitude of Primes. NORMAN SCHAUMBERGER 159
X-Matrices: Generalized Complex Numbers. SAMUEL COUNCILMAN 669
You Can't Hurry Love or How Much More Must Art Wait?. JOSEPH S. VERDUCCI 383

LETTERS TO THE EDITOR

R. S. Luthar 120
Edmund F. Mar 280
J. Suck 419
R. P. Boa 321
John M. Howell
593
593
Henry J. Osne 593
PUZZLE SECTION
Edited by Joseph D. E. Konhauser 33. 114. 172. 258. 327
PROBLEM DEPARTMENT
Edited by Clayton w. Dodge $\begin{array}{rllll}41 . & 121 . & 179 . & 265 . & 332 \\ 401, & 468, & 532, & 600, & 684\end{array}$
NATIONAL PI MU EPSILON MEETINGS 64
199
1984 - Eugene
1984 - Eugene 1985 - Laramie 199
1987 - Salt Lake City 489
1988 _ Providence 623
GLEANINGS FROM CHAPTER REPORTS

CHANGES OF ADDRESSIINQUIRIES

Subscribers to the Journal should keep the Editor informed of changes in mailing address. Journals are mailed at bulk rate and are not forwarded by the postal system. The cost of sending replacement copies by first class mail is prohibitive.

Inquiries about certificates. pins. posters. matching prize funds. support for regional meetings. and travel support for national meetings should be directed to the Secretary-Treasurer, Robert M. WoodsIde. East Carolina University.

In Appreciation

The Editor wishes to thank the following for contributing their time and skill in evaluating papers for publication in the Pi Mu Epsilon Journal during the past five years - Volume 8, Nos. 1-10. Their comments and their criticisms have greatly assisted the Editor in the publication process.

Richard V. Andree, The University of Oklahoma; David Ballew, Western Ilinois University; Dr. Leon Bankoff, Los Angeles, California; Gerald E. Bergum, South Dakota State University; Ralph P. Boas, Northwestern University; Barry W. Brunson, Western Kentucky University; Jane W. DiPaola, Cheyenne, Wyoming; Robert C. Eslinger, Hendrix College; Joseph Gallian, University of Minnesota - Duluth; Allan M. Kirch, Macalester College; R. S Luthar, University of Wisconsin Center; Suzanne Molnar, College of St. Catherine; Ivan Niven, University of Oregon; Richard Poss, St. Norbert College; A. Wayne Roberts, Macalester College; John R. Schue, Macalester College; Dale Varberg, Hamline University and Joseph S. Verducci, Ohio State University.

The Editor also wishes to thank those persons who have anonymously aided in the selection of the prize-winning student-written papers which have appeared in the Journal during this period.

Special thanks are extended to the editor of the Problem Department, Clayton W. Dodge. For each issue he supplied carefully edited copy, well before the deadline, in a form easily converted to camera-ready copy for the printer.

Finally, thanks to Kathy Grundhoefer who typed many of the 704 pages in Volume 8, to Carl Gadow who assisted the Editor in all phases of the preparation of copy and who maintained the subscription lists for four years and to current student assistants Andrea Heiberg and Timothy Kremer.

Jriumph of the Jewelers Art

YOUR BADGE - a triumph of skilled and highly trained 8alfour
craftsmen is a steadfast and dynamic symbol in a changing world.

Official Badge

Official one piece key
Official one piece key-pin
Official three-piece key
Official three-piece key-pin
WRITE FOR INSIGNIA PRICE LST.

An Authorized Jeweler to Pi Mu Epsilon

PI MU EPSILON JOURNAL PRICES

PAID IN ADVANCE ORDERS:

Members:	$\$ 8.00$ for 2 years $\$ 20.00$ for 5 years
Non-Members:	$\$ 12.00$ for 2 years $\$ 30.00$ for 5 years
Libraries:	$\$ 30.00$ for 5 years (same as non-members)
Foreign:	$\$ 15.00$ for 2 years (surface mail)
Back Issues	$\$ 4.00$ per issue
Complete volume	$\$ 30.00$ (5 years, 10 issues)

All issues $\quad \$ 210.00$ (7 complete back volumes plus current volume subscription)

[^0]: Editor's Note: The author and the Editor are indebted to David Ballew for compiling Appendices A and C .

[^1]: - see excerpt from a letter by the author at end of the paper

[^2]: $76255272 \quad 39107225141$

