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MATHEMATICS AS GUERRILLA WARFARE
THE CASE OF RENE DESCARTES

by Paul Trainor
Providence College

This Zalk was givenin May, 1964, to the. Rhode Isfand
Gama Chapter CUt Providence College, where Dr. Trhainor
458 a membern of the. Philosophy Department.

I. More people have read Descartes' Discourse on Method in the last fif-

ty years than in the previous 297 years since its publication in 1637.
Yet the economics of the technology which makes Descartes' Discourse so
readily available has also distorted our view of exactly what Descartes
was doing when he published the work in 1637. Because economics
dictates--and academic needs conform--the Discourse is usually published
without the other three works to which it was prefaced. Descartes'
Discourse on Method was an autobiographical preface to three other works,

his Optics, his Geometry and his Meteorology. The mass printing of books
has been a great blessing, but it has not been an entirely unmixed bless-

ing because it can lead to a systematic misreading of works. Reading
Descartes' Discourse or Preface to his scientific and mathematical
treatises without reading the Optics, Geometry and Meteorology

themselves--or at least sampling them--is like judging a restaurant by
reading its menu but not dining there. As one who has enjoyed a full
course Cartesian meal, B would like to tell you what the food is like.

The title of my talk tonight might suggest that 1 have immature
taste buds; it might suggest that Descartes served military K-rations and
I liked them. That suggestion may be unavoidable, so I will try to help
you digest the entree of thought that B bring from the Cartesian Kitchen
by putting on the sauce of a different metaphor. The sauce is not to my
taste, but a military metaphor may make Descartes tastier for you.
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The times in which Descartes lived (1596-1650) were times of violent
religious wars in his native France and in the rest of Europe. Descartes
himself witnessed the Thirty Years War as a young military engineer for
one of the armies. Indeed, Descartes tells us in his Discourse that it
was while returning to the army from the coronation of the Emperor, that,
caught by the onslaught of winter, he holed up in a heated room and had
the opportunity to consider and develop the philosophical reflections
that constitute passages of the Discourse. France itself, as many of you
veterans of the Development of Western Civilization may recall, was split
religiously between Roman Catholics and Protestant Huguenots, and the
religious split was of concern to the monarchy because it reflected and
intensified political divisions. The Kings of France became and remained
Catholic, in part, because religious unity was seen as essential to
political unity. Descartes, in short, lived in atime of civil and
religious warfare.

The situation of war in Europe made Descartes' situation as an
intellectual very difficult because in times of political and religious
strife, orthodoxy is not a social convenience but a necessity. In
France, as in most of Europe in the seventeenth century, orthodoxy
extended to philosophical and scientific matters as well, and Descartes
was acutely sensitive to this fact. In the Fifth of his Six Part
Discourse, Descartes tells his readers that he had written a scientific
treatise which explained the nature of light, celestial mechanics, myriad
phenomena on earth such as earthquakes and the ebb and flow of the tides,
as well as the nature of plants, animals and man. That is, Descartes
announces that he has developed a new, comprehensive, and powerful
scientific theory. But, he tells his reader, he has decided not to
publish it, or at least not until after his death.

It has been three years now, since I reached the end
of the treatise containing all these things and began to
review it in order to put it in the hands of a publisher,
when I learned that people to whom I defer and whose
authority over my actions can hardly be less than is that
of my own reason over nmy thoughts, had disapproved of a
theory of physics that a certain other person (Galileo)
published a little while before. 1 do not want to say
that 1 agreed with this theory, but before their censure
I had noticed nothing in it which I could imagine to be
prejudicial to either religion or the state, nor, as a
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result, anything which should prevent me from writing about

it, if reason had persuaded me to do so; and this caused me

to fear that in the same way there might be found among my
theories some in which I was mistaken, despite the great

care I had always taken not to accept into my beliefs any -
new opinions of which I did not have very certain demon-
strations, and not to write of any which turn out to

anyone's disadvantage. This was sufficient to oblige

me to change nmy resolution to publish the treatise.g

Many interpreters of Descartes--few of whom have read the Optics,
Geometry or Meteorology--suggest that this passage and other similar ones

show that Descartes was just too cautious a man to stand up for
scientific truth against the forces of darkness, that Descartes was too
fearful of the Inquisition. In other words, many interpreters think
Descartes timid, if not cowardly. W all prefer heroes who fight for
their convictions to the frail thinker who retires from the fray. 1
would like to suggest that this is a serious misreading of Descartes,
that in fact Descartes was a cunning guerrilla fighter, and that his
Optics, Geometry, and Meteorology were brilliant strategic attacks

against an enemy whose conventional forces and firepower were far
superior to any he could muster. Descartes himself clues us in to his
strategy.

In the Sixth Part of the Discourse, Descartes tells his readers that

although he will not publish his works, he will continue to write them
and will arrange to have them published posthumously. Nonetheless he
will fight for the truth but he will be careful about what battles he
gets into because a defeat would be very costly. Better to fight
smaller, carefully selected battles than engage directly with larger
forces. In his owmn words, Descartes says that

trying to conquer all the difficulties and errors that keep
us from attaining knowledge of the truth is truly to give
battle; and a battle is truly lost when we accept some
false opinion concerning a general and important matter.
It takes much more skill after such a loss to regain the
same state that we had before than to make great progress
when we already have principles that are well-founded.

As for me, if I have thus far discovered some truths in
the sciences.. ., I can say that they are the results

and consequences of but five or six principal problems
that I have overcome, and I count these as so many
battles where I have had luck on my side. I even do

not fear to say that I think I need only win two or
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three other_such battles, in order completely to achieve
my goals...2
Though he believed he needed only two or three other such battles to

achieve his goals, Descartes decided not to publish his treatise because
of "the opposition that they would awaken."3 That is, he refused to
engage the opposition directly because he sensed that the conventional
army of the scholastics, the troops of the Catholic King, was too
powerful. The Galileo case was a sharp reminder of their power. So
Descartes took off his military uniform and presented himself as a
gentleman of leisure.

II. Guerrilla warfare is by definition a war carried on without regard
to the Hague conventions of war. By definition, a guerrilla is a fighter
who does not wear a uniform and who does not belong to an organization.
Without a uniform, a fighter has no rank or military identity; he is
outside the order of war. Without an organization a fighter does not
have a clearly defined and accepted role to play; nor can he be held
accountable for acting in accordance with the rules of war. That is,
when a recruit puts on a uniform and is assigned to a unit, the method
and objectives of warfare, at least in theory, are defined. If captured
in uniform, a solider cannot simply be shot; he must be treated as a
prisoner of war. A guerrilla need not. In warfare, the guerrilla is not
bound by the rules or conventions of war; by the same token, the
conventional forces are not obliged to treat a guerrilla by the
conventions of war. The guerrilla soldier is neither soldier nor
civilian. He is the outsider, and, if captured, subject to the caprice
of the conventional forces.

Of necessity, the guerrilla fighter is independent, hides his
intentions, does not play by the rules, and uses political tactics as
much as military to realize his goals. The guerrilla fighter wants to
change the status quo which the conventional forces wish to maintain.

The guerrilla fighter wants to keep the battle lines fluid and. blurred so
he cannot be easily hit by conventional fire. And the guerrilla fighter
believes in and lives for the future triumph of his cause even though he
knows that at the present time the odds are very much against him. He
may not see his cause triumph, but he is confident his children will and
so does his bit.
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Descartes was a guerrilla fighter fighting the powerful political-
religious alliance of priests-theologians-philosophers, but he was not a
radical. That is, his fight was not with the Catholic Church as such.
Descartes was a sincere believer, but he was anti-scholastic and probany"
anti-clerical. The scholastic-clerics controlled the educational insti=
tutions in France and elsewhere, and given the times, they were not open
to new ideas. It was a time of intellectual retrenchment, which is a
nice way of saying, it was a time of dogmatic fixation. Descartes be-
lieved in the new science of Copernicus and Galileo and had developed
similar theories of his own. But the times were not ripe. How could he
advance the cause of the new mathematical sciences in the teeth of mili-
taristic opposition from the scholastic-clerics who controlled the educa-
tional institutions in politically volatile France? This is the problem

Descartes in his Discourse and his scientific treatises attempted to address.

It is a well-known principle of guerrilla warfare that you don't
waste your time talking to the establishment. Talk to the people.
Descartes translated this principle into French. That is, he wrote the
Discourse not in the de riguer academic language of Latin but French.

He knew what the statistics of 17th century printing tell us: the buyers
of books were increasingly lawyers and merchants, not clerical academics.
And in his Discourse, he plays on the prejudices of his prospective read-
ers. Like many of them, Descartes tells us, he had had a scholastic edu-
cation and he had found it a waste of time with very little practical ap-
plication. Descartes tells his practical middle class readers that he
had discovered a new method of thinking which led him to many new and
useful discoveries, especially in medicine. The new method--based on his
work in mathematics--was practical; it may some day, Descartes tells his
readers, enable us to cure the debilities of old age, and even extend
life. Saints might want to rush to God, but the middle class is not
known to object to a delay in this life. Descartes chose his target well
and knew how to soften it up.

Like Galileo, Descartes believed that the Copernican theory was
true. He also knew that it was not worth dying for. He wanted his
readers to accept the theory but he also wanted to avoid drawing the fire
of the Aristotelian scholastic army. How could he draw attention to the
theory without unacceptable losses?



Disguise, of course, is essential, and so Descartes wore the
disguise of the timid harmless intellectual, a gentleman of leisure.
stressed that Copernicus' idea is a hypothesis, a guess, a speculation.
Unproven, of course, and so it would seem not true. Nov an indirect
attack: the Optics.

The Optics, among other things, is a manual on how to manufacture
more efficiently cheaper and better telescopes than were available at the
time. The opening of the Optics is magnificent subterfuge written to
appeal to the money-minded middle class readers Descartes wished to win

He

over.

All the management of our lives depends on the senses,
and since that of sight is the most comprehensive and the
noblest of these, there is no doubt that the inventions
which serve to augment its power are among the most useful
that there can be. And it is difficult to find any of these
inventions which augment the power of sight more than that
of those marvelous telescopes which, in use for only a
short time, have already revealed a greater number of new
stars in the sky, and other new objects above the earth,
than the sum total of those we have seen there before: SO
that, carrying our sight much farther than the imagination of
our fathers are used to going, they seem to have opened the
way for us to obtain a knowledge olI nature much greater and
more perfect than our fathers had.

Descartes' tactic here is illuminated by the fact that Galileo's
most persuasive argument for the Copernican system was the discovery of
the four moons rotating around Jupiter--a Copernican system in miniature,
Galileo called it--and the discovery of new celestial bodies. Descartes'
move here is not to argue directly and on theoretical grounds that the
Copernican hypothesis is true but to simply provide an instrument with
which the people could see a model of the system in the heavens.
Logically, enabling people to look into a telescope proves nothing;
psychologically, it wins them over. Psychologically, telescopes played
the role computers play today: somehow a computer printout seems much
more impressive to us than a typed report, even when they 'say' the same
thing. But Descartes' attack in the Optics on the entrenched conven-
tional forces of Aristotelian scholasticism was not simply a matter of
psychological pyrotechnics. He appreciated and respected the.in-
tellectual capacities of nonacademics. Thus, in explaining the
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principles involved in the telescope, Descartes attempted to undercuit the
Aristotelian epistemology that supported the old science. He did this by
undercutting the role that perception plays in cognition.

The old science is based on observed perceptual qualities such as )
color and taste while the new science is based on mathematical,
especially geometrical, reasoning. | n support of the old science, the
scholastics had argued that the perception of distance, or what we today
would call the perception of metrical properties, depended on the
perception of sensory qualities such as color. |n the course of
explaining the principles of how a telescope works, Descartes showed how
the perception of metrical properties (like distance) is fundamentally
different from the perception of non-metrical properties like color. He
showed further that the perception of non-metrical properties like color
is apurely subjective response to stimuli. That is to say, Descartes
showed that knowledge of the world does not depend on the perception of
sensory qualities. Descartes also showed in his Optics that the judgment
of distance presupposes geometrical reasoning, and therefore depends upon
mathematical thinking. A1l these points reinforced and made persuasive
the claim made by Descartes in his Discourse that knowledge of the world
is not through the senses--that is, the old science--but is attained by
mathematical thinking.

Descartes followed up his attack on the old science in the Optics by
attacking the old mathematics in his Geometry.

Most, if not all of you know, that Descartes is the founder of
analytical geometry, but you may not have had the opportunity to
appreciate the fact that his discovery of analytical geometry was an
attack on the Aristotelians. Although Aristotle himself may have been
somewhat unclear about the matter, his followers believed that algebra
and geometry could not be combined. Descartes merely showed that they
could--and he showed how powerful the combination was by solving problems
that for centuries had been considered insoluble. Success is impossible
to refute, and Descartes knew it. So he took advantage of his success in
combining algebra and geometry to write a 'hands on' training manual for
future guerrilla fighters. Practice may or may not make perfect, but it
makes for success. Descartes' audience, as I indicated earlier, is not
just contemporary lawyers and merchants and those few intellectuals open
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to the new, but posterity. Descartes' hope wes that the next generation
"will.. .be all the more capable of discovery for themselves all that |
think | have discovered."5

Descartes' attack on the conventional forces of the religious-
political establishment is reflected in the style of his Geometry.
Descartes’ Geometry contrasts sharply with the standard text, Euclid's
Elements. Euclid's Elements i s polished, as polished as military brass.
It is aclosed work, a finished wak. The reader merely follows ad
assents to the proofs, once she accepts the axioms and definitions. QOe
follows' the proofs of Euclid almost as though one i s following orders.
The conclusions are as inescapable as orders once one has put an the
uniform of axioms. The 'chain' of reasoning in Euclid--we might accept,
we might even get used to it, as one accepts and learns to function in a
chain of command but by ourselves, individually, we do nothing an our
owmn Ve g only where the orders and proofs direct us. That is the
strength and the limitation of conventional armies.

With the Geometry of Descartes the guerrilla soldier does not begin
with axioms, the order of commands for the subordinate propositions. The
guerrilla soldier is first instructed about strategy. Descartes tells
his reader that with very limited resources he can reduce all the
problems of geometry to manageable arithmetical operations.

All the problems of geometry can easily be reduced
to such terms that thereafter we need to know only the
Iﬁngth of certain straight lines in order to construct
them.

Ad just as all of arithmetic is composed of but
four or five operations--namely, addition, subtraction,
multiplication, division, ax the extraction of roots,
which mey be considered a species of division--so in

eometry, in order to find the lines for which we are
ooking, we need only add to them, or subtract from them,
other lines; or else, by taking one line which | shall call
unity, in order to relate it as closely as possible to
numbers, and which usually can be chosen arbitrarily, ad
then by taking two others, (we may) find a fourth line
which is to one of these two lines as the other is to
unity--which is the same as multiplication; or else (we
may) find afourth line which is to one of the two as the
unity is to the other--which is the same as division; or
finally, (we may) find one, or two, or several men pro-
portionals between the unity and some other lines--which
I's the same as extracting the square root, or cube root,
etc. Ad | shall not hesitate to introduce these
arithmetical terms_into geometry, in order to meke myself
more intelligible.6
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Throughout the Geometry, Descartes stresses that his nawv techniques
can solve mary problems that the ancient mathematicians could not. Nat
only could the rev techniques solve may problems the ancients could
not, it enabled Descartes to recast the proofs of the ancients in a more ~
perspicacious ad economical form. The ancients wrote big fat books,
says Descartes; | write thin little books which are more intelligible and
mathematically more powerful. Moreover, says Descartes, ny mathematical
discoveries open wp an infinite mathematical space, as the new science
opened W a infinite physical space. Euclid's Elements is like a closed
universe; Descartes' Geomelry discloses an open mathematical universe.
The parallels with the old ad rew science are striking.

A distinctive feature of Descartes' Geometry that sharply sets it
off from Euclid's Elements is that mawy of the problems posed in the wok
are left unsolved. A guerrilla fighter cannot do everything; he mus
husband his resources; he must get others to join in the work. %
Descartes leaves a number of problems unsolved in order that the reader
might be engaged in their solution. His style is the mathematical
equivalent of wha in the U.S. Amy today is called 'hands on' training.
Descartes wants his readers not to learn about the rawv way of thinking;
he wants them to learn to think in the rev way; axd for this, there is
only one approach: practice, practice, practice. In this vein,
Descartes writes:

And we can aways thus reduce all the unknoan quantities
to a single one, so long as the problem can be constructed
by circles ad straight lines, or by conic sections, or
even by some other line which is only one or Ao degrees
greater. But | shall not pause here to explain this in
greater detail, because | should be depriving you the pleasure
of learning it for yourself, which is, in ny opinion,
the principal advantage we can derive from this science.
Moreover, | do not observe here anything so difficult that
it cannot be discovered by those who are slightly versed in
ammn geometry and in algebra, axd wo pay close attention
to everything in this treatise

This is why | shall content myself here with advising
you that in solving these equations, provided that we do
not fail to use division whenever possible, we will infallibly
reach the simplest term to which the problem can be reduced.7

Descartes' advice and invitation to his readers probably attracted
his better motivated and mathematically inclined readers, but it is
doubtful that Descartes wes so naive as to think that all his readers
would undertake to solve all the problems he left to their pleasure.
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But those who are not highly motivated or have little mathematical
aptitude might still be won over. How might one rope the marginal reader
in?

Well, what is one of the most popular if boring topics of
conversation? What is an oft-used conversation opener? W all know:
the weather--rain, snow, earthquakes, rainbows. And so Descartes writes
about the science of the weather, a Meteorology.

The beauty of a well-directed guerrilla operation is that it is not
where its forces are firing. That is, guerrilla attacks are most
successful to the extent that the objectives of the attack are not
grasped, or are grasped too late, by the conventional forces. A good
guerrilla leader always has his opposite looking the other way. He
attacks in the north to capture a city in the southern delta. This, 1
submit, is what Descartes does when he talks about the weather.

Fundamental to the Aristotelian-Ptolemaic view of the universe is
that the laws which explain the motion of celestial bodies and the
physical constitution of the celestial bodies are fundamentally different
from the laws of motion which hold on the earth and the physical
constitution of the earth. The New Science rejects this belief. The
principle of the uniformity of nature which is essential to accepting the
modern scientific way of understanding the universe depends on the belief
that the laws which explain the behavior of things on earth obtain
throughout the universe and that the planet earth is made of the same
chemical elements as other items in the universe. Descartes insinuates
this idea in the opening paragraph of the Meteorology:

It is our nature to have more admiration for the
things above us than for those that are on our level,
or below. And although the clouds are hardly any higher
than the summits of some mountains, and often we even see
some that are lower than the pinnacles of our steeples,
nevertheless, because we must turn our eyes toward the
sky to look at them, we fancy them to be so high that
poets and painters even fashion them into God's throne,
and picture Him there, using His own hands to open and
close the doors of the winds, to sprinkle the dew upon
the flowers, and to hurl the lightning against the
rocks. This leads me to hope that if I here explain
the nature of clouds, in such a way that will no longer
have occasion to. wonder at anything that can be seen
of them, or anything that descends from them, we will
easily believe that it is singularly possible to find
the causes_of everything that is most admirable above
the earth.
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Descartes did not end his fight here. After the Discourse, he

engaged in other strategic attacks on the conventional armies of the
intellectual establishment. But I will save those items on the
Cartesian menu for another course. Otherwise, I fear Dr. DeMayo will
wish that he had ordered not a Cartesian entree, but rather had ordered
his Descartes a la carte.

Footnotes

L Rene Descartes, Discourse on Method, Optics, Geometry and
Meteor0logy, tr. Paul J. Olscamp {New York: The Bobbs-MerrilT Company,
Inc., The Library of Liberal Arts, 1965), p. 49. All citations are from
this work.

2 Discourse, p. 54.

3 Discourse, p. 55.

* optics, p. 5.
Discourse, p. 57.
Geometry, p. 177.
Geometry, p. 180.
Meteorology, p. 263.

®® N oy O,

GRAFFITO

Good sense is, Of, all things among men, the most equally distributed; fon
everyone thinks himsel so abundantly provided with it, that those even
who are the most difficult t 0 satisfy in everything efse, do not usually
desine a Largen measure of,this quality than they already possess.

Rene Descarntes
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D represents the sense of citizen duty (the satisfaction some
people receive from participating in the political process).
To arrive at this model, Riker and Ordeshook modified an - -
existing model which was not satisfactorily describing behavior.
First, they introduced the sense of duty term which was not present in

A MATHENATI CAL MODEL OF VOTER PARTI CI PATI ON the existing model. They did this because they believed that some

by Mary Beth Dever
Nonthern TLLInois Univernsity

people received some satisfaction from participating without regard to
the particular candidates or choices in an election, and that this
would play a role in the citizen's participation. Secondly, they 'made

The data ibized in this project were made a change in the way the probability was calculated, which we shall

available by the. Inter-University Consorntium for
Political Reseanch. The. data. §or the. SRC American
National Election Study were orniginally collected
by the. PoLitical Behavion Program of the. Suwvey
Research Center, Institute for Social Research,

The University of Michigan. Neither the oniginal
collectons of the. data. nor the consontium bears any

consider in more detail later.

The model is based on the idea that if an individual's reward
from participating in an election is positive, then the individual
will vote. W assume that for an individual the costs and sense of
duty are constant over several elections, whereas the probability of
affecting the outcome and the benefit depend on the particular election

at hand. There are three cases t o consider.

nesponsibility fon the. analyses oil. interpretations 1) If for an individual D> C, (i.e., sense of duty outweighs
presented hene. costs involved) then R > 0 and the individual will always
vote.
W shall discuss a voter participation model which was developed 2) If for an individual C> D and B> C - D, then R> 0 and
by political scientists William Riker and Peter Ordeshook in 1968 [2]. The the individual will vote.
model is used to predict citizen participation in an election and not 3) If for an individual C> D and PB < C - D, then R < 0 and
the outcome of the election. W assume that each citizen has chosen a the individual will not vote.
preferred candidate and i s deciding whether or not to vote. Notice that in the last two cases the actual election is important in

Our model is described by the relation determining participation

R=F -C*tD, where In the testing of the model we do not get precise numerical

L . . values. Instead people are placed into categories based on their
R represents the reward an individual receives from voting;
S . L responses t o survey questions. Then given this information about the
P represents the probability that by voting the individual P y a 9 )
. individual an estimate of the probability he/she will vote in an
affects the outcome of the election; o th h N
. . . . R election can be given. It is assumed that the cost is constant within
B represents the differential benefit received by the individual 9
. a category of sense of duty, since those with a high sense of duty would
from the success of the preferred candidate over the less gory y 9 y

tend to minimize the costs involved in voting and those with a low sense™
preferred, )
. . . . of duty would tend to maximize the costs. So the cost is not used
C represents the costs involved in voting, (e.g., the time taken

directly in the testing of the model, thus simplifying the testing of
to go to the polls); and
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the model.

The model testing used responses from the American National
Election Study (A.N.E.S.). The A.N.E.S., conducted by the Survey
Research Center at the University of Michigan, has been carried out
each election year since 1948, and contains questions pertaining to
elections and social issues. The results from the AN.ES. are used in
many branches of the social sciences. More information about the
A.N.E.S. can be found in Campbell [1]. Responses to seven of the
AN.ESS. survey questions were used to put citizens into categories
based on benefit, probability and sense of duty. The A.N.ES. includes
a post-election survey which contacts the same citizens and inquires,
among other things, whether the citizen voted. Within a fixed category
of benefit, probability of affecting the outcome, and sense of duty,
the level of participation, (i.e., the ratio of the number of people
who voted to the number of people in the category), will be used as an
estimate of the probability a person in that category will vote.

Let us now consider the components of the model. W will begin

by considering the benefit. Let {Ol, Opy ouvs 0n} be the exhaustive

2,
set of outcomes of the election: e.g., candidate A wins, candidate B
wins, and so on. Let the outcomes be listed in decreasing order of

preference. Define a utility function U satisfying

1) E(Ol) 1[1(02) > e zU(On) > 0; and

2) i§1U(Oi) 1.
The utility function is intended to be a measure of the relative
utility or value each of the outcomes has for the individual. The
assignment of actual values to the utility function is not of
importance to our analysis but those interested may wish to consult
Riker [3). Let the differential benefit B = U(Ol) - U(0,). Notice
that i f the outcomes 0, and O2 had the same utility for an individual,
then the outcome would not matter to the individual and B would equal
zero.

B is a way of kncwing whether the outcome of the election is
important to the citizen. To determine benefit the survey question
asked was. "How much do you care about the outcome of this election?”
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Respondents were given several cheices and the responses were used to
put respondents into one of two categories: high benefit or low benefit.

W next consider P. As mentioned previously, Riker and
Ordeshook made a change in the way the probability of affecting the
outcome was calculated. The original idea might seem the most natural
sowe will begin by looking at what was the bad consequence of the old
way of calculating the probability, and then see how the new way was
developed. The old way of calculating P was simply to let V be the set
of voters and v be the number of elements in V, then set P = 1/v.

Riker and Ordeshook gave the following argument to show it was
not reasonable to proceed in that manner. Consider a one-party state,
(for example the South from the Civil Wa to the early 1950's, where
more people vote in the primary than in the general election. SO
Vp > Vg if vp = the number of voters in the primary and Vg ¢ the number
of voters in the general election. W will now subscript the notation
introduced above by P or G to indicate whether we mean the primary or

the general election. For an individual in VP and not in V,, we have

G!
> R /¢ also consider cost and sense of duty to be constant for
?ﬁe individual over the primary and general election and will therefore
leave them out of the argument. Assume our voter is a loyal Democrat,

then BP < B, since for a loyal Democrat the difference in benefit

between twoGDemocraIs would be less than the difference in benefit
between a Democrat and a Republican. If vp >V, then 1/vp < 1/vg, so
BP(1/vP) < BG(l/vG) which implies R, < RG thus arriving at a
contradiction. Therefore P should not be calculated as 1/v.

The new way to look at P is to note that P depends on how close
the race is expected to be. Consider an individual who i s deciding
whether to vote and who prefers candidate A. The citizen makes
estimates of the perceived probabilities candidate A will win and lose
if the citizen votes and does not vote. Naturally the estimates of
these probabilities by some people will be better than that of others.
But if each citizen makes his or her om estimate on which to base his
or her own decision of whether to vote then that will not matter. It
is important to meke a distinction between the perceived probabilities
of the candidates’ winning and the probability of affecting the outcome
which we are trying to derive.



8L

Let g be the perceived probability candidate A wins if the
citizen votes. Let 1-g be the perceived probability candidate A loses
if the citizen votes. Let q' be the perceived probability candidate A
wins if the citizen does not vote and 1-q' be the perceived probability
candidate A loses if the citizen does not vote. If the citizen votes
and candidate A wins, then the citizens' utility will be U(Ol) -CtpD,
which is expected with probability g, so the expected utility is
q(U(Ol) - Cct D). If the citizen does not vote, then the costs and
satisfaction from the sense of duty are not experienced by the

individual. The expected utilities are summarized below.

candidate A wins candidate B wins

citizen votes q(U(Ol) -C+D) (1—q)(U(02) - C t D)

citizen does not vote q'(U(Ol)) (léq')(U(02))

To compare the expected utility of voting with that of not voting, the
expected utility of not voting is subtracted from the expected utility
of voting:

[q(u(ol)-c+n) + (1—q)(u(o2)-c+n)] - [q'U(Ol) t (1-q')U(02)]
When simplified this yields

(q-q')(U(Ol) - U(0y)) - C + D.

This looks amazingly like the original model with U(Ol) - U(02>
being the differential benefit as defined earlier and q - q' playing
the role of P. Riker and Ordeshook assumed the following axiom. The
addition of one more member to the set V will not change the preference
between candidates for the individual members of V. While this may
not be true on small committees, it certainly is reasonable for
electorates the size of those in our national elections. This can be
used to show that q > q', so g - q' IS not negative.

Next, we consider the number of votes a candidate needs to win.

If there are v voters in V and w is the minimum number of votes needed
to win, then

(v+1)/2, if v is odd; and
(v/2) + 1, if v is even.

W

Try this with small numbers and notice that the addition of one more
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voter to the set V increases the number of votes needed to win by one
if vis odd, but it does not change the number needed to win if v is
even. This evenness and oddness will play an important role in the -
development of P. o
Let prv[A,x] be the probability candidate A receives exactly x
votes if v votes are cast. Candidate A will win if he receives the
minimum number of votes needed to win, or any number of votes greater

than the minimum up to the total number of votes possible. S0 if v is

odd,
v+l
q:=] pr 1 [A:X] = pr . [4,(v+1)/2¢1] ¢ pr,, [A,(v+1)/242] ¢ ...
_ v+l _
x=—=+1 vee 1 prv+l[A,v+l] :
and
\"
Q' = [ pr [A,x] = pr_[A,(v+1)/2] + pr (A, (v+1)/2+1] + ...
x = L cor * pr [A,V1.

Notice that in this case q and q' have the same number of terms.

If v is even,
v+l
Q= 1 pr ., [A,x] = prv+llA,(v/2) + 11 + pr_ [A,(v/2) + 2] + ...

X = 7 + 1 cam F prv+l[A,v+1];

and
W
g = ] o [A,x] = PryiA,(v/2) + 11 + P IA(v/2) L 2 % oo

v
x—5+l ...+prv[A,v].

Notice that in this case q has one more term than q'.
Riker and Ordeshook proved the following lemma

Lemma. If voter i intends to vote for candidate A and

p, * prV[A,x} and p, = pr ., [8,%x+1], then P; = P,-

The idea is "one more voter, one more vote.” In the case v is odd,
applying the lemma we have the 1st tern in the @' summation equals the
1st term in the g summation, 2nd term equals the 2nd term, etc. Since
g and g' have the same number of terms q - q' = 0. In thecasev is
even, the lemma gives the 1st tern in q' equals the 2nd term in q,

the 2nd term in q' equals the 3rd term in ¢, etc. Since g has one more
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term than q' ,q -~ q' = prvﬂ[A,(,v/Z) + 1] , the unmatched term, which by

the lemma equals prv[A,v/2] .

No one knows whether there will be an even or odd number of
people voting in an election, but it can be expected to be even or
odd with equal probability. So P = g-q' = (%)prV[A,v/2]. Since
prv[A,v/2] is the probability of a tie, we see P depends on the
citizen's estimate of how close the race will be. To determine P, the
survey question asked was. "How close do you think the race will be?"
Respondents were given several choices which were broken down into two
categories, high and low.

Finally, to get an estimate of the sense of citizen duty Riker
and Ordeshook constructed a sense of citizen duty scale, which
consisted of four statements in the AIN.ES. survey. Respondents were
asked to agree or disagree with the following statements:

1) It isn't so important to vote when you know your party
doesn't have a chance to win.

2) A good many local elections aren't important enough t o
bother with.

3) So maw other people vote in the national elections that
it doesn't matter much to ne whether | vote or not.

4) If a person doesn't care how an election comes out, he

or she shouldn't vote in it.

In order to display a high sense of citizen duty the respondent
had to disagree with the statements. Disagreeing with all four
corresponded to the high category of sense of duty. Disagreeing with
three of them corresponded to the medium category. Disagreeing with
fewer than three corresponded to the low category of sense of duty.

Thus we have two categories each for benefit and probability of
affecting the outcome, and three categories for sense of citizen duty,
for a total of twelve potential categories in which citizens can be
classified. In each of these categories the level of participation
was calculated. | tested the model on data from the 1956 presidential
election, which was one of the years Riker and Ordeshook originally
used for their testing. M results are included below. Zeros in a
category mean | did not have any respondents in that category, so a
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level of participation could not be calculated.

1956 Election Results

High D AL
High B Lov B
High P u24/848 = 0.88 152/193 = 0.79
Lov P 6/T = 0.86 2/3 = 0.6T
Medium D
High B Lov B
High P 277/356 = 0.78 95/137 = 0.69
Lov P 3/4 = 0.75 0
Lov D
High B Lov B
High P 40/78 = 0.51 29/95 = 0.31
Lov P 1/1 = 1.00 0

The results did not have a sufficient number of respondents in
the low categories of probability to use the estimates of the levels of
participation. However in the high categories of probability there are
sufficient numbers of respondents.

From these results we can make a few observations. First,
keeping the categories of B and P constant, e.g., high B and high P,
and comparing along the levels of sense of duty we see that those in
high D were more likely to vote than those in medium D, who in turn
were more likely to vote than those in low D. These results support
the addition of the sense of duty term to the model.

Secondly, within a category of sense of duty, e.g«, high D,
keeping one of the variables P or B constant and comparing levels of

participation between high and low categories of the other variable,
one finds the participation level of the former is higher than that of
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the later, as expected. This shows that both the probability of
affecting the outcome and the benefit are important in determining a
citizen's participation in an election.

The results support the validity of the model as one that can
be used to predict participation in an election. The model could be
used to test other hypotheses about voter participation. |t would be
interesting to see how well the model predicts participation in more
current elections as compared to that of elections in the 1950's, and
whether there has been a shift in the number of citizens in the various

categories such as sense of duty.
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TAXICAB TRIGONOMETRY
by Ruth Brisbin
PRant H. S., Tampa, FL

and Paul Artola
University of South FLorida, Tampa, FL

Introduction: In plane trigonometry, the points of the unit circle

correspond to the functions sine and cosine of an induced angle. In
this paper, we investigate the equivalent functions defined via the
unit circle of the so-called Taxicab Noam, the norm function which
measures distance in the same fashion that one would measure the
distance travelled by a taxicab in going from point A to point Bin a
city with only north-south and east-west streets. Recent articles in
the Journal by Reynolds [1] , Moser and Kramer [2] , and Iny 13} have
investigated the unusual geometry induced by this metric function, but
none has tackled the formulation of trigonometric functions.

Metric Functions and Unit Circles: Ve recall that if x = (xl,xz,-..,xn)

is a point in Rn, then the function
n

(1) xlly = (1 1xg] DY

Py

"

. ) . n . -
is a metric function,for the vector space R. In particular, for p = 2,
(1) becomes the Euclidean metric function, a familiar one to all of us.
When p = 1, however, we have the Taxicab metric function
n
) ey = F 1l

l:
Once we have a metric function, we can define the distance

between two points by

(3 a,Gey) =l % -yl

so that, in R2, for points A = (xl,yl) and B = (xz,y2), we have the
familiar distance formula
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2 2
(1) a,(A,B) = Joey - 2% + (v, - y))

while in the taxicab metric, we have
(5) daa,B) = Ixy - x|+ v, - vyl

With the concept of distance between two points in mind, we recall
that the Unit Cinele is {AeRz: d (A,0) = 1}, where 0 = (0,0). O course,
for p = 2, we have the EuclideanPUnit Circle, while for p = 4, the
Taxicab Unit Cincle (TUC) takes the form

(6) a,(4,0) = b b+ vyl o= 1

If we analyze the branches of the TUC in the various quadrants, the graph
y
becomes

Quadrant Equation
y=x+1 y=-x+1 [ y=- x+I
11 =x+1

X y =
I1I y=-x-1
y=-x-1 y=x-1 IV y=x-1

Diamond Sine and Diamond Cosine: V@ shall now define the trigonometric

functions Diamond Sine (sind) and Diamond Cosine (cosd) of some angle 6

in the same way one determines their Euclidean analogues sine and cosine.
Recall that if (x,y) is some point on the Euclidean unit circle (so that
x2 + y2 = 1) then x = cosé and y = sinf, where 6 is the angle with initial
side the positive x-axis and terminal side the radial line passing through
point (x,y). Nw if we use this idea for finding cosd8 and sindeé by

(x,y) be a point on the TUC then x| + lyl = 1. At the same time,

the equation of the line joining (x,y) and (0,0} is

(7) y = (tané)x.

Solving the system [for (x,¥) in the first quadrant] :

'y = (tan@)x
y=-x+1

we obtain
(tand)x = -x + 1
SO
(tan® + 1)x = 1
sin® + cos@ —

cosb
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therefore
_ _ cosb
&= gosdl = sin® + cos®
Sincey = sind® = 1 - x, then we see that for 0 < 6 £ 900; T
cosb . _ sin9
®) cosd® = S8+ coso and  sinde = sing t cosd
Moving into the second quadrant (900 L 6 3 180% , we must
solve:
y = (tan®)x
Yy =x + 1 ’
Thus, we find:
cosh : _ sin8
(91 00888 = g - cosp N0 SindE = oy ooss
Continuing in this fashion for the third and fourth quadrants:
Quadrant cosdf sindf
cosf sinf
% sin® + cos# sinf + cos®
T cosf sinf
sin® - cos® sin® - cos8
-cos6 -sind
Iz sind + cosb® sin® + cos8
Y -cosb ; -sinf
sin® = cos6 sin6 - cosH
Identities: In Euclidean trigonometry, several identities are derived

from the relationship between the coordinates of the points on the unit
circle and the trigonometric functions. O course, the fundamental
identity is the Pythagorean Identity:

cos6 + sin%6 = 1

Clearly, this relation comes from the fact that for any point (x,y) on
the unit circle, x2 + y2 = 1. Turning to the TUC, we recall that

|x] + |yl = 4, so it follows that analogous to the Pythagorean Identity,
we have the Taxdicab Identity:

-

(10) lcosdd| + |sinde| = 1
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Moving on, we ask what identities exist for angles -6. To

motivate this, let us look at Figure 6.

Quadrant 1: Quadrant II:
y y
1 1
y.-
"~\\e
]
o X T 4/// T
-6
-yt
Figure 6.

From these graphs, it appears that
(11 cosd(~8) = cosd® and sind(-6) = -sindsé.

To prove this, we shall take -9 to be a third quadrant angle so

that 6 is a second quadrant angle. Thus:

_ -cos(-8) _ ~-c0sf _ cosf _
cosd(~8) = sin(-0) T cos(-§) -sin® T cosé sin0 - cosB cosdd,
and
- _ -sin(-6) sin0 -sin@ = -sind®.
simiie=dl) = sin(-8) T cos(-8) -sin® T cosé Sine - cosé

Continuing in this fashion for the other quadrants, we establish
(11).

The last class of identities we develop involves working with the
reference angle, 8', of a given angle, 6. Recall that for the ease of
using trigonometric tables, the knowledge of reference angle identities
enables us to only have a minimal table handy. By associating any given
angle with a first quadrant angle, we need only use a table of values
for first quadrant angles. The reference angles for all quadrants are

as follows:

Quadrant Angle
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Reference Angle

1 2]
| e
III e
v e

Also, recall that

cos6 = -cos(180° - 9) =

o' =8
a' = 180° - o A0
o' = g - 180°

o' = 360° - @

—cos(p - 180°) = cos(360° - 8), and

sin@ = sin(180° - @) = -sin(® - 180°) = -sin(360° - @).

Let o, be a given angle in Quadrant i and let 6! be its

associated reference angle, then between them we have the following

relationships for the diamond trig functions.

c<:>s(1800 - Qé) —coseé
cosd92 = ps = = = -cosdéé;
sin(180° - ©!) - cos(180 - 6!) sind! + cosB!
2 2 2 2
. o .
sin(180° - 95) smeé
sindG2 = p s = = sindeé s
sin(180" - 0!) - cos(180 - ©!) sin@! + cos6]
2 2 2 2
—cos(Q:’3 +180°) -cosG:'3
cosdG3 = = = = = —cosdeé;
sin(eé +1807) + cos(e:'3 +1807) s:i.nG:'5 + cos:Q:‘3
-sin(e! + 180°) _sind!

. 3 3 .
s::.ndé)3 = 5 — = -smdeé;
sin(Q:',’ + 1807) + cos(Qé +180°) sine:'3 + coseé

o
-cos(360 - 8!') coso
_ L _ 4 = [
cosdel\t = p p = = cosdQu 4
i - 1 - - 1 * | 1
sin(360 Gu) cos (360 Gq) s:.neu + coseu
. o .
-sin(360 - 91';) -s:LnOl"
sindG‘1L = = = —sindea .

sin(360° - 91‘;) - cos(360° - G&) sin@' + cos),

n
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EDGE-LABELLED TREES

by Julie Yancey
Durango, Colorade

The problem discussed in this paper was presented in a beginning
graph theory course taught by Dr. Richard Gibbs at Fort Lewis College in Figure 2
Fall, 1982. The problem appears as an exercise in Introduction to Graph Edge-Labelled Tree
Theory, 2nd editian, by Robin Wilson, Academic Press.

In graph theory, a tree is a graph drawn on n vertices with n-1

edges. Each two vertices of the graph are connected by a unique path.
In a tree, there are no cycles, isolated points, or multiple edges.

Ore way which graph theorists use to describe a graph is by
labelling. Figure 1 is a vertex-labelled tree and Figure 2 is an edge-
labelled tree. Notice that Figure 3 is also an edge-labelled tree, but

the edge-labelling is different (non-isomorphic) from that in Figure 2.

Figure 3
Edge-Labelled Tree
1 As part-time combinatorialists, graph theorists spend much time

counting graphs. Cayley's theorem, which is proven in may graph theory
texts, states that there are n n2 non-isomorphic vertex-labelled trees
3 on n vertices. M proof is of the assertion that there are nn"a non-
isomorphic edge-labelled trees on n vertices.
| chose an algorithmic approach to the problem, and found that
two algorithms were necessary to complete the proof. The first
algorithm is a method for proceeding from a given edge-labelled tree to
a family of n non-isomorphic vertex-labelled {n.i.v.£.} trees on n
Figure 1 vertices and the second algorithm shows that this process is reversible.
Vertex-Labelled Tree V¢ show that one edge-labelled tree corresponds to n n.{.v.£. trees. Thus

nn_2 n.L.v.£. trees (from Cayley's theorem) divide into unique families .

of n members each, and this yields the required result of nn-3 non-

isomorphic edge-labelled trees (n.4.e.£.}trees on n vertices.
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The first algorithm begins by constructing any unlabelled tree on
n vertices. The edges are then labelled from 1 to (n-1), as in Figure

4-A. From this edge-labelled tree, T, we are going to construct *

Figure 4-C

Figure 4A

Continuing in this way, the family of n trees (Figures 4B-4G) will be
complete when all of the n possibilities for a vertex labelled B have

a family of n.4i.v.£. trees. For the first tree in the family, T-1, been exhausted.

label the edges the same as those of T, and label a random vertex with

n. The rest of the vertices of the tree are then labelled by proceeding

outward from the vertex labelled n, with each vertex bearing the label

of the preceding edge. See Figure 4-B.

Figure 4-D Figure 4E

Figure 4B

The unique path property assures us that each vertex of T-1 will be
joined to any other vertex in the tree by a unique path, so each vertex
label is defined and no two vertices will share the same label.

The second tree in the family, T-2, has the same edge-labelling _
as T-1, but a different vertex is labelled n. The rest of the vertices Figure 4-F Figure 4G

of T-2 are labelled as in T-1. See Figure 4-C.
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Notice (Figures 4B-4G) that each tree in a particular family is
non-isomorphically vertex-labelled. Each time a different vertex of T
is labelled n, n will be adjacent to at least one different labelled
edge, so the method of vertex labelling from this first algorithm will
produce a non-isomorphic vertex-labelling each time n is moved.
Therefore, we have shown that one n.i.e.£. tree corresponds to n.4.v.4.
trees, where n is the number of vertices.

The second algorithm will show that there is a family of n non-
isomorphic vertex-labelled trees which correspond to one edge-labelled
tree. Beginning with any unlabelled tree, we randomly label the
vertices from 1 to n. See Figure 5-A. \ edge-label this tree by
labelling each edge of the tree with the label of the following vertex,
proceeding outward from the vertex labelled n. Denote the tree by t-1.
Since there are n-1 edges in the tree, and no edge will carry the label
n (Figure 5-A), the unique path property assures us that no two edges
will share the same label.

To obtain t-2, the second tree in the family, begin with the same
isomorphic unlabelled tree. Exchange the label n from t-1 with the label
of an adjacent vertex, and that will be the vertex labelled n in the
second tree (Figure 5-B). The rest of the vertices and edges are
labelled in the same way as in the first tree of the family (Figure 5-C).

Figure 5A

Figure 5C
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Figure 5-F

Figure 5-H

Figure 5-E

Figure 5G

Figure 5-1
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Ve find that the same, unique edge-labelling is produced. This is
because the label of any edge is the same as one of the vertices adjacent
to that edge, and the algorithm is designed to preserve the vertex-
labelling as much as possible within the family of trees.

All of the n.i.v.£. trees in the family will be labelled by the
same method of exchanging n and the label of the adjacent vertex for
each new tree (Figures 5-B, D, F, H). n will eventually appear at each
vertex and this will complete the family of n n.i.v.£. trees corresponding
to one edge-labelled tree (Figures 5-A, C, E, G, I).

Observe that the family of n n.4i.v.&. trees corresponding to a
unique edge-labelled tree as defined by the second algorithm is the
same as the collection of n n.4.v.£. trees which are produced from one
edge-labelled tree in the first algorithm. Both algorithms produce the
same family of trees.

The reversibility of the algorithm assures us that the family of
n n.i.v.£, trees corresponding to one edge-labelled tree i s complete.
A 1 : n correspondence has been defined between edge-labelled and
vertex-labelled trees and an n : 1 correspondence has been established
between vertex-labelled and edge-labelled trees. Since it has already
been proven that there are nn_2 n.4.v.L. trees on n vertices, there must

n-3

be n n.i.e.f. trees on n vertices.

About the. author. -

Julie Yancey graduated §rom Fornt Lewis College Lit Durango, Colorado
with a BA. in Mathematics in 1984,

About the paper -

The. problem discussed in the paper came up in a beginning ghaph
theony counse which Julie was taking in the Fall of 1982,
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The. theony of, gnaphs is one of, the. few fields of mathematics with a deg-
Ainite binth date.. The. §irnst paper on graphs was written by the Swiss
mathematician Leonhand Eulen (1707 - 1783) and it appeared in the 1736
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(Leningrad).
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GENERATING ARBITRARLY
HGHORDER ROOT-ANDING METHCDS

by Jedfrey M. Kubina
Youngstown State. Univernsity

A common problem in applied mathematics i s approximating the
zeros of a continuous function. To be more precise, consider the
following problem:

Suppose f is a continuous function on [a, b]l, and suppose

there exists a point p in [a, b] such that £(p) = 0. Given

tolerance € > 0, find an approximation q to p such that

P-al<e
One way to solve this problem is to use a fixed-point method, which
involves changing the equation £(x) = 0 into the equation g(x) = x, so
that g(p) = p implies f(p) = 0.

Given some initial approximation p{0) to p, the sequence {p(n)},
defined by p(n+l) = g(p(n)), for n >0, converges to p. If f(a) is
continuous on [a, bl and £'(p) # 0, then there exists d > 0 such that,
for every p(0) in (p - d, pt+ d) c [a, b], the fixed-point method
g(x) = x - £f(x)/f'(») converges quickly to p. This is a famous fixed-
point procedure called Newton's Method. If f satisfies certain
conditions on [a, b] it iS possible to define functions g, from f, so
that for any p(0) in some neighborhood of p, the fixed-point method
g(x) = x will converge to p as rapidly as one wishes. In this article
we will derive such fixed-point methods.

To begin, we first need to define the rate of convergence of a
convergent sequence, and that of a fixed-point method. The following
definitions do this.

Definition_1. 1f the sequence {p{n)} converges to p, the
sequence has mth order convergence if and only if m > 1 and the limit,

as n =+ =, of |p(n+l) - p}/|pn) - p]m exists and is positive. |If
m =1, 2, or 3, then the convergence is called linear, quadratic, or



1o4

cubic, respectively.

Dedinition 2. A fixed-point method g(x) = x has mth order

convergence if and only if every sequence generated by g and converging ‘1

to p has mth order convergence.

An important characteristic of quadratically convergent fixed- ]
point methods, which is proven in Faires and Burden (1985), is that the
number of correct decimal digits of the fixed point is approximately
doubled at each iteration. For example, if |p(n) - p| 20.001, then
|p(n+1) - p| =0.00001.

order methods.

A similar statement may be made about higher
For example, cubic convergent fixed-point methods
approximately triple the number of correct decimal digits at each
iteration.

The following theorem, which is a generalization of a theorem
proven in Faires and Burden (1985), states the conditions necessary for
a fixed-point method to have mth order convergence.

Theorem 1. Suppose the following is true of the function g:

(m)

1) for some integerm > 2, g ™) i s continuous on [a, bl;
2) there exists a point pin [a, bl such that g(p) = p;

3) fork=1, ... , m-1: g(k)(p) = 0.

Then there exists d > 0 such that for every p(0) in (p - d, p t+ d) € [a, bl

the fixed-point method g(x) = x has mth order convergence.

Our objective is to define a fixed-point method which converges
to the zero p, of f, with order m.
method is to assume that g(x) = x + ¢, (x)f(x) + <:2(x)[f(x)]2 +...0t
(m-1)
Cpoq (X E(x)] 12 Cgs v 3 Cp g
by forcing g to satisfy the criteria of Theorem 1. Notice that we do

Ore technique for deriving such a

, and then determine the functions ¢

not know the restrictions necessary on f to ensure such a method exists.

However, as the derivation of the functions Cis Cps o , cm_lproceeds,
the restrictions necessary on f can be determined. As an example, we ,3\
. . . . . . i
will derive a quadratically converging fixed-point method. J
Derdvation 1. Assume g{x) = x T c(x)f(x). In this derivation

we will make g satisfy the third, second, and then the first criterion
of Theorem 1.
The third criterion of Theorem A requires that g'(p) = 0.
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are continuous on [a, bl, g'(p) = 1+ <(p)E'(p) is
Hence, we must require £'(p) # 0

Assuming e¢' and f
zero if and only if e(p) = -1/£'(p).
and we define ¢ = -1/f%. It is possible that f may have zeros on [a, bl.
Since £'(p) # 0, by the continuity of f', there exists an r > 0 such that,-
for every x in (p - v, ptr) S [a bl, f'(x) # 0. Let [e, dl =
{p - /2, pt /21, then g' is continuous on [¢, dl.

The second criterion of Theorem A requires that g{p) = p. Since

g is continuous on [c, dl, g(p) = p + £(p)/£'(p) = p.

The first criterion of Theorem 1 requires g(2) to be continuous on
[c, a1. Since g{x) = x - £(x)/£'(x), £ must be continuous on e, di.
By Theorem 1, if f(s) is continuous on [c, dl, and £'(p) # 0, then
there exists a d > 0 such that, for every p(0) in {p - d, pt+4d) < [e, dl,
the fixed-point method g(x) = x - £(x)/f'(x) converges quadratically to p.
This is Newton's Method. Hence, provided f satisfies certain conditions,
Newton's Method will yield quadratic convergence.

The following corollary gives a more direct procedure for
determining the functions €13 Cps wer 5 C 15 and states the restrictions

on f necessary to ensure the fixed-point method g(x) = x has mth order

convergence.

Coroflarny 1. Let the function f have a zero p in [a, bl. Suppose
further that for some integer m > 2, f(Zm'l) i s continuous on [a, bl, and
for every x in [a, b], £'(x) # 0. Define the functions Cgs Cps +ev 5 Oy
and g as follows:

1) co(x) = %3

2) for k=1, ... , m-L ) = -c'k_ll(k £'),

S toy £4cylf12t . b (AT

3) 97 ¢y T ey s ..

Then there exists a d > 0 such that, for every p(0) in (p - d, p+ d) €

[a, bl, the fixed-point method g(x) = x has mth order convergence.

Proof . To prove the corollary we will show that the function g,
defined in statement (3) above, satisfies the three criteria of Theorem 1.
The first criterion of Theorem 1 is that g(m) be continuous on
[a, bl. To prove this we first show that cém), c](_m), . cmT;_

. . m : .
continuous on la, bl. Obviously, CS ) = 0 is continuous on [a, bl.

are al |

Since the highest derivative of f in e, is £f', the highest derivative of

1
fin c, is f*. Inductively, the highest derivative of f in ¢ isf .
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I((m) is f(m+k)‘

Hence, the highest derivative of f in ¢ Because k is at

f (2m-1)

. . m) .
most m-1 and because is continuous on [a, bl, each C|£ is

continuous on [a, b]. Since g = cq + cqf + cz[f]2 t...tc 1[f]m‘l,
(m) m-
g

i s continuous on [a, b]l.
The second criterion of Theorem A requires that g(p) = p. Since
g(m) i s continuous on [a, b], g is continuouson [a, bl. Hence, g(p) = p

since co(p) = p and £(p) = 0.

The last criterion of Theorem A requires that for k = 1, 2, ... ,
m-1, g(k)(p) = 0. Since
m-1 X m-1 X
gx) = [ ¢ (IEEN, g'(x) =1+ ] {ef(EGI +
k-0 k k=1

kck(x)f‘ (R)[E(x)] k_l} .

From statement (2} of the corollary
1

W) = 1e T el GOIEGNE - ol GorEGaT*
& RS- W k-1

it

e L GoIEGN™ L

Since g'(x) = ch- J(x)[f(x)]m_l, g'(p) = ct‘n_l(p)[f(p)]m_l = 0. Because

g' has a zero of multiplicity m-1at p (that is, there exists a function
h such that g'(x) = h(x){x - p)m_2)
also have zeros at p. Hence, for k =1, 2, ... , m-1, g(k)(p) = 0.

, the next m2 derivatives of g' will

By Theorem 1, there exists some d > 0 such that, for every p(0)
in{p -4, pta)c[a b], the fixed-point method g(x) = x has mth
order convergence.

Notice that higher order methods increase the number of functional
evaluations, multiplications, and divisions of the fixed-point function.
Hence, generally, it is better to use Newton's Method, which compared to
higher order methods generally requires the least amount of computational
effort to achieve any desired degree of accuracy.
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NON- NEGATI VE | NTEGER SOLUTI ONS OF

n
I X =k
i=1

by Marnie Cofgin
South Dakota State University

In several contexts, (for example in number theory and Bose-

Einstein equations), it is necessary to find the number of non-negative
n

integer solutions of the equation J X; = k, where k 2. The usual
i=lI

proof offered involves a combinatorial scheme of arranging k objects in

n boxes. W present a straightforward proof that uses induction on the

number of variables.
Theorem. The equation X, + X, + Xy + ...t X =k, wherek is a
k+n -
n-1
V¢ will use the following result

on-negative integer, has ( ) non-negative integer solutions.

n
(i) §
i=0

> , Where r is any non-negative

integer.
First, we introduce some notation. Let Trl " be the number of non-
:

negative integer solutions to X, * X5 L X = k. To prove the

1
+n -

i
n-1 ) . W proceed by

theorem, we will show that T = (k
n,k

induction on n.
Let n = 1. The equation X1= k has exactly one solution; that is,

T. = 1= (k> = (k+l'l),sothetheoremistrueforn::l_ Now
1,k 0 1-1

-1
assume that for n > 1, T = (k+n
- n,k

1 ) , Where k is a non-negative
n
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i i i + + ... 1 = k.
integer. Consider the equation Xl X2 Xn+1 k. Choose

Xlto be any integer between 0 and k inclusive, say Xp=a 0<acsk,

then X1 + X2+ ... +X ., =kif and only if atx, t .o tX ;7 kior

(ii) X2+X3+...+Xn+l=k-a

Since equation (ii) has n variables, the induction hypothesis applies,

and (ii) has T = (k -atn- 1) solutions. Then
n,k-a n -
(118) T = 1 To,k-a (see below)
all a
X -
= Z ) by the induction hypothesis
a=0
5 i+n-1
= ¥ ( ) changing the notation,
i=0 n-1
or
_fk+n-1+1 .
Toti,k = ( n+1l+1 ) by (1)
- (k + (n+1) l) , and the induction is complete.
(n+l) -
Therefore, Xl + X2 L X = k has (k ) non-negative integer

solutions, where k is a non-negative integer.
To justify the summation process used in (iii), let S be the set

of non-negative integer solutions to Xl LD G Y X = k. Sisa

2

finite set of ordered n-tuples. Let (bl, b 5 bn) denote an

gy nre

arbitrary element of S, and

Sa= {(b), by +un b):b =a
{sa [0 < ac< kI forms a partition of S Because {sa} is a partition of
S, the number of elements in S is the aum of the number of elements in
each Sa over all a.

This summation process nmgy be further clarified by considering

the case n = 3. Choose X =a,oia_<_k,thenxl+x +x3=kifand

1 2

only if a+ X2 + X =k, or X2 + X3 = k - a, which by the induction
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hypothesis, has (k -at l) solutions. Therefore,

1
k k+1
T, . = 1 (k‘a+l>=2(k-a+1)=2(i)
3,k 1 L o
all a a=0 i=1
lermber ), (kr2) | (KERSL) ma s,
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This issue of the Jowwmal contains (Jive.student-wiitten papens.
AL §ive and the. paper A Ubi quitous Partition of Subsets of R by
Donald John Nichofson (Falt 1984) have. been entered in. the. Journal's
1984-1985 National Papen Competition. The. competition is open to siu-
dents who have. not #received a Master's Degree at the time of submissdion.
Finst pnize 45 $200, second prize 45 $100, and third prize 4s $50. The
winnens for 1984-1985 will be announced in. the next {issue. Papers may
be. submitted to the. Editor at any Zime.
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Clearly, the. Hungarian educational system has been the. most duccessful
fon pure mathematics; it's a modefthat ought to be. studied very cate-
{ully because it works.

Donald Knuth
Two Year College Mathematics Jouwrnal
Volume 13, Januarny 1982
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BUDAFEST SEMESTER | N MATHEMATICS

A Program for American Students in English

SEND ONE OR TWO SHEMESTERS CF YAOLR JUNIOR YEAR | N BUDAREST
LEARN MATHEMATICS IRM LEADING HUNGARIAN SCHOLARSHAN ENGLISH

Hungary has a strong tradition of excellence in mathematics
education. However, the language barrier has made it dif-
ficult for American undergraduate students to derive the
benefits of study at Hungarian universities. BUDAFEST
FEMESTERS |N MATHEMATICS has been designed to fill that void.
Through this program, American students in their junior/senior
years magy study under the tutelage of eminent Hungarian
scholars, most of whom have had American teaching experience.

All courses are taught in English.

Classes are held in small groups.

Credits are transferable to American colleges and
universities.

The school is near the center of historic Budapest.
Living costs are modest.

o0 o0oo0oo

Program Advisor and Honorary Director:

Paul Erdds Member of the Hungarian Academy of Sciences,
Member of the US National Academy of Sciences
Recipient of Wolf Prize

Program Director:

Laszlo Lovasz Corresponding Member of the Hungarian
Academy of Sciences,
Head of the Department of Computer Science,
EStvSés University
A. D. White Professor-at-large, Cornell
University

Program Coordinator: Laslo Babai, Department of Computer
Science, University of Chicago,
1100 E. 58th St., Chicago, Illinois
60637

American Advisory Board: Ronald L. Graham, Paul R Halmos,
Donald E. Knuth, Peter Lax,
Ivan Niven, Joel Spencer
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American Program Representative:

Professor William T. Trotter, Jr., Chairman
Department of Mathematics and Statistics
University of South Carolina

Columbia, S.C. 29208 Telephone (803) 777-4225

Academic Calendar:

The Spring semester begins early in February and ends in
mid-June. The fall semester starts in mid- September and
ends In late January. Each semester starts with a brief
orientation program. There will be a week's break in each
semester. The first "Budapest Semester 1 n Mathematics"
will be in Spring 1985.

Academic Program:

Students will be expected to take three to four mathe-
matics courses and one or two intercultural courses
each semester.

The mathematics courses to be offered include: Topics in
Algebra, Topics in Analysis, Number Theory, Discrete
Mathematics = An Introduction to the Theory of Computing,
Linear Algebra, Complex Functions, Probability Theory,
Linear Programming, and Conjecture and Proof = Funda-
mentals of Mathematical Thinking.

The non- mathematical courses to be offered include:
European History, Architecture and Arts in Europe, and
Hungarian Language.

Costs:

The program fee iS $1850 per one semester and $3500 for
a full year (Fall & Spring). This sum includes tuition,
textbooks, medical insurance and a program excursion to
points of interest in Hungary. It does not include
lodging, meals and transportation.

Application:

To be eligible, students must have at |east sophomore
status, be in good academic standing, have completed two
years of calculus by the start of the program, and be
motivated to study mathematics. Selection for the pro-
gram IS based on the Application Form, written recom-
mendations and the transcript. Application is free. All
material must be mailed to the American Program
Representative.
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THE TWHLFTH ANNUAL RU MU EPSILON STUDENT CONFERENCE
AT o
MIAMI UNIVERSITY
I'N
OXFORD, OHIO

SEPTEMBER 27-28, 1985

WE INVITE YOU TO JOIN US THERE WILL BE SESSIONS OF THE
STUDENT CONFERENCE ON FRIDAY EVENING AND SATURDAY AFTER
NOON. FREE OVERNIGHT LODGING FOR ALL STUDENTS WILL BE
ARRANGED WITH MIAMI STUDENTS. EACH STUDENT SHOULD BRING A
SLEEPING BAG. ALL STUDENT GUESTS ARE INVITED TO A FREE
FRIDAY EVENING PIZZA PARTY SUPPER AND SPEAKERS WILL BE
TREATED TO A SATURDAY NOON PICNIC LUNCH. TALKS MAY BE N
ANYY TOPIC RELATED TO MATHEMATICS STATISTICS (R COMPUTING.
WVE WHGOVE ITEMS RANGING HROM EXPOSTORY TO RESEARCH,
INTERESTING APPLICATIONS, PROBLEMS, SUMMER EMALOYMENT, ETC.
PRESENTATION TIME SHOULD BE FIFTEEN (R THIRTY MINUTES

VWE NED YOUR TITLE, PRESENTATION TIME (15 GR 30 MINUTES)),
PREFERRED DATE (FRIDAY (R SATURDAY) AND A 50 (APPROXIMATELY)
WORD ABSTRACT BY SEPTEMBER 20, 1985.

PLEASE SEND TO

PROFESSOR MILTON D. QX
DEPARTMENT OF MATHEMATICS AND STATISTICS
MIAMI UNIVERSITY
OXFORD, OHIO 45056

WE ALSO ENCOURAGE YOU TO ATTEND THE CONFERENCE N “STATIS
TICS" WHICH BEGINS FRIDAY AFTERNOON, SEPTEMBER 27. FEATURED
SPEAKERS INCLUDE MY LES HOLLANDER, RICHARD L. SCHEAFFER, AND
RONALD D. SNEE. GCONTACT US FOR MCRE DETAILS.
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PUZZLE SECTION

Edited by
Joseph D. E. Konhauser

The RUZAE FCITION i s for the enjoyment of those renders who are
addicted to working doublecrostics or who 11 N0 an occasional mathematical
puzzle attractive. V¢ consider mathematical puzzles to be problems whose
solutions consist of answers immediately recognizable as correct by simple
observation and requiring little formal proof. Material submitted and not
used here will be sent to the Problem Editor i f deamed appropriate for the
ARBBV DEPARIVENT.

Address ail proposed puzzles and puzzle solutions to Prof. Joseph
D. E. Komhauser, Mathematics and Computer Science Department, Macalester
College, St. Paul, Minnesota 55105. Deadlines for puzzles appearing i n
the Fail Issue will be the next February 15, and for puzzles appearing in
the Soring Issue will be the next September 1S.

Mathacrostic No. 20

Proposed by Joseph P. E. Konhauser
Macalestern College, St. Paul, Minnesota

The word puzzle on pages 116 and 117 is a keyed anagram. The
265 letters to be entered in the diagram in the numbered spaces will be
identical with those in the 30 keyed wokds at the matching numbers. The
key numbers have been entered in the diagram to assist in constructing
the solution. Whe completed, the initial letters of the words will give
the name of an author and the title of a book; the completed diagram will
be a quotation from that book. For an example, see the solution to the

I ast mathacrostic on page 115.
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SOLUTION

Mathacrostic No. 19. (See Fall 1984 Issue) (Proposed by Joseph D. E.
Konhauser, Macalesten College, St. Paul, Minnesota).

-y =

Words:

A. H-shaped J. Nerd S. Event

B. Ornament K. The Me T. Eldest hand

C. Double L. Uvarovite U. Nuthatch

D. Graph theory M. Rheostat V. Ineffable twaddle
E. Empathy N. Indeed W. Growth Form

F. Shibboleth 0. Nephelometer X. Method

G. At the bat P. Golden Y. Adiabolist

H. Lambda-calculus Q. Towe of Hanoi

| . Apotheosis R. Hexenbesen

First Letters: HODGES ALAN TURING. THE ENGVIA

Quotation: ... he had gound an unsofvable phobtem, and ... had deatt

the death-bfow t 0 the, Hilbert progrnamme. He. had shown that mathematics
could never be. exhausted by any finite set of procedures. He had

gone to the. heart of the phobtem, and settled it with one simple,
elegant observation.

Sofved by:  Jeanette Bickley, Webster Groves High School, MO; Betsy
Curtis, Meadville, PA; Charles R. Diminnie, St. Bonaventure University,
NY; Victor G. Feser, Mary College, Bismarck, ND; Robert Forsberg, Lex-
ington, MA; Robert C. Gebhardt, County College of Morris, Randolph, NJ;
Allan Gil bertson, University of Maryland, MD; Dr. Theodor Kaufman,
Nassau Hospital, Mineola, NY; Lt. Timothy B. Killam, USAF, Offutt Air
Force Base, NE Henry S. Lieberman, John Hancock Mutual Life Insurance
Co., Boston MA; Robert Prielipp, The University of Wisconsin-Oshkosh,
WI; Stephanie Sloyan, Georgian Court College, Lakewood, NJ.
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27 28 29 30 31 Y[32 F[33 34 c|35 36 U 37 38 P
39 40 M4 42 43 H|44 DY45 46 0 47 Q|48  b|49 50
51 52 A|S3 54 55 56 b|57 88 1 59 Q|60 R|61 62 A
63 64 M 65 66 67 Y|68 Q|69 70 F 71 I[72 P 73 H|74
75 76 F {77 78 79 N|80 d|8] 82 S 83 W84 b(85 86 X |87
88 89 D90 91 92 93 N9 d 95 T196 97 N|98 99
100 101 Vv 102 103 104 d|105 J{106 107 U108 109 V 110 111 A
n2 113 K[114 115 116 117 2|18 D 119 W(120 121 I 122 U123
124 125 d{126 127 128 129 W|[130 131 132 N[133 P[134 135 L
136 137 F 138 139 140 bj141 D|142 143 144 1 145 146 X |147
148 149 Y [150 151 162 153 A 154 155 L 156 157 E|158 d[159 160
161 162 N [163 164 165 166 L|167 D 168 C|169 170 V1IN 172 S
173 174 N|[175 176 177 178 X[179 180 b[18] 182 A 183 184 E[185
186 187 N[188 189 190 af191 Vv 192 T[193 194 1 195 196 Z{197
198 199 L {200 201 202 203 0]204 E [205 206 207 I 208 209 c
210 211 U212 213 214 215 T|216 217 R 218 W[219 df220 221 Aj222
223 F [224 225 226 D|227 K{228 229 E230 SY231 A|232 X233 234 V
235 236 Z 237 238 239 M 240 241 F|242 243 Rj244 245 bl246
247 1)248 249 250 a|251 K 252 H|253 254 O 255 256 T
257 258 D|259 260 261 262 J[263 U|264 265 P

vegenitions

A

Unquestionable {cemp.)

Arich supply

Double point of a curve

German relay computer designer (b. 1910)
(fu11 name)

To unite by apposition or contact
Forerunner of the modern slide rule

(2 wds.)

To proceed or move in a diagonal or
sideways manner

A fitting curve named after a draftsman's
aid

By the very nature of the case (2 wds.)

Tropical parasite which is a competitor

for the title "world's largest infloresence"

Archimedean "pump"
Title of Naboth Moseley's 1970 full-scale
biography of Charles Babbage (2 wds. )

Figures that have been squared by using
the give-and-take principle

Basis of Archimedes' mechanical method
(4 wds.

Equivalent relative growth of parts such
that size relations remain constant

Court-declared (Honeywell vs Sperry-Rand,

October 19, 1973) inventor of the electronic

computer (b. 1904) (last name only)

Played by primitive people, it might be
the' world's oldest game

Directions as to how sentences already
known as true may be transformed so as to
yield new true sentences (3 wds.)

Ball and wheel apparatus for showing the
relative positions and motions of the
bodies in the solar system

Psychological thriller

Early randomizers, used in the Middle
East around 3600 B.C.

Reserve fund (2 wds. }

For an orbit, curve defined by the veloc-
ity vectors when drawn from one point
Clearly demonstrable

The version of any game in which the game

objective is reversed

A conclusion inferred

/Russell = formalistic/Hilbert =

intuistic/Brouwer
"To the

-- that is the mathe-
J. Keyser (2 wds.)

matician’s an~ =

Inferior; of lew quality (coup.)

A therapeutic system of treatment by manip-
ulation and without the use of drugs

Wonds

241137 N

217 75 195 193 233 96 69 103 243 165 145 259

102 178 124 86 232 116

6 237 164 48 35 84 56 140 245

16 171 180 208 261

209 220 77 51 34 85 20 123

158 219 80 214 104 65 22 125 1 94

70



118

CMVENIS ON PUZZLES 1 - 7, FALL 1984

For Puzzte # 1, only the proposer, John M, Howell, and Victor G.
Feser submitted solutions. The number of distinguishable squares is 70.
Feser and Howdl provided arrangements of the 70 squares into rectangles
7x10.

four different colors, in 8x8 arrays.

Both provided arrangements of the 64 squares, none containing
Feser also provided a 5x14
rectangle and said that 1x70 and 2x 35 rectangles were easy to obtain.
The Editor will send photocopies of the arrangements upon request. For
Puzzle. # 2, Leonard Volovets and David Ehren submitted 39., = 264 = 180.

Ehren al so submitted 7544 = 4264 = 278 Marc Farley contributed 9, =
57

4 = 84. The interpretation of Farley's solution will be left to the

reader. Puzzle # 3 drew the largest number of responses. These varied

from particular solutions to formulas for generating families of solutions,
The quartet (1, 22, 41, 58), including 1, was among the solutions obtained
by most of the respondents. Only three readers responded to Puzzfe # 4. A
composite of solutions from John H Scott, Robert Sartini and Stephen W.
Nelson goes as follows: cb = c¢bab = cabb = acbb = abacbb = baacbb =
babaacbb = bbaaacbb = bbaacabb = bbacaabb = bbcaaabb = bbcaabab = bbcaabba =
bbcababa = bbcaba = bbca = bbac = babc = bc. Three readers responded to
Puzzle # 5.
Recreational Mathematics on "prime chains.”

Victor G. Feser referred to Problem 566 in the Journal of
Feser's contribution toward

the solution of Problem 566 appeared on pages 311-312 of Volume 10, No 4,

1977-78, where the extension of "prime chains” to "prime rings" is discussed.

David Ehren showed that if N - 1, N+ 12 and N - 1 are primes, the arrange-

ment
Ny, N-2 3 N-4,5, vou ,2 N-12, N

is a "prime ring." Ore sum of adjacent members of the ring is N - 1. The

rest are either N - 1 or N + 1. Puzzle. # 6 drew responses from Robert Prie-
Sartini submitted the set (11, 17, 20, 22, 23, 2u),
Prielipp reported

lipp and Robert Sartini.
All 63 non-empty subsets have different sums of elements.
that the problem is not new.
he found the Sartini-submitted set as part of the solution to problem E1062
(proposed by Leo Moser).

ber 1953 issue. The other part of the problem was to show that no

In the course of "searching for something el se,

The solution appears on pages 713-714 of the Decam
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seven positive integers, strictly less than 25, can have sums of all sub-

sets different. Puzzfe # 7 drew responses from six readers. Al agreed,

but not all proved, that 14 is the largest balanced number. Victor Feser's
argument follows: "The largest balanced number is 14. The example 10 shows
that 'between 1 and N' isto be taken strictly: A and N are not included.

Therefore, a balanced number must be even. Nw 16 is unbalanced, in favor
of composites. For any larger N, the new integers to be considered must be

at least half composite (the even ones !), so the imbalance remains."

List of solvers: Edward Aboufadel (3), Patrick Costello (3), David Ehren
(3,5), Mak Evans (6,7), Mac Farley (2), Victor G. Feser (1,5,7), Allan

Gilbertson (3), John M Howel (2,3,7), Thanas M Mitchell (3), Stephen W.
Nelson (3,4,7), Robert Priel ipp (3,6,7), Robert Sartini (4,6), John Hoe

Scott (2,3,4,5,7), Brian Varngy (3) and Leonard Volovets (2).

RIZAES FOR SOLUTION

1.  Pnoposed by John M. Howelf, Littlerock, California.

Which of the following alphametrics can be solved with all one-digit

integers?

Base 5 Base 6 Base 7 Base 8 Base 9 Base 10
Jis] y2s] pis ARC ABC ABC

+ c + £D +_CD + DE + DEF + DEF
DE EF BG FH HI GHIJ

2. Pnoposed by Victon G. Feser, Mary College, Bismarck, North

Dakota.

Wha is the next integer in the sequence: 1, 3, 5, 7, 9, 15, 17,

21, 27, 31, 33, .. ?

3. Proposed by J. O. E. Konhauser, Macalester Colflege, St. Pout,

Minnesota.

Is there a five-digit number abede such that 9x abede = edcba?
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4. Proposed by J. D. E. Konhauser, Macalester Cortege, St. Pauf,
Minnesota.

In acute-angled triangle ABC the point D is the foot of the altitude
from A to BC If AD = BC dissect the triangle into four pieces which can

be reassembled to form a square.

5. Proposed by J. 0. E. Konhauser, Macalester College, St. Paul,

Minnesota.
Are there three positive integers such that the sam of the squares

of any two of them is a perfect square?

6. Proposed by J. D, E. Konhauser, Macalester College, St. Paul,

Minnesodta.
Here is a first-class puzzler. Posthaste, give the next two terms

in the sequence: 2, 3, 4, 5, 6, 8, 10, 13, 15, 18, ... .

7 Proposed by J. V. E. Konhauser, Macalester College, St. Paul,
Minnesota.

With a pair of compasses draw a circle on a plane. Then, without
changing the opening of the compasses, draw a circle on a sufficiently
large sphere. Which circle encloses the larger area?

IS SN SN S B S0 S S0 S0 0 A S A S (N N A N SN N S S 0 A AN A S N A AN N Y

LETTER TO THE EDI TOR:
Dean. Editor:

a+ g *y=1 (straight angle)

2/2 arctan 1+ arctan 2 + arctan 3 = T

John M. Howell
Littlenock, California
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PROBLEM DEPARTMENT

Edited by Ceayton W. Dodge
University o§ Maine

This department welcomes problems believed to be new and at a
level appropriate for the readers of this journal. Old problems
displaying novel and elegant methods of solution are also invited.
Proposals should be accompanied by solutions i f available and by any
information that will assist the editor. An asterisk (*) preceding a
problem number indicates that the proposer did not submit a solution.

All eommunications should be addressed to ¢. w. Dodge Math.
Dept., University of Maine, Orono, ME 04469. Please submit each
proposal and solution preferably typed or clearly written on a separate
sheet (one side only) properly identified with name and address.
Solutions to problems in this issue should be mailed by December 15,
1985.

Problems for Sol ution

587. Proposed by Monris Katz, Macwahoc, Maine.

As a tribute to an Editor Emeritus of this department, find
positive integers X and Yy, with y > 2 , such that o/ = BaNKoFF.

588. Proposed by Gregory Wulezyn, Bucknell University,
Lewisburg, Pennsylvania.
Find al | solutions to the quadratic congruence

x? = -1 (modulo m}

where M is of the form m= (rn * 1)2 + r2.

589. Proposed by Joyce. W. Williams, University of Lowelf,
Massachusetts.
The integers 7, 3, and 10 are related by

73 = 35 + 202.
Is this the only set of positive integers that satisfies the relation
a'3 = b5 + 02?
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Find all solutions.

590. Proposed by Emmanuel 0. C. Imonitie, Nonthwest Missourni
State University, Maryville.
Find all solutions to the simultaneous equations

Y - ¢ and 330-1 = 2y+1.

591. Proposed by Charles W. Trigg, San Diego, California.

Find al | three-term arithmetic progressions of three-digit
primes in the decimal system with first and | ast terms that are
permutations of the same digit set and with only four consecutive
digits involved in the three terms of each progression.

592.  Proposed by Stanley Rabinowitz, Digital Equipment Corp.,
Nashua, New Hampshire.

Find all 2 by 2 matrices A whose entries are distinct non-zero
integers such that for all positive integers n the absolute value of

the entries of A* are all less than some finite bound M.

593.  Proposed by JoeVan Austin, Emorny Univensity, Atlanta,
Geongia.

Russian roulette is played with a gun having n chambers, in
which k bullets are placed at random (0 < k < #n). Find the expected
number of tries until the first bullet isfired if the chambers are
spun

(i) before each shot.
(ii) only before the first shot.

594,  Proposed by R S. Luthan, Univensity of Wisconsin Center,
Janesville.
Prove that

1 4 1.7:
" Inxde ==\ z dz

0 0

595.  Proposed by Harry Nelson, Livewmone, California.

If the integers from 1 to 5000 are listed in equivalence classes

according to the number of written characters (including blanks and

hyphens) needed to write them out in full in correct English, there are
exactly forty such non-empty classes. For example, class "4" contains
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4, 5, and 9, since FOUR, FIVE, and NINE are the only such numbers that
can be written out with exactly four characters. Similarly, class "42"
contains 3373, 3377, 3378, 3773, 3777, 3778, 3873, 3877, and 3878.
Find the unique class "n" that contains just one number.

596, Proposed by Stanley Rabinowitz, Digital Equipment Corp.,
Nashua, Nw Hampshire.

Two circles are externally tangent and tangent to a line L at
points A and B A third circle is inscribed in the curvilinear triangle
bounded by these two circles and L and it touches L at point C A’
fourth circle is inscribed in the curvilinear triangle bounded by line
L and the circles at A and C and it touches the line at D. Find the

relationship between the lengths AD, DC, and CB.

597.  Proposed by Stanley Rabinowitz, Digital Equipment: Cow.,
Nashua, New Hampshire.

Find the smallest n such that there exists a polyhedron of non-
zero volume and with n edges of lengths 1, 2, 3, ..., #n.

598. Proposed by Gregory Wulezyn, Bucknell University,
Lewisburg, Pennsylvania.
Establish the formula

"™ coe ax) = & cos ax [t - (7;) o2 a2 + (Z) ot a4 -

+eM gin ax [-(;') rn_l a+ (r;) rn_g a3 - (2) ] a5 Fouual

el
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and find the corresponding formula for

D" (" sin ax).

599, Proposed jointly by Ghegg Patruno, Princeton University,
New Jensey, and Mwiray S. Klamkin, University of, Alberta, Edmonton,
Canada.

Prove that

2 2, - 2
eos” x cos y _ cos” X = eos Yy

cot2 X cot2 y cot2 X = cot2 Y
and generalize this result by finding under what conditions on
functions f and g it is true that

flz)-fly) _ flz) - £y)
g(x)-gly) — glx) - gly)°

Solutions

544. [Fall 1983, Spring 1984] Pnroposed by Charles W. Tnigg,
San Diego, California.

The SP.FA. (Society for Persecution of Feline Animals)
established a PURR
FREE

AREA at its headquarters.

In the word square each letter uniquely represents a decimal
digit, and each word and acronym represents a square integer. Whet
are these squares?

Sokution by Vicki Schell, Pensacola Junior College, Florida.

The only four-digit squares with the same last two digits end
in 00 or 44. The only possibility for 44 without repeating a 4 or
another digit is 3844. Therefore PURR and FREE must be 3844 and 6400.
Nw AREA must be 9409 and SPFA is 1369. The square is

13609
3844
6400
94009.
ALso sofved by FRANK P. BATTLES, Massachusetis Maritime Academy,

Buzzards Bay, MARK EVANS, Lousivifle, KY, VICTOR G. FESER, Mary College,

Bismark, NP, ROBERT C. GEBHARDT, Hopateong, NJ, RICHARD 1. HESS, Rancho
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Pafos Vendes, CA, EDWIN M. KLEIN, University of, Wisconsin, Whitewater,
GLEN E. MILLS, Pensacola Junion Colfege, FL, BOB PRIELIPP, University
of, Wisconsin-0shkosh, JOHN RUEBUSH, St. Xavier High School., Cincinnati,
OH, STEPHANIE SLOYAN, Geonrgian Count College, Lakewood, NJ, W. R. UTZ,
Cofumbia, MO, KENNETH M. WILKE, Topeka, KS, THEODORE G. ZAVALES,
Bengenfiebd, NJ, and the PROPOSER.

*561. [Spring 19841 Proposed by |. Don, Guiva Dam, California.
For what values of » does n! have 6 for its last nonzero digit?
I. Solution by Hawy Sedimger and Chuck Déminnie, St.
Bonaventure Univensity, New Yohk.
More generally let L(x) denote the |last nonzero digit of x.
Let the base 5 expansion of n be Xy 10+ Let p be the number
of twos in this expansion and q the number of fours. Let

t=(p+2q+ {al +ag + ven) +2(a2+a6+ ven)
+ .3(a3 +a, susd) (mod 4).
¢ then have L(0!) = L(1!) =1 and for n > 1,
L(n!) = (6)(2¥) (mod 10).
Let » > 1 and take
n=a,*+ 5b0_.
bO =a; + 5b1,
brg= Y1t Py
bk—l = I
If x=at S, then
(1) X! = fla,b)-g(b)-10°-b!
where
(a + 5b)¢ and (5b)!
fla,b) = ———==2 g(b) =
CeBi (5)(10)-- - (5b)- 2°

Repeated applications of (1) give
bO bl
n! = f(ao,bo)-g(bo)-w 'f(al,bl)-g(bl)'lo cee

Pr-1
Flay_yoby_)-glby_)-10 “1b, 1

= flayby)-flayby)---Flay by )-glby)-glb )
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b b e > o 4D
071 k-1
'g(bk_z)-lo -ak!.

Since L{10x) = L(z), we have
L(n!) = L(f(ao,bg)-f(az,bl)---f(ak__l,bk_l)-g(bo)-g(bl)---
-g(bk_l)-ak!).
It is easily seen that if X iseven, 2=y (mod 5), and y &£ 0

(mod 5), then L(zy) = L(xz). Since f(ai’bi) = ai! {mod 5) and

(1-2-3- 00878 = 128 = P (mod 5,

g(b) =
it follows that b +b ---+bk_1

L(n!) = L(ao!-all---ak!'Z 01 )
Since 0 = 1¢ = 3¢ = 1 (mod 5), 2! = 3 (mod §), and 4! = 2° (mod 5),
then

(p+2q+b j#b 4+ ++b, ) (mod 4)
L(n!) = I(2 01 k-1 ).
Nw we al so have that

bo +b1 e +bk-—1 = czaz +02a2 + ... 04 ckak

where e, = 1 and e, = Sc. + 1, so that €7 5 0p + 1 (mod 4).

1 i+
Thus
p+2q+b0+b1+... +bk
(1 2q+a1 * 2a2+ +kak) (mod 4)

1]

(p + 2q + (“1 +ag + cee) 2(a2 +ag+ eee)
+ (ag + a, t...)) (mod 4).

Clearly L(n!) = 2, 4, 6, or 8, and the desired result follows.
Finally, L(nf) = 6 whenever n > 1 and t = 0.

11. Comment by John C. Mairhuber, University of, Maine, Ohono.

Starting with any multiple of 5§, the next four values of L(n!)
are obtained successively by multiplying by 1, 2 3, and 4.
This is evident for » an even multiple of 5; for odd multiples of &
it follows from the fact that L{n!) is even and that 6 = 1, 7 = 2,
8=3 and 9 =4 (nod 5).

It is of interest to note that the formula for L(n!) does not
have periodicity, though subcycles recur. Thus the values of L(n!)
for n=2 to 624 are repeated from n = 627 to 1249. In general, the
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K K

values from»n = 2 to 54 - 1 recur from 54k +2to 2-54 - 1.

ALso wived by RICHARD |. HESS, Rancho Pafos Verdes, CA,
and JOHN C. MAIRHUBER, University of, Mafne, Onono. One Lncorrect S
sofution was d 0 recelved.

562. [Spring 1984] Proposed by Walter BLumberg, Coral
Springs, Florida.

Prove than tan 12 tan 61° = tan 39 tan 31°.

Amalgam of, solutions submitted independentfy by HAO-NHIEN
QUI VU, Pundue Univernsity, Lagayette, Indiana, and KENNETH M.
WILKE, Topeka, Kansas.

W get that
(3 - tan2
tan sp = t2 & > %) omtan (q +b) = —tanattanb
1-3tan X l-tanatanb

Also we have that

o
tan (30° + x) = -tan 80 +otan X _ _1//3 +tanx
1-tan 30” tanx 1 - (1/¥/3) tan x

1+ V3 tan x
V3 - tan x

and
V3 + tan x

1- V3 tan =
Nw we combine these results to get the more general statement

tan (80° + x) =

o 2
tan 3x tan (30 +x):tanx2—tan>é 1+ /3 tan =
1~ 3 tan” X V3 - tan x

- tan x Bt tanz = tan x tan (60° t x),
1- V3 tan =

which holds for all X for which none of x, 3x, 30° + X, and 60° + x is
equal to an odd multiple of 90°. The desired identity follows when
T = 10.

Also sofved by GEORGE W. BARRATT, Maryville, MO, FRANK P.
BATTLES, Massachusetts Maritime Academy, Buzzards Bay, ANTONE R. COSTA,
0&d Saybhook, CT, RUSSELL EULER, Noathwest Missouri State Univensity,
Maryville, JACK GARFUNKEL, Flushing, NY, ROBERT C. GEBHARDT, Hopatcong,
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NJ, RICHARD I. HESS, Rancho Pafos Vendes, CA, JOHN M. HOWELL,
Littlenock, CA, JAMES JOHNSTON, St. Bonaventure University, NY, RALPH
KING, St. Bonaventure University, NY, EDWIN M. KLEIN, University of
Wisconsin, Whitewater, HENRY S. LIEBERMAN, Waban, MA, GLEN E. MILLS,
Pensacola Junior College, FL, BILL OLK, C&intonvifle, WI, P| W
EPSILON PROBLEM SOLVING TEAM, Lowisiana State University, Baton
Rouge, BOB PRIELIPP, University of Wisconsin-0shkosh, HARRY SEDINGER,
St. Bonaventure Universdty, NY, WADE W. SHERARD, Fumman University,
Greenv.ille, SC, and the. PROPOSER.

563. [Spring 1984] Proposed by Mownis Katz, Macwahoe, Maine.
There i s a unique solution to this odd alphametric when TEN
isdivisible by 9 and when TEN is taken either odd or even (l've
forgotten which).
TWELVE
TEN
TEN
THIRTY
Solution by Glen E. Mifls, Pensacofa Junion Colfege, Florida.
Let a, b, and ¢ be the carries into the tens', hundreds', and
thousands' columns respectively. Also | et XX denote that we have
arrived at a contradiction. Since ¢ =1 or 2, then E =8 or 9 and
I =0or 1.
Let E=8, soe=2and | =0. Then (N,¥) = (3,4), (4,6),
(7,2), or (9,6):
If (N,Y) (3,4), then T
If (N,Y) = (4,8), then T
If (N,Y) = (7,2), thenT
If (N, Y) (9,6), then T
ThereforeE=9 and | = 0 or 1.
If I =0, then (¥,Y) = (2,3), (3,5), (4,7), (6,1}, (7,3), or
(8,5). Thelatter three cases all lead to T'=V, a contradiction.
Similarly (2,3) and (4,7) lead to contradictions. Only (3,5) yields

a solution,

7andV =0 XX

6. XX

3, but thene # 2. XX
1, but then ¢ # 2. XX

619479
693
693

620865 in which TEN is odd.
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Nw let I =1, which implies ¢ = 2 and (N,Y) = (2,3), (3,5),

f4,7), (7,3), or (8,5). Here the latter two cases yield thecontradiction

T =V. Also (3,5) produces a contradiction. The remaining two cases
lead to the solutions
759489 529869
792 and- 594
792 594
761073 531057.

Since TEN is even in these last two solutions, we have the unique
solution given above when TE¥ is odd.

Also solved by MARK EVANS, Louisvifle, KY, VICTOR G. FESER,
Mary College, Bismark, ND, ROBERT C. GEBHARDT, Hopatcong, NJ, RICHARD
I. HESS, Rancho Patos Verdes, CA, Pl M EPSILON PROBLEM SOLVING TEAM,
Louisiana State. University, Baton Rouge., CHARLES W. TRIGG, San Diego,
CA, KENNETH M. WILKE, Topeka, KS, and the. PROPOSER.

564. [Spring 19841 Proposed by Charles W. Trigg, San Diego,
California.

A tetrachromatic square is a square in which each of the four
triangles formed by drawing the diagonals has a different color. With

four specific different colors, six distinct tetrachromatic squares can

be formed, not counting rotations. The six distinct tetrachromatic unit

squares can be assembled into a2-by-3rectangle with matching colors on

the edges that come into contact. The rectangle then contains seven

solidly colored squares. This may be done in a variety of ways, one of

which is shown in the figure.

B B B
R G |6 Y |Y R
Y R G
Y G
R G |G YlyY R
B B B
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Show that in any matched-edge assembly:

a) There are never only two colors of solidly colored squares;

b) The assembly can never have central symmetry; and

c¢) The perimeter of the rectangle can never consist of unit
segments of just two alternating colors.

(For a related problem, see problem 282 [Fall 1973, pp. 480-1].)

Sofution by Richard |. Hess, Rancho Palos Verdes, California.

a) There can never be only two colors in the seven solid
squares because they include 14 triangles and there are only 6
triangles of each color.

b) Central symmetry would require three pairs of congruent
squares, contradicting the requirement that the six squares must be
distinct.

¢) |If the perimeter has just two alternating colors, say red
and green, then the four tiles with those colors adjacent must occupy
the four comer squares, leaving the two squares with red and green
opposite to occupy the middle positions. But then we do not have a
solidly colored square in the center, as shown in the accompanying
figure.

R G R
G e]
R
G
R R
G R G

Also sofved by the. PROPOSER.

565. [Spring 1984] Puoposed by Watter Blumberg, Coral Springs,
Flonida.

Let ABCD be a square and choose point E on segment AB and point
F on segment BC such that angles AED and DEF are equal. Prove that
BF = AE + FC
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Solution by Henry S. Lieberman, Waban, Massachusetts.

A £ B
\4
-
e
e F
-
-
- 2 \
// ____.--"X'
s T - -
p&E—=—— c

Loca*e the point X on the ray EF such that AE = EX and draw DX
Nw #4ED = #DEX and DE = DE so that triangles ADE and XDE are congruent
by S45. Then AD = DX and DXE is a right triangle. If X does not lie
between E and F, as depicted by X in the figure, thenDX > pr> DC =
AD, a contradiction. Hence X lies between E and F.  Since
DX = DC and DF = DF, then right triangles DXF and DCF are congruent
by HL. Nw

EF = EX + XF = AE + FC

The converse is also true. That is, if E lies on side AB and
F on side BC of square 4BCD such that EF = AE + FC, then angles AED and
DEF are equal.

There is a point X between E and F such that AE = EX V& wish
to prove that #DXE is a right angle, since then right triangles DAE
and DXE will be congruent by HL and #4ED = #DEF, So suppose that DXE
is not a right angle, in particular suppose it is obtuse. Then DX < AD
from triangles DAE and DXE. Nw locate point Y on EF so that DY is
perpendicular to EF. Then DY < DX < AD. If Y lies outside the square
(on EF extended), then DY > DC = 4D, a contradiction. Thus ¥ lies on
segment EF.  Since EY > EX, then YF < XF =FC. Therefore, from right
triangles DYF and DCF, since leg FC >leg FY, then leg DC < leg DY,
another contradiction. Hence angle DXE cannot be obtuse. A similar
argument shows it cannot be acute either. Hence it is a right angle

and the converse i S established.
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ALso solved by ANTONE R. COSTA, 0&d Saybhook, CT, MARK EVANS,
Louisvitle, KY, JACK GARFUNKEL, Flushing, MY, RICHARD 1. HESS, Rancho
Palos Vendes, CA, CAROLYN KAY, Bridgewatenr State. Coflege, MA, RALPH KING,
St. Bonaventure Univernsity, NY, G. MAVRIGIAN, Youngstown State.
Univernsity, OH, BILL OLK, Ctintonvilte, WI, P MU EPSILON PROBLEM SOLVING
TEAM, Llouisiana State. Univens.ity, Baton Rouge, BOB PRIELIPP, University
of Wisconsin-08hkosh, HARRY SEDINGER, St. Bonaventure University, NY,
WADE H. SHERARD, Fwwman Univers.ity, Greenvifle, SC, CHARLES W. TRIGG,

San Diego, CA, KENNETH M. WILKE, Topeka, KS, and the. PROPOSER. The
figure forn this probfem was dnawn by CHARLES W. TRIGG.

566. [Spring 19841 Proposed by N J. Kuenzi, University of
Wisconsin-0shkosh.
I f {pn} is a sequence of probabilities generated by the
recurrence relation
1.2
Put1 “Pp ~ 2Py %20

for which initial probabilities P, does limitp exist?
n>row

| Amaggam of, sofutions submitied independentlfy by SYLVAIM
BOIVIN, Universite du Quebec a Chicoutimi, Canada, RUSSELL EULER,

Northwest Missouri State University, Maryvifle, ROBERT C. GEBHARDT,
Hopatcong, Nw Jersey, RICHARD 1. HESS, Rancho Palos Verdes, Californdia,
EDWIN M. KLEIN, University of Wisconsin, Whitewater, HENRY S. LIEBERMAN,
Waban, Massachusetts, P| MU EPSILON PROBLEM SOLVING TEAM, Louisiana
State. University, Baton Rouge, RICHARD QUINDLEY and I. PHILIP SCALISI,
Bridgewaten State. College, Massachusetts, HARRY SEDINGER, St.
Bonaventure Univernsity, New York, and the. PROPOSER.
If pp =0, then all p, = 0. (1f o0 <p, <1, then

1 1

2 T2 4L s 0<p. . <p,.
Hence {pn} i S a monotone nonincreasing sequence bounded below by zero.

Thus it has alimit L that must satisfy the relation

1.2
L=L—'§'L,

from which it follows that Z = 0. That is, the sequence converges to
0 for all initial probabilities Py
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11. Additional comment by Monnis Katz, Macwahoe, Maine.
If X> -1, then

1
1—)(2<1, so 1—ac<1+x. o

If p> 0, then there is a positive number m such that p = 2/m. Then

we have
_r P __2/m _ 2/m _ 2
p(1 2)<1+p/2_1+1/m—(m+1)/m_m+1

It follows that for n > 0, we have p, < 1/n. Since also p, 2 0,
thenOf_Iimitpnglimit (1/n) = 0.

567. [Spring 19841 Proposed by R S. Luthar, University of
Wiscons.in-Janesvitle.

Find the exact value of sin 20° sin 40° sin 80°.

.  Solution by Russell Euler, Nornthwest !issouri State.
University, Maoryville.

Substituting k = 9 into the well-known identity

k-1 s k
I sin = = 54—
o=1 k 2k—1 (k > 2)
yields
8 oong 9
(1) 1 sin 5= = 557
s=1
Using the identity sin x = sin (180° - k), equation (1) becomes
3 250 cin2 400 «in2 o0 _ 9
2 Sin 207 sin” 40~ sIn~ 80 = 256
and so

&

sin 20° sin 40° sin 80° =g

11.  Sofution by Leon Bankoff, Lob Angeles, California.

In Solutions of the. Examples in Hall and Knight's ELementary
Trnigonometry by H. S. Hall (London: MacMillan, 1953), answer 29 on
page 47 states:

sin 20° sin 40° sin 80° = = sin 20° (cos 40° = cos 120°)

= 15 sin 20° (532— -2 sin2200)
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m!zﬂ

=é—sin 60° =

This last equality follows from the identity

.j:sin3x=%(33inx— 4sin3x)=%sinx (%- 2 sin? z).

ALso sofved by FRANK P. BATTLES, Massachusetts Maritime
Academy, Buzzards Bay, ANTONE R. COSTA, 0&d Saybrook, CT, JACK
GARFUNKEL, FEushing, NY, ROBERT C. GEBHARDT, Hopatceng, NJ, RICHARD
1. HESS, Rancho Pafos Verdes, CA, JOHN M. HOWELL, Léittlerock, CA,
JAMES JOHNSTON, St. Bonaventure Universdity, NY, RALPH KING, St.
Bonaventure Univensity, NY, EDWIN M. KLEIN, University of Wisconsin,
Whitewater, HENRY S. LIEBERMAN, Waban, MA GLEN E. MILLS, Pensacola
Junion College, FL, BILL OLK, Clintonvitfe, WI, P| MU EPSILON PROBLEM
SOLVING TEAM, Louwisiana State University, Baton Rouge, BOB PRIELIPP,

Univensity of, Wisconsin-0shkosh, JOHN RUEBUSH, Cincinnati, OH, 0. PHILIP

SCALISI, Bridgewater State College, MA, HARRY SEDINGER, St. Bonaventure
Universdity, NY, WADE H. SHERARD, Fumman Univensity, Greenville, SC,
W. R UTZ, Columbia, MO, and the PROPOSER.

568. [Spring 1984] Proposed by Robert C. Gebhardt, Hopatcong,
New Jensey.
Find a simple expression for the Dower series
2 3 4 5 6 7
X X x X X X

X
T+r-Fr - artsrter T W

Solution by Edwin M. Klein, Univernsity of, Wisconsin-Whitewater.

Let f(x) denote the given series. From the expansions

x2 x4 .’X:6
COS.’L‘=1—2—!+W'—H'+...
and 3 5 7
e G g BB
sina=x-Zr+Fr-Gpt en s

we see that x-f(x) = sin x + 1 - eos x. Thus

_sinx*1-cos x
flx) = %

ALso sofved by FRANK P. BATTLES, Massachusetts Maritime
Academy, Buzzaads Bay, SYLVAIN BOIVIN, Universite du Quebec a
Chicoutimi, Canada, ANTONE R. COSTA, 0&d Saybrook, CT, RUSSELL
EULER, Nonthwest Missourndi State Univensity, Maryville, MARK EVANS,
Louisville, KY, RICHARD I._. HESS, Rancho Palos Verdes, CA, HENRY S.
LIEBERMAN, Waban, MA, G MAVRIGIAN, Youngsifown State University, OH,

for z # 0 and f(0) = 1L
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BILL OLK, CLintonville, WI, P| MU EPSILON PROBLEM SOLVING TEAM,
Lowisiana State Univernsity, Baton Rouge, BOB PRIELIPP, University of
Wisconsin-Oshkosh, 1 _ PHILIP SCALISI, Bridgewater State Coflege, MA, .
HARRY SEDINGER, St Bonaventure University, NY, W. R. UTZ, Columbia,
MO, HAO-NHIEN QUI VU, Lafayetife, IN, KENNETH M. WILKE, Topeka, KS, and
the. PROPOSER. Not alf sofvers hecognized the. necessity to define f(0).

569. [Spring 1984] Proposed by Robert C. Gebhardt, Hopatcong,
Nw Jersey.

a) Find the largest regular tetrahedron that can be folded from
a square piece of paper (without cutting).

b) Prove whether it is possible to fold a regular tetrahedron
from a square piece of paper without overlapping or cutting.

Solution by Chares W. Taigg, San Diego, California.

-a
A Y B nB
\
\ -
wV3/2
G y-a \
-
K ra/2
F
X a
D c c
Figure 1 Figure 2
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a) The regular tetrahedron has two nets: four equilateral
triangles assembled into a larger equilateral triangle as in Figure 1,
and four equilateral triangles constituting a parallelogram as in
Figure 2.

Triangle DHF in Figure 1 is the largest equilateral triangle
that can be inscribed in the square ABCD. Triangles DAH and DCF are
congruent, soAH=CF =a. Then BB =BF =y - a, where y is the side
of the square. Nw HF= DF, so from right triangles HBF and DCF,

2y - a)2= a2 + yz,

P - day ta’ =0,
a=(2- /3y.
Nw DE = BF = @, an edge of the tetrahedron. Then from triangle DCF,
(2z)% = y2 + 4% = yz t (2 - /g)zyz,

4x% = (8 = 4 f3—)y2,

x=172 - V3 y= (/8 - VE)y/2 = 0.5176 y.
In Figure 2, DKBE is the largest 4-triangle strip that can be
inscribed in square ABcp. Then with y equal to the side of the square
and z the edge of the tetrahedron, from the right triangle DRF we have

ty D% = (3 /3/2)% + (53/2)% = 74°

so
3 =+v2/7 y= 05346 vy,

the edge of the largest tetrahedron that can be folded from a square

of sidey.

b) Clearly, when the squares and the nets they contain that
we have seen in Figures 1. and 2 are folded into tetrahedrons,
overlapping occurs.

The sum of the face angles at a vertex of a regular tetrahedron
is 3(60°) = 180°. If no overlapping is to occur, one vertex must be
at the midpoint of a side of the square, whereupon the edge of the
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tetrahedron is equal to one-half the side of the square. It is
evident that to complete the tetrahedron overlapping must occur.
Also solved by the. FROFOSR

570. [Spring 19841 Proposed by Richard I. Hub, Rancho Patos
Verdes, Califonnia. .
The natural logarithm of a complex number z = rele is defined

by .
Inz= se”’A
where
g = ((nm?+ed)E 2 =ta? (e/1nr),
and
0<xr<u/2forr >1 or /2 < A<mford<r <1
Find a number 3, such that In 2o = 3y

Sofution by BLLE 02k, CLintonville, WI.
If 2= 1n z, then

o= ((Inw?+6%¥% and e=tan? (o/in r),
from which it follows that

In» = 6/tan ® and » = ®/9" €

Nw we have that

B/t O o im 0)2 4 02)%

which simplifiesto

3}
¥t % gin 0 _ 0= g,

Using Newton's method and a calculator we find that
8 = 13372357 and hence r = 1.374557.
Also solved by ROBERT C. GEBHARDT, Hopatecong, NI, and the
FROFOR

571. [Spring 19841 Proposed by Chuck ALLison, Huntington
Beach, Catifornia.

Assume a pegboard with one line of holes numbered 1 through =.
Find the probability of picking correspondingly numbered pegs one at
a time at random and placing them in their corresponding holes
contiguously. That is, if peg Kk is chosen first, then the second peg
must be next to it, either number K = 1 or k +1. If pegsp, p+1 ,
P t2 ..., q have already been chosen, the next peg must be either
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p-1orqt 1, sothat no gaps ever appear between pegs.

Solution by the. Proposexr.

There are as many ways of removing the pegs contiguously from
a filled board as there are of filling it, since any successful
sequence can be reversed. Then the first peg removed will be an end
peg, which can be done in two ways. V& now have a "reduced board” of
n - 1 contiguous pegs, so again we must remove an end peg. This
process continues until one peg remains, which can be removed in just
1 way. The board can be thus undone in P ways, so the probability
of undoing it as well as filling it contiguously is Zn_l/n!.

ALso solved by RICHARD 1. HESS, Rancho Pafos Verdes, CA, EDWIN
M. KLEIN, Univernsity of Wisconsin, Whitewater, HENRY S. LIEBERMAN
(2 s0futions), Waban, MA, and HARRY SEDINGER, St. Bonaventuwre
University, NY.

572. [Spring 1984] Proposed by Jack Garfunkel, FLushing, NY.

Let ABCD be a parallelogram and construct directly similar
triangles on sides AD, BC, and diagonals AC and BD. See the figure,
in which triangles ADE, ACH, BDF, and BCG are the directly similar
triangles. Wha restrictions on the appended triangles are necessary
for BFGH to be a rhombus?

Sofution by Monris Katz, Macwahoc, Maine.

Let X = 4DAE and r = AE/AD. Then a rotation through angle X
with ratio r about point A carries OC to BH by considering similar
triangles HAC and EAD. The same rotation about point B carries IC to
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FG by triangles GBC and FBD. Nw FG and EH are equal and parallel, so'
BFGH is a parallelogram. Since a rotation through angle ADE with ratio
DE/AD about point D carries AB to FE by triangles FBD and EAD, then

EF = (DE/ADJAB = r:AB = r.CD = HH = FG o=
and BFCH is a rhombus provided DE/AD = r =AS/@. Thus the appended-
triangles must be isosceles.

Aflso sofved by RICHARD 1. HESS, Rancho Palos Venrdes, CA, and
fie. PROPOSER.

573. [Spring 1984] Ptopobed by Wifliam S. Cariens, Loraine
County Community College, ELyiia, Ohio. !

Prove that when any parabola of the form

(1) Yy = 22 +an + b
is intersected by a straight line

(2) y=pz+q,
then the sum of the derivatives of equation (1) at the two points
of intersection is always twice the slope of the straight line.

Amalgam of essentially identical sofutions submitted
Andependently by ANTONE R. COSTA, 0£d Saybrook, Connecticut, JAMES
JOHNSTON, St. Bonaventure University, New Yotk, BOB PRIELIPP,
University of Wisconsin-0shkosh, 1. PHILIP SCALISI, Bridgewater
State University, Massachusetts, W. R. UTZ, Cofumbia, Missouri, and
HAO-NHIEN QUI VU, Purdue University, Lafayette, Indiana.

To find the points of intersection, we must solve the equation

x2+ax+b:px+q.
The aum of the roots of this equation is:z:l + Ly = -(a - pJl.

Since y' = 2z * a, then the am of the derivatives at these points
is

y'(z) ty'(z2) = 2z, + 2z, + 2a

2
= -2(a - p) t 2q = 2p,
which is twice the slope of the line.

Also sofved by FRANK P. BATTLES, Massachusetts Maritime
Academy, Buzzards Bay, MARC COCHRAN, Renssefaer Pofytechnic Institute,
Troy, NY, RUSSELL EULER, Northwest Missouri State University,
Maryville, MARK EVANS, Louisville, KY, VICTOR G. FESER, Mary College,
Bismark, ND, JACK GARFUNKEL, Fushing, NY, ROBERT C. GEBHARDT,
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Hopateong, NY, RICHARD I. HESS, Rancho Pafos Verdes, CA, RALPH KING,
St. Bonaventure University, NY, HENRY S. LIEBERMAN, Waban, MA, GLEN
E. MILLS, Pensacola Junion College, FL, BILL OLK, CLintonville, WI,
Pl MU EPSILON PROBLEM SOLVING TEAM, Louisiana State. University, Baton
Rouge, JOHN RUEBUSCH, Cincimnati, OH, WADE H. SHERARD, Fuwman
University, Greenville, SC, PHILLIP J. SLOAN, Pembroke State
University, NC, KENNETH M. WILKE, Topeka, KS, ONE UNSIGNED SOLVER,
and the PROPOSER.

Late Solutions and Comments

Solutions to probfLem 552 by FRANK P. BATTLES, Massachusetts
Maritime Academy, Buzzards Bay, and by ROGER PINKHAM, Ifoboken, NJ.
Sofution t 0 probLem555 by CHARLES W. TRIGG, San Diego, CA.

556. [Fall 1983, Fall 1984] Proposed by Richard 1. Hess, Pafos
Vendes, California.

A normal pair of unbiased dice give a total of 2 through 12
according to the distribution 1, 2, 3, 4, 5, 6, 5, 4, 3, 2, 1. Hw
should you change the spots on the dice so that the sums 2 through 12
and only those sums still occur but with as uniform a distribution as
possible? (Minimize the sum of the squares of the deviations from
completely uniform).

111. Comment by Roger Pinkham, Hoboken, NJ.

Two possible distributions were suggested in the published
solutions: Howell's 3 33336 333 33andHess' 234434344
3 2, and the question was raised as to which was more uniform. One
common measure of uniformity is the amount of information Lo} Z"P,L-
inherent in the distribution. In Howell's case this amount is 2.369
while that for Hess' solution is 2.370. Thus on these grounds Howell's

solution is preferred.
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