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OF EXOTIC INTEGERS AND QUATERNIONS --
AN INTRODUCTION TO REPRESENTATION THEORY.

by Thomas Dick
University of New Hampshire

One's first encounter with complex numbers is usually undertaken
with a little mistrust in their legitimacy. After all, any objects
with "imaginary" parts do not beg to be taken too seriously. However,
if we suspend our disbelief at the thought of a square root of -1, we
are soon happily computing with complex numbers as easily as we would
with real numbers. The lofty praise given to the algebraic closure of
the complex numbers (that is, the fact that any polynomial with complex
coefficients will have a complex root) is taken with a grain of salt,
since we invented solutions to the equation x> +1=0in the first
place.

After repeated exposure to the topic of complex numbers our
protests tend to die down. Some of us are reassured by an alternative
description of complex numbers which avoids any mention of the bizarre
nin = (Y-1). W& can identify, or equivalently, define complex numbers
as ordered pairs (a,b) of real numbers. The addition of these ordered
pairs is defined "coordinate-wise":

(a,b) + (ey,d) = (atc, bt ad).
The multiplication of ordered pairs is defined in a slightly more
involved way:

(a,b)(c,d) = (ac - bd, ad *+ bc).
This multiplication appears somewhat contrived. Indeed, this
definition of the complex numbers simply reflects our desire to have a
square root of -1. For, if we identify i with (0,1) and -1 with (-1,0),
we have

i2 m=r (0,1)(0,1) = (-1,0) "=" -1.
It is straightforward to verify that the ordered pair (a,b) behaves
exactly like the complex number a + bi. It might be said that we have
successfully "represented” complex numbers as ordered pairs of real
numbers.

There does exist yet another representation of the complex
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numbers - as certain 2x2 real matrices. Specifically, the complex number

b.
It isthis type of representation that is the subject of this article.

a t bi is represented by the 2x2 square array of real numbers(_a')

Not only can the complex numbers be represented in such a manner, but
also many other "strange" number systems, such as Gaussian, hyperbolic,
and parabolic integers, as well as the quaternions. The idea of
representing the objects of an algebraic system as matrices has proven
to be one of the most powerful and fruitful ideas in all mathematics.
So-called representation theory remains an active area of research
that arises in many different branches and contexts of mathematics. It

is our purpose to provide an introduction to representation theory by

way of illustrating how several seemingly quite different number systems

can all be represented by 2x2 matrices. First, for the sake of
completeness, we provide a brief review of the algebra of such matrices.

Algebra of 2x2 matrices. A 2x2 matrix is simply a square array of

numbers of the form (2 Z) . |If the entriesa, b, c, and d are all

integers, we call this an integral matrix. Similarly, if all of the
entries are real or complex numbers, we call the matrix real or complex,
respectively. The addition of two 2x2 matrices i s accomplished
"entry-wise":

a b a'b ata' Db+b!'
c d c' d' ctc' d+d' °?
while the product of two 2x2 matrices is defined by the formula:
b) fa' by _ faa'tbe! ab'+bd’
dj \c' 4’ ca'+de' cb'+dd’
With these two operations, the set of all 2x2 integral (or real or

complex) matricesbecomesa ring*. That is, if A, B, and C are any
2x2 integral (or real or complex) matrices, and if we let

00
0= (0 o) d 1= (é g) , then the following properties hold:

* Strictly speaking, we should speak of an associative ring with
identity, since the term "ring" is also used in contexts where
associativity of multiplication or existence of a multiplicative
identity are not assumed.

211

1), At(@+tc)=(a+B)+tc 5), A(BC) = (AB)C
2). A+ B=B+A 6) AT = IA=A
3. A+0=0+A=A 7) AB t C) = AB + AC,

@A +B)X=ACtHE
4), At (-A) = (-A) * A = 0 (where -A denotes the matrix whose entries*
are the additive inverses of the entries
of A).
A couple of observations are in order. First, matrix multiplication
is generally not commutative, as can be seen from the fact that
10\ fo 1) _fo 1 . o f1 00
(9 GGG 66
Secondly, a nonzero matrix néed not have a multiplicative inverse. If

A = (a b) , We define.the determinant of A to be det(A) = ad - be.

c d
If det(A) # O, then the matrix
d ~b
ad - bc ad - bc
At =
-c a
ad - bc ad - be
has the property that ml=ata=1. Bvenifad- be # 0, the

matrix A may not have an inverse. For example, if we restrict ourselves
to considering integral matrices, we see that A-1 is not necessarily
an integral matrix itself.

Matrices mey also be multiplied by scalars (numbers) by
distributing the multiplication across all entries. Hence,

Sb) . This scalar multiplication satsifies two

8 b) sd
!
distributive laws:
1). s(A + B) = sA * sB 2). (s + t)A =54+ tA
for all scalars s, t and matrices A, B.# With scalar multiplication
defined, we may note that -A = (-1)A.

# With the scalar multiplication defined here we sometimes refer to
the ring of matrices as an algebra, especially in the case that the
scalars come from a field like the set of real numbers or the set
of complex numbers.
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Basics of Representation Theory. V¢ will adopt the common notation of
Z for the set of integers, Rfor the set of real numbers and ¢ for
the set of complex numbers. The set of all 2x2 matrices with integral

entries will be denoted MZ(Z) « Similarly, the set of all 2x2 real
matrices and the set of all 2x2 complex matrices will be denoted

MZ(R) and MZ(C) , respectively. As indicated before, with the
usual addition and multiplication of matrices, each of these sets is a
ring.

Now, suppose that N is a number system. By this we simply
mean that N is some set of elements with an addition (+) and
multiplication (.) defined on it. We will not suppose that the
addition and multiplication of N obey any particularly nice or familiar
laws. Indeed, we will want t 0 examine some number systems with quite
strange properties. In order to carry out an investigation of a number
system N, we will represent the elements of N as certain matrices. But
not any such representation will be useful. W will want the addition
and multiplication of N to "carry over" to the usual addition and
multiplication of matrices. Let us make this notion very precise with
the following definitions:

A number system N has an integral representation as
2x2 matrices if we can assign to each element x belonging
to N a 2x2 integral matrix M(x) such that the following
properties hold for all x, y in N
i). M(x t+ y) = M(x) t M(y)
ii). M(xy) = M(x)M(y)
V¢ say that N has a real representation or conpl ex
representation as 2x2 matrices if the matrix M(x) is a
2x2 real or complex matrix, respectively, for each x
in N. In any of these cases, we refer to the function
which assigns M(x) to x as a representation of N.
In other words, a representation of N is simply a function from N to
ome set of matrices which always "respects" the addition and
multiplication of elements of N.

W have purposely avoided as much of the terminology of
abstract algebra as possible. For the reader who has an acquaintance
with a little ring theory we point out that if N itself is aring, then

a representation of N is just a ring homomorphism from N to a
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particular matrix ring.

Examples. 1 Every number system N has an integral (as well as a real
and complex) representation as 2x2 matrices, although it is not very
interesting. Thetrivial representation of N is obtained by assigning

the zero matrix g) to each element of N. That is, for every

X EN, M(x) = 0. The required properties, i).M(x + y) = M(x) + M(y)
and ii) M(xy) = M(x)M(y), are certainly satisfied in this case, as all
matrices considered are zero matrices.

2. As mentioned in the introduction, the complex numbers
can be represented as 2x2 real matrices via the function M(a + bi) =

(_; Z) . 1t remains to be seen whether or not this is a real

representation according to the mathematical definition discussed
above. To verify that this is indeed a real representation, we must
check that the two properties hold with M{(a + bi) = (a b) |

-b a
and M{(c + di) = (C S) for any two complex numbers (a *+ bi) and
-d
(c + di). Since i). M@ t bi) + M(c + di) =(ab) (Cd)=
b aj \-dc
+c  b+d
(_g_g af:c) = M((atc) + (b+d)i), and ii). M@ + bi)M(c + ai) =

b a -d ¢ -ad-bc ac-bd
that this assignment of matrices actually is a real representation of

=\ \ = A
(_a ”) ( ¢ d) = ( ‘ ad+b°) = M((ac-bd) * (ad+bc)i), we see

the complex numbers. (One observation concerning this representation
merits some attention. The determinant of the matrix representative
of a complex number a * bi turns out to be its squared distance from
the origin when considered as an ordered pair (a,b) of real numbers.)
Example 2 also serves as an illustration of afaithful

representation. A faithful representation is one which establishes a
one-to-one correspondence between the number system N and some set of
matrices. Precisely, a representation is faithful if and only if
M(x) = M(y) implies x =y for any x and y in N. |In example 2, since

ab = cd i i = = + 1 =
(-b a) (-d e) if and only if a=c and b = d, we have M@ *+ bi)
M(c + di) if and only if a+ bi = ¢ + di. In ring theoretic terminology,

a faithful representation establishes an isomorphism between a ring N

and a particular ring of matrices.
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3. Faithful representations of Z ,R , and C as 2x2
integral, real, and complex matrices, respectively, can be realized
using the secalar representation:

M(a) = (3 0) for ain Z or Ror C-
a

V¢ verify that this is a representation by noting
b o +b 0 B
i), M(a) + M(b) = (g Z) + (0 b) (a ) = M(a + b), and

0 atb
‘s _ f[ao bo _ ab 0 _ !
ii), M(a)M(b) = (0 a) (0 b) = ( 0 ab) = M(ab). The scalar
ion is faithful, si a0\ . (P9 impliesa=b
representation is faithful, since ('} = |gp .

Faithful representations are the most important kinds of

representations, as they provide us with a "clone" (i.e., isomorphic
copy) of the number system under study as a set of matrices. Wy is
this desirable? V¢ give three primary reasons:

i). The elements of an unfamiliar number system can be made
more " concrete" by representing them as matrices with more familiar
entries. In example 2 above, we represented complex numbers with
matrices which had real entries.

ii). Different number systems can be compared in a commomn
setting. |If two number systems can both be represented as 2x2 integral
matrices, for example, then we can more easily recognize the essential
similarities and differences between the two systems.

iii). Once a number system has been faithfully represented, we
have all the powerful tools of matrix theory at our disposal for
investigating the system. For example, the existence of multiplicative
inverses is easy to check by using the determinant as a criterion.

VW will now proceed to examine a few "exotic" number systems by
utilizing faithful representations of them. A final comment before we
begin -- if we adopt the usual convention of considering R a@s a subset
of €, and if we consider Z as a subset of R, then any integral
representation is automatically a real representation, and a real

representation is automatically a complex representation.

Gaussian Integers. The set of Gaussian integers, which we will denote

as G, can best be thought of as the set of all complex numbers with
integral real and imaginary parts. That is, G = {m+ nie C:m,ne Z}.
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Examples of Gaussian integers would include 2 + 3i, 17, -6i, and

-4 + 5i. The Gaussian integers inherit a faithful representation as
2x2 integral matrices simply by using the real representation for €
discussed above and restricting it to G. In other words,

M(m+ni)=(m “) <

-1 m
gives us a faithful representation of G as 2x2 integral matrices. That
Gisaring is easy to verify, and the multiplication in G is
commutative. However, elements of G do not generally have
multiplicative inverses. Here we can make use of our representation
to find exactly which elements of G have multiplicative inverses.
Since our representation is faithful, a Gaussian integer g = m + ni
will have a multiplicative inverse if and only if its matrix

representative (_r":) has an inverse which is the representative of a

Gaussian integer. To see this, note that if g has an inverse g'l, then

we have

f= (g 2) = M(1) = Mgg ) = M(IM(g D), f.e., Mg D) = M(g) t.

Since g = m *+ ni, we have M(g) = (_:) , and the inverse of M(g) must

be m -n
2 2 2 2
-1 m+n m+n
M =
(g) n m
2 2 2 2
m+n m4+n

For this to be the representative of a Gaussian integer, all of its
entries must be integers, or equivalently, the integer m2+ n2 must
divide each of the integersmand n. A |ittle reflection convinces us
that this can only happen in the case that m = +1 or -1, n = 0, or in
the casen = +1 or -1, m = 0. Thus, the only Gaussian integers which
have multiplicative inverses within the system of Gaussian integers
are: 1, -1, i, -i.

Parabolic Integers. Formally, the set of parabolic integers, which we

will denote as P, is

P= {m+nj: m neZ, 32=0 j#0}.
The element j is certainly not a number within our usual realm of
experience, since j is nonzero, yet j2 is zero. But the imaginary

number i was no less strange at first glance, and this j seems no more
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artificial and contrived than a square root of -1. Even though j is
outside the system of complex numbers, we can find a faithful 2x2
integral representation for P just as we did for the Gaussian integers
G. The secret, of course, will be finding a suitable matrix
representative for j.

The addition and multiplication in P is analogous to that of
the complex numbers -- we add and multiply two parabolic integers as
if they were binomials, and then simplify the expression using.the
formal identity 2 = 0. As an example.

2-3j)+ (-4t 2j) = (-2 -173),
while (2 - 3§)(-4 + 2j) = -8 + 4j + 12] - 6j2 = -8 + 16] + 0 =
(-8 + 163).

A faithful representation of P as 2x2 integral matrices is
given by ) )
m tnj)=\g ) >
V¢ verify that this indeed gives us a representation of P by noting
that
1 1 1 + 3
st o +uce ey = (37) 0 (872) - (0 mm)

M((m+m') + (n+n')3),

and Mn + njdM(n' + n'§) = (BnfOMP" T (mﬂ‘ mmm!-nm')
M(mm' + (mn'+nm')j).
The representation is faithful, since 0 ;) = (r(r;' ::) implies

m=m', n =n'. V& note, in particular, that the parabolic integer j

has matrix representative M(j) = (g (1)) . V¢ also note that any

integer se# can also be considered as a Gaussian integer (with zero
imaginary part) or as a parabolic integer (with zero '"j" part). In
fact, we have Z =GN P. The particular representations we have

chosen for G and P reflect this, as the matrix representative of an

. . . . . 0
integer s in either case is the scalar matrix M(s) = (3 s) . We

might say that our representations are "compatible" with respect to
the integers.
Again, it is straightforward to verify that P is a commutative

ring. Pisnot a field, but there are infinitely many elements of P
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which have multiplicative inverses in P. Just as with G, we see this

by making use of the faithfulness of our representation and noting

. -1
that the inverse of a matrix M = (‘3 2) is of the foom M = =
2
(1ém 411;: ) . Thus, M_1 is the representative of a parabolic

integer precisely when m = 1 or m = -1. This shows that any parabolic
integer of the form (1 + nj) or (-1 + nj), where n is any integer, has
a multiplicative inverse. This inverse is the "conjugate”, i.e.,

(1 - nj) or (-1 - nj), respectively.

Hyperbolic Integers. W& next visit the hyperbolic integers, the set of
which we will denote as H. Formally, H= {m+nk: m ne Z, k2 = 1,
k # 1 and k # -1} . The number k is another number outside our usual
acquaintances, and finding a suitable matrix representative for k
will be the key to finding a representation of H. The addition and
multiplication in H is accomplished in the same binomial fashion as
in Gand P. Thus, we have for any two hyperbolic integers (m + nk),
(m' + n'k):

(m +nk) + (W' + n'%k) = ((m+m') + (nta")k),

and (m + nk)(m' + n'k) = ({(mm' + nn') + (mn' + m'n)k).

Our representation of H is given by M(m + nk) = (:;1

) . Toverify

that this gives us a representation of the hyperbolic integers as 2x2
integral matrices we note:

M(m t nk) t M(m' t nlk) - (I:; ;) + (m' n') - (lTH-m' n+nl) -

n' m' n+n' mt+m'

M((m+m') + (n+n')k)
py . (mn 1ot mm'+nn' mn'+m'n) _
and M(m t nk)M(m' * n'k) = (n m) (:, g') = (mn'+m'n mm'+nn'

M((mm'+nn') + (mn'+m'n)k).

n''m

] ]
The representation is faithful since (2 ;) = (m n,) implies
m=m'y, n=mn'.
As was the case with Gaussian and parabolic integers, the set
of hyperbolic integers with their described addition and multiplication
is a commutative ring. An analysis of matrix inverses reveals which

elements of H have multiplicative inverses. The inverse of the matrix

M = (m n) is of the form
nm
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m =11
2 2 2 2
m -n" m -n
-n m .
wt= 7 2 2 2
m -n° m -n
m -n m -n

The reader can verify that we have a case similar tothe one we had with
the Gaussian integers, in the sense that M~1 will be a hyperbolic
integer representative itself only if m=+1, n =0, orif n==%1,

m = 0. Thus, the only hyperbolic integers with multiplicative
inverses are *1 and k.

This representation of the hyperbolic integers is compatible
with both of our previous representations of G and P with respect to
the integers. |n fact, we have 2 = GNP = GNH = PNE = GN PDH, and tpe
integers are represented as scalar matrices in all our representations.
A natural question which arises concerns how "much™ of MZ( Z)is
accounted for by G, H and P. Before any reasonable answer to this
question can be formulated, some clarification is required. First,
since all three representations have equal entries along the main
diagonal, any am of Gaussian, hyperbolic and parabolic integer
representatives will also have equal entries along the main diagonal.
/¢ certainly can't get just any 2x2 integral matrix in such a manner.
However, if we also consider products of Gaussian, hyperbolic and
parabolic integers, then any 2x2 integral matrix can be expressed as a

aum of such products. To see this, we note that (‘z 2) = ajK +

(b - ¢)J + cK *+ dKJ, where J is the matrix representative of the
parabolic integer j and K is the matrix representative of the
hyperbolic integer k. (We've actually shown that P and H alone
"generate" all 2x2 integral matrices, so certainly G, Pand H will also.
Will any other two of G, H and P generate all 2x2 integral matrices?)

Quaternions. At one time quaternions competed with vectors for
mathematicians' favor as the desired model for a variety of physical
phenomena. While Hamilton's invention eventually lost out, quaternions
still provide us with a rich source of examples regarding "skew"
fields, i.e.,, number systems with multiplicative inverses for their
nonzero elements, but with a non-commutative multiplication.

Formally, a quaternion is of the foom g = a + bi' + ¢j' *+ dx',
where the a, b, ¢ and d are real numbers, and i', j', and k' are

219

nonreal entities whose behavior is best summarized by their
multiplication table:
(second factor)

i' j’ k'

it -1 k! -5t

(first factor) jr] -kt -t i
k! jl -3t -1

As can be seen, each of i', j' and k' is like the imaginary number i
in the sense that (i')? = (92 = (k')2 = -1. V¢ should take special
note of the fact that the multiplication is definitely not commutative,
as evidenced by 1'j' = k' = -3'i'; j'k' = i' = -k'j'; and k'i' = j' =
-i'k'. Two quaternions are added or multipled just like polynomials
(real numbers do commute with i', j' and k') with the above
multiplication table used to simplify products. Thus
(atbif+ci'+dk') + (wixi'+yi'+zk') = (atw) + (b+x)i' + (cty)j' + (d+z)X’,
and (a+bi'+tcj'+dk') (wixi'+yj't+zk') = (aw - bx - cy - dz) +

(ax t bw t cz - dy)i' + (ay + v + dx - bz)j' + (az + by + dv - ex)k’
Quaternions are sometimes referred to as hypercomplex numbers, since
they can be thought of as ordered pairs of complex numbers. The
identification states if g = a + bi' + c¢j' + dk' is a quaternion, we

associate with g the ordered pair of complex numbers (z ), where

1°%2

z, = a + bi and 2, =C + di. Written in this way, the addition of

quaternions i s accomplished "coordinate-wise":
(Zl’ZQ) + (wl,wg) = (zl+wl,z2+w2),
while multiplication follows the rule:
(2052 (0)50)) = (290 =250552) W) "W,25)
where z represents the complex conjugate a - bi of a complex number
z = at bi. While somewhat cumbersome, it is straightforward to verify
that this addition and multiplication of ordered pairs of complex
numbers mirrors the original definition of the quaternions.
The quaternions can be faithfully represented as 2x2 complex

matrices by setting up the correspondence

i3 < § vy o [ atbi ctdi
M(a + bi' + cj' + dk') (—c+di abi]

or, if we consider the quaternions as ordered pairs of complex numbers,
we have
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M(zl’ZQ) = _ §

Under this representation, we have M{1) = ((1) 2) , M(1') = (3 —(i)) ’

M(3') = (_3 é) » and M(k') = (2 3) . We can verify that

. 2 2 RN

i o0 _ 01 _ 01i _ -1 0 _ X

(o —i) - (—1 o) - (i o) ) (o —1) = B(-13; mnd the
rest of the multiplication table for the matrix representatives of i',
j', and k' is similarly verified to respect the multiplication table

of i', j' and k'. 'In general, if q; = a; + bli' t Clj' + dlk' and

Qy =3, t bzi' + ¢,j' t dk' are two quaternions, then ve have

M(ql) + M(qz)

) a1+b1J. c1+d11 . a2+b21 c2+d21
—c1+d11 al-—bll _c2+d21 a2—b21
: (al+a2)+(b1+b2)1 (c1+c2)+(d1+d2)l . M(q1 . ‘12)’ and
—(cl+c2)+(d1+d2)1 (a1+a2)—(b1+b2)1
z Wl 22 W2
M(ql)M(qz) = = B = = (where z, = a, tbi, w =c, + d i,
1 2 f\TY2 %2
z, = a, + b21, Wy = ¢yt d21)
ZlZQ"WlW2 zlw2+wlz2 - z122—wlw ZlW2+W122
“W1Z,-2 W W W22 -(z1W2+wlz2) (z:l_zz—w:l_w2
= M(q1q2), The representation is certainly faithful, since M(ql) =

M(qz) if and only if a, =a, b1: b2, cq = ey d; = d2, i.e., = q,-
Written in the form g = a t bi' + ¢j' + dk', it seems quite a
formidable task to determine under what conditions the quaternion q has
a multiplicative inverse q_l, whether or not there is a distinction
between | eft and right inverses (owing to the noncommutativity of the
multiplication), and exactly what form q_l would take on when it does
exist. Here the matrix representation comes in particularly handy.

2w
If we write z = a t bi and w = ¢ + di, then M(qg) = (—F‘z’) . This

221

matrix has an inverse if and only i f the determinant zz t ww = a’ t b2t
c2 t d2 is nonzero. Thus, any nonzero quaternion has an inverse
(which is "two-sided"), justifying the reference to skew field. Indeed,

matrix theory also gives us the explicit form of this inverse, namely

Z -W
-1 Z +WW 22 + WW
M(q) = ’
w z
2z + W6 ZZ + WW
so we have q_1 = 1 (a=Dbi' - cj' - ak').

a2+b2tC2td2

As an illustration of the quite bizarre nature of the
quaternions, we consider the problem of determining the zeros of a
polynomial with real coefficients. The main motivation for the
construction of the complex numbers was the desire to determine zeros
of all such polynomials, including x2 + 1. If we denote the set of
quaternions as @, we might ask which quaternions satisfy the equation

x2 t | = 0. The reader mey notice that we have at least three

solutions, namely i', j', and k'. This is startling enough, as the
degree of the polynomial is only 2. However, x2 t 1 = 0 actually has

infinitely many quaternionic roots! For example, if b is any real

number such that 0< b < 1, and c =/1 - b2, then bi' + ¢j' is a zero
of x° + 1, since (bi' + ¢i")? = b%1'2 + be(i'y' + §'i") t ¢4'° =
b2(—1) + be(0) + c2(—1) = -1. (There are certainly many other zeros of
x2 + 1 which lie in Q besides these. )

Relationships among G, H, P, Z, R, {, and Q. In this closing section,

we will tieall of the number systems considered in this article
together via representation theory. V¢ will show that all these

number systems can be considered as subsystems of a single algebraic
structure, namely the 2x2 complex matrices MZ(C). For this to make any
sense, all of our representations must be compatible. By this we mean
that i f two different systems "overlap,” then their representations
must match on the overlapping part. For example, we saw that our

representations for G, H and P were compatible in this respect, since
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each represented their conmon el enents, the integers, in exactly the
sane way (as scal ar nmatrices).

V¢ have seen representations of G Hand P as integral 2x2
nmatrices, and we remnd the reader that these are automatically al so
representations as conpl ex 2x2 natrices. Smlarly, the scalar
representation of R , nanely

_ r 0
Bl = (0 r)

for each reR, can al so be considered as a conpl ex representation of

the real nunbers. Notice that this representation is compatible,with
those for G Hand P, since the integers (the subset of R which
"overlaps" G, H and P) are represented as scal ar natrices still. Hw
about the quaternions? Both Z and R can be considered as subsets of
the quat erni ons by considering their el enents to be particul ar
quaternions with zero i', j', and k' parts. Fortunately, the
representation we chose for Qis conpatible wth our representations

of G H, P, and R, since a quaternionq = a(a either real or integer)

has representative M{q) = (z 2)

The conpl ex nunbers ¢ are another natter, since we have
di scussed two distinct faithful representations of the conpl ex nunbers
as 2x2 conplex matrices. The first of these we discussed was the real
(hence autonmatical |y conpl ex) representation which assigned to each
conpl ex nunber z = a * bi the matrix

_ a b
Wiz) = (—b a)

The ot her representation discussed earlier was sinply the scal ar

representation:
_ z O
M(z) = (0 z)

These are not the only representations of the conpl ex nunbers as 2x2

conpl ex matrices. For exanple, M(z) = (la>i ];l) defines a faithful
representation of ¢ distinct fromeither of the above ones. Wich
shoul d we choose? Since the Gaussian integers are al so conpl ex
nunbers, our representation of the conpl ex nunbers shoul d agree with

that of Gfor all Gaussian integers. The scal ar representation of
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Cis not conpatible, unless we are willing to use the scal ar

m+ni 0

representati on M(m * ni) = ( 0  meni

) for the Gaussian integers

also. Since we woul d | ose sone of the conmon ground anong G H, and
Pin this case, we choose instead to use the first representation -

M(z) = (_g 2) , Which agrees already with our representation of G

as well as with R.

Finally, we need toreturn to the quaternions to check that
this chosen representation for Cis also conpatible with that for Q
There are several ways to consider ¢ as a subset of Q since i', j',
and k' all behave Iike the imaginary square root of negative one.
So the question remai ns which of the three, if any, we should identify
as the conpl ex nunber i in order to achi eve conpatibility of
representations. VW& recall that the quaternions were represented as

2x2 conpl ex natrices wth M(i')=(é _2) , M(3") = (_(1) é) ,

M(k') = ((1) ;) , SO that jt is represented by the same matrix as i
inour representation of the conpl ex nunbers. Hence, if we agree to
consi der conpl ex nunbers a + bi as bei ng speci al quat erni ons of the
forma + bj', all our representations are conpatible in every respect.

The beauty of the faithful ness of all these representations is that

Figure 1

M, (c) * non-integen neals

MZ(Z)




vwe would be justified in actually defining G H P, Z, R, C, and
and Q as certain 2x2 conpl ex matrices(though this is usually not
done). If this is done, we arrive at the Venn di agram(Fi gure 1)
show ng t he vari ous i ncl usi ons.

Concl udi ng Renarks. V@ have seen that natrices afford a useful way

of representing many quite different kinds of nunber systens. To be
accurate, inthis article we have di scussed t he representation of
rings. Representationtheory can be used to describe many other types
of al gebraic structures. For instance, the representation of groups
concerns representing each el enent of the group as an appropriate
matrix with usual matrix multiplication parallelingthe single group
operation. As an exanpl e, Zn, the group of integers nodulo n(wth
addi tion as the single operation), has a faithful representation as
2x2 real natrices via the identification:

s k(2m) sin k(2m)

SO n
M(k) = 3 k=0,1,...,(n-1) -
.. k(2m) k(2m)
-sin cos
n n

Ve leave it to the reader to verify that M(k)M(3) = Nk * j), where
the addition is modul o n.

GCommut at i ve and noncomut ati ve al gebras, as well as Lie
al gebras (whi ch have a non-associ ative multiplication defined) are
ot her al gebraic structures in which representation theory plays a
major role in active research. It is safe to say that representation
theory has earned an enduring reputation as a "unifying" tool in
bringi ng toget her di verse topics in mathematics to the conmon ground
of matrices.
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A THEOREM CF PHILIP HALL

bg Barbara A. Benander
CLeveland State. University

PART |: Introduction

The study of group theory is a rel atively new area of
nat henatics. This chal l enging and exciting frontier has intrigued
nany nathematicians in recent years. As a result, these pioneers have
bequeat hed to the world of nathematics some very interesting findings.
This paper will exanm ne some of these findings, with an enphasis on
the work of one individual .

Anong the early group theorists was a nat henati ci an naned
Ludwi g Syl ow(1832-1918). He was a noted speaker and many of his
| ectures were attended by enthusiasts in the field of group theory.
For sone, it was attendance at these tal ks which inspired themto
produce results in this field.

Sylow hinsel f was inpressed by another natheratician, Augustin-
Loui s Cauchy. A theoremproduced around 1835 by Cauchy caught the
attention of Sylow The theoremstated that every group whose order
is divisible by a given prine p nust contain at |east one subgroup of
order p. Nearly thirty years after Cauchy's findi ng, Syl ow proudly
presented his extension of it. Not surprisingly, this theoremwas
dubbed "Sylow's Theorem" It is stated in Part II of this paper.

Li ke Syl ow, anot her nat hermatician was intrigued by Cauchy's
theorem Hs name was Philip Hall. Pursuing his interest in group
theory, he went on to study Sylow s extension of Cauchy's theorem
The fruits of his I abor can be found in a further extension of Cauchy's
theorem This new extension was first discovered by Hall in 1928. It
is this theoremof Hil's which shall be provenin this paper. The
validity of its converse shall al so be denonstrated.

It isinterestingto note that the di verse backgrounds of
these nen lend an international flavor to the study of groups. cauchy
was French, Syl owwas from Norway and Hall hailed fromEngl and. And
yet these individuals had very nuch in coomon. Al were indefatigable



226

workers and men of uncommon scientific ability. More than that, they
were united in their quest to learn more about group theory, an

important and interesting branch of mathematics.

PART II: Theorems and Definitions
Used in the Proofs of
Philip Hall's Theorem

and Its Converse

1. (Lagrange's Theorem). Let G be a group of finite order n and | et
H be a subgroup of G (written H < G), then the order of H divides
the order of G.

2. (Sylow's Theorem). Every group whose order is divisible by (p)m,
but not by (p)m+l

(p)m. and al |l such subgroups are conjugate.

, Where p is a prime, contains a subgroup of order

3. Let G be a group. If A and B are two finite subgroups of G, then

4. Let H be a normal subgroup of G (written H a G), then G is solvable
if and only if H and G/H are solvable.
5. Let N be a minimal normal subgroup of G (written N+=<G). |If Nis
solvable, then
(i) N is abelian, and
(ii) if N isfinite, then N is an elementary abelian p-group:.
6. Definition of "p-group":
Let p be a prime. A group G is a p-group in case every
element in G has order a power of p.
7. Definition of "solvable":
Let G be a finite group. G is solvable if and only if there
exists a series

G=6G >G1>...>G = {1}

such that Gi/Gi+1 is cyclic of prime order, for i = 0,1,...,
n-1.

8. Definition of "minima normal subgroup":
A minimal normal subgroup N of G is a normal subgroup # {1}

that contains no proper subgroup that is normal in G.
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FART III: A Proof of a Theorem of Philip Hall

Let G be a solvable group of order ab, where a and b are
relatively prime. Then G contains at |east one subgroup of order a,

and any two such are conjugate.

Proof. The proof proceeds by induction on the order of G.

If G is solvable, then G contains a proper normal subgroup H.
By Lagrange's Theorem, the order of H divides the order of G.
Therefore, the order of H is albl’ where a divides a and bl divides b.

Case (i). bl < b.

I1f G is solvable and Ha G, then G/H is solvable (Th. 4, P.II).
Thus G/H is a solvable group of order ab/alb1 or (a/al)(b/bi). Since
le/H| < ||, there is a subgroup A/H of G/H which has order a/ai; that
is, |a/H| = a/a, .

Letting x represent the order of A, we then have |A/H|

a/a1 = x/a,b,. Fom this it can be asserted that x = ab1 = |A| .
Since ab1 < ab, |A| < |G| Also, A < G and any subgroup of a
solvable group is solvable. Therefore, A is solvable. By induction,
A contains a subgroup of order a, as desired.

Nw suppose there are two subgroups of G, A and A , of order
a. Let k = |aH|. |a||u| = |a n #||aH| (Th. 3, P. II). This fact
implies that aalbl = |An H| - k. W thus arrive at the fact that k
divides aalbi. Also, since H a G, AH < G, which leads us to conclude
that |AH| divides |G]. Hence k divides ab.

Let k = kakb’ where ka and kb are the prime factors of k
which divide a and b, respectively. Then, if k divides aaibl, ky
must divide b. A if k divides ab, then ka divides a. Thus, k
divides abl.

But, on the other hand, since A < AH and H < AH, Lagrange's
theorem requires that a divide k and that a,b, divide k. Nw the least
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aommon multiple of a and a, b is ab, . Ard if two numbers divide the

1
same number, their least common multiple also divides the number.

Hence, ab, divides k.

1

Since k divides ab1 and ab1 divides k, it follows that k = abl.
A similar argument shows that |A,H| = ab,.

Thus, AH/H and A1H/H are subgroups of G/H, both of order 4

abl/alb1’ which equals a/al.



228

Again, using induction, AH/E is conjugate to AlH/H in G/H.
Thus, there exists an element x, in G, such that (xH)-1 AH/H (xH) =
A1H/H‘ And so we have (x~1H) AH/H (xH) = A1H/H' Let y be an element
of AH. This implies that y = ah, with ain A and h in H. So for every

y in AH, there exists an a; in A1 such that the following is true:

L) (yH) () = aH or x'lyx(ai)'lH = H. It follows that x Yyx(a)™t
is in H. This means that x_:lyx(al).l = h for some h in H. Consequently,
x'jg,x = ajH. Hence, x_lyx is an element of A H.

Since x 1yx isin x_l(AH)x, x-1H(AH)xH CAH. But Ix'lH(AH)xH]
= |aH| = ]A1H}, which implies that x—iﬂ(g_H)xH = A/H.  Thus, AH and
AjH are conjugate in G. Therefore, xAx = and A are subgroups of AlH
of order a and so are conjugate by induction.

Case (ii). If G has a proper normal subgroup whose order is
not divisible by b, then the theorem is proven. V& therefore assume
that b divides |H|, for every proper normal subgroup H. However, if
H is a minimal normal subgroup, then |H| = p", where p is a prime
(Th. 5, P.II). By Lagrange's theorem, pm divides ab, which means that
p™ divides a or p™ divides b. Also, b divides |H| or b divides p'.
Consequently, pm divides b.

We now have that b divides pm and that pm divides b.

Therefore, b = p". Hence, H is a p-sylow subgroup of G. This fact,
together with the fact that H is normal in G implies that H is the
unique minimal normal subgroup of G.

Now, because G is finite, every norma subgroup of G contains
a minimal normal subgroup. Since H is the unique minimal normal
subgroup, it is necessarily contained in every normal subgroup of G.

Let K/H be a minimal normal subgroup of G/H. The order of
K/H is q®, where q is a prime (Th. 5, P.II). Letting x = |X|, we have
|x/H| = =/(p)" = q®. Hence, x = g = k|,

Let S be a g-sylow subgroup of K and N' be the normalizer of
Sin G It shall be shown that |[N'] = a The diagram on the next
page illustrates the situation.

Observe that H5 < K. |u]|s| |#ns||Hs| (Th. 3, P.II).

Since |HNs| = 4, |u|]s| = |#s|. Hence, [|HS| = [k|. Therefore, X = HS
Now, K< G implies that K& = K, for every g in G. 8<K
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N
N
AN

s H

means that s& i« k8 = K. Therefore, s& < K. v mey thus conclude
that every conjugate of Sin G liesin K.

since |s8] = |s| for every g in G, s€ is a g-sylow subgroup
of K. This means that s and S are conjugate in K. That isto say,
there exists a k in K such that (Sg)k = S, Hence, every conjugate of

Sin G is conjugate in K. Letting c represent the number of conjugates
of Sin G, the following equation results: ¢ = [G:N] = [K:N] = [HN:N]
= [H:HON]. The third equality holds because S< N That is to say,

N > Smeans that HN > F6 = K. But N, H < H6 = K means that NH < K.
Therefore, HN = K. - -

The last equality is demonstrated by appealing to Th. 3, P.II

which states that |HN| - (|u]|N])/|HON|. Dividing both sides of the
equation by |N| yields the following: |BN|/|N| = |H]/|HON|. This
last equation accounts for [HN:N] = [H:HNN].

If we can show that HON = {1} our task will be facilitated
quite considerably. For if HW = {1}, then ¢ = |G|/|N'| = |u| = p".
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m - ' =
This leads to the conclusion that (ab)/|N'| = p bor W] =a

This result shall be obtained in two stages. First. wewill
show that H N N ¢ Z(X), the center of K. Secondly, it will be

demonstrated that Z(K) = {1}.
Let x be an element of HN N. |f keK, then k = hs with heH

and seg. Since xeH and H is abelian, x commutes with h. NW it

-1-1
remains to show that x commutes with s. Observe that ({(x s x)s) e S
. -1, -1 .

since xeN and SaN. (x (s "xs)) e H because H is normal. Hence,

(xt

to claim that x commutes with s, as desired. Thus, HN N ¢ 2(K).

s lxs) e SN H = {1}, which implies that xs = sx. ['his alows us

Finally, Z(K) is a characteristic subgroup of K, and K <@ G so
Z(K) is normal in 6. If Z(X) # 1, then Z(K) contains a minimal normal
subgroup of 8. Thus H < Z(X), by theluniqueness of H.

Now, H < 7Z(K) means that hkh ~ = k, for every k in K and for
all hinH Also, K=Hs That is, k = hs, for some heH and some
seS. Therefore, s = 8" = s (n"lsn)s = s7'ss = S Fom this ve
arrive at the fact that Sa K which tells us that S is characteristic
in Kand so S aG. V¢ now conclude that S contains H, the unique
minimal normal subgroup of G. But this is a contradiction since
S=q"and H = p“. Thus our assumption that Z(K) # 1 has led us into
a contradiction. Hence, Z(K) = 1.

Using the above results, namely that H A N ¢ Z(K) and Z(K) = 1,
we may assert that H (1 N = 1 and |N'| = a.

Nw suppose that A is another subgroup of G with order a.
Observe that |A1Kl is divisible by a and by |K] , Which equals pmqn.
V¢ mey conclude that |A11<| = |e| so that A K =G Ve have the

following diagram:
G

N
N
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Since ALK = G, GIK = (AIK)/K. Hence, GIK = (A K)/K= A,/ (A,0K).
Observe that I(AlK)/K[ = (ab)/(p"g™). Let x = |A1r]K|. Then we have
|A1/(A1m<)l = a/x. g (ab)/(pmqn) = a/x or x = (apmqn)/(ab) = qn.

Therefore, by the Sylow Theorem, Aan is conjugate to Sin K.
Also, for reA,, note that (A1ﬂ}<)r = (Al)r oK = AlﬂK, since K a Gu*
Hence, (A1”K) aaA .

Having observed that Aan is conjugate to Sin K, it follows
that A MK = S°, for some keX. Thus N (A,NK) = Ny(S)K = (N')K, g
thus conclude that ING(AinK)I = a. Also, Alm( aAl implies that
A< NG(AlﬂK). Hence, A; = Ng(A4NK) and, as shown above, NG(Aan)

and N' are conjugate. This completes the proof of the theorem.
FART IV: A Proof of the Converse of Hall's Theorem

Let G be a finite group such that if |G] = ab, where a and
b are relatively prime, then there exists a subgroup H of G and[HI = a,

then G is solvable.

Proof. Let |6] = (p1)61(p2)62.. .(pn)en, where the p, are
prime and p; 7 p]. ifi#]j.

Case (i), n=1

If n=1, Gisap-group. It follows that G i s nilpotent and
solvable.

Case (ii). n= 2

If n=2, Gis a two prime group and is solvable by a theorem
of Burnside. (W. Burnside, "On Groups of order pan,” Proceedings
London Mathematical Society, Series 2, Vol. II (1904), pp. 432-437).

Case (iii). n=> 3

Let Ti be the subgroup H for b, = (pipi and a; = lGI/bi’ for
i=1,2,...,n.

Then IG/Tii = (pi)ai, so the indices of T

T, and T3 are
pairwise relatively prime.

1’
. _ 6. 5. -

Since 'TinTﬁl = [G]/((pi) 1(pﬁ) j), each of the T, will
satisfy the hypothesis of the theorem. Hence, Tl’ T2 and T3 are
solvable by induction. The Three-Subgroup Theorem would serve very
well at this point, for it would allow us to conclude that G is
solvable. However, before drawing this desired conclusion, the
Three-subgroup Theorem will be demonstrated.
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The Three-Subgroup Theorem (Wielandt, 1960) states: Let A, B

and C be subgroups of G, where (|G/A],|6/B|) = (|6/A],|a/¢c])
(|e/B|,lerc)) = 1. Also, A, Band C are solvable and |G/A|

Hes
|e/Bj =86 and |[GIC| = o. Then G is solvable.

Proof. G = AB = BC = AC. Notethat 1< A< G, 1<B5 G and
1< C<G.

Let M « <A so that lM‘ = pn. (6,0) = 1 so that p does not
divide 5 or p does not divide s. Without loss of generality, we shall

say that p does not divide o.
Let S =anc. The following diagram should aid in the under-

N
NS
%

MNs

standing of the situation:

Since p does not divide s which equals |G/C| , p does not divide |A/S| .
Observe that S< MS < A. Also, from Th. 3, P.II, |us| = (|M|[s])/
luns| = |u/uns)|-1s}. If p divides |M/(uns)| then p divides |A/s].
But this is a contradiction. Hence, p does not divide !M/(MﬂS)l , SO
that |M/(MﬂS)| = 1. Therefore, M = MNS which implies that M < S.
From this we can say that M < C.

Let geG., Then g = ac, with ac4 and ceC. w8 = M€ - u° < c.
Thus MG < C which implies that MG is solvable.

Let iT: G~ G/(MG) be the natural homomorphism. Then w(a),
w(B) and w(C) are solvable. Also, |n(G)/n(a)| = |n(G)/n(B)| =
|r(e)/m(c)] =1. These Igst two fagts imply that 6/(M") is solvable.

V¢ now have that M~ and G/(M ) are solvable. Therefore G is
solvable (Th. 4, P.II).

Having proved the Three-Subgroup Theorem, we will now apply it

to complete the proof of the converse of Hall's theorem.
Recall that Tl’ T2 and T3 are subgroups of G and are solvable.
V¢ have shown that their indices are pairwise relatively prime. FoOm
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the Three-Subgroup Theorem, G is solvable. Thus the validity of the

converse of Hall's theorem is demonstrated.
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"A scientist can hardly meet with anything more undesirable
than to have the foundation give way just as the work is finished.
In this position | was put by a letter from Mr. Bertrand Russell as

THE ROLE OF RUSSELL'S PARADOX IN the work was nearly through the press"” (Guillen, p. 15).

THE DEVELOPMENT OF TweNTETH CENTURY MATHEMATICS

by Karen P. Middleton
Keene State. College

The contradiction that Russell discovered Lies in set theory-;.-
which Georg Cantor had developed during the later nineteenth century.
Set theory had quickly become indispensable to mathematics; it was
In mathematics, as in most other disciplines, practitioners used to define number and to discuss infinity. The notion of a set
have attempted to define the foundation or basis upon which their had seemed quite simple and straight-forward; it was believed that
any sensible verbal description could be used to denote a set. Russell

took this basic idea and, for the first time, really tested it mentally.

discipline is ostensibly constructed. Not only were the classical
Greeks the first mathematicians to ponder the basis of math, but also,
the culmination of the Greek mathematical enterprise, Euclid's Elements, He realized that while most sets are not members of themselves (the set
of teaspoons is not another teaspoon), there are a few sets which are

members of themselves: for example, the set of all ideas is itself an idea.

stood as the foundation of math for more than 2000 years. Euclid used
the principles of Aristotle's deductive logic to derive hundreds of
geometric theorems from only a few basic assumptions, or axioms. Since The set of all sets that have more than five members itself has more than

Aristotle's logical method was accepted as infallible, thinkers could not five members; therefore this set is also a member of itself.

reject the reults of Euclid's theorems, although they have occasionally
challenged his axioms. Davis and Hersh (1981, p. 325) refer to the
"Euclid myth ... that the books of Euclid contain truths about the uni-
verse which are clear and indubitable."

Until the late nineteenth century, both philosophers and
mathematicians regarded geometry as "the firmest, most reliable
branch of knowledge" (Davis & Hersh, 330). At that time, a number
of mathematicians decided to try to reformulate arithmetic according
to the laws of deductive reasoning, just as Euclid had done for
geometry. May arithmetic results had been used for centuries without
being proven, because they seemed to be a matter of common sense.

The German mathematician Gottlob Frege worked for ten years to derive
theorems of arithmetic from just a few assumptions. He wanted to
replace intuitive notions of the real number system with a precise
axiomatic system, to render arithmetic more "rigorous" (Wilder, 1973,
p. 175). He was nearly finished with his two-volume work
Grundgesetze der Arithmetik (Fundamental Laws of Arithmetic) in 1902,
and he believed that it was "no less a model of certitude than the
Elements' (Guillen, 1983, p. 15).

Unfortunately, the British philosopher-mathematician Bertrand
Russell had noticed a paradox, a flaw in logic, in Frege's final
manuscript. Frege himself agreed that the flaw was serious enough to
ruin his entire effort:

Suppose we take M as the set of all sets which are members of
themselves, and N as the set of all sets which are not members of
themselves. N itself is a set, so it must belong to either M or N
If N belongs to N, then it is a member of itself, so it must belong to
M. But Mand N are mutually exclusive sets, so if ¥ belongs to ¥, it
cannot belong to ¥ (Kline, 1972, p. 1184).

Russell's paradox is described by W. V. Quine (1962, p. 90)
as follows: "What of the class of all classes that are not members
of themselves? Since its members are the nonself-members, it
qualifies as a member of itself if and only if it isnot. It is and
it isnot."

Russell's paradox caused a serious crisis in the foundations
of mathematics precisely because it could not be resolved through
logic. There was no apparent logical fallacy in Russell's thinking.
Quine (p. 85) terms this type of paradox an "antinomy,” and contrasts
antinomy with paradoxes which contain logical fallacies. Famous
examples of the latter include the English mathematician Augustus De
Morgan's proof that 2 = 1

‘Let x =1. Thenx’=x. . Soz?-1=x - 1. Dividing both
sides by X - 1, we conclude that x * 1 =1; that is, sincex =1,

2 =1" (Quine, p. 84). The logical fallacy here is in the division
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by x = 1 which is 0.

An interesting and ancient verbal paradox concerns the village
where there lives a barber who shaves all and only those men in the
village who do not shave themselves. So -- does the barber shave
himself? 1t would seem he shaves himself if and only if he doesn't.
Quine (p. 84) concludes that we rid ourselves of this paradox by the
realization that no village can contain such a barber; we reduce this
paradox to absurdity.

Some of the most famous paradoxes in mathematical history were
proposed by the Greek philosopher Zeno of Elea. Four of his paradoxes
concern motion, inlcuding the race between Achilles and the Tortoise.
Zeno concluded that i f the Tortoise has a head start, Achilles can
never catch up, because whenever he arrives at the point whese the
Tortoise was, the Tortoise will have moved ahead a little. Today we
can see the fallacy in this paradox: the Greeks must have thought
that an infinite succession of intervals would add up to an infinite
interval (Quine, p. 89). W mathematicians came to understand
convergent series, Zeno's paradox was solved.

Rather than containing a fallacy, however, Russell's antinomy
demonstrated that a "trusted pattern of thinking was found wanting"
(Quine, p. 90). The trusted pattern of reasoning was the basic idea
behind set theory, that for any condition you can think of there must
be a set whose members meet that condition. Actually, as we have
seen in Russell's antinomy, there can be no class that has as members
the classes that are not members of themselves.

Quine points out, interestingly enough, that to the ancient
Greeks Zeno's paradoxes probably qualified as genuine antinomies.
Since the Greeks did not know about convergent series, they could not
have detected the logical fallacies in Zeno's arguments. To them,
it might have seemed that Zeno had introduced a crisis situation into
mathematics, just as Russell did more than 2000 years later. Davis
and Hersh (p. 226) propose that Euclid's axiomatic treatment of such
"intuitive" geometric objects as "line" and " point" might have been
in response to Zeno's paradox, to forestall the problems Zeno had
raised. In the same way, we now think the Greeks concentrated on
geometry "to avoid the difficulties posed by the discovery of
incommensurable magnitudes” (Wilder, p. 176).
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In response to Russell's antinomy, three distinct schools of
mathematical thinking have attempted to resolve the problem. None
has succeeded in obtaining universal agreement among mathematicians.

Bertrand Russell and the English mathematician Alfred North
Whitehead led the Logicists, who sought a way to reformulate set ~
theory whichwouldavoid or nullify the Russell paradox. They contended
that mathematics is a branch of logic, and that all of math can be
reduced to logic. They hoped to restore " certainty” to mathematics
through logic. Russell and Whitehead published Principia Mathematica
between 1910 and 1913; in this enormous work, mathematics was deduced
from logic using complex symbolic language. The authors proposed
that the terms "set" and "ordered pair,” and the laws governing sets
and ordered pairs, belong to the discipline of logic rather than
math. They then showed that "the laws of arithmetic and the rest
of the mathematics of number are related to those of logic in the
same way as the theorems of geometry are related to its axioms"
(Barker, 1964, p. 80).

Russell and Whitehead dealt with Russell's paradox through
their theory of types. According to this theory, all the entities
of set theory, such as sets, sets of sets, sets of sets of sets, etc.,
are arranged in a hierarchy of levels, or types, and each entity can
belong to just one type. No set can have members of types other
than the next lower type. They specified that "whatever involves all
members of a collection must not itself be a member of the collection"”
(Kline, p. 1195). By thus restricting the logical axioms relating to
sets, Russell and Whitehead were able to retain the basic idea
behind set theory, that for every statable condition there exists a
set containing all and only those things which satisfy the condition.
As Barker (p. 91) summarizes, Russell and Whitehead avoided the
paradox "by narrowing the range of sentences in set theory that are
to count as making sense."

More recently, most mathematicians have disagreed with the
Russell-Whitehead thesis that math and logic are identical. Rather,
mathematical logic has been extensively developed as a separate
branch of mathematics. In 1962 Leon Henkin wrote that the basic
concepts of math can be expressed in logical terms, but as J. Fang
asked in a review of Henkin's paper (Fang, 1964, p. u47), are
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mathematics and physics identical "because the basic concepts of all
physics can be expressed in terms of mathematics?"

Russell and Whitehead were hoping that logic would give
certainty back to mathematics. However, as Jagit Singh (1959, p. 274)
points out, logic is "certain" because it doesn't deal with substance.
Logic is concerned with the nature and rules of reasoning; we use
logic to deduce valid conclusions from given premises. 'Logic
studies the relations between propositions independently of what each
proposition is about.” Singh finds it surprising that logistic,
mathematicians like Russell and Whitehead could so readily disregard
the substance of math.

A very different approach to mathematics was taken by the
Intuitionist school. 1t was founded in the late 1800's by Leopold
Kronecker, who stated that Cantor's work on transfinite numbers and
set theory was mysticism rather than mathematics. Kronecker accepted
little in mathematics beyond the whole numbers, which he said are
given to us by a fundamental intuition. He rejected irrational
numbers, for example, as non-existent. Kronecker stood alone in his
philosophy until the controversy over Russell's paradox had begun.
Beginning in 1908, the Dutch topologist L. E. J. Brouwer took up
Kronecker's positon and elaborated it. He demonstrated that the
concept of natural whole numbers came from the perception of the
passage of time, a fundamental human intuition. Brouwer maintained
that " all mathematics should be based constructively on the natural
numbers” (Davis and Hersh, p. 334). Nb mathematical object exists
unless it can be given by a construction, in a finite number of steps,
starting with the natural numbers.

Brouwer and the Intuitionists rejected the use of proof by
contradiction. A good example is Brouwer's treatment of Fermat's
last theorem, in which Fermat asserted without proof that there are
no natural numbers for n greater than 2 which satisfy the equation

n n
xn+y =2z .

Mathematicians have tried but failed to prove or
disprove this theorem; Intuitionists feel that since it can be
neither proved nor disproved, then it may be neither true nor false.
It mey be a "meaningful statement possessing neither truth nor
falsity" (Barker, p. 76).

Brouwer asserts that mathematical ideas are in the human
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mind " prior to language, logic, and experience" {(Kline, p. 1200).

He does not recognize the necessity of deducing mathematical
conclusions from axioms. Therefore, to the Intuitionists, Russell's
paradox is unimportant. The Intuitionists find logic to be a function
of language, not of mathematics. Furthermore, they claim that :
paradoxes such as Russell's result from "the unjustified extension of
the laws of logic from the finite to the infinite" (Wilder, p. 177).

A third major school of mathematical philosophy arose early
in the twentieth century. The Formalists were led by David Hilbert,
whose first paper in the field appeared in 1904; at that time, he
attempted to establish a basis for the number system without using
the theory of sets, and he argued against Kronecker's contention
that the irrationals don't exist. Hilbert's major papers appeared
during the 1920's, when he sought to defend mathematics from the
Intuitionist viewpoint; he feared that they were trying "to save
math by throwing overboard all that which is troublesome...they
would chop up and mangle the science" (Davis and Hersh, p. 335).

Hilbert introduced a formal language and rules of inference
so that every proof of a classical theorem could be mechanically
checked. He also introduced rules for transforming formulas,
referred to as meta-mathematics. Hilbert was attempting to place
mathematics on a certain and reliable foundation by eliminating
meaning from the mathematical symbols. He wrote that the symbols
themselves are the essence of math, and that they no longer stand for
any idealized physical objects (Kline, p. 1204).

Since Hilbert and the Formalists purged their mathematical
language of semantic content, they found that the mathematical
failure revealed by Russell's paradox actually lay in language, not
in math. For example, the origin of many paradoxes, including
Russell's, lies in the ambiguity of the word "all.”" If we state

" Allrules have exceptions,” we have a paradox if we define "all"
to include this statement (Guillen, p. 17). This paradox and may
others are thus semantic, rather than logical, and can be avoided by
carefully removing any meaning from logic. Hilbert and his followers

have often been criticized for trying to make mathematics ' safe by
turning it into a meaningless gane' (Davis and Hersh, p. 336).

Nonetheless, Hilbert's philosophy, somewhat changed, has evolved
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into the predominant attitude in modern mathematics: today,
Formalists define math as the science of rigorous proof.

Each of the three major schools of mathematical philosophy
attempted to re-establish the mathematical'certainty that seemed to
have been lost with Russell's paradox. None succeeded, but
mathematicians had hope until, in 1931, the German logician Kurt
Gddel's incompleteness theorems showed that certainty could not be
obtained by any method founded on traditional logic. Thus the
Formalist and Logicist schools were doomed to failure. The
Intuitionist school failed because it condemns so much of classical
math.

Mathematicians today tend to treat this philosophical
upheaval of the early twentieth century as if it never happened. |If
they do not quite believe that their discipline rests on a foundation
of certainty, they certainly do their day-to-day work as if it doesn't
really matter. The predominant belief among non-mathematicians is
that mathematics i s an exact science resting on a base of certainty.
The late philosopher Imre Lakatos in Proofs and Refutations (1976)
showed that math is really like the natural sciences, that it is
fallible, that "it too grows by the criticism and correction of
theories which are never entirely free of ambiguity or the possibility
of error or oversight" (Davis and Hersch, p. 347). Lakatos emphasized
informal math, math in the process of growth and discovery, which is
actually math as most mathematicians know it. The great value of
Russell's paradox has been its contribution to the growth of
mathematics; the fact that we cannot yet really resolve it is of much

| ess importance than the search.
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THE ACTUARI AL PROFESSION:  ONE OF THE
BEST KEPT SECRETS OF THE BUSI NESS WORLD

by Naneie L. Mernitt
Tnsurance Services O0ffice, Inc.

For some college undergraduates, becoming an actuary conjures
up images of sitting in some isolated corner, crunching out numbers
that only other mathematicians can understand. Other students aren't
even aware that the actuarial profession exists as a career alternative
until almost ready to graduate. |f you have a strong background in
math, and would like to be part of a highly interesting, demanding and
rewarding field, then an actuarial career might be for you.

The Profession. Just what is an actuary? Skilled
mathematicians, actuaries are business professionals that have the

ability to analyze and solve complex problems in a number of disciplines.

According to the Casualty Actuarial Society, actuaries "help design
plans to reduce the financial impact of the expected and unexpected
things that happen to people, like illnesses, accidents, unemployment,
or premature death. They evaluate the financial risk a company takes
when it sells an insurance policy or offers a pension program."” (The
Casualty Actuarial Society promotes and increases the knowledge of
actuarial science, and maintains high qualification standards for the
profession. )

While most actuaries work within the insurance industry,
others are employed by the government, health industry, actuarial
consulting firms, accounting firms, and private corporations. Using
advanced math formulas and data often compiled from millions of cases,
actuaries can determine risks, establish probabilities, and help
insurance companies set premiums. Whenever a person buys homeowners
or automobile insurance, for instance, actuaries have already
determined the probability of an insurable event occurring, its
average cost, and the appropriate premium to be charged.

In many insurance companies, no specific college training is
needed to become an actuary. But candidates need a strong background
in math or statistics. Math, physics, economics, computer science, or
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engineering majors usually have the necessary quantitative background
to succeed as actuaries.

Actuaries are involved in much more than number crunching;
they need to use both their "analytical™ and "people" skills in this
line of work. Most companies hiring actuaries look for people who
not only possess good math skills, but demonstrate clear communication’'
skills as well.

As business professionals, actuaries need to have a broad
understanding of the business world and the general environment. So
students preparing for the career need to incorporate English, business
writing, and speech classes into their curriculum. It is also helpful
to round out their studies with courses in business, philosophy, and
logic.

In addition, many companies sponsor actuarial intern programs
during the summer break. Participating in an internship is an ideal
way to get a feel for what the actuarial profession entails. Students
should seriously consider applying for a summer program during the
breaks between their junior and senior years.

The Actuarial Exams. To obtain professional qualification to

practice as an actuary, candidates usually need to become Fellows in
the Society of Actuaries (for life and health insurance and pension
planning), or the Casualty Actuarial Society (for property and casualty
insurance). Actuarial recruits are expected to pass ten comprehensive
examinations given by either the CAS or SOA

Offered twice a year, the exams cover several interrelated
fields crucial to an actuary's career development: mathematics,
statistics, economics, risk theory, accounting, law, and forecasting.
Taking all ten exams can take anywhere from four to ten years - or
longer - to complete. But students can begin careers as actuaries
once they receive their undergraduate degree. They can work to
develop their actuarial skills as they pass the exams. W a recruit
has completed the first seven exams, he or she becomes an associate
of the CAS or SOA. Those who pass all ten exams earn their Fellowship.

While no formal training is necessary, most insurance
companies want students t o have taken at |east one actuarial exam

-

while in college. For some actuarial candidates, the additional
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pressure of the exams proves burdensome. Completing the exams
requires self discipline and the ability to study without supervision -

qualities that can be nurtured while still in school.

For those actuarial candidates who are willing and able, the g
opportunity to move into a company's upper ranks is there. Depending .
on your om ability and experience - and i f you are regularly passing %
actuarial exams - you will be rewarded with a regular series of exam

raises and additional career opportunities.
An Actuarial Career at I1SO. Insurance Services Office, Inc.,

or 1SO, specializes in actuarial services. IS0 is one of the largest
employers of actuaries in the property/casualty insurance industry.
It is not, however, an insurance company. Rather, IS0 assists
insurance companies by collecting, analyzing, and producing accurate
and timely data, which its clients - over 1300 property and casualty
insurers - use to make important business decisions.

Essentially, IS0 is a consulting organization. The company
employs actuarial techniques to develop projected industry costs for
various kinds, or lines, of insurance. Every year, IS0 uses data from
800 million insurance records to develop advisory rate information.
Based on these records and its actuarial expertise, IS0 provides advice
to clients for 16 different lines of insurance.

May ISO actuaries conduct research to predict future
economic and social trends that can have an impact on the property/
casualty insurance industry. They also deal with insurance
underwriters, lawyers, and regulators on a regular basis, and are
involved in testifying before state regulatory hearings.

Ken Levine, actuarial assistant, sr. in I80's Commercial
Casualty Division, is a recent IS0 inductee, and is glad to have joined
the ranks of actuarialprofessionals. Ken graduated with a math degree
from Rensselaer Polytechnic Institute. "When | heard about the
actuarial profession from ny high school guidance counselor, | didn't

give it much thought. At RPI, | took a number of business courses to

A

complement ny math studies and enjoyed them very much.

"By ny senior year, | felt that becoming an actuary in the
insurance industry would provide nme with the perfect opportunity to
apply ny math skills in a business environment. Wha attracted me to
ISO was its role as the provider of information to the property/casualty
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insurance industry."

There's no denying that this is a challenging job. If you are
looking for a meal ticket that doesn't involve heavy lifting, then
the actuarial profession is probably not for you. But if you're
interested in breaking new ground, making worthwhile contributionsto
a company, and applying your math skills in a business environment,
then you're going to fit right in.

For more information about the actuarial profession, contact
the Casualty Actuarial Society at One Penn Plaza, 250 West 34th Street,
Nev York, Nav York 10119. Ard for more information about 1SO, write
to ISO's College Recruitment Coordinator at 160 Water Street, Nav York,
Nev York 10038.

¥

The Actuarial Examinations

Associate Examinations:

Part 1. General Mathematics

Part 2. Probability and Statistics

Part 3. (A) Applied Statistical Analysis, (B) Operations
Research and (C) Numerical Analysis

Part 4. (A) Mathematics of Compound Interest, (B) Life
and Casualty Contingencies and (C) Credibility
Theory

Part 5. (A) Principles of Economics, (B) Theory of Risk and
Insurance, (C) Policy Forms and Coverages and
(D) Underwriting and Marketing

Part 6. (A) Principles of Ratemaking and (B) Data for
Ratemaking

Part 7. (A) Insurance Accounting, (B) Expense Analysis and
Published Financial Information and (C) Premium,
Loss and Expense Reserves

Fellowship Examinations:

Part 8. gA; Insurance Law, Supervision and Regulation,
B) Statutory Insurance and {C) NAIC (the pro-
ceedings of the National Association of Insurance
Commissioners)

Part 9. (A) Advanced Ratemaking and (B) Individual Risk
Rating

Part 10. (A) Financial Operations of Insurance Companies,
(B) Reinsurance and Excess Rating, (C) Forecasting
and (D) Current Events and Issues
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THE FOCAL DISTANCE OF A CONIC SECTION
by ALL R Amin-Moez
Texas Tech Univens.ity
In his book, Mathenatical Recreations and Essays [11, Walter W.
Rouse Ball, under the title of Ninth Fallacy, mentions that every
ellipse isacircle. Thisis very interesting and pertains to the
problem of extrema on the boundary. In this note we study the focal
distance for conic sections and its extrema.
1. The Ellipse. Consider the ellipse

x2 y2
—=+<==1,a>b > 0.
a2 b2
Let the foci be F(-c,0) and G(c,0), as in Figure 1. Let P be a point
on the ellipse.

Yp

Figure 1

/¢ shall calculate PF = r, which we call the focal distance for P.
From the distance formula,

r'2 = (x +c)2 +y2.

Onh the other hand, from the equation of the ellipse,
2 2 2 2

y2 = —]3-2— (a“- x2) = g__—é_c_ (a2 = x2) = (1 - e2)(a2 - x2),
a

a

where e = c/a is the eccentricity of the ellipse. Thus

r2 = x2 + 2cx + c2 + (1 - <—:2)(a2 - x2)
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= e2x2 + 2¢x + a2

= e2x2 + 2eax + a2

u

(ex + a)"".

Hence, r = a +ex|.
The domain of the function r = r(x) is

D = {x: |x| < al.
This implies that

a—c_<_a+exia+c.
Consequently,

r=a+ex >0,
and at c and a - c are the maimum and the minimum of r, respectively,
and are achieved at the boundary of the domain of r. That is, the
extema occur when P is a vertex of the ellipse.

In [1], it is stated: "Since dr/dx = e is constant, r has no
madimum and minimum, and it (the ellipse) must be a circle.” Indeed,
Professor Ball was teasing.

Ore can easily calculate 5 and obtain

B =g =a- ex
Again, from |x| < a, one can show that
a-cfLa-ex<at+tec.

2. The Hyperbola. Consider the hyperbola

X2 y2
_— - =1,
a2 b2
Ya
P
—— *x
T G

Figure 2
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As in Figure 2, let the foci be G(c,0) and F(-c,8). W calculate PF = p'= x + a.
/G = r, where Again, we obtain the minimum value of r on the boundary of the domain
2 = (x - C)Z + y2 of r; that is, when P is the vertex of the parabola.
In this case, 4. Problems. |f we choose a point on an axis of any of the
2 2 2 conics mentioned above, the corresponding radial distances may or nmay
2 b 2 2 - .2 4
y e (x" - a") = 2 2a (x* - a%) = (e? - 1Hx% = a%). not have all the extrema on the boundary. These problems may be of some
a a

interest to students. W shall give samples.

Thus ) 5 ) ) ) 5 (i). Consider the ellipse in Figure 4. Let A(p,0) be a point on
re=x" -2ttt (e” - 1T -a) the major axis of the ellipse and let P be on the ellipse. Obtain the
- ezx:z . B % az madimum and the minimum of AP.
= e2x2 - 2eax + a2 y4
P

= (ex - )%,

where, once again, we have used c = ea.

Hence, r = |ex - al. The domain of the function r = r(x) is 7\/ .

D = {x: |x| > al.
Considering x > a, weget ex - a >c -a. Inthiscase, r = ex - a.
For x < -a, we obtain ex - a < -c - a and we must choose r = a - ex.

In all cases, the minimum of r is attained at the boundary of Figure 4
the domain; that is, when P is a vertex of the hyperbola.

The reader may study the focal distance A= which is quite

R The maximum occurs on the boundary, but it is interesting to
similar to the one of FG

obtain a necessary and sufficient condition so that the minimum does

8. The Parabola.  Consider the parabola not occur on the boundary. The reader mey show that the condition is

s 2/a isi i
v = yax, a > 0 |p| < cZa. The case of |p| = c%/a is interesting to study.
(ii). For the parabola and hyperbola similar problems mey be
with the focus F(a,0), as in Figure 3. |t is clear that posed. Cf course, there is no maximum. Ore need only discuss the
problem of the occurrence of the minimum on the boundary.
YA P
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THREE FAMILIAR RESULTS VIA THE
MEAN VALUE THEOREM

by Noiman Schaumberger
Bronx Community College

In this note we use one application of the mean value theorem
to obtain three significant results.

The first is the familiar double inequality for e that states
that for all positive integers n

n n+l
(1) (1+£)<e<(1+%)
Secondly,
n . .\n+1
(2) (n+1) < n! < (n+1)
n n

Although (2) is not as good as Stirling's formula it can carry the
student a long way in approximating n!.

The third is
1/n
(3) 1im ™1
— n e

which is usually not proved until the student is exposed to Stirling's
formula. (See, for example, Advanced Caleculus by Taylor, Ginn 6 Co.,
1955, p. 688.)
Using the mean value theorem with f£(x) = xlogx - X, we have
[(k+1)log(k+1l) - (k+1)] - [klogk - k]

(k+1) - k
where k > 1 and ¢ £ (k, k+1).

= logc

Hence
(4) logk < (k+l)log(k+l) - klogk - 1 < log(k+l).
To get (1) we rewrite (4) as
klog(k+l) - klogk < A < (k+1l)log(k+l) - (k+1)logk

or
k k+1
log (.]itl_) < 1< lOg (.k_tjl) .

k k
It follows that

To obtain (2), weputk=n,n-1,n-2, ..., 1in (&)

and add. Thus

n n+l
J log k < (n+1)log(n+l) - 1.1og(1)- n< ] log k.
1 2
Consequently
n+l n
log n' < log(n+l) - log e < log(nti)!
or
n n+l
Iog(n—+|%2 < logn! < 1og@fr11—)
e
Hence
n n+l
(n_+Q. < n! < Llli)_
n n
e e

Result (3) now follows by writing the above as
P (n+1)(n+l)/n

n+l _ (n!)l/n
e

e
or
1/n
ntl 1 _ (n!) oot et/ L
n e n n e
n+l
As n » =, —]— * 1 and (n+l)l/n -+ 1, so that
1/n
L @71
s M e
‘h

P

ANOTHER APPROACH TO e™ > =°

by Norman Schaumberger
Bronx Community College

Using the mean value theorem for integrals, we have

™
gdx 1, \
— ==(w-e), e<c<m,
c
e

Hence, 1n(w) - 1ln(e) <

Thus, eln(r) < mlnle), or 7 < e".
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MARCEL RIESZ - AN ANECDOTE

by J. L. Brennen
10 PhifLlips Road
Palo AlLto, CA 94303

Marcel Riesz was a great mathematician in more ways than one.

He believed in good food and drink, and went 300 pounds. Thus he stood
out in a crowd. Especially was he known to all who attended a confer-
ence in College Park, Maryland, in 1954, since he was the after-dinner
speaker at the banquet.

The banquet must have continued into the late hours, since when
| appeared the next morning (late myself) Riesz was not yet seated.

Like me, he took a seat in the back of the room. | hardly need remark
that | was not as well-known to Riesz as he was to me | couldn't have
mistaken him.

Riesz immediately began fidgeting, searching first in one pocket
and then in another. He continued this so persistently that soon I my-
self was looking into all ny pockets. It didn't help him for ne to do
this, but eventually he found what he was looking for -- his eyeglasses.
He put them on, leaned far forward to read ny name tag, and then extend-
ed his hand smiling. "Riesz is ny name™ he chortled. He was already

acquainted with everybody else, and wished to score one hundred percent.

Editorn's Note

Marcel Riesz (1886-1969) was a prizewinner in the E6tvis Mathematical
Competition in Hungary in 1904,

Spend one oh two semesters of yowr junion/seniof yeans in Hungary, a country
with a tong tradition of excellence .in mathematics research and education.

Take part in BUDAPEST SEMESTERS IN MATHEMATICS.

A Incredible Experience!
Davdid Wagner, Participant

For infommation and applLication forms write to Prof. W. T. Trotter, Jh.,
Depantment of Mathematics, University of South Carolina, Cofumbia, S. C.
29208.
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CALL FOR NOM NATI ONS

El ections for national officers of the Pi M _Epsilon
Fraternity will be held in the Spring of 1987. The
three-year terms of office will begin July 1, 1987.

The Nominating Conmittee consists of Richard V. Andree,
University of Okl ahoma, Chairman, J. Sutherland Frane,
M chigan State University, and E Maurice Beesley, Univer-
sity of Nevada. The conmittee will neet at the 1986.Pi M
Epsilon National Conference at.the University of California
at Berkel ey, August 3 - August 6

The committee solicits recomendations for nomn nees
from the nmenbership. Please submt names and addresses of
possible nomnees to MIlton D Cox, President, Pi Mu
Epsilon, Department of Mathematics and Statistics, Mam
University, Oxford, Ohio 45056, or to any nmenber of the
Nom nating Committee, before July 1, 1986.

Addi tional nomnations for officers nmay be made in
accordance wth Sections 2 and 3 of Article V of the

Constitution and By- Laws which are reproduced bel ow.

ARTICLE V. NATIONAL ORGANIZATION

Section 2. Officers. The Officers of the fraternity shall be President,
Vice-president, Secretary- Treasurer, Editor, and four Councillors. These eight,
together with the most recent past President shall constitute the Council of the
fraternity, and shall serve without compensation.

Section 3. Election of Officers. The Officers shall be elected by the
chapters to serve for a term of three years beginning July 1 every third year.
They shall, however, hold office until their successors are elected and
qualified. Nominations shall be made by a nominatin% committee appointed by the
President. This committee shall nominate at |least three candidates suitable for
the office of President, at | east one each for the offices of
Secretary- Treasurer, Editor, and at least six for the four offices of
Councillor. Additional nominations may be made by the Council, a General
Convention, or an% chapter of the fraternity prior to the month in which ballots
are mailed to the chapters. The names of all nominees shall be submitted on a
ballot to the chapters by the Secretary before January 31 preceding the begin-

ning of the new term. Ballots shall indicate a first and second choice for
President, one choice each for Secretary-Treasurer and for Editor, and four
choices for Councillor. Decisions shall be based on a plurality of chapter

votes cast for each office. The Vice-president shall be selected from the
remaining candidates for the office of President by tallying each ballot for the
preferred remaining candidate, 1.e., first choice candidate, unless the first
choice candidate was elected President, in which case the second choice
candidate shall receive the vote. In case of a tie among two or more candidates
for an office, the out-going Council shall choose from such candidates.

~ Vacancies in the Council shall be filled for the balance of the term by a
majority vote of the remaining Council upon nomination of the President.
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» 1986 NATIONAL PI MU EPSILON MEETING

The Annual Pi Mu Epsilon National Meeting will be at
the University of California at Berkeley from Sunday, August
3, through Wednesday, August 6, concurrently with the Inter-
national Congress of Mathematicians (ICM-86). Pi Mu Epsilon
meetings will be held in the evenings to avoid conflict with
the ICM meetings during the day.

Student paper presenters and student delegates
(non- presenters) are needed. Talks are to be fifteen
minutes in length and may include any area of mathematics or
its application. Talks may be on either the expository
level or on the research level; both are encouraged.
Mathematical topics in computing are also wecome

Each chapter is eligible to apply for air travel
support up to a (chapter) total of six hundred dollars
{$600) for students presenting papers Or up to a (chapter)
total of three hundred dollars ($300) for delegates
(non- presenters) .

Ordinary registration for ICM-8 is $125. Students
have the option of earning free registration by working ten
(10) hours for ICM-86. Contact your chapter advisor for
detailed information, registration forms and the "Informa-
tion and Helpful Hints" sheet.

%

REGONAL MEETINGS

May regional meetings Of, the Mathematical Association Of, America negu-
Larky have sessions fon the. presentation of, student papers. |f, two on
mone cofleges and al Least one Local chapten of, PL M Epsilon help spon-
s0n, ON. participate 4n, iuch sessions, financial hefp up to $50 4+ avail-
able.. Write to Dn. Richard A. Good, Secretary-Treasuren, Department of,
Mathematics, University Of, Maryland, College Parnk, MD 20742.

L

AWARDS CERTIFICATES

YowL chapter can meke use of, the. Pi Mi Epsifon Award Certficates avail-
able t0 help you recognize mathematical achievements of, your students.
Write tO Richard A. Good, Secretray-Treasuren, Department of Mathematics,
Univernsdity of, Maryland, College Park, MD 20742
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THE THIRTEENTH ANNUAL Pl MJ EPSILON STUDENT CONFERENCE
AT

MIAMI UNIVERSITY
IN

OXFORD, OHIO

OCTOBER 3-4, 1986

VE INVITE YQU TO JOIN US THERE WILL BE SESSIONS OF THE
STUDENT CONFERENCE N FRIDAY EVENING AND SATURDAY AFTER-
MOON. FREE OVERNIGHT LODGING FOR ALL STUDENTS WILL BE
ARRANGED WITH MIAMI STUDENTS. EACH STUDENT SHOULD BRING A
SLEEPING BAG. ALL STUDENT GUESTS ARE INVITED TO A FREE
FRIDAY EVENING PIZZA PARTY SUPPER AND SPEAKERS WILL BE
TREATED TO A SATURDAY NOON PICNIC LUNCH. TALKS MAY BE N
ANY TOPIC RELATED TO MATHEMATICS, STATISTICS OR COMPUTING.
WE WHOOME ITEMS RANGING HOM EXPOSITORY TO RESEARCH,
INTERESTING APPLICATIONS, PROBLEMS, SUMMER EMPLOYMENT, ETC.
PRESENTATION TIME SHOULD BE FIFTEEN OR THIRTY MINUTES

WE NEED YOUR TITLE, PRESENTATION TIME (15 OR 30 MINUTES),
PREFERRED DATE (FRIDAY CR SATURDAY) AND A 50 (APPROXIMATELY)
WCRD ABSTRACT BY SEPTEMBER 25, 1986.

PLEASE SEND TO

PROFESSOR MILTON D. QOX
DEPARTMENT OF MATHEMATICS AND STATISTICS
MIAMI UNIVERSITY
OXFORD, OHIO 45056

WE ALSO ENCOURAGE YOU TO ATTEND THE CONFERENCE N "DISCRETE
MATHEMATICS' WHICH BEGINS FRIDAY AFTERNOON, OCTOBER 3. FEA-
TURED SPEAKERS INCLUDE RON GRAHAM AND ALAN TUCKER. CONTACT

US FOR MCRE DETAILS.



HEL P!

HEL P!

HEL P!

ST. NORBERT COLLEGE
Presents
Our First Regional Pi Mu Epsilon Meeting
in
De Pere, Wisconsin (Green Bay)

November 7-8, 1986

V¢ need your help at the inaugural event! OQur goal

is to have speakers for Friday evening and Saturday
morning- In order to do so, we need YOUR
creativity, no reasonable talk will be refusedT
(We do hope, however, that this talk will be

related to mathematics, computer science or to work
experiences, applications, etc.)

Your title, time of presentation (15 or 30 minutes)
and a 30-70 word abstract are required by 10
October 1986.

Please send to:

Professor Rick Poss
Department of Mathematics
St. Norbert College
De Pere, Wisconsin 54115

Phone: 414-337-3198

There will be no registration fee. 'All students
will be provided with free housing (bring a sleep-
ing bag). There will bea free party on Friday
evening. Please contact us for further details.

HELP! HEL

HELP!

PI
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ARML Seeks Host Colleges for Its Annual Competitions

The American Regions Mathematics League is seeking colleges,
preferably east of the Mississippi River, to host ARML
competitions in 1988 and beyond. The annual competition.
takes place in late May or early June. Accommodations are
needed for one to three nights for approximately 800
students. Facilities are also needed for breakfast and
lunch on the Saturday of the conference.

Colleges willing to host such a conference for the nations's
top_ high school mathematics  students  should write
J. Bryan Sullivan, 17 Woodside Dr., Sterling, M\ 01564.

whe

-
CRYPTOLOGIA ANNUAL

UNDERGRADUATE PAPER COMPETITION
IN CRYPTOLOGY

WE ANNOUNCE THIS CONTEST TO HBENCOURAGE THE SIUDY OF ALL
ASPECTS OF CRYPTOLOGY | N THE UNDERGRADUATE CURRICULA.

FIRST PRIZE: THREE HUNDRED DOLLARS
CLOSING DATE 1 JANUARY

TOPIC MY BE IN AMY AREA OF CRYPTOLOGY
TECHNICAL, HISTORICAL, AND LITERARY SUBJECTS

PAPERS MUST BE ND MCRE THAN TWENTY TYPEWRITTEN PAGES IN
LENGTH, DOUBLE SPACED AND PRULLY REFERENCED. FOUR COPIES
MUST BE SUBMITTED. AUTHORS SHOULD KEEP ONE COPY. PAPERS
ARE TO BE ORIGINAL WORKS WHICH HAVE NOT BEEN PUBLISHED
PREVIOUSLY.

THE PAPERS WILL BE JUDGED BrY THE CRYPTOLOGIA EDITORS AND THE
WINNER WILL BE ANNOUNCED ON 1 APRIL WITH PUBLICATION OF THE
WINNING PAPER IN THE JULY ISSUE OF CRYPTOLOGIA.

THE COMPETITION | S UNDERWRITTEN BY A GENEROUS GIFT M
BOSHRA H. MAKAR PROFESSOR OF MATHEMATICS SAINT PETERS
COLLEGE, ERSEY CITY, NEW JERSEY.

INQUIRIES, SUBMISSIONS AND SUBSCRIPTION INFORMATION:
CRYPTOLOGIA, EDITORIAL OFFICE

ROSE HULMAN [NSTITUTE OF TECHNOLOGY
TERRE HAUTE, INDIANA 47803
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PUZZLE SECTI ON

Edited by
Joseph D. E. Konhauser

The PUZAE SCTION i s for the enjoyment of those readers who
ewe addicted to working doublecrosties or who find an occasional

mathematical puzzle attractive. We consider mathematical puzzles to
be problems whose solutions consist of answers ¢mmediately recognizable

as correct by simple observation and requiring little formal proof.
Material submitted and not used here will be sent to the Problem
Editor i f deemed appropriate for the FROBBVI DEPARIMENT.

Address all, proposed puzzles and puzzle solutions to Professor
Joseph D. E Konhauser, Mathematics and Computer Science Department,

Macalester College, St. Paul, Minnesota 55105. Deadlines for puzzles
appearing in the Fall Issue will be the next February 15, and for
pussies appearing in the Spring Issue will be the next September 15.

Mat hacrostic No. 22

Proposed by Joseph V. E. Konhausen
Macalestern College, St. Paul, Minnesota

The word puzzle on pages 260 and 261 is a keyed anagram. Tphe
241 letters to be entered in the diagram in the numbered spaces will
be identical with those in the 25 keyed woids at the matching numbers.
The key numbers have been entered in the diagram to assist in
constructing the solution. \When completed, the initial letters of the
words will give the name of an author and the title of a book; the
completed diagram will be a quotation from that book.

For an example,
see the solution to the last mathacrostic on page 259.

GRAFFI TO

" ... one of,the things that sets puzzleheads off from the. saner mem-
bers of society {4 that we do enjoy making things tougher fon ow.-
selves .

Thomas H. Middeeton
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SOLUTI ON

Mathacrostic No. 21. (See Fall 1985 Issue) |proposed by Joseph D. E.
Konhauser, Macatester Cortege, St. Paut, Minnesota)

Words:

A. Miter J. Aborigine S. Chrestomathy
B. Lightweight K. Rawindsonde T. Ouchless

C. Phonatory Bands L. Ternary rings U. Miscellany

D. Rorschach M. Ablepsia V. Passion to know
E. Ultima N.  Nychthemeron W. Ungulae

F. Equiaffinity 0. Dense-in-itself X. Touch_stone

G. Invest P. Tower of Babel Y. Eyepoint

H. The absolute Q. Hubble's constant Z. Rabatment

| . Tu-whit-tu-whoo R. Effulgent

First Letters: M. L. PRUETT ART AND THE GCOMIRUTER

Quotation: Behind each image abides an untold stony. ... Onky the

programmers can §ully see the beauty of, thein wonk, the Labyrinthine
pathways woven anorg the. subunits of, instructions, the subtle twists
4in Logic., the etaborate sequence of, operations, and the synergism with
which aff components function to bring about a final resulf.

Sofved by: Jeanette Bickley, Webster Groves High School, Mo; Victor

G. FESER, May College, Bismarck, ND; Robert Forsherg, Lexington, MA;
Robert C Gebhardt, Hopatcong, NJ; Dr. Theodor Kaufman, winthrop-
University Hospital, Mineola, NY; Beth and Ron Priel i pp, Bethany College,
Lindsborg, KS, and Robert Prielipp, University of Wisconsin-Oshkosh.

Buata

In Listing the. names of the solvers of, Mathacrostic # 20, that
of, Barbara Zeeberg, Denver, Colorado, was incorrectly spelled.

In Mathacrostic # 20, wond K. was inconrectly spelled. There

48 o d between the. n and the s in any accepifable spelling of, the. wold
"Rawinsonde. "

PLease accept my apologdes,



Mathachostic # 22

1 Gj2 E|3 M 4 T|5 Al6 R|7 F|8 V{9 Qq 10 Mj11 GJ12 0
13 W14 T|15 Ef16 17 R{18 L|19 H|20 W]21 A[22 sS|23 M|[24 @le5 T
26 Vv 27 N|28 29 Xj30 P|31 & 32 C|33 v 34 9135 X|36 F
37 H|38 U39 cC|40 41 Mi42 H 43 Cl44 A 45 K|46 R}47 X
48 W 49 K|50 51 H|52 S 53 U[54 GI55 P56 Ef57 1I|58 R
59 X|60 B(61 N 62 1163 C|64 U 65 D|66 Y 67 Gl68 0
69 Jl70 T|71 BY72 73 N|74 V{75 Q 76 G|77 1|78 M 79 080 D
81 Qi82 W|83 Alsa 85 E|86 I|87 |88 B 89 Jj90 H|91 B 92 P
93 X|94 G|95 C[96 97 S{98 K|99 0 [100 L]101 W 102 A|103 F 104 K
105 GJ106 Y 107 1]108 K 109 0170 Q{111 T[112 L|113 H{114 J|115 R[116 V
117 E[118 AJ119 B120 121 K[122 NJ123 B 124 R|125 K|126 P{127 D
128 0129 N 130 H)131 C 132 U133 T|134 E135 V136 F|137 M[138 A
139 S[140 Q 141 1[142 H]143 0 144 L1145 M[146 W|147 v [148 R|149 X
150 T151 N152 ¥ 153 W|154 U 155 L {156 E |157 B 158 J[159 B {160 N
i61 G162 Y163 L {164 F [165 R[166 E{167 Vv [168 W [169 Q 170 N171 K172 B
173 WN78 EN75 L 176 G [177 T[178 Y 179 X 180 D [181 N 182 D183 U
184 B 1185 S 186 N [187 J [188 K [189 W [190 G 191 K192 R[193 1 {194 M[195 v |196 H
197 U [198 6 199 Q 200 R [201 W {202 B 203 M{204 G J205 E [206 W 207 Q
208 N 209 J [210 211 R|212 V{213 X [214 L 215 I |216 A 217 H|218 N
219 D 1220 C {221 222 M|223 G (224 E [225 X [226 I [227 L [228 P {229 K {230 Y
231 Bf232 U 233 G {234 S)235 X 236 T[237 S 1238 A 239 W [240 Q{241 X

D2 fanitions Wonds

a
A.

8

conj ecture
118 83 138 44 238102 5 21 216

his Newtonian prediction was verified in
1758 (full nane)

adj unct edifice

157 91 184 231 202 123 159 71 119 60 172 88

said of a convex body whose every hyper-
80 180 219 65 182 127

pl ane of support has” at most one” point of
contact with the body

theories which have revol utioni zed our ideas
224 96 134 156 166 2 117 205 56 174 15 "85

about the early universe (2 wds.)
enl arging gradual |y

Forrest Mns' word for digital watches,
portabl e stereos, electronic calcul ators,
transistor radios, pocket televisions, and
honme conputers

31 54 190 24 161 1 198 67 11 204 94 176

76 233 223 105

taking up of fluid by a colloidal system
resulting in swelling

very restricted methods of proof, as pro-
posed by Hlbert

in Christianity, its rays are likened to the
Holy Spirit's seven gifts

establish convincingly as accurate, true,
real or genuine

maniki n- shaped

113 19 130 37 217 196 142 51 42 90

62 141 226 107 193 86 40 77 57 215

69 89 187 114 209 34 158

121 104 229 171 221 191 108 49 188 98 45 125

the purest luster (2 wds.)

203 222 137 78 41 10 194 23 145 3

for each positive integer n>2 they are
vertices of a regular n-gon (3 wds.

rotate faster than

186 129 160 170 27 208 181 151 122 73 61 218

| essen —

frequency e

tally used in France by bakers in rural [
areas when they sold bread on credit (2 wds.) 17 192 148 58 46 28 6 211 124 165 200 115

a popfly, for exanple (2 wds.)

in mathematics, the Hal nos-introduced i
synbol M used to indicate the end of a proof 74 177 4 150 236 111 25 133 7

imperfectly circular (comp.)

38 183 50 154 232 64 197 132 84 53

a ol ecul ar speci es whi ch contains separate
centers of positive and negative charge;
e.g., nethyl orange

74 135 147 195 212 167 8 116 33 26

Maupertuis' 1736 expedition to Lapland to
measure the length of an arc of one degree 20 189 168 13 173 82 206 201 239 48 101 153
on one of the earth's neridians earned him

for graphs F, and F,, the least positive

integer p such that for every graph G of
order p either G contains F, as a subgraph

or & contains F, as a subgraph (2 wds.)

23547 93 149 29 17916 59 24T 35 225 213

any special delicacy

162 230 66 152 106 178
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COMMENTS ON PUZZLES 1 - 6, FALL 1985

Brian Conrad wote that Puzzle # 1, withk = 4, appears on page
48 of Games For The Superintelligent by Janes Fi xx, Doubl eday ¢ .,
Inc., 1972. Robert Prielipp sent a reference to Probl em24 on page 12
of The USRR Olympiad Problem Book by D 0. Shklarsky, N N Chentzov
and I. M Yaglom[(revised and edited by Irving Sussman and transl at ed
by Jehn Maykovich), W H Freeman and Conpany, San Franci sco and London,
19621. A proof that a solution exists only for k = 4 |'s given on pages
114-117. Qher correct responses to Puzzle # 1 were received from Mark
Evans, John H. Scott and Victor G. Feser. For Puzzle # 2, Brian Conrad
and Victor G. Feser submtted

(-1 +23) = (YT + 5) = 22/7,

John H. Scott, who asked us to be broadm nded about the conditions, sub-
mtted
1x2 + 4x5_ 22
3+14 T
For Part a of Puzzle # 3, there are six ways of arranging four points
inthe plane so that the six distances between pairs of points fall into
just two classes. These are shown below Qnly partial responses were

s AADK

were received for Part b. of Puzzfe # 3. The correct answer to

Part b. is 27. nly one of these arrangenents - the vertices of a reg-
ular pentagon - is a planar arrangenent. For a conpl ete description of
the other 26 arrangenents, see the paper On Euclidean Sets Having Only
Two Distances Between Points. | and Il. by s. J. BEnhornand I. J.
Schoenberg, XONINKL. NEDERL. AKACEM E VAN WETEN SCHAPPEN - AVISIHRDAV,
Proceedings, Series A, 69, No. 4 and Indag. Math., 28, No. 4, 1966.

nly two responses were submtted for Puzzle # 4  That of Leroy F.
Meyers was an anal ytical description of the graphi cs which follow
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Responses to Puzzle # 5 were received fromJames E. Campbell, Victor G.
Feser, Mark Evans, John M. Howell and John H. Scott. Victor G. Feser
put it thisway " ... the vertices of a regul ar pentagon wth edges ad-
justed just right A pentagon with edge |ength about 0.6498 will
doit. For Puzzle # 6 Victor G Feser, Robert Prielipp, John M. Howell
John H. Scott and James E. Campbell submtted essentially equival ent
solutions - all triples of the form {4y, y, -2y), y # 0.

List of Responders: James E. Campbell (3,5,6), Brian Conrad (1,2),
Mark Evans (1,3,5), Victor G. Feser (1,2,3,4,5,6), John M. Howell

(3,5,6), Leroy F. Meyers (4), Robert Prielipp (1,6) and John H. Scott
(1,2,3,5,6).

PUZZLES FOR SOLUTION

1.  Proposed by Brian Conrad, Coram, New Yohk.

Wsing the usual arithnetic synbols and the digits 5, 4, 3, 2, 1
inthat order fromleft toright, are you able to form22/72 If not,
how cl ose can you cone to 22/7? Wiat is the closest value to 22/7 that
you can obtain by using the usual arithnetic synbols and the digits 1,
2, 3, 4and 5inthat order both fromleft toright and fromright to
left? For exanpl e,

12 :(3 +4) +5=237=(5 +45) : 2L

2 Proposed by Robert Fonsberg, Lexington, Massachusetts.
Find a six-digit nunber such that starting at the left succes-
sive groups of four formthree consecutive four-digit nunbers.
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3. From the booktet Four by Four by Ennest Ranuced.
Imagine the "grid"” below to be made of 40 matchsticks.

What is the smallest number of matchsticks which must be removed so that
in the configuration that remains thematchsticksare not parts of the

sides of a square of any size? The answer given is ten. Are you able
to lower it to nine?

4.  Proposed by Joe Konhauser, Macalester College, St. Paul,
Minnesota.

In the plane, as shown below, three circles can be arranged in
four ways so as to have no points of intersection. In three-space, in
how meny different ways can five spheres be so arranged?

QQ o@..

5.  Proposed by Joe Konhauser, Macalester College, St. Palt,
Minnesota.

Given a circle interior to an angle, as shown, for which point
on the circle is the am of the distances from the sides of the angle
least?
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PROBLEM DEPARTMENT

Edited by Clayton W. Dodge
Univernsity of Maine

This department welcomes problems believed to be new and at a
Level appropriate fon the neadens of this joumnaf. 04d problems
displaying novel and efegant methods, o4 solution are also invited.
Proposals should be. accompanied by sofutions if avaitable and by any
information that witl assist the. editon. A asterisk (*) preceding a
problem number indicates that the propeser did not submit a solution.

ALL communications should be addnessed to C. W. Dodge, Math.
Dept., University of Maine, Onono, ME 04469, Please submit each
proposal and solution preferably typed on. elearly wiitiesn On a
separate sheet [oneside only) properly identified with name and
addness. Solutions to problems in this issue should be mailed by
December 15, 1986.

Problems for Solution

613.  Proposed by Martha Matticks, Veazie, Maine.

Use a bit of number theory to solve this alphametric that pays
homage to geometry, algebra and analysis. Find that solution in base
7 yielding a prime ANAL.

GEOM
+ ALG

"AmAL

614.  Proposed by Leon Bankof§, Los Angeles, California, and
the editor.

A 10,000-meter section of straight railroad track expands 1
meter and buckles into a circular arc. Hw high above ground is the
middle of the arc? [This is an old problem and easy to solve using
ordinary trigonometry. It is repeated here because the answer is of
unexpected magnitude. ]

615.  Proposed by Witfiam S. Cariens, Lorain County
Community College, Elyria, Ohio.

Although several years retired, the eminent numerologist
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Professor Euclide Pasquale Bombasto Umbugio still solves problems with
the same prowess and efficiency he always has had. His native country,
Guayazuala, still cannot afford a computer, but they do have a pocket
four-function calculator to which he has access. He is tryingto find
the sum of the abscissas of the seven points of intersection of the
seventh-degree polynomial

-
flz) =x - 3:::6 - 13.1:5 + 55m4 - 36‘x3 - 52z

with its derivative polynomial. He has laboriously found one
intersection at x = 1.3177227.  Help the kindly, old professor to find

2+ 48x

his am without resorting to a computer.

616.  Proposed by Dmitry P. Mavlo, Moscow, USSR
Prove that in any triangle
4 B

C
tan2+tm12+tan2 < —8+(tan£-tan§tang-)2
— 27 2 2 2
cotB+ cotZ s cot &
2 2 2

with equality if and only if the triangle is equilateral.

617.  Proposed by Titus Canby, Adjustable Wnench Company,
Buffato, NV Yolk.

It is known (The Two-Year College Mathematics Journal, problem
226, September 1982, page 277) that a ? x 7 x 7 box can be packed with
a madimum of forty 1 x 2 x 4 bricks, requiring 23 cubic units of
unoccupied space. Hw mawy such bricks can be packed intoa 5 x 5x 5
cubic box?

618.  Proposed by John M. Howelf, Littlerock, California.

(i) Find when the aam of the squares of four consecutive
integers is divisible by 3.

(ii) Repeat part (i) for the sum of the squares of four
consecutive odd or four consecutive even integers.

619. Proposed by Victon G. Fesern, Mary College, Bismarck,
Nonth Dakota..

Find the largest value of x such that x = sin x = tan =z,
correct to3 4 5 6 7 and 8 decimal places.

*620. Proposed by Jack Garfunkel, Flushing, NV Yoxk.
A triangle ABC is inscribed in an equilateral triangle PR
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The angle bisectors of triangle ABC are drawn and extended to meet the

sides of triangle PQR in points 4;, By, Cy Nw draw the angle

bisectors of triangle A_‘[B]C] tomeet the sides of triangle P@R at

Ay, By C Repeat the procedure. Prove or disprove that triangle
'y 2° .

A B,G, tends to equilateral as n tends to infinity. (This result has

been proved when a circle is used instead of triangle PQR.)

621. Proposed by R. S. Luthar, University of Wisconsin
Centen al Janesvitle.

(i) Characterize all triangles whose angles and whose sides
are both in arithmetic progression.

(ii) Characterize all triangles whose angles are in

arithmetic progression and whose sides are in geometric progression.

622. Proposed by Waltern Blumbeng, Conal Spnings, Florida.

Let point P be the center of an equilateral triangle ABC and
let ¢ be any circle centered at P and lying entirely within the triangle
Let BR and CS be tangents to the circle such that point R is closer to
Cthanto A and Sis closer to A than to B. Prove that line RS
bisects side BC.

623. Proposed by John M. Howell, Littlerock, California.

A 30-foot ladder and a longer ladder are crossed in an alley.
The longer one breaks just 20 feet from its foot and the top falls
back to the other side of the alley and just touches the top of the
30-foot ladder. If the ladders cross just 10 feet above the ground,
find the original length of the longer ladder. (This variation of the
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old "crossed ladders" problem cost an aircraft company thousands of
dollars in lost time during World Wa II by engineers and other
technical people trying to solve it. | finally circulated a solution
that probably saved the company thousands more, but alas, | received

no credit for it.)

30
20

*624. Proposed by Robert C. Gebhandt, Hopatcong, New Jersey.

It is knownn and easy to prove that

n
Y()i!) =mt ) -1
i=1
Find a closed expression for S(n) and prove that for n > 1,
S(n) is divisible by 3 where
n
Sm) =7 2!l =10+ 2 +3 + ... +nal.
i=1
625. Proposed by Sam Pearsall, Loyola Marymount University,
Loa Angeles, California.
Let G be a group in which there is a unique element x such that
X generates a cyclic subgroup of order 2. Show that x commutes with
every element of G.

Solutions
587. [Spring 1985] Proposed by Monrnis Katz, Macwahoe, Maine.
As a tribute to an Editor Emeritus of this department, find
positive integers x and y. with ¥y > 2, such that o7 = BANKOFF.
Sofution by Robent C. Gebhardt, Hopatcong, New Jenrsey.

Assuming, as usual, that each letter stands for a different
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digit, and that there is no leading zero shown, then to obtain a seven-
digit answer:

if y =3, then 107 < x < 215; if y =4, then 33 < x < 57;

if y=15 then 16 < x < 26 if y = 6, then 10 < x < 15; )
if y=7 then 7 < x < 10; ify=8 then5<x < §
ify=9ory=10, thenx = § and if y =11, then x = 4

By trying each possibility, skipping the many that would obviously not

do the job, we get the only solution,

19° = 2476099.

ALso so0fved by FRANK P. BATTLES and LAURA L. KELLEHER,
Massachusetts Maritime Academy, Buzzards Bay, MARK EVANS, Louisville,
KY, VICTOR G. FESER, Maty College, Bismarck, NP, JACK GARFUNKEL,
Flushing, NY, RICHARD |. HESS, Rancho Pafos Verdes, CA, JOHN M. HOWELL,
Littlerock, CA, BB LABARRE, lUnited Technologies Reseanch Center, East
Hantford, CT, GLEN E. MILLS, Valencia Community College, Orlando, FL,
HENRY J. OSNER, Modesto Junion Coffege, CA, JOHN H. SCOTT, Macalester
College, St. Pawl, MN, W. R. UTZ, Rolla, MO, KENNETH M. WILKE, Topeka,
KS, and the PROPOSER.

588. [Spring 1985] Proposed by Gregory Wulezyn, Bucknelfl
University, Lewisbung, Pennsylvania.
Find all solutions to the quadratic congruence
a:z s -1 (modulo m)
where m is of the formm = (rn = 1)2 + r2.
Sofution by Kenneth M. Wifke, Topeka, Kansas.

V% shall use the identity

W? + V2 + 8% = v + )% + v - av)?
to solve the given congruence by making the right side of the identity
equalto:c2+1andU2+V2=m. TakeU=rn+ 1 and V = r.
Then al |l solutions to BU - AV = I are given by
A=n+(rm £ 1)t and B=1+rt
where t is an arbitrary integer. Nw take
X = +(AU + BV) =x[(rn t 1) {nt (rn = Dt} T r{1 + rth
=sin(rn + 1) Y r] = +ip(n®+ 1) £ n]  (mod m).
It is easy to check that x2+1s0 (mod m), so the solution to the
given congruence is
X t[r'(n2 + 1) t nl  (mod m).
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ALso so0lved by the. PROPOSER

589. [Spring 19851 Proposed by Joyce. . Williams, University
of, Lowell, Massachusetts.
The integers 7, 3, and 10 are related by

73 = 8° + 10°

Is this the only set of positive integers that satisfies the relation

a3 = b5 + 02?

Find al |l solutions.

Sofution by C. C. Ourslern, Southern ILLinois University at
Edwardsville.

Choose x to be any positive integer greater than 1 and l et 2z be any
positive integer such that x3 = 35 = k is positive. Factor k into
rsz, where » is the square-free factor, i.e., » = 1 or has prime factors

5andwe

only to the first power. Multiply the above equation by r1
have the solution
(xrs)s = (zr3)5 + (rss) 2.
More generally, we can multiply by wso, where »w is any positive integer,
and get the general solution
[~
(er®?%)% = (2r%5)% + (8?92,
For each choice of x > 1, there is at least one suitable 3, hence a
solution. Every solution is encountered since any given solution can

be obtained from the formula above with » =w = 1.

A second sofution was submitted by C. C. OURSLER. Partial
solutions were submitted by ROBERT C. GEBHARDT, Hopatcong, NJ, RICHARD
I. HESS. Rancho Pafos Verdes, CA, JOHN M. HOWELL, Littlencck, CA,
MASSACHUSETTS GAMMA, Bridgewater State. CofLege, MA and the. PROPOSER.

590. [Spring 19851 Proposed by Emmanuef 0. C. Imonitie,
Nonthwest Missouni State. University, Maryville.
Find all solutions to the simultaneous equations

2m+y=6y and 3m-1=2y+1.
1. Sofution by Henny S. Liebewman, Waban, Massachusetts.

Taking natural logarithms of the two given equations we get
fxty) in2=yfin2*+In3)and (x- 1) In3=(y+ 1) In 2,
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(In2Jz - (In3)y =0 and (In3)z - (In 2)y = In 6.
The unique solution to these simultaneous linear equations is

= _In3 and __In2 .
T In 3 - In 2 Y= 71 3-1n 2 -

Note that it does not matter to which base we take the logarithms since
(Zogr a)/(logr b) = (Zogs a)/(Zags b) for any positive numbers a and
b and any appropriate bases (positive numbers other than 1) r» and s.

11. Solution by Bob Prielipp, University of, Wisconsin-
Oshkosh.

The first equation is equivalent to F=F. Nw multiply

this equation and the second given equation side for side and simplify

toyield
&1 =8. Thus y=x-1.
Nw we have that 2% = 33:'1, so
In 2

X = In_S 7 % » whence

7 ¥ Tmsz-1mz2°

Also sofved by JAVES CAMPBELL, Universdity of Missouri,
Columbia, DAVID DELSESTO, Nonth Seituate, RI, BRIAN DUBUIS and JOHN
PUTZ, Afma College, M|, RUSSELL EULER, Noathwest Missowri State
University, Maryville, MARK EVANS, Louisvifle, KY, VICTOR G. FESER,
Mary College, Bismarck, NO, JACK GARFUNKEL, Flushing, NY, ROBERT C.
GEBHARDT (2 s0futions), Hopatecong, NY, RICHARD |. HESS, Rancho Pafos
Verdes, CA, JOHN M. HOWELL, LittLerock, CA, Ralph King, St. Bonaventure
Univensity, NY, BOB LABARRE, United Technolfogies Research Centern, East
Hartgond, CT, WARREN LEVINS, Greenville, SC, MASSACHUSETTS GAMMA,
Bridgewater State College, GLEN E. MILLS, Valencia Community Colfege,
Onlando, FL, SM PEARSALL, Loyofa Marymount University, Los Angeles,
CA, JOHN H. SCOTT, Macalester Coflege, St. Paul, MN, HARRY SEDINGER,
St. Bonaventwte University, NY, WADE H. SHERARD, Furman University,
Greenville, SC, W. R. UTZ, Columbia, M0, HAO-NHIEN QUI VU, Purdue
University, West Lagayette, IN, KENNETH M. WILKE, Topeka, KS, and the.
PROPOSER.  Partial sofution by FRANK P. BATTLES, Massachusetts
Maritime Academy, Buzzards Bay.

591. [Spring 1985] Proposed by Charles W. Trigg, San Diego, .
California.



272

Find all three-term arithmetic progressions of three-digit
primes in the decimal system with first and last terms that are
permutations of the same digit set and with only four consecutive
digits involved in the three terms of each progression.

Sofution by Kenmneth M. Wilke, Topeka., Kansas.

Let p, g and r be the three desired primes with p < q < r.

If p (hence also r) is formed from three distinct digits,
thenr = p =0 (mod 9). Sincep, q, and » are all primes, then
r-p 0 (mod 4). Hence» - p = 0 (mod 36). Since only four
consecutive digits a, a+ 1, a+ 2, and a *+ 3 are involved, then both
aand at 3 arefound in both p and r. O course, the other digit in
pand r is eitherat 1 orat 2 Also, togive a solution, a prime
must have a matching prime formed from a permutation of its digits.
Primes of three distinct digits are 103, 241*, 421#%, 431, 523, 463%,
563%, 643%, 653%, 457%, 467*%, 547*, 647*%, 587%, 857*, and 967. The

starred primes have permutations that are also primes. From these pairs

we get the solutions (p, q, r) = (241, 331, 421) and (467, 557, 647).

Clearly p must contain at least two distinct digits that
differ by no more than 3. Such primes containing exactly two digits
are 113*, 131*, 211, 223, 233, 311, 313, 433, 443, 353, 557, 577, 677,
757, 787*, 877*, 887, 797*, 977*%, 997, where starred primes have
permutation mates. Here we find only the additional solution
(797, 887, 977) which contains not four but just three consecutive
digits.

Also solved by FRANK P. BATTLES, Massachusetts Maritime
Academy, Buzzards Bay, VICTOR G. FESER, Mary College, Bismarck, ND,
RICHARD |. HESS, Rancho Palos Verdes, CA, GLEN E. MILLS, Valencia
Community College, Onlando, FL, JOHN H. SCOTT, Macafester College,
St. Paul, MN, and the. PROPOSER.

592. [Spring 1985] Proposed by Stanfey Rabinowitz, Digital
Equipment Cohp., Nashua; New Hampshire.

Find all 2 by 2 matrices A whose entries are distinct non-
zero integers such that for all positive integers n the absolute
value of the entries of A are all less than some finite bound M.
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Solution by Richard 1. Hess, Rancho Palos Verdes, California.
The eigenvalues of the given matrix

-3 3]

. _a+ds/a-d?+ e
1,2 = z

are

For all elements of A" to be bounded we must have |A;] <1 for © =1

and 2.

If a+d =0, then &y 5= +vbe - az, which implies that

bc=a20ra2'10ra2+1. If a+d= %1, then
-1 + T )2
)\1’2 =3 (21 * V(2 F 1)° + 4be),

which implies that be = -afa ¥ 1) or -afa ¥ 1) - 1,
ALso pantiakly sofved by the. PROPOSER.

593. [Spring 1985]  Proposed by Joe. Van Austin, Emory
University, Atlanta, Georgid.

Russian roulette is played with a gun having n chambers, in
which k bullets are placed at random (0 < k < »n). Find the expected
number of tries until the first bullet isfired if the chambers are
spun

(2} before each shot.

(i) only before the first shot.

Solution by John M. Howell, Littlerock, California.
(i) The probability of firing the first shot on try « is

1 - K1k,
P(z) = (1- 9077 (); x=1, 2 3, ...

and the expected number of tries is given by

k k,x-1 k,m,2 _n.
E=z Z .’L'(l—;) ='(§')(E‘) =7
z=1
(ii) Here we have
P{x):(n—k) (n—k-l)_. (n-k—x+2)( k )

n n_ g T on-x+ 2 n-x+1

_ kin - K)I(n - x)! |
“nln-k-x+ 1)°

For k = 1 this yields P(x)= 1/n for x =1, & ... , n. When k = 2we
have P(z) = 2(n - =)/n(n = 1) for x =1, 2, ..., # = 1. For k = 3, P(x)
=3m-wx)n=-xX-1)/nn- 1)(n=-28) for x=1, 2, ..., n =2, etc.

=1, 2, vo., n - k+ 1.
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Nw the expected number of trials to thefirst shot is calculated for
each k. For k =1 we get that

E = ’f £=n(n2+1)__=n-§1 .
z=1 " i

For k = 2 we have

E=n§1 2z(n - x) _ 2 niin - 1) _nn-1)(%n - 1)
o= nMm-1)" nm-1) 2 - 6 :

_m-1 _n+1

3 3
and so forth. In general, E

=n

nt1_
KT

ALso solved by RICHARD |. HESS, Rancho Palos Verdes, CA, HENRY
S. LIEBERMAN, Waban, MA HARRY SEDINGER, St. Bonaventure University,
NY, and the. PROPOSER.  One. .incorrect solution was received.

594. [Spring 1985] Proposed by R. S. Luthar, University of
Wisconsin Center, Janesville.

Prove that

1 1
fxx in xde= - fxxcl'z:.
(0} (o]
Sofution by Jack Garfunkel, Flushing, Nw York.

Equivalently we show that

1 1
fxx(1+1nx)dz=fdu=u];=g,
o 1

X (. . .
where ¥ = X*, since mea.»a =1 The given equation follows.

Also sofved by EDNARD S. ARISMENDI, JR., Caligfornia State
University, Long Beach, FRANK P. BATTLES, Massachusetts Marnitime Academy,
Buzzards Bay, BARRY BRUNSON, Western Kentucky Univernsity, Bowling Green,
RUSSELL EULER, Nonthwest Missouri State. University, Maryvitle, MARK
EVANS, Louisvile, KY, ROBERT C. GEBHARDT, Hopatcong, NJ, RICHARD I.
HESS, Rancho Pafos Verdes, CA, RALPH KING, St. Bonaventure University,
NY, BB LABARRE, United. Technofogies Research Center, East Hartford, CT,
HENRY S. LIEBERMAN, Waban, MA PETER A. LINDSTROM, University of
Wisconsin Center, Janesvitle, BB PRIELIPP, Univensity of Wisconsin-
0shkosh, JOHN PUTZ, Afma Cortege, MI, JOHN H. SCOTT, Macalester Coflege,
St. Pauf, MN, HARRY SEDINGER, St. Bonaventure University, NY, WAE H.
SHERARD, Fuwman Univensity, Greenville, SC, VIS UPATISRIMGA, Humboldt
State. Univensity, Arcatal CA; HAONHEN QUIVU, Purdue University, Wesit
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Lafayette, IN, and the. PROPOSER

595. [Spring 1985]  Proposed by Harry Herein, Livermore,
California.

If the integers from 1 to 5000 are listed in equivalence ~
classes according to the number of written characters (including
blanks and hyphens) needed to write them out in full in correct
English, there are exactly forty such nonempty classes. For example,
class 4" contains 4, 5 and 9, since FOUR FIVE, and NINE are the
only such numbers that can be written out with exactly four characters.
Similarly, class "42" contains 3373, 3377, 3378, 3773, 3777, 3778,

3873, 3877, and 3878. Find the unique class "»' that contains just

one number.

Solution by Bob LaBawte, United Technologies Research Center,
East Hartfond, Connecticuft.

First note that, of the nine nonzero digits, 3 require 3
characters, 3 require 4 characters, and 3 require 5 characters.
Additionally, only the number 17 (9 characters) has a unique
representation for numbers I ess than 20. But 42 also uses 9 characters.
Consequently, the last digit of the unique number in class "n" must
be a zero (using no characters). The tens digit is also zero since
10 uses 3 characters (as does 01), 20, 30, 80 and 90 use 6 characters,
and 40, 50 and 60 require 5. The number 70 uses 7 characters, but so
also does 15. The above discussion for the units digit also applies
to the hundreds digit, so it too is zero. Therefore, uniqueness has
implied that the number is 1000, 2000, 3000, 4000, or 5000. Again
uniqueness implies that the number is 3000 and the class is "14".

ALso solfved by FRANK P. BATTLES and LAURA L. KELLEHER,
Massachusetts Maritime Academy, Buzzards Bay, MARK EVANS, Louisuille,
KY, VICTOR G. FESER, Mary College, Bismarck, ND, RICHARD I. HESS,
Rancho Pafos Verdes, CA, GIEN E. MILLS, Valencia Community College,
Onkando, FL, JOHN H. SCOTT, Macafesier Cottage., St. Paul, MN, and the.
PROPOSER.

596. [Spring 1985] Proposed by Stanley Rabinowitz, Digital -
Equipment Corp., Nashua, New Hampshine.

Two circles are externally tangent and tangent toa line L
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at points A and B. A third circle is inscribed in the curvilinear
triangle bounded by these two circles and L and it touches L at point
C. A fourth circle is inscribed in the curvilinear triangle bounded
by line L and the circles at A and C and it touches the line at D.
Find the relationship between the lengths AD, DC, and CB.

Solution by Harry Sedingen, St. Bonaventure University, St.
Bonaventwre, New Yolk.

Consider two circles with radii Ri and Rj, each tangent to
a line at points| andJ respectively and tangent externally to each

other at point I'.  The segment connecting the centers also contains
point T, has length R1', *+ R,, and is the hypotenuse of a right triangle
with legs of length lR‘i - R3.] and 1J. Thus

2 _ - 2 2
(R, + RS.) = (R; =~ R.) + (z)%,

which yields
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IJ = 2/RiRJ. .

Nw we have that

AD.CB = Z/RARD- 2/RcﬁB = Z/RDRC-Z/RARB = DC-4B.

Thus we have
AD-CB = DC-AB  or equivalently AD-CB = pc(ap + oC + ¢B).

ALso so0lved by MARK EVANS, Louisvifle, KY, RICHARD I. HESS,
Rancho Palos Verndes, CA, JOHN M. HOWELL, Littlerock, CA, RALPH KING,
St. Bonaventure University, NY, HENRY S. LIEBERMAN, Waban, MA,
NORTHWEST MISSOURI STATE UNIVERSITY MATHEMATICS CLUB, Margville,
STEPHANIE SLOYAN, Georgian Court Coflege, Lakewood, NJ, JOHN H. SCOTT,
Macatester College, St. Pauf, MN, and the. PROPOSER.

597. [Spring 19851 Proposed by Stankey Rabinowitz, Digital
Equéipment Coup., Nashua, NeW Hampshire.

Find the smallest n such that there exists a polyhedron of

non-zero volume and with n edges of lengths 1, 2 3, ..., n.
I. Solution by the proposen.

The edge of length 1 must appear in two faces. Neither face
can be a triangle since the sides are integral and would have to differ
by less than 1. Thus the smallest number of sides these two faces
can have is 4 each, which yields a polyhedron of 9 edges. Such a

polyhedron exists, as shown in the sketch, soxn = 9.
IT. Solution by Richard |. Hess, Rancho Palos Verdes,
California.

The best | can do is»n = 9. See the figure.

=

<]

Rabinowitzs
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The. 4wo solutions are each topolLogically equivalent to a
triangulan prism and were drawn §rnom wire modeks.

598. [Spring 1985] Proposed by Gregory Wulezyn, Bucknefl
University, Lewisburg, Pennsylvania.
Establish the formula

n- n -4 4
D" cos ax) = € cos ax 17 - (Z) rnz a+ (fr " a -..l

+ &M sin ax [-(g’) M1 a s (g) M348 (g) AP

and find the corresponding formula for
p" (e sin ax).

Solution by Frank P. Battles, Massachusetts Manitime Academy,
Buzzands Bay.

Euler's identity states that

€M (eos ax t+ £ sin ax) = e/ 7=

where 1:2 = -1. Hence we have

D™ (cos ax + i sin ax)] = (v + ia) T+
n . ;

=73 M i) )é X(cos ax + 1 8in ax).
g=o 7
Equating the real parts of this equation yields the stated result.
Equating the imaginary coefficients gives
"™ sin ax)
ceMwear - (r;)rn-SaS # (?)rn'55 - ..l
+eMsinax 17 - (g)rn_%z + (Q)rn"4a4 1

Also sofved by RUSSELL EULER, Nonthwest Missouri State
Univernsity, Manyville, MARK EVANS, Louisville, KY, RICHARD I. HESS,
Rancho Palos Vendes, CA, JOHN H. SCOTT, Macatester Cortege., St. Pauk,
MN, VIS UPATISRINGA, Humboldt State University, Arcata, CA, HAO-NHIEN
QUI VU, Pundue Univensity, West Lafayette, IN, and the. PROPOSER.

599. [Spring 1985] Proposed fointly by Gregg Patruno,
Princeton University, New Jersey, and Muway S. Klamhin, University
of Albeata, Edmonton, Canada.

Prove that
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W82 X 0082 ¥y o _ cos2 X - cos2 Y
2 2 - 2 2
cot® x cot” y cot™ x - cot” y
and generalize this result by finding under what conditions on

functions f and g it is true that -

f(z)e f(y) flx) - f(z) . .
glz)-gly) = glx) - gly)

Sofution by Hao-Nhien Qui Vu, Purdue Univernsity, Wesz
Lagayette, Indiana.

Consider the generalization, where g(x) # 0. Clearly this
equation is satisfied if ffx) = 0 for all X. Otherwise the equation

is equivalent to
1 1 _ 1 _ 1
glx) gly) = flx) Ffly)?

and finally to
g 1 _ 1 1
glx) = flzx) glty) = fly)

This equation is satisfied if and only if each side is a constant.

Conversely, if we have either

flx) = 0 for all or H)‘fl— :g?.i‘)_ G
then the above argument reverses to prove the stated equation.
Since
—]Z'— - ;‘=sec2x-tan2x=1,
cos x cot” =z

a constant, the first stated equation is true whenever the denominators
are nonzero.

ALso solved by FRANK P. BATTLES, Massachusetts Maritime
Academy, Buzzard* Bay, RUSSELL EULER, Northwest Missouri State
Undiversity, Maryville, RICHARD |. HESS, Rancho Pafos Verdes, CA, and
the. PROPOSER.  Partial solutions wene submitted by VICTOR G. FESER,
Mary Cotlege, Bismarck, ND, RALPH KING, St. Bonaventure University, NY,
BOB LABARRE, United Technofogies Reseanch Center, East Hantford, CT,
JOHN H. SCOTT, Macatfester College, St. Paul, MN, and VIS UPATISRINGA,
Humboldt State University, Areata, CA.
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The Perfect Problem Solver - by the Late Roger Kuehf.

To become the perfect problem solver you will need a combination
of, Logic and §eain. You must be hound on brilliant va the oceasion
deman You must be able to draw the right inference §rom the problem
mtwtemerut visualize all the. possibilities and grasp what the. proposer
4 flying to say, often before on better than he actually does it, in
onder t0O select the. most promising approach. Qntop of, this you atitt
need to know what others | nthe past have done with the same on similar
problems and how they have been historically approached and be prepared
t0 collaborate With othenrs.

Which makes the whole thing impossible.

Editon's Note - Rogm Kuehf was a highway engineer wpo took great
intenest in the Problem Department of the Journal.

M
n a Letter to the Editon:

A Letter to the Editor which was pubfished in the Spring 1984
4issue Of, the Journal contained some ungortfunate omissions oOf, symbols
and othen typographical enrons. Thetitter. which §ollows was | n
nmame to an inquiry directed to the Lettemwniter by the cwwent
Editon.,

Dear Editor:

If | remember correctly, ny previous statement was:
-1_a + b =T,
b -

However, the one that | give now is still more general. If

a and b are positive and ab > 1, then (the same equality holds).
's result follows as a corollary to ny new statement.

The proof of ny new statement (omitted here, Ed.) is given on the

next page.

If a>2and b > I, then tan-lat tan1b t tan

Sincerely,

R. S. Luthar
University of Wisconsin
Janesville
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