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OF EXOTIC INTEGERS AND QUATERNIONS -- 
AN INTRODUCTION TO REPRESENTATION THEORY I 

One's f i r s t  encounter with complex numbers is usual ly undertaken 

with a l i t t l e  mistrust  i n  t h e i r  legitimacy. After  a l l ,  any ob jec t s  

with "imaginary" p a r t s  do not beg t o  be taken too  ser iously.  However, 

i f  we suspend our d i sbe l ie f  a t  t h e  thought of a square root  of -1, we 

a r e  soon happily computing with complex numbers a s  e a s i l y  a s  we would 

with r e a l  numbers. The l o f t y  p ra i se  given t o  the  a lgebra ic  closure of 

t h e  complex numbers ( t h a t  is, the  f a c t  t h a t  any polynomial with complex 

coef f ic ien t s  w i l l  have a complex r o o t )  is taken with a g ra in  of s a l t ,  

s ince  we invented so lu t ions  t o  t h e  equation x2 
t 1 = 0 i n  t h e  f i r s t  

place. 

After repeated exposure t o  t h e  t o p i c  of complex numbers our 

p r o t e s t s  tend t o  d i e  down. Some of us a r e  reassured by an a l t e r n a t i v e  

descript ion of complex numbers which avoids any mention of the  b i z a r r e  

I I ~ I I  = ( /̂l) . We can i d e n t i f y ,  o r  equivalent ly,  define complex numbers 

a s  ordered p a i r s  (a ,b )  of r e a l  numbers. The addi t ion of these ordered 

p a i r s  is defined "coordinate-wise": 

(a ,b )  + (c ,d )  = ( a  + c ,  b + d) .  

The mult ipl icat ion of ordered p a i r s  is defined i n  a s l i g h t l y  more 

involved way: 

(a ,b ) (c ,d )  = (ac - bd, ad + be). 

This mul t ip l ica t ion  appears somewhat contrived. Indeed, t h i s  

def in i t ion  of t h e  complex numbers simply r e f l e c t s  our des i re  t o  have a 

square roo t  of -1. For, i f  we iden t i fy  i with (0 , l )  and - 1 w i t h  (-1,0),  

we have 

i2 
t t=f l  (0,1)(0,1)  = (-1,0) ti=tt -1. 

It is straightforward t o  ver i fy  t h a t  t h e  ordered p a i r  (a ,b)  behaves 

exact ly l i k e  t h e  complex number a t bi .  I t  might be s a i d  t h a t  we have 

successful ly "represented" complex numbers a s  ordered p a i r s  of r e a l  

numbers. 

There does e x i s t  yet  another representat ion of  t h e  complex 



O F  EXOTIC INTEGERS AND QUATERNIONS -- 
AN INTRODUCTION TO REPRESENTATION THEORY I -- -VÃ - 

One's f i r s t  encounter with complex numbers i s  usual ly undertaken 

with a  l i t t l e  mistrust  i n  t h e i r  legitimacy. After a l l ,  any objects  

with "imaginary" pa r t s  do not beg t o  be taken too seriously.  However, 

i f  we suspend our d i sbe l ie f  a t  the  thought of a  square root  of -1, we 

a r e  soon happily computing with complex numbers as  e a s i l y  as  we would 

with r e a l  numbers. The l o f t y  pra i se  given t o  the algebraic  closure of 

the  complex numbers ( t h a t  is,  t he  f a c t  t h a t  any polynomial with complex 

coef f ic ien ts  w i l l  have a  complex roo t )  is taken with a  grain of s a l t ,  

s ince we invented solut ions t o  the  equation x
2 + 1 = 0 i n  the  f i r s t  

place. 

After repeated exposure t o  the  top ic  of complex numbers our 

pro tes t s  tend t o  d ie  down. Some of us a r e  reassured by an a l t e rna t i ve  

descript ion of complex numbers which avoids any mention of the  b izar re  

"ill = ( Kl). We can ident i fy  , o r  equivalently, define complex numbers 

as  ordered pa i r s  (a ,b)  of r e a l  numbers. The addition of these ordered 

pa i r s  is defined "coordinate-wise" : 

(a ,b)  + ( c , d )  = ( a  + c ,  b + d) .  

The mult ipl icat ion of ordered pa i r s  is defined i n  a  s l i gh t l y  more 

This mult ipl icat ion appears somewhat contrived. Indeed, t h i s  

def in i t ion  of t h e  complex numbers simply r e f l e c t s  our des i re  t o  have a 

square root of -1. For, i f  we  ident i fy  i with (0 , l )  and -1 with (-1,0), 

we have 

It i s  straightforward t o  ver i fy  t h a t  the  ordered pa i r  ( a , b )  behaves 

exactly l i k e  t he  complex number a  + b i .  It might be sa id  t h a t  we have 

successful ly "represented" complex numbers a s  ordered pa i r s  of r e a l  . 4 

numbers. 

There does e x i s t  ye t  another representat ion of  the  complex 



numbers - a s  c e r t a i n  2x2 r e a l  matrices. Spec i f ica l ly ,  t h e  complex number 

a + b i  is represented by t h e  2x2 square a r ray  of r e a l  numbers (-; :)- 
It is t h i s  type of representat ion t h a t  is  t h e  subject  of  t h i s  a r t i c l e .  

Not only can the  complex numbers be represented i n  such a manner, but 

a l s o  many other  "strange" number systems, such a s  Gaussian, hyperbolic, 

and parabol ic  in tegers ,  a s  well a s  t h e  quaternions. The idea of 

represent ing t h e  objects  of an a lgebra ic  system a s  matrices has proven 

t o  be one of t h e  most powerful and f r u i t f u l  ideas i n  a l l  mathematics. 

So-called representation theory remains an a c t i v e  a rea  of research 

t h a t  a r i s e s  i n  many d i f f e r e n t  branches and contexts of mathematics. It 

is  our purpose t o  provide an introduct ion t o  representat ion theory by 

way of i l l u s t r a t i n g  how severa l  seemingly q u i t e  d i f f e r e n t  number systems 

can a l l  be represented by 2x2 matrices. F i r s t ,  f o r  t h e  sake of 

completeness, we provide a b r i e f  review of  t h e  algebra of such matrices. 

Algebra of 2x2 matrices. A 2x2 matrix is simply a square a r ray  of  

numbers of t h e  form :) . I f  t h e  e n t r i e s  a ,  b y  c ,  and d a r e  a l l  

in tegers ,  we c a l l  t h i s  an i n t e g r a l  matrix. Similar ly,  i f  a l l  of t h e  

e n t r i e s  a r e  r e a l  o r  complex numbers, we c a l l  t h e  matrix r e a l  o r  complex, 

respect ively.  The addi t ion of  two 2x2 matrices i s  accomplished 

"entry-wise": 

while t h e  product of two 2x2 matr ices  is defined by t h e  formula: 

aa l+bc t  abt+bdl  :) (E: :$ = (caf+dcl  cbf+ddl) 

With these  two operat ions,  t h e  s e t  of a l l  2x2 i n t e g r a l  (o r  r e a l  o r  

complex) matricesbecomesa ring*. That i s ,  i f  A ,  B, and C a r e  any 

2x2 i n t e g r a l  (o r  r e a l  o r  complex) matr ices ,  and if we l e t  

0 = (; ) d I = ) , then t h e  following proper t i es  hold: 

* S t r i c t l y  speaking, we should speak of an associative ring with 
iden t i t y ,  s ince  t h e  term "ring" is a l s o  used i n  contexts where 
a s s o c i a t i v i t y  of  mul t ip l ica t ion  o r  exis tence of  a mul t ip l ica t ive  
i d e n t i t y  a r e  not  assumed. 

1).  A + (B + C) = (A + B) + C 5). A(BC) = (AB)C 

2). A + B = B + A  6 )  A 1  = I A  = A 

3). A + O = O + A = A  7 )  A(B + C) = AB + AC, 

(A + B)C = AC + BC 

4 )  A + (-A) = (-A) + A = 0 (where -A denotes t h e  matrix whose entries* - 

a r e  t h e  add i t ive  inverses of t h e  e n t r i e s  . 
of A). 

A couple of  observations a r e  i n  order. F i r s t ,  matrix mul t ip l ica t ion  

is  general ly  not commutative, a s  can be seen from the  f a c t  t h a t  

Secondly, a nonzero matrix need not have a mul t ip l ica t ive  inverse.  If 

A = ) , we define. t h e  determinant of A t o  be det(A) = ad - be. 

I f  det(A) # 0, then t h e  matrix 

d 
ad - bc ad - bc 

A-l = 
-c 

ad - bc ad - be 

-1 -1 
has the  property t h a t  AA = A A = I. Even i f  ad - bc # 0, t h e  

matrix A may not have an inverse. For example, i f  we r e s t r i c t  ourselves 

t o  considering i n t e g r a l  matr ices ,  we see  t h a t  A-1 i s  not necessar i ly  

an i n t e g r a l  matrix i t s e l f .  

Matrices may a l s o  be mult ipl ied by s c a l a r s  (numbers) by 

d i s t r i b u t i n g  the  mul t ip l ica t ion  across  a l l  e n t r i e s .  Hence, 

) = 
) . This s c a l a r  mul t ip l ica t ion  s a t s i f i e s  two 

d i s t r i b u t i v e  laws: 

1 ) .  s(A + B) = s A  + sB 2). ( s  + t)A = s A +  t A  

f o r  a l l  s c a l a r s  s, t and matrices A ,  B.# With s c a l a r  mul t ip l ica t ion  

defined, we may note t h a t  -A = (-1)A. 

# With t h e  s c a l a r  mul t ip l ica t ion  defined here we sometimes r e f e r  t o  
t h e  r i n g  of  matr ices  a s  an algebra,  espec ia l ly  i n  t h e  case t h a t  t h e  
s c a l a r s  come from a f i e l d  l i k e  t h e  s e t  of r e a l  numbers o r  t h e  s e t  
of complex numbers. 



Basics of Representation Theory. We w i l l  adopt t h e  common notat ion of 

2 f o r  t h e  s e t  of in tegers ,  R f o r  t h e  s e t  of  r e a l  numbers and C f o r  

the  s e t  of complex numbers. The s e t  of  a l l  2x2 matrices with i n t e g r a l  

e n t r i e s  w i l l  be denoted M2(Z) . Similar ly,  t h e  s e t  of a l l  2x2 r e a l  

matrices and t h e  s e t  of a l l  2x2 complex matrices w i l l  be denoted 

M2(R) and Ma(C) , respect ively.  A s  indicated before, with t h e  

usual  addi t ion and mult ipl icat ion of  matrices, each of these  s e t s  is  a 

r i n g .  

Now, suppose t h a t  N is  a  number system. By t h i s  we simply 

mean t h a t  N is some s e t  of  elements with an addi t ion (+) and 

mul t ip l ica t ion  ( - 1  defined on it. We w i l l  not suppose t h a t  t h e  

addi t ion and mult ipl icat ion of N obey any p a r t i c u l a r l y  n i c e  o r  fami l ia r  

laws. Indeed, we w i l l  want t o  examine some number systems with q u i t e  

s t range propert ies .  In order  t o  ca r ry  out an inves t iga t ion  of a  number 

system N,  we w i l l  represent  t h e  elements of N a s  ce r ta in  matrices. But 

not  any such representat ion w i l l  be useful .  We w i l l  want the  addi t ion 

and mult ipl icat ion of N t o  "carry over" t o  t h e  usual addi t ion and 

mul t ip l ica t ion  of  matrices. Let us make t h i s  not ion very prec i se  with 

t h e  following def in i t ions :  

A number system N has an integral representation a s  

2x2 matrices if we can assign t o  each element x belonging 

t o  N a  2x2 i n t e g r a l  matrix M(x) such t h a t  t h e  following 

proper t i es  hold f o r  a l l  x, y  i n  N: 

i ) .  M(x + y )  = M(x) + M(y) 

i i ) .  M(xy) = M(x)M(y) 

We say t h a t  N has a  real representation o r  complex 

representation a s  2x2 matr ices  i f  t h e  matrix M(x) is  a  

2x2 r e a l  o r  complex matrix, respec t ive ly ,  f o r  each x 

i n  N. In any of  these  cases, we r e f e r  t o  t h e  funct ion 

which assigns M(x) t o  x a s  a  representation of N. 

In o ther  words, a  representat ion of  N is simply a  funct ion from N t o  

some s e t  of matrices which always "respects" t h e  addi t ion and 

mul t ip l ica t ion  of elements of  N. 

We have purposely avoided a s  much of  t h e  terminology of 

a b s t r a c t  a lgebra a s  possible .  For t h e  reader  who has an acquaintance 

with a  l i t t l e  r i n g  theory we point  out  t h a t  i f  N i t s e l f  is a r ing ,  then 

a  representat ion of  N is j u s t  a  r i n g  homomorphism from N t o  a  

p a r t i c u l a r  matrix r i n g .  

Examples. 1. Every number system N has an i n t e g r a l  (as  well  a s  a  r e a l  

and complex) representat ion a s  2x2 matr ices ,  although it is  not very 

in te res t ing .  The trivial representat ion of N is obtained by assigning - - - 
the  zero matrix ) t o  each element of N. That i s ,  f o r  every 

x E N ,  M(x) = 0. The required proper t i es ,  i).M(x + y )  = M(x) + M(y) 

and ii> M(xy) = M(x)M(y), a r e  ce r ta in ly  s a t i s f i e d  i n  t h i s  case, a s  a l l  

matrices considered a r e  zero matr ices .  

2. A s  mentioned i n  the  introduct ion,  t h e  complex numbers 

can be represented a s  2x2 r e a l  matrices v i a  the  function M(a + b i )  = 

It remains t o  be seen whether o r  not t h i s  i s  a  r e a l  

representat ion according t o  t h e  mathematical d e f i n i t i o n  discussed 

above. To ver i fy  t h a t  t h i s  i s  indeed a  r e a l  representat ion,  we must 

check t h a t  the  two proper t ies  hold with M(a + b i )  = (-Â ;) 
and M(c + d i )  = 

-d 
f o r  any two complex numbers (a  + b i )  and ( 

(C + d l ) .  Since i ) .  M(a + b i )  + M(c + d i )  = (-: :) + (-: :) = 

( - ~ ~ ~  h+d) = M((a+c) + (b+d) i ) ,  and i i ) .  M(a + bi)M(c + d i )  = 

= M((ac-bd) + (ad+bc) i ) ,  we see  

t h a t  t h i s  assignment of matrices ac tua l ly  i s  a  r e a l  reprsesentation of 

the  complex numbers. (One observation concerning t h i s  representat ion 

meri ts  some a t ten t ion .  The determinant of the  matrix representat ive 

of a  complex number a  + b i  tu rns  out t o  be i t s  squared dis tance from 

t h e  or ig in  when considered a s  an ordered p a i r  (a ,b )  of  r e a l  numbers.) 

Example 2 a l s o  serves a s  an i l l u s t r a t i o n  of a  faithful 

representat ion.  A f a i t h f u l  representat ion is one which es tab l i shes  a  

one-to-one correspondence between t h e  number system N and some s e t  of 

matrices. Precisely,  a  representat ion is f a i t h f u l  i f  and only i f  

M(x) = M(y) implies x = y f o r  any x and y i n  N .  In example 2, s ince  

( a  b, = ( c  d, if and only if a  = c and b = d ,  we have M(a + b i )  = 
-b a  -d c  

M(c + d i )  i f  and only i f  a  + b i  = c + d i .  In r i n g  t h e o r e t i c  terminology, 

a  f a i t h f u l  representat ion es tab l i shes  an isomorphism between a  r ing  N 

and a  p a r t i c u l a r  r i n g  of matrices. 



3. Fa i th fu l  representat ions of Z , R , and C a s  2x2 

i n t e g r a l ,  r e a l ,  and complex matrices, respect ively,  can be rea l ized  

using t h e  scalar representat ion:  

= fe 3 f o r  a i n  l o r  R OF C -  

We verify t h a t  t h i s  is  a representat ion by not ing 

ii).M(a)M(b) = (:Â¡ (ti) = (Â¥ ;b) = M(ab). The s i a l a r  

representat ion is f a i t h f u l ,  s ince 6 :) = i) implies a = b. 

Fa i th fu l  representat ions a r e  t h e  most important kinds of 

representat ions,  a s  they provide us with a "clone" ( i . e . ,  isomorphic 

copy) of t h e  number system under study a s  a s e t  of matrices. Why i s  

t h i s  desirable? We give th ree  primary reasons: 

i ) .  The elements of an unfamiliar number system can be made 

more "concrete" by represent ing them a s  matrices with more fami l ia r  

en t r ies .  In example 2 above, we represented complex numbers with 

matrices which had r e a l  e n t r i e s .  

i i ) .  Different  number systems can be compared i n  a common 

s e t t i n g .  I f  two number systems can both be represented a s  2x2 i n t e g r a l  

matrices, f o r  example, then we can more e a s i l y  recognize the  e s s e n t i a l  

s i m i l a r i t i e s  and differences between t h e  two systems. 

i i i ) .  Once a number system has been f a i t h f u l l y  represented, we 

have a l l  t h e  powerful t o o l s  of matrix theory a t  our disposal  f o r  

inves t iga t ing  t h e  system. For example, the  exis tence of mul t ip l ica t ive  

inverses is  easy t o  check by using t h e  determinant a s  a c r i t e r i o n .  

We w i l l  now proceed t o  examine a few "exotic" number systems by 

u t i l i z i n g  f a i t h f u l  representat ions of them. A f i n a l  comment before we 

begin -- i f  we adopt the  usual convention of considering R a s  a subset 

of C , and i f  we consider 2 a s  a subset of R , then any i n t e g r a l  

representat ion is  automatically a r e a l  representat ion,  and a r e a l  

representat ion is  automatically a complex representat ion.  

Gaussian Integers. The s e t  of Gaussian in tegers ,  which we w i l l  denote 

a s  G ,  can bes t  be thought of  a s  the  s e t  of a l l  complex numbers with 

i n t e g r a l  r e a l  and imaginary par t s .  That is, G = {m-+ n i e  C:m,ne 2 1 .  

Examples of Gaussian in tegers  would include 2 + 3 i ,  17,  -6 i ,  and 

-4 + 5i .  The Gaussian in tegers  i n h e r i t  a f a i t h f u l  representat ion a s  

2x2 i n t e g r a l  matrices simply by using the  r e a l  representat ion f o r  C 
discussed above and r e s t r i c t i n g  it t o  G.  In  o ther  words, 

gives us  a f a i t h f u l  representat ion of G a s  2x2 i n t e g r a l  matrices. That 

G is a r i n g  is easy t o  ver i fy ,  and the  mul t ip l ica t ion  i n  G is 

commutative. However, elements of G do not general ly  have 

mul t ip l ica t ive  inverses. Here we can make use of our representat ion 

t o  f ind  exact ly which elements of G have mul t ip l ica t ive  inverses. 

Since our representat ion is f a i t h f u l ,  a Gaussian in teger  g = m + n i  

w i l l  have a mul t ip l ica t ive  inverse i f  and only i f  i t s  matrix 

representat ive (m ) has an inverse which is t h e  representat ive of a 

- 1 Gaussian integer .  To see t h i s ,  note t h a t  i f  g has an inverse g , then 

Since g = m + n i ,  we have M(g) = (-: :) , and the  inverse of M(g) must 

For t h i s  t o  be the  represen ta t ive  of a Gaussian in teger ,  a l l  of i t s  
2 e n t r i e s  must be in tegers ,  o r  equivalent ly,  t h e  in teger  m + n

2 
must 

divide each of the in tegers  m and n. A l i t t l e  r e f l e c t i o n  convinces us 

t h a t  t h i s  can only happen i n  the  case t h a t  m = +1 o r  -1, n = 0, o r  i n  

the  case n = +1 or -1, m = 0. Thus, the  only Gaussian in tegers  which 

have mul t ip l ica t ive  inverses  within t h e  system of Gaussian in tegers  

a re :  1, -1, i, -i. 

Parabolic Integers. Formally, t h e  s e t  of parabolic in tegers ,  which we 

w i l l  denote a s  P ,  is  
2 P =  { m + n j :  m ,  n e z ,  j = 0, j # 0 1 .  

The element j is c e r t a i n l y  not a number within our usual  realm of 

experience, s ince j  is nonzero, yet  j 2  is  zero. But t h e  imaginary ., 
number i was no l e s s  s t range a t  f i r s t  glance, and t h i s  j seems no more 



a r t i f i c i a l  and contrived than a  square root  of -1. Even though j is  

outside t h e  system of complex numbers, we can f i n d  a  f a i t h f u l  2x2 

i n t e g r a l  representat ion f o r  P j u s t  a s  we did f o r  t h e  Gaussian in tegers  

G. The s e c r e t ,  of course, w i l l  be f inding a  s u i t a b l e  matrix 

representat ive f o r  j .  

The addi t ion and mult ipl icat ion i n  P is  analogous t o  t h a t  of 

t h e  complex numbers -- we add and multiply two parabol ic  in tegers  a s  

if they were binomials, and then s implify t h e  expression using. the 

formal i d e n t i t y  j 2  = 0. A s  an example. 

(2 - 3 j )  t (- 4  + 2 j )  = (-2 - j ) ,  

while (2 - 3j)(-4 t 2 j )  = -8 t 4 j  t 12 j  - 6 j 2  = -8 t 16j  t 0 = 

(-8 t 1 6 j ) .  

A f a i t h f u l  representat ion of P a s  2x2 i n t e g r a l  matr ices  is  

given by 
m t n j )  = 9 

We ver i fy  t h a t  t h i s  indeed gives us a  representat ion of P by noting 

t h a t  

M(m + n j )  + M(m1 t n ' j )  = (; ;) t (;' ;;) = (-' :::) = 

and M(m t nj)M(ml + n ' j )  = ( O m ) ( O m l )  m 'n '  = ( nun' 0 mn'tnm' mm7 ) = 

M(m' t (mn'tnm' ) j ) .  

The representat ion is  f a i t h f u l ,  s ince  ) = ('"I "') implies 
0 m 0  m '  

m = m ' ,  n  = n ' .  We note,  i n  p a r t i c u l a r ,  t h a t  t h e  parabol ic  in teger  j 

has matrix representat ive M(j) = (; ;) . We a l s o  note t h a t  any 

in teger  s e Z  can a l s o  be considered a s  a  Gaussian in teger  (with zero 

imaginary p a r t )  o r  a s  a  parabol ic  in teger  (with zero "j" p a r t ) .  In  

f a c t ,  we have 1 = G f l P .  The p a r t i c u l a r  representat ions we have 

chosen f o r  G and P r e f l e c t  t h i s ,  a s  t h e  matrix representat ive of an 

in teger  s i n  e i t h e r  case is  t h e  s c a l a r  matrix M(s) = 

might say t h a t  our representat ions a r e  "compatible" with respect  t o  

t h e  integers .  

Again, it is straightforward t o  ver i fy  t h a t  P is a commutative 

r ing .  P is  not a  f i e l d ,  but there  a r e  i n f i n i t e l y  many elements of P 

which have mul t ip l ica t ive  inverses  i n  P. J u s t  a s  with G ,  we see t h i s  

by making use of t h e  fa i th fu lness  of our representat ion and noting 

t h a t  t h e  inverse of a  matrix M = :) is of t h e  form M-I = 

( - . Thus, M is  t h e  represen ta t ive  of  a  parabol ic  - - - 

in teger  p rec i se ly  when m = 1 o r  m = -1. This shows t h a t  any parabol ic  

in teger  of the  form ( 1  t n j )  o r  (-1 t n j ) ,  where n is any in teger ,  has 

a  mul t ip l ica t ive  inverse. This inverse i s  t h e  "conjugate", i . e . ,  

( 1  - n j )  o r  (-1 - n j ) ,  respect ively.  

Hyperbolic Integers .  We next v i s i t  the  hyperbolic in tegers ,  t h e  s e t  of 

which we w i l l  denote a s  H.  Formally, H = { m t nk: m ,  n  E a? , k2 = 1, 

k # 1 and k # -11 . The number k is  another number outs ide our usual 

acquaintances, and f inding a  s u i t a b l e  matrix representat ive f o r  k  

w i l l  be the  key t o  f inding a  representat ion of H. The addi t ion and 

mult ipl icat ion i n  H is  accomplished i n  t h e  same binomial fashion a s  

i n  G and P. Thus, we have f o r  any two hyperbolic in tegers  (m t nk), 

(m' t n 'k) :  

(m t nk) t (m' t n 'k)  = ((m t m') t (n + n l ) k ) ,  

and (m t nk)(rnt t n 'k )  = ((mm' t n n ' )  t (an' t m1n)k). 

Our representat ion of H is given by M(m + nk) = . To v e r i f y  

t h a t  t h i s  gives us  a  representat ion of the  hyperbolic in tegers  a s  2x2 

i n t e g r a l  matrices we note: 
m+mt n+n1 - 

M(m t nk) t Ã‡(m t n ' k )  = (: ;) + (:; ;:) = (n+nf mtmt) - 

and M(m t nk)M(ml + n'k)  = (: .) t: ~9 = ( mn'tm'n mm'tnn' 

The representat ion i s  f a i t h f u l  s ince M = ("'; implies 

m = m ' ,  n  = n l .  

A s  was t h e  case with Gaussian and parabol ic  in tegers ,  t h e  s e t  

of hyperbolic in tegers  with t h e i r  described addi t ion and mul t ip l ica t ion  

is  a  commutative r ing.  An ana lys i s  of matrix inverses  revea l s  which 

elements of H have mul t ip l ica t ive  inverses. The inverse of  t h e  matrix 

M = (: t) is of t h e  form 



m -n -- 
2 2 2  2 m - n  m - n  

f.f-l ; (A A). 
m - n  m - n  

The reader  can ver i fy  t h a t  we have a  case s imi la r  t o t h e o n e  we had with 

the  Gaussian in tegers ,  i n  t h e  sense t h a t  M " ~  w i l l  be a  hyperbolic 

in teger  representat ive i t s e l f  only i f  m = Â ± I  n = 0 ,  o r  i f  n  = Â±I  

m = 0. Thus, t h e  only hyperbolic in tegers  with mul t ip l ica t ive  

inverses a r e  Â± and Â±k 

This representat ion of t h e  hyperbolic in tegers  is compatible 

with both of our previous representat ions of G and P with respect  t o  

the  integers .  In f a c t ,  we have 1 = G n P  = G n H  = PflH = G D  PDH, and the  

in tegers  a r e  represented a s  s c a l a r  matrices i n  a l l  our representat ions.  

A n a t u r a l  question which a r i s e s  concerns how "much" of M Ã ˆ  Z )  i s  

accounted f o r  by G, H and P. Before any reasonable answer t o  t h i s  

question can be formulated, some c l a r i f i c a t i o n  is required.  F i r s t ,  

s ince a l l  th ree  representat ions have equal e n t r i e s  along t h e  main 

diagonal,  any sum of Gaussian, hyperbolic and parabol ic  in teger  

representat ives  w i l l  a l s o  have equal e n t r i e s  along t h e  main diagonal. 

We cer ta in ly  can ' t  get  j u s t  any 2x2 i n t e g r a l  matrix i n  such a  manner. 

However, i f  we a l s o  consider products of Gaussian, hyperbolic and 

parabol ic  in tegers ,  then any 2x2 i n t e g r a l  matrix can be expressed a s  a  

sum of such products. To see t h i s ,  we note t h a t  ft ;) = aJK + 

(b  - c ) J  + cK + dKJ, where J is t h e  matrix representat ive of the  

parabol ic  in teger  j  and K is the  matrix representat ive of t h e  

hyperbolic in teger  k. (We've ac tua l ly  shown t h a t  P and H alone 

"generate" a l l  2x2 i n t e g r a l  matr ices ,  s o  ce r ta in ly  G ,  P and H w i l l  a lso.  

W i l l  any o ther  two of G ,  H and P generate  a l l  2x2 i n t e g r a l  matrices?) 

Quaternions. A t  one time quaternions competed with vectors  f o r  

mathematicians' favor a s  t h e  desired model f o r  a  v a r i e t y  of physical  

phenomena. While Hamilton's invention eventually l o s t  out ,  quaternions 

s t i l l  provide us with a  r i c h  source of  examples regarding "skew" 

f i e l d s ,  i . e . ,  number systems with mul t ip l ica t ive  inverses  f o r  t h e i r  

nonzero elements, but with a  non-commutative mult ipl icat ion.  

Formally, a  quaternion is of  t h e  form q = a t b i t  t c j '  + d k l ,  

where t h e  a ,  b, c  and d a r e  r e a l  numbers, and it, j ' ,  and k t  a r e  

nonreal e n t i t i e s  whose behavior is  best  summarized by 

mult ipl icat ion t a b l e :  

(second f a c t o r )  

( f i r s t  f a c t o r )  i 

t h e i r  

A s  can be seen, each of i ' , j '  and k' is  l i k e  t h e  imaginary number i 

i n  the  sense t h a t  ( i t  l2  = ( j p I 2  = ( k p I 2  = -1. We should take s p e c i a l  

note  of the  f a c t  t h a t  t h e  mul t ip l ica t ion  is  d e f i n i t e l y  not commutative, 

as  evidenced by i ' j '  = kt = - j l i p -  j ' k '  = i' = - k f j ' ;  and k ' i '  = j '  = 

- i l k 1 .  Two quaternions a r e  added o r  multipled jus t  l i k e  polynomials 

( r e a l  numbers do commute with i t ,  j '  and k ' )  with t h e  above 

mult ipl icat ion t a b l e  used t o  s implify products. Thus 

(a+bi '+c j '+dkl )  + ( w + x i p t y j ' t z k ' )  = (a+w) t ( b t x ) i l  + (c+y) j '  t (d+z)k l ,  

and (a+bi'tcjptdk')(w+xi'+yj'+zk') = (aw - bx - cy - dz)  + 
(ax + bw + cz  - d y ) i t  + (ay t cw + dx - b z ) j f  + (az t by + dw - cx)kl 

Quaternions a r e  sometimes re fe r red  t o  a s  hypercompZex numbers, s ince  

they can be thought of a s  ordered p a i r s  of  complex numbers. The 

i d e n t i f i c a t i o n  s t a t e s  i f  q  = a t b i '  t c j '  + dk' is  a  quaternion, we 

assoc ia te  with q t h e  ordered p a i r  of complex numbers (z1,z2), where 

z, = a + b i  and z2 = c + d i .  Written i n  t h i s  way, the  addi t ion of 

quaternions is accomplished "coordinate-wise": 

(z1,z2) + (w1,w2) = (z1+w1,z2+w2), 

while mul t ip l ica t ion  follows t h e  r u l e :  

where represents  t h e  complex conjugate a  - b i  of a  complex number 

z  = a + b i .  While somewhat cumbersome, it is  s traightforward t o  ver i fy  

t h a t  t h i s  addi t ion and mul t ip l ica t ion  of ordered p a i r s  of  complex 

numbers mirrors t h e  o r i g i n a l  d e f i n i t i o n  of t h e  quaternions. 

The quaternions can be f a i t h f u l l y  represented a s  2x2 complex 

matrices by s e t t i n g  up t h e  correspondence 

o r ,  i f  we consider t h e  quaternions a s  ordered p a i r s  of complex numbers, 

we have 



matrix has an inverse if and only i f  t h e  determinant ZT t G = a
2 

t b2 t 

Under t h i s  representat ion,  we have M(1) = (i y )  , M ( i t )  = (i -!) , 

M ( j t ) = ( - 1 ; )  , a n d M ( k t ) =  (! i) . We can ver i fy  t h a t  - 

r e s t  of t h e  mul t ip l ica t ion  t a b l e  f o r  t h e  matrix representat ives  of i t ,  

j ' ,  and k t  i s  s imi la r ly  ver i f i ed  t o  respect  the  mul t ip l ica t ion  t a b l e  

of i ' ,  j t  and k t .  ' I n  g e n e r a 1 , i f  q l =  a  + b i t  t c  j t  t d  k t  and 
1 1  1 1 

q2 = a 2  t b it + c 2 j t  t d2kt a r e  two quaternions, then we have 2 

= M ( q  + q ) ,  and 

(where zl = al t b i, w = cl t dli ,  

- ( z  w +w z ) (z  z  -w w 1 2  1 2  1 2  1 2  

= M ( q q ) .  The representat ion is  c e r t a i n l y  f a i t h f u l ,  s ince M(ql) = 

M(q ) i f  and only i f  al = a ,  b  = b2, cl = c2,  d  = d2, i . e . ,  ql= q2. 2  1 1 

Written i n  t h e  form q = a t b i t  t c j t  t d k t  it seems q u i t e  a  

formidable t a s k  t o  determine under what conditions t h e  quaternion q has 

a  mul t ip l ica t ive  inverse q l ,  whether o r  not there  i s  a  d i s t i n c t i o n  

between l e f t  and r i g h t  inverses  (owing t o  the  nonconnnutativity of the  
-1 

mul t ip l ica t ion) ,  and exact ly what form q would take on when it does 

e x i s t .  Here t h e  matrix representat ion comes i n  p a r t i c u l a r l y  handy. 

I f  we i t  z = a t b i  and w = c t d i ,  then M(q) = (- -1 . This -w z  

2  c
2  

t d i s  nonzero. Thus, any nonzero quaternion has an inverse 

(which is "two-sided"), jus t i fy ing  t h e  reference t o  skew f i e l d .  Indeed, 

matrix theory a l s o  gives us t h e  e x p l i c i t  form of t h i s  inverse,  name-ly 

so we have q-l = 
1 

( a  - b i t  - c j t  - d k t ) .  
a

2  + b2 t c
2 

t d 

A s  an i l l u s t r a t i o n  of t h e  q u i t e  b i z a r r e  nature of t h e  

quaternions, we consider the  problem of determining t h e  zeros of  a  

polynomial with r e a l  coef f ic ien t s .  The main motivation f o r  the  

construct ion of t h e  complex numbers was the  d e s i r e  t o  determine zeros 

of a l l  such polynomials, including x
2 + 1. I f  we denote t h e  s e t  of 

quaternions a s  Q ,  we might ask which quaternions s a t i s f y  t h e  equation 

x
2 

t I = 0. The reader  may not ice t h a t  we have a t  l e a s t  t h r e e  

so lu t ions ,  namely i t ,  j t ,  and k ' .  This i s  s t a r t l i n g  enough, a s  t h e  

degree of  t h e  polynomial i s  only 2. However, x
2 

t 1 = 0 ac tua l ly  has 

i n f i n i t e l y  many quaternionic roots!  For example, i f  b  is  any r e a l  

number such t h a t  0  5 b 5 1, and c  = 41 - b2, then b i t  t c j '  is  a  zero 

2 2 
of x

2 + 1, since ( b i t  t c j t I 2  = b 2 i t 2  t b c ( i t j t  t j t i t )  t c  j t  = 

2 2 
b (-1) t bc(0) t c (- 1)  = -1. (There a r e  ce r ta in ly  many other  zeros of 

x
2 + 1 which l i e  i n  Q besides these.  ) 

Relationships among G ,  H, P,  Z ,  R ,  C ,  and Q .  In  t h i s  c losing sec t ion ,  

we w i l l  t i e  a l l  of t h e  number systems considered i n  t h i s  a r t i c l e  

together  v ia  representat ion theory. We w i l l  show t h a t  a l l  these 

number systems can be considered a s  subsystems of a  single  algebraic  

s t ruc ture ,  namely t h e  2x2 complex matrices M [ C ] .  For t h i s  t o  make any z 
sense, a l l  of our representat ions must be compatible. By t h i s  we mean 

t h a t  i f  two d i f f e r e n t  systems "overlap," then t h e i r  representat ions 

must match on t h e  overlapping p a r t .  For example, we saw t h a t  our 

representat ions f o r  G ,  H and P were compatible i n  t h i s  respec t ,  s ince 



each represented their common elements, the integers, in exactly the 

same way (as scalar matrices). 

We have seen representations of G, H and P as integral 2x2 

matrices, and we remind the reader that these are automatically also 

representations as complex 2x2 matrices. Similarly, the scalar 

representation of R , namely 

for each reR, can also be considered as a complex representation of 

the real numbers. Notice that this representation is ~ompatible~with 

those for G, H and P, since the integers (the subset of R which 
'loverlaps" G, H, and P) are represented as scalar matrices still. How 

about the quaternions? Both 2 and R can be considered as subsets of 

the quaternions by considering their elements to be particular 

quaternions with zero if, j', and k' parts. Fortunately, the 

representation we chose for Q is compatible with our representations 

of G, H, P,  and R ,  since a quaternion q = a (a either real or integer) 

has representative M(q) = 69 
The complex numbers C are another matter, since we have 

discussed two distinct faithful representations of the complex numbers 

as 2x2 complex matrices. The first of these we discussed was the real 

(hence automatically complex) representation which assigned to each 

complex number z = a + bi the matrix 

The other representation discussed earlier was simply the scalar 

representation: 

These are not the only representations of the complex numbers as 2x2 

complex matrices. For example, M(z) = (3: 3 defines a faithful 
representation of C distinct from either of the above ones. Which 

should we choose? Since the Gaussian integers are also complex 

numbers, our representation of the complex numbers should agree with 

that of G for all Gaussian integers. The scalar representation of 

C is not compatible, unless we are willing to use the scalar 

representation M(m + ni) = ( m ~ i  m+:i) for the Gaussian integers 

also. Since we would lose some of the common ground among G, H, and . 
P in this case, we choose instead to use the first representation 

. 

Z )  = (-E) , which agrees already with our representation of G, 
as well as with R. 

Finally, we need to return to the quaternions to check that 

this chosen representation for C is also compatible with that for Q. 

There are several ways to consider C as a subset of Q, since i', j', 

and k' all behave like the imaginary square root of negative one. 

So the question remains which of the three, if any, we should identify 

as the complex number i in order to achieve compatibility of 

representations. We recall that the quaternions were represented as 

2x2 complex matrices with M(if) = (J; -9 , M(j') = ( - y  i) , 
M(k') = 1- i) , so that j 1  is represented by the same matrix as i 

in our representation of the complex numbers. Hence, if we agree to 

consider complex numbers a + bi as being special quaternions of the 
form a + bj', all our representations are compatible in every respect. 
The beauty of the faithfulness of all these representations is that 



we would be justified in actually defining G, H, P, Z,  R, C ,  and 

and Q as certain 2x2 complex matrices (though this is usually not 

done). If this is done, we arrive at the Venn diagram (Figure 1) 

showing the various inclusions. 

Concluding Remarks. We have seen that matrices afford a useful .way 

of representing many quite different kinds of number systems. To be 

accurate, in this article we have discussed the representation of 

rings. Representation theory can be used to describe many other types 

of algebraic structures. For instance, the representation of groups 

concerns representing each element of the group as an appropriate 

matrix with usual matrix multiplication paralleling the single group 

operation. As an example, in, the group of integers modulo n (with 

addition as the single operation), has a faithful representation as 

2x2 real matrices via the identification: 

We leave it to the reader to verify that M(k)M(j) = M(k + j), where 
the addition is modulo n. 

Commutative and noncommutative algebras, as well as Lie 

algebras (which have a non-associative multiplication defined) are 

other algebraic structures in which representation theory plays a 

major role in active research. It is safe to say that representation 

theory has earned an enduring reputation as a "unifying" tool in 

bringing together diverse topics in mathematics to the common ground 

of matrices. 
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A THEOREM OF P H I L I P  HALL 

bq Ba.JLb#Ul A. Benundm 
C-teudand State.  UWLue~6-L-tq 

PART I: Introduction 

The study of group theory is a relatively new area of 

mathematics. This challenging and exciting frontier has intrigued 

many mathematicians in recent years. As a result, these pioneers have 

bequeathed to the world of mathematics some very interesting findings. 

This paper will examine some of these findings, with an emphasis on 

the work of one individual. 

Among the early group theorists was a mathematician named 

Ludwig Sylow (1832-1918). He was a noted speaker and many of his 

lectures were attended by enthusiasts in the field of group theory. 

For some, it was attendance at these talks which inspired them to 

produce results in this field. 

Sylow himself was impressed by another mathematician, Augustin- 

Louis Cauchy. A theorem produced around 1835 by Cauchy caught the 

attention of Sylow. The theorem stated that every group whose order 

is divisible by a given prime p must contain at least one subgroup of 

order p. Nearly thirty years after Cauchy's finding, Sylow proudly 

presented his extension of it. Not surprisingly, this theorem was 

dubbed "Sylow's Theorem." It is stated in Part I1 of this paper. 

Like Sylow, another mathematician was intrigued by Cauchy's 

theorem. His name was Philip Hall. Pursuing his interest in group 

theory, he went on to study Sylow's extension of Cauchyls theorem. 

The fruits of his labor can be found in a further extension of Cauchy's 

theorem. This new extension was first discovered by Hall in 1928. It 

is this theorem of Hall's which shall be proven in this paper. The 

validity of its converse shall also be demonstrated. 

It is interesting to note that the diverse backgrounds of 

these men lend an international flavor to the study of groups. ~auchy 

was French, Sylow was from Norway and Hall hailed from England. And 

yet these individuals had very much in common. All were indefatigable 



workers and men of uncommon s c i e n t i f i c  a b i l i t y .  More than t h a t ,  they 

were uni ted i n  t h e i r  quest t o  l ea rn  more about group theory, an 

important and i n t e r e s t i n g  branch of mathematics. 

PART 11: Theorems and Defini t ions 

Used i n  the  Proofs of  

Ph i l ip  Hal l ' s  Theorem 

and Its Converse 

(Lagrange's Theorem). Let G be a group of f i n i t e  order  n and l e t  

H be a subgroup of G (wri t ten H < G), then t h e  order  of H divides 

the  order  of G .  
m (Sylowts Theorem). Every group whose order  is d i v i s i b l e  by (p)  , 

but not by (p)m+l, where p is  a prime, contains a subgroup of order  

(p)mi and a l l  such subgroups a r e  conjugate. 

Let G be a group. I f  A and B a r e  two f i n i t e  subgroups of G ,  then 

Let H be a normal subgroup of G (wri t ten H a G), then G i s  solvable 

i f  and only i f  H and G / H  a r e  solvable. 

Let N be a minimal normal subgroup of G (wri t ten N-aG). I f  N i s  

solvable,  then 

( i )  N is  abel ian,  and 

( i i )  if N is f i n i t e ,  then N is an elementary abel ian p-group'. 

Defini t ion of  "p-group": 

Let p be a prime. A group G is  a p-group i n  case every 

element i n  G has order  a power of p. 

Defini t ion of "solvable": 

Let G be a f i n i t e  group. G is solvable i f  and only i f  the re  

e x i s t s  a s e r i e s  

G = G > GI > ... > G = { l }  

such t h a t  Gi/Gi, is  cyc l ic  of  prime order ,  f o r  i = 0,1, ..., 
n-1. 

Defini t ion of "minimal normal subgroup": 

A minimal normal subgroup N of G is  a normal subgroup # { I }  

t h a t  contains no proper subgroup t h a t  i s  normal i n  G.  

PART 111: A Proof of a Theorem of Ph i l ip  Hall 

Let G be a solvable group of  order ab, where a and b a r e  

r e l a t i v e l y  prime. Then G contains a t  l e a s t  one subgroup of order a ,  

and any two such a r e  conjugate. 

Proof. The proof proceeds by induction on t h e  order of G.  

If G is solvable,  then G contains  a proper normal subgroup H.  

By Lagrangets Theorem, t h e  order  of H divides t h e  order  of G. 

Therefore, the  order  of H is  a b ,  where a divides a and b 1 divides b. 

Case ( i ) .  b < b. 

I f  G is  solvable and H a G ,  then G/H is  solvable (Th. 4 ,  P.11). 

Thus G/H i s  a solvable group of  order  a b / a b  or  (a/al)(b/bl).  Since 

I G / H [  < 1 ~ 1 ,  t h e r e  is a subgroup A/H of G/H  which has order  a / a ;  t h a t  

is, I A / H ~  = a/al .  

Letting x represent  t h e  order  of A ,  we then have I A / H ~  = 

a/al = x/albl. From t h i s  it can be asse r ted  t h a t  x = abl = [ A 1  . 
Since abl < ab, 1 A 1 < 1 G 1 . Also, A _^_ G and any subgroup of a 

solvable group is solvable. Therefore, A is solvable. By induction, 

A contains a subgroup of order a ,  a s  desired.  

Now suppose there  a r e  two subgroups of G ,  A and A ,  of order  

a .  Let k = 1 ~ ~ 1 .  I A I  [ H I  = I A  D H I  I A H I  (Th. 3 ,  P. 11). This f a c t  

implies t h a t  aa b = I A  D H I  - k. We thus a r r i v e  a t  t h e  f a c t  t h a t  k 
1 1  

divides aa b Also, s ince H a  G ,  AH 5 G ,  which leads us t o  conclude 
1 1' 

t h a t  [ A H  1 d ivides I G  1 . Hence, k divides ab. 

Let k = kakb7 where ka and kb a r e  t h e  prime f a c t o r s  of k 

which divide a and b,  respect ively.  Then, i f  k divides aa b 11' kb 
must divide b. And i f  k divides ab,  then k divides a. Thus, k 

divides ab 
1. 

But, on t h e  o ther  hand, s ince  A 5 AH and H 5 AH, Lagrange's 

theorem requi res  t h a t  a divide k and t h a t  a 1 b  divide k. Now the  l e a s t  

common mult iple  of a and albl is  abl. And i f  two numbers divide t h e  

same number, t h e i r  l e a s t  common mult iple  a l s o  divides t h e  number. 

Hence, ab divides k. 
1 

Since k divides abl and a b  divides k, it follows t h a t  k = ab.. 

A s imi la r  argument shows t h a t  1 ~ ~ ~ 1  = abl. 

Thus, AH/H and AIH/H a r e  subgroups of G / H ,  both of order : 
a b l / a l b ,  which equals a/al. 



Again, using induction, AH/H i s  conjugate t o  A H / H  i n  G/H. 

Thus, t h e r e  e x i s t s  an element x ,  i n  G ,  such t h a t  (xH)-1 AH/H (xH) = 

A H / H .  And s o  we have (X-IH) AH/H (xH) = AIH/H. Let y be an element 

of AH. This implies t h a t  y = ah, with a i n  A and h i n  H.  So f o r  every 

y i n  AH,  t h e r e  e x i s t s  an a, i n  Al such t h a t  t h e  following is  t r u e :  - 
1 -1 - 1 - 1 

( X ^ H ) ( ~ H ) ( X H )  = a H o r  x" yx(al) H = H. It follows t h a t  x yx(al) 
1 

-1 
is i n  H. This means t h a t  x yx(al)-l = h f o r  some h i n  H.  Consequently, 

-1 x yx = a H. Hence, x y x  is an element of AIH. 
1 

1 - 1 
Since x yx is i n  x (AH)x, X-~H(AH)XH 5 A H .  But ~ X - - ' H ( A H ) ~ H ~  

= ] A H \  = 1 ~ ~ 1 ,  which implies t h a t  X"H(AH)XH = AIH. Thus, AH and 
- 1 

A H a r e  conjugate i n  G. Therefore, xAx and A a r e  subgroups of A H 
1 1 

of order  a and so a r e  conjugate by induction. 

Case ( i i ) .  If G has a proper normal subgroup whose order  is 

not d i v i s i b l e  by b,  then t h e  theorem is proven. We there fore  assume 

t h a t  b divides 1 H 1 ,  f o r  every proper normal subgroup H. However, i f  
m 

H is a minimal normal subgroup, then I H  1 = p , where p is  a prime 
m 

(Th. 5, P. 1 1 ) .  By Lagrange's theorem, p divides ab, which means t h a t  
m 

pm divides a o r  pm divides b. Also, b divides I H I  o r  b divides p . 
m 

Consequently, p divides b. 

We now have t h a t  b divides pm and t h a t  pm divides b. 
m 

Therefore, b = p . Hence, H is  a p-sylow subgroup of G. This f a c t ,  

together  with t h e  f a c t  t h a t  H is normal i n  G implies t h a t  H is t h e  

unique minimal normal subgroup of G.  

Now, because G i s  f i n i t e ,  every normal subgroup of G contains 

a minimal normal subgroup. Since H is  t h e  unique minimal normal 

subgroup, it is necessar i ly  contained i n  every normal subgroup of G.  

Let K/H be a minimal normal subgroup of G/H.  The order of 

K/H is qn, where q is  a prime (Th. 5, P. 11) . Lett ing x = I K I  , we have 
m n I K / H ~  = x / ( ~ ) ~  = -qn. Hence, x = p q = 1 ~ 1 .  

Let S be a q-sylow subgroup of K and N'  be t h e  normalizer of 

S i n  G. I t  s h a l l  be shown t h a t  I N '  1 = a. The diagram on t h e  next 

page i l l u s t r a t e s  t h e  s i t u a t i o n .  

Observe t h a t  HS 5 K. ! H I  I S !  = IHIlsI I H S I  (Th. 3 ,  P.11). 

Since I H D S I  = 1, ~ H ~ ~ s ~  = I H S ~ .  Hence, I H S I  = 1 ~ 1 .  Therefore, K =  HS. 

Now, K< G implies t h a t  K~ = K ,  f o r  every g i n  G. S<K 

means t h a t  sg 5 K = K. Therefore, s < K. We may thus conclude - 
t h a t  every conjugate of S i n  G l i e s  i n  K.  

Since Isg 1 = IS 1 f o r  every g i n  G ,  sg is  a q-sylow subgroup 

of K. This means t h a t  sg and S a r e  conjugate i n  K.  That is  t o  say, 

there  e x i s t s  a k i n  K such t h a t  ( s g )  = S. Hence, every conjugate of 

S i n  G is conjugate i n  K. Let t ing c represent  the  number of conjugates 

of S i n  G ,  t h e  following equation r e s u l t s :  c = [G:N] = [K:N] = [HN:N] 

= [H:HIlNI. The t h i r d  equa l i ty  holds because S <_ N .  That is  t o  say, 

N > S means t h a t  HN > HS = K. But N ,  H 5 HS = K means t h a t  NH 5 K. - - 
Therefore, HN = K. 

The l a s t  equa l i ty  i s  demonstrated by appealing t o  Th. 3 ,  p.11 

which s t a t e s  t h a t  I H N  1 = ( [ H  1 1 N 1 )/ 1 HI~N 1 . Dividing both s ides  of t h e  

equation by I N !  y i e l d s  the  following: I H N ~ / ~ N ]  = ~ H ~ / ~ H ~ N ~ .  This 

l a s t  equation accounts f o r  [HN:Nl = [HiHflN]. 

I f  we can show t h a t  HdN = {l} our t a s k  w i l l  be f a c i l i t a t e d  

q u i t e  considerably. For if HDN = {I},  then c = I G  I /  I N '  1 = [ H I  = pm. 



m 
This leads t o  t h e  conclusion t h a t  ( a b ) / l ~ '  1 = p = b o r  I N '  1 = a .  

This r e s u l t  s h a l l  be obtained i n  two stages.  F i r s t ,  we w i l l  

show t h a t  H fl N c Z(K), t h e  center  of K. Secondly, it w i l l  be 

demonstrated t h a t  Z(K) = {l}. 
Let x be an element of H 0 N .  I f  keK, then k = hs with heH 

and SES. Since XEH and H is  abel ian,  x commutes with h. Now it 
-1 -1 

remains t o  show t h a t  x commutes with s. Observe t h a t  ( ( x  s x ) s )  E S 
-1 - 

since X E N  and S a N .  (x ( s  x s ) )  E H because H is normal. Hence, 

( x l s x s )  E S D H = {I}, which implies t h a t  xs = sx. This allows US 

t o  claim t h a t  x commutes with S ,  a s  desired. Thus, H fl N c Z(K). 

F ina l ly ,  Z(K) is a c h a r a c t e r i s t i c  subgroup of K, and K a G so  

Z(K) is  normal i n  G.  I f  Z(K) # 1, then Z(K) contains a minimal normal 

subgroup of G.  Thus H 5 z(K), by the  uniqueness of H.  
-1 

Now, H 5 Z(K) means t h a t  hkh = k ,  f o r  every k i n  K and f o r  

a l l  h i n  H.  Also, K = HS. That i s ,  k = hs ,  f o r  some heH and some 

s e ~ .  Therefore, Sk = Shs = s l ( h l S h ) s  = s - s s  = S. From t h i s  we 

a r r i v e  a t  t h e  f a c t  t h a t  S a K which t e l l s  us t h a t  S is c h a r a c t e r i s t i c  

i n  K and so  S a G .  We now conclude t h a t  S contains H,  t h e  unique 

minimal normal subgroup of G .  But t h i s  is  a contradict ion s ince 

S = qn and H = pn. Thus our assumption t h a t  Z(K) # 1 has led  us i n t o  

a contradict ion.  Hence, Z(K) = 1. 

Using t h e  above r e s u l t s ,  namely t h a t  H 0 N C Z(K) and Z(K) = 1. 

we may a s s e r t  t h a t  H ("I N = 1 and I N '  1 = a .  

Now suppose t h a t  A is another subgroup of G with order  a .  
m n 

Observe t h a t  I A , K ~  i s  d i v i s i b l e  by a and by I K I  , which equals p q . 
- 

We may conclude t h a t  [ A  K l  = \G\ so t h a t  A K  = G .  We have the  
1 

following diagram: 

Since A 1 K = G ,  G/K = ( A 1 K)/K. Hence, G/K = (AK)/K K A/(AnK) .  

Observe t h a t  I (A. ,K) /K~ = ( a b ~ ~ ~ ~ q ~ ) .  Let x = I A  ~ K I .  Then we have 
m n I A ~ / ( A ~ ( " I K ) I  = a/x. So (ab)/(pmqn) = a/x o r  x = (ap q ) / (ab)  = qn. 

Therefore, by t h e  Sylow Theorem, AIDK i s  conjugate t o  S i n  K. 

Also, f o r  r e A ,  note  t h a t  (A~("IK)"  = ( A ) ~  ("I K1' = A W ,  s ince  K a G." - 
Hence, (ADK) a A .  

Having observed t h a t  A ("IK i s  conjugate t o  S i n  K ,  it follows 
1 

k k t h a t  A1nK = sk, f o r  some ~ E K .  Thus NG<A1nK) = NG(S) = (N' . We 

thus conclude t h a t  I N ~ ( A ~ ( " I K ) I  = a .  Also, A DK a A implies t h a t  
1 1 

< N (A OK). Hence, A = N (A DK) and, a s  shown above, N (A HK) *1- G 1 1 G 1  
l #  and N'  a r e  conjugate. This completes t h e  proof of t h e  theorem. 

PART I V :  A Proof of t h e  Converse of Hal l ' s  Theorem 

Let G be a f i n i t e  group such t h a t  i f  1 G I  = ab, where a and 

b a r e  r e l a t i v e l y  prime, then t h e r e  e x i s t s  a subgroup H of G and I H I  = a ,  

then G is  solvable. 

6 6 6 Proof. Let [ G I  = ( p )  l ( p 2 )  2.. . ( p )  n, where t h e  pi a r e  

prime and pi # p j  i f  i # j .  

Case ( i ) .  n = 1 

I f  n = 1, G is a p-group. It follows t h a t  G i s  n i lpo ten t  and 

solvable. 

Case ( i i ) .  n = 2 

I f  n = 2, G i s  a two prime group and is  solvable by a theorem 

of Burnside. (W. Burnside, "On Groups of order Proceedings 

London Mathematical Society, Ser ies  2, Vol. I1 (1904), pp. 432-437). 

Case ( i i i ) .  n 2 3 

Let Ti be t h e  subgroup H f o r  b. = (pi f i  and ai = 1 G I  / b ,  f o r  

i = l , 2 ,  ..., n. 

Then I G / T ~  = (piI6i,  s o  t h e  indices  of T ,  T ,  and T a r e  
3 

pairwise r e l a t i v e l y  prime. 

S i n  I T . ( " I T . I  = l ~ [ / ( ( p ~ ) ~ i ( p . ) ~ j ) ,  each of t h e  Ti w i l l  
1 I I 

s a t i s f y  the  hypothesis of t h e  theorem. Hence, TI,  T and T a r e  
2 3 

solvable by induction. The Three-Subgroup Theorem would serve very 

well a t  t h i s  po in t ,  f o r  it would allow us t o  conclude t h a t  G is  

solvable. However, before drawing t h i s  desired conclusion, the  

Three-subgroup Theorem w i l l  be demonstrated. 



The Three-Subgroup Theorem (Wielandt, 1960) s t a t e s :  Let A ,  B 

and C be subgroups of  G ,  where ( ~ G / A ~ , ~ G / B ~ )  = ( ~ G / A ~ , ~ G / c ~ )  = 

( I G / B ~ , ~ G / c ~ )  = 1. Also, A ,  Band  C a r e  solvable and I G / A I  = p., 

l G / B  1 = 6 and 1 G/C 1 = 5. Then G i s  solvable. 

Proof. G = AB = BC = AC. Note t h a t  1 < A  < G ,  1 5 B  5 G  and 

I < C < G .  
n 

Let M a A  so  t h a t  \ M I  = p . (6,0) = 1 so  t h a t  p does not 

divide 6 o r  p does not divide 5. Without l o s s  of  genera l i ty ,  we s h a l l  

say t h a t  p does not divide 0. 

Let S =me.  The following diagram should a i d  i n  t h e  under- 

standing of t h e  s i t u a t i o n :  

Since p does not divide 5 which equals 1 G/C 1 , p does not divide 1 A/S 1 . 
Observe t h a t  S 5 M S 5 A .  Also, fromTh. 3, P.11, I M S I  = ( l ~ l l s l ) /  

1 M ~ S  1 = 1 M / ( M ~ s )  1 .  s 1 . I f  p divides 1 M / ( M ~ s )  1 then p divides 1 A/S 1 . 
But t h i s  i s  a contradict ion.  Hence, p does not divide ~ M / ( M ~ s ) I ,  so  

t h a t  I M / ( M ~ s ) ~  = 1. Therefore, M = MnS which implies t h a t  M 5 S. 

From t h i s  we can say t h a t  M 5 C. 

Let geG. Then g = ac,  with ~ E A  and CEC.  Mg = Mac = M" < - C. 
G 

Thus M 5 C which implies t h a t  MG is solvable. 
G 

Let IT : G ->Â G/(M ) be t h e  n a t u r a l  homomorphism. Then n (A), 

IT(B) and n(C) a r e  solvable. Also, l n ( ~ ) / f f ( ~ ) l  = I I T ( G ) / ~ ( B ) ~  = 
G 

I I T ( G ) / ~ ( C )  1 = 1. These l a s t  two f a c t s  imply t h a t  G/(M ) is solvable. 
G G 

We now have t h a t  M and G/(M 1 a r e  solvable. Therefore G is 

solvable (Th. 4 ,  P. 11) . 
Having proved t h e  Three-Subgroup Theorem, we w i l l  now apply it 

t o  complete t h e  proof of  t h e  converse of Hal l ' s  theorem. 

Recal l  t h a t  TI, T2 and T a r e  subgroups of  G and a r e  solvable. 
3 

We have shown t h a t  t h e i r  indices  a r e  pairwise r e l a t i v e l y  prime. From 

t h e  Three-Subgroup Theorem, G i s  solvable. Thus t h e  v a l i d i t y  of t h e  

converse of Hal l ' s  theorem is demonstrated. 
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THE ROLE OF RUSSELL'S PARADOX IN 
THE DEVELOPMENT OF TWENTIETH CENTURY MATHEMATICS 

by KOA.W. P .  Hiddtvton 
Keene S t a t e .  CoUe.ge 

In  mathematics, a s  i n  most o ther  d i sc ip l ines ,  p r a c t i t i o n e r s  

have attempted t o  define t h e  foundation o r  bas i s  upon which t h e i r  

d i sc ip l ine  is  ostensibly constructed. Not only were t h e  c l a s s i c a l  

Greeks t h e  f i r s t  mathematicians t o  ponder the  bas i s  of math, but a l s o ,  

the  culmination of the  Greek mathematical en te rpr i se ,  Eucl id 's  Elements, 

stood a s  t h e  foundation of math f o r  more than 2000 years. Euclid used 

t h e  pr inc ip les  of A r i s t o t l e ' s  deductive log ic  t o  derive hundreds of 

geometric theorems from only a few basic  assumptions, o r  axioms. Since 

A r i s t o t l e ' s  l o g i c a l  method was accepted a s  i n f a l l i b l e ,  thinkers  could not 

r e j e c t  t h e  r e u l t s  of Eucl id 's  theorems, although they have occasionally 

challenged h i s  axioms. Davis and Hersh (1981, p. 325) r e f e r  t o  t h e  

"Euclid myth ... t h a t  t h e  books of  Euclid contain t r u t h s  about t h e  uni- 

verse which a r e  c l e a r  and indubitable.' '  

Unti l  t h e  l a t e  nineteenth century, both philosophers and 

mathematicians regarded geometry a s  " the f i rmes t ,  most r e l i a b l e  

branch of knowledge" (Davis 6 Hersh, 330). A t  t h a t  time, a number 

of  mathematicians decided t o  t r y  t o  reformulate ar i thmetic  according 

t o  t h e  laws of deductive reasoning, j u s t  a s  Euclid had done f o r  

geometry. Many ar i thmetic  r e s u l t s  had been used f o r  cen tur ies  without 

being proven, because they seemed t o  be a matter  of common sense. 

The German mathematician Gottlob Frege worked f o r  t e n  years  t o  derive 

theorems of ar i thmetic  from j u s t  a few assumptions. He wanted t o  

replace i n t u i t i v e  notions of the  r e a l  number system with a p rec i se  

axiomatic system, t o  render ar i thmetic  more "rigorous" (Wilder, 1973, 

p. 175). He was nearly f in i shed  with h i s  two-volume work 

Gmndgesetze der Avithmetik (Fundamental Lms of Arithnet-id i n  1902, 

and he believed t h a t  it was "no l e s s  a model of c e r t i t u d e  than t h e  

Elements" (Guillen, 1983, p. 15). 

Unfortunately, t h e  Br i t i sh  philosopher-mathematician Bertrand 

Russell had noticed a paradox, a flaw i n  log ic ,  i n  Frege's f i n a l  

manuscript. Frege himself agreed t h a t  the  flaw was se r ious  enough t o  

r u i n  h i s  e n t i r e  e f f o r t :  

"A s c i e n t i s t  can hardly meet with anything more undesirable 

than t o  have t h e  foundation give way j u s t  a s  t h e  work is  f inished.  

In t h i s  posi t ion I was put by a l e t t e r  from M r .  Bertrand Russell a s  

t h e  work was nearly through t h e  press" (Guillen, p. 15) .  

The contradict ion t h a t  Russel l  d i s c o v e r e d l i e ? i n  s e t  theory-;.- 

which Georg Cantor had developed during the  l a t e r  nineteenth century. * 

Set theory had quickly become indispensable t o  mathematics; it was 

used t o  define number and t o  discuss  i n f i n i t y .  The notion of a s e t  

had seemed q u i t e  simple and straight- forward; it was believed t h a t  

any sens ib le  verbal  descr ipt ion could be used t o  denote a s e t .  Russell 

took t h i s  bas ic  idea  and, f o r  t h e  f i r s t  t ime, r e a l l y  t e s t e d  it mentally. 

He rea l ized  t h a t  while most s e t s  a r e  not members of themselves ( the  s e t  

of teaspoons is  not another teaspoon), the re  a r e  a few s e t s  which are 
members of themselves: f o r  example, t h e  s e t  of a l l  ideas is i t s e l f  an idea. 

The s e t  of a l l  s e t s  t h a t  have more than f i v e  members i t s e l f  has more than 

f ive  members; therefore t h i s  s e t  is  a l s o  a member of  i t s e l f .  

Suppose we take M a s  t h e  s e t  of  a l l  s e t s  which a r e  members of  

themselves, and N a s  t h e  s e t  of a l l  s e t s  which a r e  not members of 

themselves. N i t s e l f  is  a s e t ,  so it must belong t o  e i t h e r  M o r  N 

If N belongs t o  N,  then it is  a member of  i t s e l f ,  so it must belong t o  

M. But M and N a r e  mutually exclusive s e t s ,  so  i f  N belongs t o  M, it 

cannot belong t o  S (Kline, 1972, p. 1184). 

Russel l ' s  paradox is  described by W .  V. Quine (1962, p. 90) 

a s  follows: "What of t h e  c l a s s  of a l l  c lasses  t h a t  a r e  not members 

of themselves? Since i t s  members a r e  the  nonself-members, it 

q u a l i f i e s  a s  a member of i t s e l f  i f  and only i f  it i s  not .  I t  i s  and 

it is  not.  " 
Russel l ' s  paradox caused a ser ious c r i s i s  i n  t h e  foundations 

of mathematics p rec i se ly  because it could not be resolved through 

logic .  There was no apparent l o g i c a l  f a l l a c y  i n  Russe l l ' s  thinking. 

Quine (p. 85) terms t h i s  type of paradox an "antinomy," and cont ras t s  

antinomy with paradoxes which contain l o g i c a l  f a l l a c i e s .  Famous 

examples of t h e  l a t t e r  include t h e  English mathematician Augustus De 

Morgan's proof t h a t  2 = 1: 
2 

'Let x = 1. Then x = x. . So x - 1 = x - 1. Dividing both 

s ides  by x - 1, we conclude t h a t  x + 1 = 1; t h a t  is, s ince x = 1, 

2 = 1" (Quine, p. 84). The l o g i c a l  f a l l a c y  here i s  i n  t h e  divis ion 



by x - 1 which is  0. 

An i n t e r e s t i n g  and ancient  verbal  paradox concerns t h e  v i l l a g e  

where t h e r e  l i v e s  a barber who shaves a l l  and only those men i n  t h e  

v i l l a g e  who do not  shave themselves. So -- does t h e  barber shave 

himself? It would seem he shaves himself i f  and only i f  he doesn't .  

Quine (p. 84) concludes t h a t  we r i d  ourselves of t h i s  paradox by t h e  

r e a l i z a t i o n  t h a t  no v i l l a g e  can contain such a barber; we reduce t h i s  

paradox t o  absurdi ty.  

Some of t h e  most famous paradoxes i n  mathematical h i s to ry  were 

proposed by t h e  Greek philosopher Zeno of Elea. Four of h i s  paradoxes 

concern motion, inlcuding t h e  race  between Achil les  and the  Tortoise. 

Zeno concluded t h a t  i f  t h e  Tortoise  has a head s t a r t ,  Achilles can 

never catch up, because whenever he a r r i v e s  a t  t h e  point  wheee t h e  

Tortoise  was, t h e  Tortoise  w i l l  have moved ahead a l i t t l e .  Today we 

can s e e  the  f a l l a c y  i n  t h i s  paradox: t h e  Greeks must have thought 

t h a t  an i n f i n i t e  succession of i n t e r v a l s  would add up t o  an i n f i n i t e  

i n t e r v a l  (Quine, p. 89). When mathematicians came t o  understand 

convergent s e r i e s ,  Zeno's paradox was solved. 

Rather than containing a f a l l a c y ,  however, Russel l ' s  antinomy 

demonstrated t h a t  a " trusted p a t t e r n  of thinking was found wanting" 

(Quine, p. 90). The t r u s t e d  pa t te rn  of reasoning was t h e  bas ic  idea 

behind s e t  theory, t h a t  f o r  any condition you can think of there  must 

be a s e t  whose members meet t h a t  condition. Actually, a s  we have 

seen i n  Russe l l ' s  antinomy, there  can be no c l a s s  t h a t  has a s  members 

the  c lasses  t h a t  a r e  no t  members of  themselves. 

Quine points  out ,  i n t e r e s t i n g l y  enough, t h a t  t o  t h e  ancient  

Greeks Zeno's paradoxes probably qua l i f i ed  a s  genuine antinomies. 

Since t h e  Greeks did not know about convergent s e r i e s ,  they could not 

have detected t h e  l o g i c a l  f a l l a c i e s  i n  Zeno's arguments. To them, 

it might have seemed t h a t  Zeno had introduced a c r i s i s  s i t u a t i o n  i n t o  

mathematics, j u s t  a s  Russel l  d id  more than 2000 years  l a t e r .  Davis 

and Hersh (p. 226) propose t h a t  Eucl id 's  axiomatic treatment of such 

" in tu i t ive"  geometric objects  a s  " line" and "point" might have been 

i n  response t o  Zeno's paradox, t o  f o r e s t a l l  the  problems Zeno had 

ra i sed .  In t h e  same way, we now th ink  t h e  Greeks concentrated on 

geometry " to  avoid t h e  d i f f i c u l t i e s  posed by t h e  discovery of 

incommensurable magnitudes" (Wilder, p. 176). 

In response t o  Russel l ' s  antinomy, th ree  d i s t i n c t  schools of 

mathematical thinking have attempted t o  resolve t h e  problem. None 

has succeeded i n  obtaining un iversa l  agreement among mathematicians. 

Bertrand Russel l  and the English mathematician Alfred North 

Whitehead led  t h e  Logicis ts ,  who sought a way t o  reformulate s e t  

theory whichwouldavoid o r  n u l l i f y  t h e  Russell paradox. They contended 

t h a t  mathematics i s  a branch of  log ic ,  and t h a t  a l l  of  math can be 

reduced t o  logic .  They hoped t o  r e s t o r e  " certainty"  t o  mathematics 

through log ic .  Russel l  and Whitehead published Ppincipia Mathematica 

between 1910 and 1913; i n  t h i s  enormous work, mathematics was deduced 

from log ic  using complex symbolic language. The authors proposed 

t h a t  the  terms "set" and "ordered pa i r ,"  and the laws governing s e t s  

and ordered p a i r s ,  belong t o  t h e  d i sc ip l ine  of log ic  r a t h e r  than 

math. They then showed t h a t  "the laws of ar i thmetic  and t h e  r e s t  

of t h e  mathematics of number a r e  r e l a t e d  t o  those of log ic  i n  the  

same way a s  the  theorems of geometry a r e  r e l a t e d  t o  i t s  axioms" 

( ~ a r k e r ,  1964, p. 80). 

Russell and Whitehead d e a l t  with Russel l ' s  paradox through 

t h e i r  theory of types. According t o  t h i s  theory, a l l  t h e  e n t i t i e s  

of s e t  theory, such a s  s e t s ,  s e t s  of s e t s ,  s e t s  of s e t s  of s e t s ,  e t c . ,  

a r e  arranged i n  a hierarchy of l e v e l s ,  o r  types,  and each e n t i t y  can 

belong t o  j u s t  one type. No s e t  can have members of  types o ther  

than t h e  next lower type. They spec i f ied  t h a t  "whatever involves a l l  

members of a co l lec t ion  must not i t s e l f  be a member of the  col lect ion"  

(Kline, p. 1195). By thus r e s t r i c t i n g  t h e  l o g i c a l  axioms r e l a t i n g  t o  

s e t s ,  Russel l  and Whitehead were able  t o  r e t a i n  the  bas ic  idea 

behind s e t  theory, t h a t  f o r  every s t a t a b l e  condition t h e r e  e x i s t s  a 

s e t  containing a l l  and only those things which s a t i s f y  t h e  condition. 

A s  Barker (p. 91) summarizes, Russel l  and Whitehead avoided the  

paradox "by narrowing the  range of sentences i n  s e t  theory t h a t  a r e  

t o  count a s  making sense." 

More recen t ly ,  most mathematicians have disagreed with t h e  

Russell-Whitehead t h e s i s  t h a t  math and l o g i c  a r e  iden t ica l .  Rather, 

mathematical l o g i c  has been extensively developed a s  a separate  

branch of mathematics. In 1962 Leon Henkin wrote t h a t  t h e  basic  

concepts of math can be expressed i n  l o g i c a l  terms, but a s  J. Fang * 

asked i n  a review of Henkin's paper (Fang, 1964, p .  47), a r e  



mathematics and physics i d e n t i c a l  "because the  bas ic  concepts of a l l  

physics can be expressed i n  terms of mathematics?" 

Russell and Whitehead were hoping t h a t  log ic  would give 

cer ta in ty  back t o  mathematics. However, a s  J a g i t  Singh (1959, p. 274) 

points ou t ,  l o g i c  is "certain" because it doesn't  deal  with substance. 

Logic is concerned with the  nature and r u l e s  of reasoning; we use 

log ic  t o  deduce va l id  conclusions from given premises. "Logic 

s tud ies  t h e  r e l a t i o n s  between proposi t ions independently of what each 

proposition is  about." Singh f inds  it surpr i s ing  t h a t  l o g i s t i c  , 

mathematicians l i k e  Russell and Whitehead could so  read i ly  disregard 

t h e  substance of math. 

A very d i f f e r e n t  approach t o  mathematics was taken by t h e  

I n t u i t i o n i s t  school. I t  was founded i n  the  l a t e  1800's by Leopold 

Kronecker, who s t a t e d  t h a t  Cantor's work on t r a n s f i n i t e  numbers and 

s e t  theory was mysticism r a t h e r  than mathematics. Kronecker accepted 

l i t t l e  i n  mathematics beyond t h e  whole numbers, which he s a i d  a r e  

given t o  us by a fundamental i n t u i t i o n .  He re jec ted  i r r a t i o n a l  

numbers, f o r  example, a s  non-existent.  Kronecker stood alone i n  h i s  

philosophy u n t i l  the  controversy over Russe l l ' s  paradox had begun. 

Beginning i n  1908, the  Dutch topologist  L. E. J .  Brouwer took up 

Kronecker's positon and elaborated it. He demonstrated t h a t  t h e  

concept of na tura l  whole numbers came from t h e  perception of the  

passage of time, a fundamental human i n t u i t i o n .  Brouwer maintained 

t h a t  " a l l  mathematics should be based construct ively on the  n a t u r a l  

numbers" ( ~ a v i s  and Hersh, p. 334). No mathematical object  e x i s t s  

unless  it can be given by a construct ion,  i n  a f i n i t e  number of s t e p s ,  

s t a r t i n g  with the  n a t u r a l  numbers. 

Brouwer and t h e  I n t u i t i o n i s t s  re jec ted  the use o f  proof by 

contradict ion.  A good example is  Brouwer's treatment of  Fermat's 

l a s t  theorem, i n  which Fermat asse r ted  without proof t h a t  t h e r e  a r e  

no n a t u r a l  numbers f o r  n g r e a t e r  than 2 which s a t i s f y  t h e  equation 

2 + zjn = zn.  Mathematicians have t r i e d  but f a i l e d  t o  prove o r  

disprove t h i s  theorem; I n t u i t i o n i s t s  f e e l  t h a t  s ince  it can be 

n e i t h e r  proved nor disproved, then it may be ne i ther  t r u e  nor f a l s e .  

It may be a "meaningful statement possessing n e i t h e r  t r u t h  nor 

f a l s i t y "  (Barker, p. 76). 

Brouwer a s s e r t s  t h a t  mathematical ideas a r e  i n  t h e  human 

mind "prior  t o  language, log ic ,  and experience" (Kline, p. 1200). 

He does not recognize the  necessi ty  of deducing mathematical 

conclusions from axioms. Therefore, t o  t h e  I n t u i t i o n i s t s ,  Russe l l ' s  

paradox is  unimportant. The I n t u i t i o n i s t s  f i n d  log ic  t o  be a fun 

of  language, not of mathematics. Furthermore, they claim t h a t  

paradoxes such a s  Russe l l ' s  r e s u l t  from "the u n j u s t i f i e d  extension of 

t h e  laws of log ic  from t h e  f i n i t e  t o  t h e  i n f i n i t e"  (Wilder, p. 177). 

A t h i r d  major school of mathematical philosophy arose ea r ly  

i n  the  twentieth century. The Formalists were l e d  by David Hilbert ,  

whose f i r s t  paper i n  t h e  f i e l d  appeared i n  1904; a t  t h a t  time, he 

attempted t o  e s t a b l i s h  a bas i s  f o r  t h e  number system without using 

t h e  theory of s e t s ,  and he argued against  Kronecker's contention 

t h a t  t h e  i r r a t i o n a l s  don't  e x i s t .  Hi lber t ' s  major papers appeared 

during t h e  19201s, when he sought t o  defend mathematics from t h e  

I n t u i t i o n i s t  viewpoint; he feared t h a t  they were t ry ing  " t o  save 

math by throwing overboard a l l  t h a t  which is  troublesome ... they 

would chop up and mangle t h e  science" (Davis and Hersh, p. 335). 

Hilbert  introduced a formal language and r u l e s  of inference 

s o  t h a t  every proof of a c l a s s i c a l  theorem could be mechanically 

checked. He a l s o  introduced r u l e s  f o r  transforming formulas, 

re fe r red  t o  a s  meta-mathematics. Hilbert  was attempting t o  place 

mathematics on a c e r t a i n  and r e l i a b l e  foundation by eliminating 

meaning from t h e  mathematical symbols. He wrote t h a t  the  symbols 

themselves a r e  t h e  essence of math, and t h a t  they no longer stand f o r  

any ideal ized physical  objects  (Kline, p. 1204). 

Since Hilbert  and t h e  Formalists purged t h e i r  mathematical 

language of semantic content ,  they found t h a t  the  mathematical 

f a i l u r e  revealed by Russe l l ' s  paradox ac tua l ly  l ay  i n  language, not 

i n  math. For example, the  o r ig in  of many paradoxes, including 

Russe l l ' s ,  l i e s  i n  t h e  ambiguity of t h e  word " al l ."  I f  we s t a t e  

" A l l  r u l e s  have exceptions,'' we have a paradox i f  we define " a l l"  

t o  include t h i s  statement (Guillen, p. 17). This paradox and many 

o thers  a r e  thus semantic, r a t h e r  than l o g i c a l ,  and can be avoided by 

care fu l ly  removing any meaning from logic .  Hilbert  and h i s  followers 

have often been c r i t i c i z e d  f o r  t r y i n g  t o  make mathematics "safe by . 
A 

turning it i n t o  a meaningless game" (Davis and Hersh, p. 336). 

Nonetheless, Hi lber t ' s  philosophy, somewhat changed, has evolved 



i n t o  the  predominant a t t i t u d e  i n  modem mathematics: today, 

Formalists def ine math a s  t h e  science of rigorous proof. 

Each of t h e  th ree  major schools of mathematical philosophy 

attempted t o  re- es tab l i sh  t h e  mathematical 'cer tainty t h a t  seemed t o  

have been l o s t  with Russel l ' s  paradox. None succeeded, but 

mathematicians had hope u n t i l ,  i n  1931, t h e  German log ic ian  Kurt 

Godel's incompleteness theorems showed t h a t  ce r ta in ty  could not be 

obtained by any method founded on t r a d i t i o n a l  logic .  Thus t h e  - 
Formalist and Logicis t  schools were doomed t o  f a i l u r e .  The 

I n t u i t i o n i s t  school f a i l e d  because it condemns so  much of c l a s s i c a l  

math. 

Mathematicians today tend t o  t r e a t  t h i s  phi losophical  

upheaval of the  e a r l y  twentieth century a s  i f  it never happened. I f  

they do not q u i t e  bel ieve t h a t  t h e i r  d i sc ip l ine  r e s t s  on a foundation 

of ce r ta in ty ,  they cer ta in ly  do t h e i r  day-to-day work a s  i f  it doesn't  

r e a l l y  matter.  The predominant b e l i e f  among non-mathematicians is 

t h a t  mathematics i s  an exact science r e s t i n g  on a base of ce r ta in ty .  

The l a t e  philosopher Imre Lakatos i n  Proofs and Refutations (1976) 

showed t h a t  math is r e a l l y  l i k e  t h e  n a t u r a l  sciences,  t h a t  it is 

f a l l i b l e ,  t h a t  "it too  grows by t h e  c r i t i c i s m  and correct ion of 

theor ies  which a r e  never e n t i r e l y  f r e e  of ambiguity o r  t h e  p o s s i b i l i t y  

of e r r o r  o r  oversight" (Davis and Hersch, p. 347). Lakatos emphasized 

informal math, math i n  t h e  process of growth and discovery, which i s  

ac tua l ly  math a s  most mathematicians know it. The grea t  value of 

Russel l ' s  paradox has been i t s  contr ibut ion t o  t h e  growth of 

mathematics; t h e  f a c t  t h a t  we cannot ye t  r e a l l y  resolve it i s  of much 

l e s s  importance than t h e  search. 
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THE ACTUARIAL PROFESSION: ONE OF THE 
BEST KEPT SECRETS OF THE BUSINESS WORLD 

b y  Nancie L .  M U  
IwAuAance S e ~ u - t c e ~  06&ice, Inc. 

For some college undergraduates, becoming an actuary conjures 

up images of s i t t i n g  i n  some i s o l a t e d  corner, crunching out numbers 

t h a t  only o ther  mathematicians can understand. Other s tudents  a r e n ' t  

even aware t h a t  t h e  a c t u a r i a l  profession e x i s t s  a s  a career  a l t e r n a t i v e  

u n t i l  almost ready t o  graduate. I f  you have a s t rong background i n  

math, and would l i k e  t o  be par t  of a highly in te res t ing ,  demanding and 

rewarding f i e l d ,  then an a c t u a r i a l  career  might be f o r  you. 

The Profession. J u s t  what is an actuary? Ski l l ed  

mathematicians, ac tuar ies  a r e  business professionals  t h a t  have t h e  

a b i l i t y  t o  analyze and solve complex problems i n  a number of  d i sc ip l ines .  

According t o  the  Casualty Actuarial  Society, ac tuar ies  "help design 

plans t o  reduce the f i n a n c i a l  impact of the expected and unexpected 

things t h a t  happen t o  people, l i k e  i l l n e s s e s ,  accidents ,  unemployment, 

o r  premature death. They evaluate t h e  f i n a n c i a l  r i s k  a company takes 

when it s e l l s  an insurance pol icy o r  o f f e r s  a pension program." (The 

Casualty Actuarial  Society promotes and increases t h e  knowledge of 

a c t u a r i a l  science,  and maintains high qua l i f i ca t ion  standards f o r  t h e  

profession. ) 

While most ac tuar ies  work within t h e  insurance industry,  

others  a r e  employed by t h e  government, heal th industry,  a c t u a r i a l  

consulting f i rms,  accounting f i rms,  and pr iva te  corporations. Using 

advanced math formulas and da ta  o f ten  compiled from mil l ions of cases ,  

ac tuar ies  can determine r i s k s ,  e s t a b l i s h  p r o b a b i l i t i e s ,  and help 

insurance companies s e t  premiums. Whenever a person buys homeowners 

o r  automobile insurance, f o r  instance,  ac tuar ies  have already 

determined t h e  probabi l i ty  of an insurable  event occurring, its 

average cos t ,  and t h e  appropriate premium t o  be charged. 

In many insurance companies, no s p e c i f i c  col lege t r a i n i n g  is 

needed t o  become an actuary. But candidates need a strong background 

i n  math o r  s t a t i s t i c s .  Math, physics, economics, computer science,  o r  

engineering majors usual ly have t h e  necessary quant i t a t ive  background 

t o  succeed as  ac tuar ies .  

Actuaries a r e  involved i n  much more than number crunching; 

they need t o  use both t h e i r  "analyt ical"  and "people" s k i l l s  i n  t h i s  

l i n e  of work. Most companies h i r i n g  ac tuar ies  look f o r  people who 

not only possess good math s k i l l s ,  but demonstrate c l e a r  communication' 

s k i l l s  a s  well .  

A s  business professionals ,  ac tuar ies  need t o  have a broad 

understanding of t h e  business world and t h e  general  environment. So 

s tudents  preparing f o r  t h e  career  need t o  incorporate English,  business 

wri t ing,  and speech c lasses  i n t o  t h e i r  curriculum. It i s  a l s o  he lpfu l  

t o  round out t h e i r  s tud ies  with courses i n  business, philosophy, and 

log ic .  

In addi t ion,  many companies sponsor a c t u a r i a l  i n t e r n  programs 

during t h e  summer break. Par t i c ipa t ing  i n  an in te rnsh ip  is  an i d e a l  

way t o  ge t  a f e e l  f o r  what t h e  a c t u a r i a l  profession e n t a i l s .  Students 

should se r ious ly  consider applying f o r  a summer program during t h e  

breaks between t h e i r  junior  and sen ior  years .  

The Actuarial  Exams. To obtain professional  qua l i f i ca t ion  t o  

p rac t ice  a s  an actuary,  candidates usual ly need t o  become Fellows i n  

t h e  Society of Actuaries ( f o r  l i f e  and hea l th  insurance and pension 

planning), o r  t h e  Casualty Actuarial  Society ( f o r  property and casual ty 

insurance). Actuarial  r e c r u i t s  a r e  expected t o  pass t e n  comprehensive 

examinations given by e i t h e r  t h e  CAS o r  SOA. 

Offered twice a year, the  exams cover severa l  i n t e r r e l a t e d  

f i e l d s  c r u c i a l  t o  an actuary 's  career  development: mathematics, 

s t a t i s t i c s ,  economics, r i s k  theory, accounting, law, and forecast ing.  

Taking a l l  t e n  exams can take anywhere from four  t o  t e n  years - o r  

longer - t o  complete. But s tudents  can begin careers  a s  ac tuar ies  

once they receive t h e i r  undergraduate degree. They can work t o  

develop t h e i r  a c t u a r i a l  s k i l l s  a s  they pass t h e  exams. When a r e c r u i t  

has completed t h e  first seven exams, he o r  she becomes an assoc ia te  

of t h e  CAS or  SOA. Those who pass  a l l  t e n  exams earn t h e i r  Fellowship. 

While no formal t r a i n i n g  is necessary, most insurance 

companies want s tudents  t o  have taken a t  l e a s t  one a c t u a r i a l  exam 

while i n  col lege.  For some a c t u a r i a l  candidates, t h e  add i t iona l  



pressure of  t h e  exams proves burdensome. Completing t h e  exams 

requires  s e l f  d i s c i p l i n e  and t h e  a b i l i t y  t o  study without supervision - 

q u a l i t i e s  t h a t  can be nurtured while s t i l l  i n  school. 

For those a c t u a r i a l  candidates who a r e  wi l l ing  and able ,  the  

opportunity t o  move i n t o  a company's upper ranks i s  there .  Depending 

on your own a b i l i t y  and experience - and i f  you a r e  regu la r ly  passing 

a c t u a r i a l  exams - you w i l l  be rewarded with a regu la r  s e r i e s  of exam 

r a i s e s  and addi t iona l  career  opportuni t ies .  

An Actuarial  Career a t  ISO. Insurance Services Office, Inc.,  

o r  ISO, spec ia l izes  i n  a c t u a r i a l  services .  IS0 is  one of t h e  l a r g e s t  

employers of a c t u a r i e s  i n  t h e  property/casualty insurance industry. 

It is  not ,  however, an insurance company. Rather, IS0 a s s i s t s  

insurance companies by co l lec t ing ,  analyzing, and producing accurate 

and timely da ta ,  which i t s  c l i e n t s  - over 1300 property and casual ty 

insure rs  - use t o  make important business decisions. 

Essen t ia l ly ,  IS0 is  a consulting organization. The company 

employs a c t u a r i a l  techniques t o  develop projected industry cos t s  f o r  

various kinds, o r  l i n e s ,  of insurance. Every year ,  IS0 uses da ta  from 

800 mil l ion insurance records t o  develop advisory r a t e  information. 

Based on these records and i t s  a c t u a r i a l  exper t i se ,  IS0 provides advice 

t o  c l i e n t s  f o r  16 d i f f e r e n t  l i n e s  of insurance. 

Many IS0 ac tuar ies  conduct research t o  p red ic t  f u t u r e  

economic and s o c i a l  t rends t h a t  can have an impact on t h e  property/ 

casual ty insurance industry. They a l s o  dea l  with insurance 

underwriters,  lawyers, and regulators  on a regu la r  bas i s ,  and a r e  

involved i n  t e s t i f y i n g  before s t a t e  regulatory hearings. 

Ken Levine, a c t u a r i a l  a s s i s t a n t ,  sr. i n  ISO1s Commercial 

Casualty Division, i s  a recent  IS0 inductee, and is glad t o  have joined 

t h e  ranks of ac tuar ia lp rofess iona ls .  Ken graduated with a math degree 

from Rensselaer Polytechnic I n s t i t u t e .  "When I heard about t h e  

a c t u a r i a l  profession from my high school guidance counselor, I d idn ' t  

give it much thought. A t  RPI, I took a number o f  business courses t o  

complement my math s t u d i e s  and enjoyed them very much. 

"By my sen ior  year ,  I f e l t  t h a t  becoming an actuary i n  t h e  

insurance industry would provide me with t h e  per fec t  opportunity t o  

apply my math s k i l l s  i n  a business environment. What a t t r a c t e d  me t o  

IS0 was i ts r o l e  a s  t h e  provider of information t o  t h e  property/casual ty 

b 

insurance industry.  " 
There's no denying t h a t  t h i s  i s  a challenging job. I f  you a r e  

looking f o r  a meal t i c k e t  t h a t  doesn ' t  involve heavy l i f t i n g ,  then 

the  a c t u a r i a l  profession is  probably not f o r  you. But i f  you're 

in te res ted  i n  breaking new ground, making worthwhile con t r ibu t ions  t o  

a company, and applying your math s k i l l s  i n  a business environment, 

then you're going t o  f i t  r i g h t  i n .  

For more information about the  a c t u a r i a l  profession,  contact  

t h e  Casualty Actuarial  Society a t  One Penn Plaza, 250 West 34th S t ree t ,  

New York, New York 10119. And f o r  more information about ISO, wr i te  

t o  ISO's College Recruitment Coordinator a t  160 Water S t r e e t ,  New York, 

New York 10038. 

The Actuarial  Examinations 

Associate Examinations: 

Part  1. General Mathematics 
Part  2 .  Probabi l i ty  and S t a t i s t i c s  
Part  3.  (A) Applied S t a t i s t i c a l  Analysis, (B) Operations 

Research and (C) Numerical Analysis 
Par t  4. (A) Mathematics o f  Compound In te res t ,  (B) L i f e  

and Casualty Contingencies and (C) Credi b i  1 i t y  
Theory 

Par t  5.  (A) Pr inciples o f  Economics, (B)  Theory o f  Risk and 
Insurance, (C) Pol i cy  Forms and Coverages and 
(D) Underwriting and Marketing 

Part  6. (A) Pr inciples o f  Ratemaking and (B )  Data f o r  
Ratemaking 

Par t  7. (A) Insurance Accounting, (B) Expense Analysis and 
Published Financial Information and (C) Premium, 
Loss and Expense Reserves 

Fellowship Examinations: 

Part  8. (A) Insurance Law, Supervision and Regulation, 
(B) Statutory Insurance and (C) NAIC ( the pro- 
ceedings o f  the National Association o f  Insurance 
Commissioners ) 

Part  9. (A) Advanced Ratemaking and (B) Individual Risk 
Rating 

Part  10. (A) Financial Operations o f  Insurance Companies, 
(B) Reinsurance and Excess Rating, (C) Forecasting . 
and (D)  Current Events and Issues 



THE FOCAL DISTANCE OF A CONIC SECTION 

by ~SJL R. AWLJL-MO~Z 
T e r n  Tech Unium-cty 

In  h i s  book, Mathematical Recreations and Essays [ l ] ,  Walter W. 

Rouse Bal l ,  under t h e  t i t l e  of  Ninth Fallacy, mentions t h a t  every 

e l l i p s e  is a c i r c l e .  This i s  very i n t e r e s t i n g  and per ta ins  t o  t h e  

problem of extrema on t h e  boundary. In t h i s  note  we study the  foca l  

dis tance f o r  conic sect ions and its extrema. 

1. The El l ipse .  Consider t h e  e l l i p s e  

Let t h e  f o c i  be F(-c,0) and G(c,O), a s  i n  Figure 1. Let P be a point  

on t h e  e l l i p s e .  

Figure 1 

We s h a l l  ca lcu la te  PF = r, which we c a l l  t h e  f o c a l  dis tance f o r  P. 

From t h e  dis tance formula, 

2 2 
r 2 = ( x + c )  + y .  

On the  o ther  hand, from t h e  equation of t h e  e l l i p s e ,  

where e = c/a i s  the  e c c e n t r i c i t y  of t h e  e l l i p s e .  Thus 

= (ex + a)". 

Hence, r = a +  ex!. 

The domain of the  funct ion r = r ( x )  is 

D = {x: 1x1 < a } .  

This implies t h a t  

a - c < a + e x < a + c .  - 
Consequently, 

r = a + e x > O ,  

and a + c and a - c a r e  the  maximum and t h e  minimum of r ,  respect ively,  

and a r e  achieved a t  t h e  boundary of the  domain of r. That is,  t h e  

extema occur when P is a vertex of the  e l l i p s e .  

In  [ I ] ,  it is s t a t e d :  "Since dr/dx = e is constant ,  r has no 

maximum and minimum, and it ( the  e l l i p s e )  must be a c i rc le ."  Indeed, 

Professor Bal l  was teasing.  

One can e a s i l y  ca lcu la te  PG and ob ta in  

PG = H = a - ex. 

Again, from 1 x 1 < a ,  one can show t h a t  

a - c < a - e x < a + c .  - 
2. % Hyperbola. Consider t h e  hyperbola 



A s  i n  Figure 2, l e t  t h e  f o c i  be G(c,O) and F(-c,0). We ca lcu la te  

PG = r, where 

2 2 
r 2 = ( x - c )  t y .  

In t h i s  case, 

Thus 
2 r2 = x

2 - 2cx + c
2 + (e2 - l ) ( x 2  - a ) 

2 = (ex - a )  , 
where, once again, we have used c = ea. 

Hence, r = lex - a1 . The domain of t h e  function r = r ( x )  is  

D = {x: 1x1 > a } .  

Considering x > a ,  we get  ex - a > c - a .  In t h i s  case,  r = ex - a.  

For x 5 -a, we obtain ex - a 5 -c - a and we must choose r = a - ex. 

In  a l l  cases ,  t h e  minimum of r is a t ta ined  a t  the  boundary of 

the  domain; t h a t  is, when P is a ver tex  of t h e  hyperbola. 

The reader  may study t h e  f o c a l  dis tance PF which is q u i t e  

s imi la r  t o  t h e  one of PG. 

3 .  The Parabola. Consider t h e  parabola - 

y2 = 4ax, a > 0 

with t h e  focus F(a,0) ,  a s  i n  Figure 3 .  It i s  c l e a r  t h a t  

P F = r = x t a .  

Again, we obtain t h e  minimum value of r on t h e  boundary of  t h e  domain 

of r; t h a t  is, when P is  t h e  vertex of  the  parabola. 

4. Problems. I f  we choose a point  on an a x i s  of any of t h e  

conics mentioned above, t h e  corresponding r a d i a l  dis tances may o r  may 

not have a l l  t h e  extrema on t h e  boundary. These problems may be of  some 

i n t e r e s t  t o  s tudents .  We s h a l l  give samples. 

( i ) .  Consider t h e  e l l i p s e  i n  Figure 4. Let A(p,O) be a point  on 

the  major a x i s  of t h e  e l l i p s e  and l e t  P be on t h e  e l l i p s e .  Obtain t h e  

maximum and t h e  minimum of AP. 

4 

Figure 4 

The maximum occurs on t h e  boundary, but it i s  i n t e r e s t i n g  t o  

obtain a necessary and s u f f i c i e n t  condition so  t h a t  t h e  minimum does 

not occur on the  boundary. The reader  may show t h a t  t h e  condition is  - 
l p I  < c2/a. The case of l p l  = c2/a  is  i n t e r e s t i n g  t o  study. 

( i i ) .  For t h e  parabola and hyperbola s imi la r  problems may be 

posed. Of course, the re  is  no maximum. One need only discuss  t h e  

problem of the  occurrence of the  minimum on t h e  boundary. 
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THREE F A M I L I A R  RESULTS V I A  THE 
MEAN VALUE THEOREM 

I n  t h i s  note  we use one app l ica t ion  of t h e  mean value theorem 

t o  ob ta in  th ree  s i g n i f i c a n t  r e s u l t s .  

The f i r s t  i s  t h e  f a m i l i a r  double inequa l i ty  f o r  e  t h a t  s t a t e s  

t h a t  f o r  a l l  p o s i t i v e  i n t e g e r s  n  

1 "  n + l  
( 1 )  ( I + - )  < e <  ( I t ; )  . 
Secondly, 

Although (2)  is not a s  good a s  S t i r l i n g ' s  formula it can ca r ry  t h e  

student a  long way i n  approximating n!. 

The t h i r d  is  

which is  usual ly  not  proved u n t i l  t h e  s tudent  is exposed t o  S t i r l i n g ' s  

formula. (See, f o r  example, Advanced CalcuZus by Taylor, Ginn 6 Co., 

1955, p. 688. ) 

Using the  mean value theorem with f ( x )  = xlogx - x,  we have 

I ( k t l ) l o g ( k + l )  - (k+l)I - Iklogk - kl = 
(kt11 - k  

where k  > 1 and c  e (k ,  k + l ) .  

Hence 

(4 )  logk < ( k t l ) l o g ( k + l )  - klogk - 1 < log(k t1) .  

To g e t  ( 1 )  we rewr i te  (4 )  a s  

klog(kt1)  - klogk < 1 < ( k t l ) l o g ( k + l )  - (k+l) logk 

To obtain ( 2 ) ,  we put k  = n, n  - 1, n  - 2, ..., 1 i n  ( 4 )  

and add. Thus 
n+l  7 l o g  k  < (n+Dlog(n+l )  - 1- log(1) -  n  < 1 l o g  k  . 

1 2 

Consequently - - - 
n t 1  

l o g  n! < log(n+l )  - l o g  e
n 

< log(n+l )  ! 

Hence 

(n+l ln  ( n + l  )n+l log- n < log  n! < logÃ . 
e  

Result (3 )  now follows by wr i t ing  t h e  above a s  

ANOTHER APPROACH TO e" > T~ 

Using t h e  mean value theorem f o r  i n t e g r a l s ,  we have 

I t  follows t h a t  
k t 1  

( i + r f < e  <w) . 



MARCEL R IESZ  - AN ANECDOTE 

by J .  L .  Rt.enneA 
10 Ph,UUU.ph Road 

P d o  & t o ,  CA 94303 

Marcel Riesz was a grea t  mathematician i n  more ways than one. 

He believed i n  good food and drink,  and went 300 pounds. Thus he stood 

out i n  a crowd. Especially was he known t o  a l l  who attended a confer- 

ence i n  College Park, Maryland, i n  1954, s ince  he was t h e  af ter- dinner  

speaker a t  t h e  banquet. 

The banquet must have continued i n t o  t h e  l a t e  hours, s ince when 

I appeared t h e  next morning ( l a t e  myself) Riesz was not yet  seated. 

Like me, he took a s e a t  i n  t h e  back of t h e  room. I hardly need remark 

t h a t  I was not a s  well-known t o  Riesz a s  he was t o  me. I couldn't  have 

mistaken him. 

Riesz immediately began f idge t ing ,  searching first i n  one pocket 

and then i n  another. He continued t h i s  so  p e r s i s t e n t l y  t h a t  soon I my- 

s e l f  was looking i n t o  a l l  my pockets. It d idn ' t  help him f o r  me t o  do 

t h i s ,  but eventually he found what he was looking f o r  -- h i s  eyeglasses. 

He put them on, leaned f a r  forward t o  read my name tag ,  and then extend- 

ed h i s  hand smiling. "Riesz is  my name," he chortled. He was already 

acquainted with everybody e l s e ,  and wished t o  score one hundred percent.  

Spend one oh two 6 o n u t ~ n  06 yaw j ~ b i o h / A e b i ~ k  y m u  -in Hungmy, a couivtiy 
with a tong tlwcUt-Lon o< exc.eUe.nce -ui mat he ma tie^ h u ~ ~ c h  and education. 
Take pmd in BUDAPEST SEMESTERS IN MATHEMATICS. 

An T.yichvUJoie Exp~9~Lenc.e'. 
Uav-cd Wagna, P<wti.CA.pant 

Foh iwfomat ion  and appLLcaChn l { o m  W e  to Phod. W .  T .  T h o t t a ,  Jh.,  
Uefwutme.nt 06 Ma-tfteniaAccA, U(M.v~n-uty 06 South CmoJUna., Cotumbia., S.  C .  
29208.  

CALL FOR NOMINATIONS 

Elections for national officers of the Pi Mu Epsilon 
Fraternity will be held in the Spring of 1987. The 
three-year terms of office will begin July 1, 1987. 

The Nominating Committee consists of Richard V. Andree, 
University of Oklahoma, Chairman, J. Sutherland Frame, 
Michigan State University, and E. Maurice Beesley, Univer- 
sity of Nevada. The committee will meet at the 1986Pi Mu 
Epsilon National Conference at. the University of California 
at Berkeley, August 3 - August 6. 

The committee solicits recommendations for nominees 
from the membership. Please submit names and addresses of 
possible nominees to Milton D. Cox, President, Pi Mu 
Epsilon, Department of Mathematics and Statistics, Miami 
University, Oxford, Ohio 45056, or to any member of the 
Nominating Committee, before July 1, 1986. 

Additional nominations for officers may be made in 
accordance with Sections 2. and 3. of Article V. of the 
Constitution and By-Laws which are reproduced below. 

ARTICLE V .  NATIONAL ORGANIZATION 

S e c t i o n  2. O f f i c e r s .  The O f f i c e r s  o f  t h e  f r a t e r n i t y  s h a l l  be P r e s i d e n t ,  
Vice- pres ident ,  S e c r e t a r y- T r e a s u r e r ,  E d i t o r ,  and f o u r  C o u n c i l l o r s .  These e i g h t ,  
t o g e t h e r  wi th  t h e  most r e c e n t  p a s t  P r e s i d e n t  s h a l l  c o n s t i t u t e  t h e  Counci l  o f  t h e  
f r a t e r n i t y ,  and s h a l l  s e r v e  wi thout  compensation.  

S e c t i o n  3. E l e c t i o n  of  O f f i c e r s .  The O f f i c e r s  s h a l l  be e l e c t e d  by t h e  
c h a p t e r s  t o  s e r v e  f o r  a term o f  t h r e e  y e a r s  beginning  J u l y  1 every  t h i r d  y e a r .  
They s h a l l ,  however, ho ld  o f f i c e  u n t i l  t h e i r  s u c c e s s o r s  a r e  e l e c t e d  and 
q u a l i f i e d .  Nominations s h a l l  be made by a nominating committee appoin ted  by t h e  
P r e s i d e n t .  T h i s  committee s h a l l  nominate a t  l e a s t  t h r e e  c a n d i d a t e s  s u i t a b l e  f o r  
t h e  o f f i c e  o f  P r e s i d e n t ,  a t  l e a s t  one each f o r  t h e  o f f i c e s  o f  
S e c r e t a r y- T r e a s u r e r ,  E d i t o r ,  and a t  l e a s t  s i x  f o r  t h e  four  o f f i c e s  of  
C o u n c i l l o r .  A d d i t i o n a l  nominations may be made by t h e  Council ,  a Genera l  
Convention,  o r  any c h a p t e r  of  t h e  f r a t e r n i t y  p r i o r  t o  t h e  month i n  which b a l l o t s  
a r e  mailed t o  t h e  c h a p t e r s .  The names of  a l l  nominees s h a l l  be- submi t ted  on a 
b a l l o t  t o  t h e  c h a p t e r s  by t h e  S e c r e t a r y  before  January  3 1  preceding  t h e  begin-  
n i n g  o f  t h e  new term. B a l l o t s  s h a l l  i n d i c a t e  a f i r s t  and second c h o i c e  f o r  
P r e s i d e n t ,  one c h o i c e  each f o r  Secre tary- Treasurer  and f o r  E d i t o r ,  and f o u r  
c h o i c e s  f o r  Counci l lor .  D e c i s i o n s  s h a l l  be based on a p l u r a l i t y  o f  c h a p t e r  
v o t e s  c a s t  f o r  each o f f i c e .  The Vice- pres ident  s h a l l  be s e l e c t e d  from t h e  
remaining c a n d i d a t e s  f o r  t h e  o f f i c e  o f  P r e s i d e n t  by t a l l y i n g  each  b a l l o t  f o r  t h e  
p r e f e r r e d  remaining c a n d i d a t e ,  i .e . ,  f i r s t  c h o i c e  c a n d i d a t e ,  u n l e s s  t h e  f i r s t  
c h o i c e  c a n d i d a t e  was e l e c t e d  P r e s i d e n t ,  i n  which c a s e  t h e  second c h o i c e  
c a n d i d a t e  s h a l l  r e c e i v e  t h e  vote.  I n  c a s e  o f  a t i e  among two o r  more c a n d i d a t e s  
f o r  an o f f i c e ,  t h e  out- going Counci l  s h a l l  choose from such c a n d i d a t e s .  

Vacancies  i n  t h e  Counci l  s h a l l  be f i l l e d  f o r  t h e  ba lance  of  t h e  term by a 
m a j o r i t y  v o t e  of  t h e  remaining Counci l  upon nomination o f  t h e  P r e s i d e n t .  



1 9 8 6  NATIONAL P I  MU EPSILON MEETING 

The A n n u a l  P i  Mu E p s i l o n  N a t i o n a l  M e e t i n g  w i l l  b e  a t  
t h e  U n i v e r s i t y  o f  C a l i f o r n i a  a t  B e r k e l e y  f r o m  Sunday ,  A u g u s t  
3 ,  t h r o u g h  Wednesday,  A u g u s t  6 ,  c o n c u r r e n t l y  w i t h  t h e  I n t e r -  
n a t i o n a l  C o n g r e s s  of M a t h e m a t i c i a n s  (ICM-86). P i  Mu E p s i l o n  
m e e t i n g s  w i l l  be h e l d  i n  t h e  e v e n i n g s  to a v o i d  c o n f l i c t  w i t h  
t h e  ICM m e e t i n g s  d u r i n g  t h e  d a y .  

S t u d e n t  p a p e r  p r e s e n t e r s  and  s t u d e n t  d e l e g a t e s  
( n o n- p r e s e n t e r s )  a r e  needed .  T a l k s  are to  b e  f i f t e e n  
m i n u t e s  i n  l e n g t h  and  may i n c l u d e  a n y  area o f  m a t h e m a t i c s  or 
i ts a p p l i c a t i o n .  T a l k s  may b e  on  e i t h e r  t h e  e x p o s i t o r y  
l e v e l  or o n  t h e  r e s e a r c h  l e v e l ;  b o t h  are e n c o u r a g e d .  
M a t h e m a t i c a l  t o p i c s  i n  c o m p u t i n g  are a l s o  welcome. 

Each  c h a p t e r  is e l i g i b l e  to a p p l y  f o r  a i r  t r a v e l  
s u p p o r t  up  to a ( c h a p t e r )  t o t a l  o f  s i x  h u n d r e d  d o l l a r s  
($600)  f o r  s t u d e n t s  p r e s e n t i n g  p a p e r s  or u p  t o  a ( c h a p t e r )  
t o t a l  o f  t h r e e  h u n d r e d  d o l l a r s  ($300)  f o r  d e l e g a t e s  
( n o n- p r e s e n t e r  s )  . 

O r d i n a r y  r e g i s t r a t i o n  f o r  ICM-86 is $125.  S t u d e n t s  
h a v e  t h e  o p t i o n  o f  e a r n i n g  f r e e  r e g i s t r a t i o n  by w o r k i n g  t e n  
( 1 0 )  h o u r s  f o r  ICM-86. C o n t a c t  y o u r  c h a p t e r  a d v i s o r  f o r  
d e t a i l e d  i n f o r m a t i o n ,  r e g i s t r a t i o n  f o r m s  a n d  t h e  " I n f o r m a-  
t i o n  and  H e l p f u l  H i n t s n  s h e e t .  

REGIONAL MEETINGS 

Many n.e.gJLonal. meefingi of, .the Mathmaticat AAioc^o-fct.on of, AmeAAca aegu- 
W q  hue.  AÂ£AA.~OH ion. the. pn.ue.wtatLon of, '~itudewt papm.  I f ,  two oh 
mom coUegu and at in& one. i o c d  chaptvt of, Pi Mu Ep~-LÂ£o help bpOn- 
ion., on. poAtiU,pOite. in, iuch i e ~ i i o n 4 ,  f,inancJioJL he.& up t o  $50 ^4 avail- 
able.. Wimfe. t o  Vn.. R.ichcuid A. Good, Secn.ita~.y-TLWWL~A., VepeyiAtient o f ,  
Mathem&, Uniuw>Jutq of, Mo~yk!.and, CoU.e.ge Pcuik, WO 20742. 

AWARDS CERTIFICATES 

YOWL chaptvt can make. u&e. of, the. P i  Mu EpiLLon h a d  Cewtf,-iwte~ M~JJL-  
ab t i  t o  help you n.e.cognize. mathmaticat ach^.e.umentii of, yo& htudwt&. 
M u t e .  t o  RLchcvid A. Good, Se.c~e^iaq-Tn.eabw~vt, Ve.pOLivtment of ,  M d t k e m a t i ~ ~ ~ ,  
UniumJutq of, Mat.q.toid, CoUege Pa/ik, MU 20742. 

THE THIRTEENTH ANNUAL P I  MU EPSILON STUDENT CONFERENCE 
- 

AT 

MIAMI UNIVERSITY 

OXFORD, OHIO 

OCTOBER 3-4, 1 9 8 6  

WE INVITE YOU TO JOIN US! THERE WILL BE SESSIONS OF THE 
STUDENT CONFERENCE ON FRIDAY EVENING AND SATURDAY AFTER- 
MOON. FREE OVERNIGHT LODGING FOR ALL STUDENTS WILL BE 
ARRANGED WITH MIAMI STUDENTS. EACH STUDENT SHOULD BRING A 
SLEEPING BAG. ALL STUDENT GUESTS ARE INVITED TO A FREE 
FRIDAY EVENING PIZZA PARTY SUPPER AND SPEAKERS WILL BE 
TREATED TO A SATURDAY NOON PICNIC LUNCH. TALKS MAY BE ON 
ANY TOPIC RELATED TO MATHEMATICS, STATISTICS OR COMPUTING. 
WE WELCOME ITEMS RANGING FROM EXPOSITORY TO RESEARCH, 
INTERESTING APPLICATIONS, PROBLEMS, SUMMER EMPLOYMENT, ETC. 
PRESENTATION TIME SHOULD BE FIFTEEN OR THIRTY MINUTES. 

WE NEED YOUR TITLE, PRESENTATION TIME ( 1 5  OR 30 MINUTES), 
PREFERRED DATE (FRIDAY OR SATURDAY) AND A 50  (APPROXIMATELY) 
WORD ABSTRACT BY SEPTEMBER 25, 1986 .  

PLEASE SEND TO 

PROFESSOR MILTON D. COX 
DEPARTMENT OF MATHEMATICS AND STATISTICS 

MIAMI UNIVERSITY 
OXFORD, OHIO 45056 

WE ALSO ENCOURAGE YOU TO ATTEND THE CONFERENCE ON "DISCRETE 
MATHEMATICSn WHICH BEGINS FRIDAY AFTERNOON, OCTOBER 3. FEA- 
TURED SPEAKERS INCLUDE RON GRAHAM AND ALAN TUCKER. CONTACT 
US FOR MORE DETAILS. 



H E L P !  H E L P !  

ST. NORBERT COLLEGE 

P r e s e n t s  

Our First RegIono.1 Pi Mu Epsilon Meeting 

i n  

De P e r e ,  Wisconsin  (Green Bay) 

November 7-8, 1986 

H E L P !  

We need your  h e l p  a t  t h e  i n a u g u r a l  even t !  Our g o a l  
is to have s p e a k e r s  f o r  F r i d a y  e v e n i n g  and S a t u r d a y  
morning- I n  o r d e r  to do  so, we need 
c r e a t i v i t y ,  no r e a s o n a b l e  t a l k  w i l l  b e  r e f u s e d  1 
(We do  hope,  however, t h a t  t h i s  t a l k  w i l l  b e  
r e l a t e d  t o  mathemat ics ,  computer s c i e n c e  or to work 
e x p e r i e n c e s ,  a p p l i c a t i o n s ,  etc. ) 

Your t i t l e ,  t i m e  o f  p r e s e n t a t i o n  (15  or 30 minu tes )  
and a 30-70 word a b s t r a c t  are r e q u i r e d  by 1 0  
October  1986.  

P l e a s e  send to: 

P r o f e s s o r  Rick P o s s  
Department o f  Mathemat ics  

S t .  N o r b e r t  C o l l e g e  
De Pere ,  Wisconsin  54115 

Phone: 414-337-3198 

There  w i l l  b e  no r e g i s t r a t i o n  f e e .  "A l l  s t u d e n t s  

I 
w i l l  b e  p rov ided  w i t h  f r e e  hous ing  ( b r i n g  a s l e e p-  
i n g  bag) .  The re  w i l l  b e  a f r e e  p a r t y  on F r i d a y  
even ing .  P l e a s e  c o n t a c t  u s  f o r  f u r t h e r  d e t a i l s .  

I H E L P !  H E L P !  

ARML S e e k s  Hos t  C o l l e g e s  f o r  I ts Annual C o m p e t i t i o n s  

The American Reg i o n s  Mathemat ics  League is s e e k i n g  c o l l e g e s ,  
p r e f e r a b l y  e a s t  o f  t h e  M i s s i s s i p p i  R i v e r ,  to h o s t  ARM5 
c o m p e t i t i o n s  i n  1988 and beyond. The a n n u a l  c o m p e t i t i o n .  
t a k e s  p l a c e  i n  l a t e  May o r  e a r l y  June.  Accommodations a r e  
needed f o r  one to t h r e e  n i g h t s  f o r  a p p r o x i m a t e l y  800 
s t u d e n t s .  F a c i l i t i e s  a r e  a l s o  needed f o r  b r e a k f a s t  and 
lunch  on t h e  S a t u r d a y  o f  t h e  c o n f e r e n c e .  

C o l l e g e s  w i l l i n g  t o  h o s t  such  a c o n f e r e n c e  f o r  t h e  n a t i o n s ' s  
t o p  h i g h  s c h o o l  ma themat i c s  s t u d e n t s  shou ld  .write 
J. Bryan S u l l i v a n ,  1 7  Woodside Dr., S t e r l i n g ,  MA 01564. 

CRYPTOLOGIA ANNUAL 

UNDERGRADUATE PAPER COMPETITION 

I N  CRYPTOLOGY 

WE ANNOUNCE THIS CONTEST TO ENCOURAGE THE STUDY OF ALL 
ASPECTS OF CRYPTOLOGY I N  THE UNDERGRADUATE CURRICULA. 

FIRST PRIZE: THREE HUNDRED DOLLARS 

CLOSING DATE: 1 JANUARY 

TOPIC MAY BE I N  AMY AREA OF CRYPTOLOGY 
TECHNICAL, HISTORICAL, AND LITERARY SUBJECTS 

PAPERS MUST BE NO MORE THAN TWENTY TYPEWRITTEN PAGES I N  
LENGTH, DOUBLE SPACED AND FULLY REFERENCED. FOUR COPIES 
MUST BE SUBMITTED. AUTHORS SHOULD KEEP ONE COPY. PAPERS 
ARE TO BE ORIGINAL WORKS WHICH HAVE NOT BEEN PUBLISHED 
PREVIOUSLY. 

THE PAPERS WILL BE JUDGED BY THE CRYPTOLOGIA EDITORS AND THE 
WINNER WILL BE ANNOUNCED ON 1 APRIL WITH PUBLICATION OF THE 
WINNING PAPER I N  THE JULY ISSUE OF CRYPTOLOGIA. 

THE COMPETITION I S  UNDERWRITTEN BY A GENEROUS GIFT FROM 
BOSHRA H. MAKAR, PROFESSOR OF MATHEMATICS, SAINT PETER'S 
COLLEGE, JERSEY CITY, NEW JERSEY. 

INQUIRIES, SUBMISSIONS AND SUBSCRIPTION INFORMATION: . + 

CRYPTOLOGIA, EDITORIAL OFFICE 
ROSE HOLMAN INSTITUTE OF TECHNOLOGY 

TERRE HAUTE, INDIANA 47803 



P U Z Z L E  SECTION 

The PUZZLE SECTION i s  for the em'oyment o f  those readers who 
ewe addicted t o  working doublecrostics or who find an occasional 
mathematical puzzle a t t rac t ive .  We consider mathematical puzzles t o  
be problems whose solut ions consist  of answers imnedÂ¥iatel recognizable 
as correct by simple observation and requiring l i t t l e  formal proof. 
Material submitted and not  used here w i l l  be sent  t o  the  Problem 
Editor i f  deemed appropriate for the PROBLEM DEPARTMENT. 

Address al l ,  proposed puzzles and puzzle solutions t o  Professor 
Joseph D. E. Konhauser, Mathematics and Computer Science Department, 
Macalester College, St .  Paul, Minnesota 55105. Deadlines for puzzles 
appearing i n  the Fall Issue w i l l  be the next  February 15, and for 
pussies appearing i n  the Spring Issue w i t t  be the next  September 15. 

Mathacrostic No. 22 

Plopobed by Sobeph V. E. KonhooieA 
Macof.u.te/i CoUege, St. P d ,  Hinnuota 

The word puzzle on pages 260 and 261 is  a keyed anagram. The 
241 l e t t e r s  t o  be entered i n  t h e  diagram i n  t h e  numbered spaces w i l l  

be i d e n t i c a l  with those i n  the  25 keyed ~0hd.4 a t  the  matching numbers. 

The key numbers have been entered i n  the diagram t o  a s s i s t  i n  

constructing t h e  solut ion.  When completed, the  i n i t i a l  l e t t e r s  of  the  

wold6 w i l l  g ive t h e  name of an author  and the  t i t l e  of a book; t h e  

completed diagram w i l l  be a quotation from t h a t  book. For an example, 
see t h e  so lu t ion  t o  the  l a s t  mathacrostic on page 259. 

GRAFFITO 

l' . . . one of ,  t h e  thJLngb tha t  bit& puzzLedeadA otf ,  f,n.om the .  i a n a  mem- 
b m  o f ,  boiGity -6i .that we. do enjoy m a h g  thLvgb toughe~  fo/i OWL- 
Â¥Ae^uu " 

SOLUTION 

Mathac~obtic. N O .  2 1 .  (See F a l l  1985 I ssue)  (pJ~Op~bed by Job@ 0 .  E. 

KonhweA, MacaLuteA Cortege, S t .  Pad, Minnchota) . 
- - - 

Words : - 
A.  Miter 
B. Lightweight 
C. Phonatory Bands 
D. Rorschach 
E. Ultima 
F. Equiaff ini ty  
G .  Invest  
H. The absolute 
I. Tu-whit-tu-who0 

J .  Aborigine S. Chrestomathy 
K. Rawindsonde T. Ouchless 
L .  Ternary r ings  U .  Miscellany 
M .  Ablepsia V .  Passion t o  know 
N. Nychthemeron W .  Ungulae 
0. Dense-in-itself X. Touchstone 
P. Tower of Babel Y.  Eyepoint 
Q .  Hubble's constant Z. Rabatment 
R. Effulgent 

F i r s t  Let ters :  M .  L. PRUEITT ART AND THE COMPUTER 

Quotation: Belu.nd mch image a b i d ~  an untoid &tow. . . . Oniy the  

p iWgAo f f Imm con <&y bee the  beauty of, t h e h  wonk., t h e  ta.byh.inthLne 
pathwayb woven among the. ~ubum-ti of, i ~ ~ f f l u v U . o n ~ ,  t h e  tiubtie Wts. 

Â¥i Logic., t he  eAiboitd-te bequence of, opwuUonb, and the  byneAgdm MtL-th 
whLch aU cornponeitti f,unvU.on t o  b^ing about a 6 A . d  h . ~ u L t .  

Sobed, by: Jeanette Bickley, Webster Groves High School, MO; Victor 

G. FESER, Mary College, Bismarck, ND; Robert Forsberg, Lexington, MA; 

Robert C. Gebhardt, Hopatcong, NJ; Dr. Theodor Kaufman, Winthrop- 

University Hospital,  Mineola, NY; Beth and Ron Priel i pp , Bethany College, 

Lindsborg, KS, and Robert Prielipp, University of Wisconsin-Oshkosh. 

In til,tUn.g the. n m u  06 the. ~0Lue.m of, Matha.c~.obtic * 20, tha t  
of, Bahbo~fl. Zeebe~g, VenueA, Cobtado, wah Lncomatty  ~piU.ed. 

In Mof.ha.duo~tic ff 20, woAd K .  w inco/ui.ec,tty bp&e.d. The~e. 
Â¥Â no d beAveen the. n and the. 4 Â¥i any accepta.bie bpeÂ£-U.n of, the. wold 
l'Raittu'i&onde " 

PLe/i&e accept my apotogiu . 



conjecture 
118 83 138 44 238 102 5 21 216 

his Newtonian prediction was verified in 
1758 (full name) 157 91 184 231 202 123 159 71 119 60 172 88 

adjunct edifice ------- - 
95 43 87 220 63 39 32 131 

said of a convex body whose every hyper- ------ 
plane of support has at most one point of 80 180 219 65 182 127 
contact with the body 

- -  - 
theories which have revolutionized our ideas 
about the early universe (2 wds.) 224 96 134 156 166 2 117 205 56 174 15.85 

enlarging gradually 
7 36 136 164103 

Forrest Mims' word for digital watches, 
portable stereos, electronic calculators, 31 54 190 24 161 1 198 67 1 1  204 94 176 
transistor radios, pocket televisions, and 
home computers ---- 

76 233 223 105 

taking up of fluid by a colloidal system 
resulting in swelling 113 19 130 37 217 196 142 51 42 90 

very restricted methods of proof, as pro- 
posed by Hilbert 62 141 226 107 193 86 40 77 57 215 

in Christianity, its rays are likened to the 
Holy Spirit's seven gifts 69 89 187 114 209 34 158 

establish convincingly as accurate, true, 
real or genuine 121 104 229 171 221 191 108 49 188 98 45 125 

mani kin-shaped ---------- 
112 155 144 18 163 100 214 72 227 175 

the purest luster (2 wds.) 
203 222 137 78 41 10 194 23 145 3 

for each positive integer n > 2, they are - - 
vertices of a regular n-gon (3 wds.) 186 129 160 170 27 208 181 151 122 73 61 218 

rotate faster than - - - - - - - 
68 109 128 143 79 12 99 

lessen ------ 
30 92 126 228 55 120 

frequency - - - - - - - 
81 140 207 240 9 110 75 169 199 

tally used in France by bakers in rural 
areas when they sold bread on credit (2 wds.) 7 192 148 58 46 28 6 211 124 165 200 115 
a popfly, for example (2 wds.) - - - - - - - 

185 22 52 237 139 234 97 

in mathematics, the Halmos-introduced 
symbol used to indicate the end of a proof 14 177 4 236 25 133 70 
imperfectly circular (comp.) 

38 183 50 154 232 64 197 132 84 53 

a molecular species which contains separate 
centers of positive and negative charge; 74 135 147 195 212 167 8 116 33 26 
e.g., methyl orange 

Maupertuis' 1736 expedition to Lapland to 
measure the length of an arc of one degree 20 189 168 13 173 82 206 201 239 48 101 153 
on one of the earth's meridians earned him 
this title (2 wds.) -- 

210 146 

for graphs F, and F2, the least positive 

integer p such that for every graph G of 235 47 93 149 29 179 l6 59 241 35 225 
order p either G contains F, as a subgraph 

or 5 contains F2 as a subgraph (2 wds.) 

any special delicacy ------ 
162 230 66 152 106 178 



COMMENTS ON PUZZLES 1 - 6,  FALL 1985 

Brian Conrad wrote that PuzzLe # 1, with k = 4, appears on page 

48 of Games For The SuperintelZigent by James Fixx, Doubleday E Co., 

Inc., 1972. Robert P r i e l i p p  sent a reference to Problem 24 on page 12 

of The USSR Olympiad Problem Book by D. 0. Shklarsky, N. N. Chentzov 

and I. M. Yaglom [(revised and edited by Irving Sussman and translated 

by Jahn Maykovich), W. H. Freeman and Company, San Francisco and London, 

19621. A proof that a solution exists only for k = 4 Is given on pages 

114-117. Other correct responses to PuzzLe # 1 were received from Mark 

Evans, John H. Scot t  and Vic tor  G. Feser. For Puzzle # 2, Brian Conrad 

and Vic tor  G .  Feser submitted 

(-1 + 23) * (44  t 5 ) ;  22/7. 

John H. Scott ,  who asked us to be broadminded about the conditions, sub- 

mitted 

1 x 2  + 4 x 5  2 2  
3 + 4  7 ' 

For Part a. of Puzzle ̂  3, there are six ways of arranging four points 
in the plane so that the six distances between pairs of points fall into 

just two classes. These are shown below. Only partial responses were 

were received for Part b. of Puzzle # 3. The correct answer to 

Part b. is 27. Only one of these arrangements - the vertices of a reg- 
ular pentagon - is a planar arrangement. For a complete description of 

the other 26 arrangements, see the paper On Eucl-idean Se t s  Having Only 

TWO Distances Between Points .  I and I I .  by S .  J. Einhorn and I. J. 

Schoenberg, KONINKL. SEDERL. AKADEMIE VAN WETEN SCRAPPEN - AMSTERDAM, 

Proceedings, Series  A, 69, No. 4 and Indag. Math., 28, No. 4 ,  1966. 

Only two responses were submitted for Puzzle # 4. That of Leroy F. 
Meyers was an analytical description of the graphics which follow. 

Responses to Puzzle # 5 were received from James E. Campbell, V ic to r  G .  

Feser, Mark Evans, John M. Howell and John H. Scot t .  V ic to r  G.  Feser 

put it this way " ... the vertices of a regular pentagon with edges ad- 
justed just right ... ." A pentagon with edge length about 0.6498 will 

do it. For Puzzle 6 Vic tor  G. Feser, Robert P r i e l i p p ,  John M. Howell 

John H. Scott  and James E. Campbell submitted essentially equivalent 

solutions - all triples of the form (4y, y, -2y ), y # 0. 

List of Responders: James E. Campbell (3,5,6), Brian Conrad (1,2), 

Mark Evans (1,3,5), Vic tor  G. Feser (1,2,3,4.5,6), John M.  Howell 

(3,5,6), Leroy F. Meyers (4), Robert P r i e l i p p  (1,6) and John H. Scot t  

0,2,3,5,6). 

PUZZLES FOR SOLUTION 

1. Phopobed by Wuw. Con>iad, Cohm, Neu> Yohk. 

Using the usual arithmetic symbols and the digits 5, 4, 3, 2, 1 

in that order from left to right, are you able to form 22/7? If not, 

how close can you come to 22/7? What is the closest value to 22/7 that 

you can obtain by using the usual arithmetic symbols and the digits 1, 

2, 3, 4 and 5 in that order both from left to right and from right to 
left? For example, 

3 
-12 + (3 + 4) + 5 = 23/7 = (5 + 4 ) T 21. 

2. Phopo~ed by Robe/it Fohbbag, Le.xhgi.on, Mo~bacAii~eAfci. 
Find a six-digit number such that starting at the left succes- 

sive groups of four form three consecutive four-digit numbers. 



3. Fkom t h e  bookiet FOWL by FOWL by Eitnut Ranucci. 
Imagine t h e  "grid" below t o  be made of 40 matchsticks. 

What is the  smallest  number of matchsticks which must be removed so t h a t  

i n  t h e  configuration t h a t  remains thematchs t icksare  not  p a r t s  of t h e  

s i d e s  of a square of any s ize?  The answer given is  ten .  Are you able  

t o  lower it t o  nine? 

4 .  Pitopobed by Joe KonteoAm, MacdutVt CoU.e.gz, S t .  P a u t ,  
Hmnuo-tfi. 

In t h e  plane, a s  shown below, th ree  c i r c l e s  can be arranged i n  

four  ways so  a s  t o  have no po in t s  of in te r sec t ion .  In three-space, i n  

how many d i f f e r e n t  ways can f i v e  spheres be so  arranged? 

5 .  Ptopobed by Joe Konha.~~&m, Macototm Cofige,  St. P a u t ,  
Minnuo-tfi. 

Given a c i r c l e  i n t e r i o r  t o  an angle, a s  shown, f o r  which point 

on the  c i r c l e  is  t h e  sum of t h e  dis tances from t h e  s i d e s  of the  angle 

l e a s t ?  

PROBLEM DEPARTMENT 

Edited by Clayton W. Vodge 
unive/ui^ty 06 Maine 

T h h  depivitmwt wetcomu p b t e m  be-tt.eued t o  be. n w  and at a 
teuel appropfUUJLte ion. t h e  n.eadw 06 thh jovLimai. OM piwbieM 

d-cApHa.ying novet and elegant methods, 06 Aok?&on m e  d o  LnuAted. 
Phopo~a-fcA ~hou td  be. accompanied by ~otutionii  .L6 auoJUta.bLe and by any 

&(oivmcLkion that wWL C L / ~ A . C A ~  the. e.dito/i. An a^tvuJik [*} fiteceding a 

probton numbm .incltcatu that -the pkopo~m did not ~ u b a  a ioimtion. 
AU. communictvUo~ ihovJLd be. addnu~ed t o  C .  W .  Dodge, M A .  

Vept., Unium.t-ty 06 Maine, O J L O ~ O ,  ME 04469.  P t m e  ~ u b d  each 

p t o p o ~ d  and ~ o i u t i o n  prej(e~flbÂ£( typed on. cJLea/dbf WivCten on a 

Â¥~epoAat &heit  [one A-cde only) p~opeAfcy -id.ewU.6Led wLth. name and 
ad&u^. So^utionii t o  p t o b t m  i n  thiti & A U ~  ~ h o d d  be maiied by 

Vecembm 15,  79S6. 

Problems for Solut ion 

613. ~ t o p o ~ e d  by MoA-tfia Mott<.ck4, Veazie, Maine. 
Use a b i t  of  number theory t o  solve t h i s  alphametric t h a t  pays 

homage t o  geometry, algebra and ana lys i s .  Find t h a t  so lu t ion  i n  base 

7 yielding a prime ANAL. 

GEOM 
+ ALG - 
ASAL 

614. P~opo~ed by Leon BankoI<((, Lob AngeLu, C(Ltt.<on.Ãˆi^a. and 

-the e.(LLtoi. 

A 10,000-meter sec t ion  of s t r a i g h t  r a i l r o a d  t rack  expands 1 

meter and buckles i n t o  a c i r c u l a r  a r c .  How high above ground is t h e  

middle of  t h e  arc? [l'his is an o ld  problem and easy t o  solve using 

ordinary trigonometry. I t  is  repeated here because the  answer is of 

unexpected magnitude. ] 

615. Pkopo~ed by (UWbLcm S. CmU.enii, L o k n  C0u.wt.y 

ComuvtUq CoUege, EtqA-tfl., Ohio. 
Although severa l  years r e t i r e d ,  the  eminent numerologist 



Professor Euclide Pasquale Bombasto Umbugio s t i l l  solves problems with 

t h e  same prowess and e f f ic iency  he always has had. H i s  na t ive  country, 

Guayazuala, s t i l l  cannot a f ford  a coihputer, but  they do have a pocket 

four-function ca lcu la tor  t o  which he has access. He is  t r y i n g  t o  f i n d  

t h e  sum of t h e  abscissas  of  t h e  seven points  of in te r sec t ion  of the  

seventh-degree polynomial 

6 5 4 3 2 
f(x) = x

7 - 3x - 13x + 55x - 36x - 52x + 48x 

with i t s  der iva t ive  polynomial. He has laboriously found one 

in te rsec t ion  a t  x = 1.3177227. Help t h e  kindly,  o ld  professor  t o  f i n d  

h i s  sum without resor t ing  t o  a computer. 

616. Pmpo6e.d b y  Qvvubty P. Mavio, MO&COW, USSR. 
Prove t h a t  i n  any t r i a n g l e  

B C 8 
- 

A B C 2 7 
c o t  - + c o t  -y + c o t  -ij 2 

with equa l i ty  i f  and only i f  t h e  t r i a n g l e  is  e q u i l a t e r a l .  

617. Pmpo6e.d b y  T-LfciA Canby,  Ad&tabte. Wiench Company, 
Vu.Ua.Lo, Nw Y o l k .  

It is known (The Two-Year College Mathemati-ce Journal, problem 

226, September 1982, page 277) t h a t  a 7 x 7 x 7 box can be packed with 

a maximum of f o r t y  1 x 2 x 4 br icks,  requir ing 23 cubic u n i t s  of 

unoccupied space. How many such br icks  can be packed i n t o  a 5 x 5 x 5 

cubic box? 

618. Pmp06e.d b y  J o h n M ,  How&, U t t L e ~ o c k ,  C w o t h .  

( i )  Find when t h e  sum of t h e  squares of  f o u r  consecutive 

in tegers  is  d i v i s i b l e  by 3. 

( i i )  Repeat p a r t  ( i )  f o r  t h e  sum of t h e  squares of four  

consecutive odd o r  four  consecutive even integers .  

619. Pfiopo6e.d b y  V w t o h  G. F ~ A ~ J L ,  M a q  C o t t a g e ,  W ^ m a ~ . k ,  
NoMh Dakota.. 

Find t h e  l a r g e s t  value of x such t h a t  x = si-n x = t a n  x, 

cor rec t  t o  3, 4, 5, 6, 7, and 8 decimal places. 

*620. P m p o ~ e d  b y  J a c k  G o ~ 6 u n k c L ,  F f u t h i n g ,  Nw Y o l k .  
A t r i a n g l e  ABC is inscr ibed i n  an e q u i l a t e r a l  t r i a n g l e  PQR. 

The angle b i sec tors  of t r i a n g l e  ABC a r e  drawn and extended t o  meet t h e  

s i d e s  of t r i a n g l e  PQR i n  po in t s  A1, B1, C1. Now draw t h e  angle 

b i sec tors  of t r i a n g l e  AIBIC1tomeet t h e  s ides  of t r i a n g l e  PQR a t  

A2, B2, C2. Repeat t h e  procedure. Prove o r  disprove t h a t  t r i a n g l e  

A B C tends t o  e q u i l a t e r a l  a s  n tends t o  i n f i n i t y .  (This r e s u l t  has" - 
n n n  

been proved when a c i r c l e  is used ins tead  of t r i a n g l e  PQR.) 

P 

621. Pnopo&e.d b y  R. S .  Lu-thm, Univw>^ity 06 lÛ &con& .̂n 

CenteA at Jiuiuv-UUi-e.. 
( i )  Characterize a l l  t r i a n g l e s  whose angles and whose s i d e s  

a r e  both i n  ar i thmetic  progression. 

( i i )  Characterize a l l  t r i a n g l e s  whose angles a r e  i n  

ar i thmetic  progression and whose s i d e s  a r e  i n  geometric progression. 

622. Plopo6e.d b y  WaJU.eA B h b e ~ g ,  C o d  SpA-tng.4, Fioh.lda. 
Let point P be t h e  center  of  an e q u i l a t e r a l  t r i a n g l e  ABC and 

l e t  c be any c i r c l e  centered a t  P and lying e n t i r e l y  within t h e  t r i a n g l e  

Let BR and CS be tangents  t o  t h e  c i r c l e  such t h a t  point  R is  c l o s e r  t o  

C than t o  A and S is c loser  t o  A than t o  B. Prove t h a t  l i n e  RS 

b i s e c t s  s i d e  BC. 

623. P m p o ~ e d  b y  John M. How&, L u C t i ~ ~ o c k .  C ~ o l h .  
A 30-foot ladder  and a longer ladder  a r e  crossed i n  an a l l e y .  

The longer one breaks j u s t  20 f e e t  from i t s  foo t  and t h e  top f a l l s  

back t o  t h e  o ther  s i d e  of t h e  a l l e y  and j u s t  touches t h e  top of t h e  

30-foot ladder .  If t h e  ladders  cross  j u s t  10 f e e t  above the  ground, .a 

f i n d  the  o r i g i n a l  length of  t h e  longer ladder. (This var ia t ion  of t h e  



old "crossed ladders" problem cost  an a i r c r a f t  company thousands of  

do l la r s  i n  l o s t  time during World War I1 by engineers and other  

t echnica l  people t r y i n g  t o  solve it. I f i n a l l y  c i rcu la ted  a  solut ion 

t h a t  probably saved t h e  company thousands more, but a l a s ,  I received 

no c r e d i t  f o r  it. ) 

It is known and easy t o  prove t h a t  

n 
7 fi)(i,!) = fn + I): - 1 .  

1=1 
Find a  closed expression f o r  S f n )  and prove t h a t  f o r  n > 1, 

S ( n )  is  d i v i s i b l e  by 3 where 

625. Pkopo~ed by Sam Pw&, Loyoia. Mmymount Unive~4.LA/,  

LOA AngeÂ£&a CaLi60it.mA. 

Let G be a  group i n  which t h e r e  is a unique element x such t h a t  

x  generates a  c y c l i c  subgroup of order  2 .  Show t h a t  x  commutes with 

every element of G, 

Solut ions 

587. [Spr ing 19851 Phopo~ed by M o d  Katz, Mawsa.hoc, Maine. 

A s  a t r i b u t e  t o  an Editor  Emeritus of t h i s  department, f ind  

pos i t ive  integers  x and y, with y > 2, such t h a t  a^ = BANKOFF. 

SoSLati.on by Rob& C. G e b W ,  ffoputcong, New Juuiey. 

Assuming, a s  usual,  t h a t  each l e t t e r  s tands f o r  a  d i f f e r e n t  

d i g i t ,  and t h a t  t h e r e  is no leading zero shown, then t o  obtain a  seven- 

d i g i t  answer: 

i f  y  = 3, then 107 < x < 215; if y = 4,  then 33 < x < 57; 

i f  y = 5, then 16 < x < 26; i f y = 6 ,  t h e n 1 0 < x < 1 5 ;  - 
- 

if y = 7, then 7 < x < 10; i f  y = 8, then 5 < x < 8; 

if y = 9 o r  y = 10, then x = 5; and i f  y  = 11, then x = 4. 

By t ry ing  each p o s s i b i l i t y ,  skipping the  many t h a t  would obviously not 

do t h e  job, we ge t  t h e  only so lu t ion ,  

5  
19 = 2476099. 

ML&o ~ o i v e d  by FRANK P. BATTLES and LAURA L. KELLEHER, 

Mo~ iachu~eAtA  Mo/M-fcune Academy, BuzzmuUi Bay, MARK EVANS, Lom4v<^Â£e 

KY, VICTOR G .  FESER, Mmy CoUege, B^muhck, IW, JACK GARFUNKEL, 

FAlAhing, NY, RICHARD I .  HESS, Rancho Potoi  V&, CA, JOHN M .  HOWELL, 

U t t t e ~ o c k ,  CA, BOB LABARRE, Un-L-ted Technokbgiai R u w i c h  C e n t a ,  EUAX 

ffa/it6ohd, CT, GLEN E .  MILLS, V a t o i c i a  Community CoUege, OAZando, FL, 

HENRY J . OSNER, Modu to  Juniok CoUege, CA, JOHN H .  SCOTT, MacateAXeA 

C o U q e ,  S t .  P a d ,  MN, W .  R .  UTZ, RoUa, MO, KENNETH M .  WILKE, Topeka, 

KS, and ,the. PROPOSER. 

588. [Spring 19851 P m p o ~ e d  by Giv t~oky IlluJLczyn, 8uckneJU. 

U n i v e ~ ~ - U : y ,  L e w L & b q ,  Penni yLv&a. 

Find a l l  so lu t ions  t o  t h e  quadrat ic  congruence 

x = -1 (modulo  m )  
2 2 

where m is of t h e  form m = frn Â 1 )  + r . 
So-fu.t-con by Kenneth M. Wcfcfee, Topeka, K0WAa-b. 

We s h a l l  use t h e  i d e n t i t y  

fu2 + 3) (A2 + B2) = (AU + BV)' + (BU - AV)' 

t o  solve t h e  given congruence by making t h e  r i g h t  s i d e  of t h e  i d e n t i t y  
2 

equal t o x 2 +  1 and U + ? = m .  Take U = r n k  1 and V = P .  

Then a l l  so lu t ions  t o  BU - AV = Â± a r e  given by 

A = n +  ( r n Â ± l )  and B = 1 + r t  

where t is  an a r b i t r a r y  in teger .  Now take 

x = Â±(A + BV) = Â ± l ( r  Â 1 )  { n  + frn Â l ) t l  + r { l  + r t l l  
2 

5 Â±lnfr Â 1 )  + r]  5 Â±lrf + 1 )  Â n] (mod m) .  

It is easy t o  check t h a t  x2 + 1 5 0 (mod m ) ,  s o  t h e  so lu t ion  t o  t h e  '. 
given congruence is 

2 x Â±lrf + 1 )  Â n l  f m o d m ) .  



AÂ£A b0Lve.d by the. PROPOSER. 

589. [Spring 19851 Pkopobed by Joyce. W .  W-t̂ UMlA, U n ^ v m ^ t q  

of,  Low&, MabbacfciAÂ£tt& 

The in tegers  7,  3, and 10 a r e  r e l a t e d  by 

3 5  2 7  = 3  + l o .  

Is t h i s  t h e  only s e t  of pos i t ive  in tegers  t h a t  s a t i s f i e s  t h e  r e l a t i o n  

5 2 a 3 = b  + o ?  

Find a l l  solut ions.  

S o l u t i o n  by C. C. OUAAL~,  SowChvw l W i n o b  U ~ M . V ~ A A . ~ A /  at 

EduhvuLbv-LU.e.. 

Choose x t o  be any pos i t ive  in teger  g r e a t e r  than 1 and l e t  3 be any 

pos i t ive  in teger  such t h a t  x3 - a = k is  pos i t ive .  Factor k i n t o  

r s ,  where P is t h e  square- free f a c t o r ,  i . e .  , P = 1 o r  has prime f a c t o r s  

only t o  t h e  f irst  power. Multiply t h e  above equation by r and we 

have the  so lu t ion  
5 3 3 5  8 2  

(xr  ) = Car ) + ( r  s )  . 
More general ly ,  we can multiply by u 3 ,  where u i s  any pos i t ive  in teger ,  

and ge t  t h e  general  solut ion 

3 6 5  8 1 5 2  ( X P ~ I J J ~  = ( z r  u ) + (P  SI~I ) . 
For each choice of x > 1 ,  t h e r e  is  a t  l e a s t  one s u i t a b l e  3 ,  hence a 

solut ion.  Every so lu t ion  is encountered s ince  any given so lu t ion  can 

be obtained f r o m  t h e  formula above with r = u = 1 .  

A becored bo&tt.on (OOA ~ u b m u t e d  by C .  C. OURSLER. PaAtwJL 

bo^uAÂ£on W ~ c e  ~ubw3Xe.d by ROBERT C. GEBHARDT, Hopatcong, NJ, RICHARD 

I .  HESS. Rancho PaJLob V w d u ,  CAY JOHN M .  HOWELL, L-ctÂ£Â£Â£~o CAY 

MASSACHUSETTS GAMMA, W A g w i a t u i  Sta te .  CoUe.ge.. MA, and the. PROPOSER. 

590. [Spr ing 19851 Pkopobed by Emmawê . 0.  C. Imon^tie., 

Noh#uU& M-cibouAc State. Un^um^ ty ,  Umyv-LU.e.. 

Find a l l  so lu t ions  t o  t h e  simultaneous equations 

p y  = 8 and = F .  

Taking n a t u r a l  logarithms of  t h e  two given equations we ge t  

( x  + y) In, 2  = y(1n 2 + In 3)  and ( x  - 1 )  In 3 = ( y  + 1 )  In 2, 

( I n  2 ) x  - ( In  3 )y  = 0 and ( I n  3 )x  - ( I n  2 )y  = In 6 .  

The unique so lu t ion  t o  these simultaneous l i n e a r  equations is 

i n  3 In 2  x  = 1 n 3 - I n 2  and y = I n 3 - I n 2 *  - 
Note t h a t  it does not matter t o  which base we take  t h e  logarithms since 

( l o g  a ) / ( l o g  b )  = ( l o g  a ) / ( l o g  b )  f o r  any pos i t ive  numbers a and 

b and any appropriate  bases (pos i t ive  numbers o ther  than 1) P and s .  

11. Sotu.ti.on by Bob Plu,eU.pp, Un^ve~&^ty of,  W-L&coniÂ¥tn 

Obhkobh. 

The first  equation is equivalent t o  !T = 3" Now multiply 

t h i s  equation and t h e  second given equation s ide  f o r  s i d e  and s implify 

t o  y i e l d  

8 - I  = 8. Thus y = x - 1 .  
1  

Now we have t h a t  9 = f- , s o  

x = 
In 3  In 2 

i n  3 - In 2' whence y = In 3  - In 2  ' 

At20 ~ o t u e d  by JAMES CAMPBELL, U n i u m A t y  0 4  MLbbouAt., 

CohbiLa.,  DAVID DELSESTO, No& ScJULUjllte, R l ,  BRIAN DUBUIS and JOHN 

PUTZ, Afrna CoUege, M I ,  RUSSELL EULER, Non thwu t  Mhb0UA-C We. 
Un^vm.Lty,  M~u-UULe. ,  MARK EVANS, Lou^Av-t^e, KY, VICTOR G. FESER, 

Mmy CoUege., B-cAiwyick, NO, JACK GARFUNKEL, Ftu&hAng, NY, ROBERT C .  

GEBHARDT [ 2  6otu.Uonb 1. HopuXcong, NY, RICHARD I .  HESS, Rancho P d o b  

V e ~ d u .  CAY JOHN M .  HOWELL, LLUJLwock, CA, Ralph King, S t .  Bomewtuke.  

Uww~un^ ty ,  NY, BOB LABARRE, U d u d  Te.chnoLogÂ¥t R u e a ~ . c h  Cewt i~ . ,  Eubt 

H w o h d ,  CT, WARREN LEVINS, GkeenvWLe., SC, MASSACHUSETTS GAMMA, 

B^LdgewatW. S-tote Cot iege, GLEN E .  MILLS, VaJLenuJO. Cowmura^ty CoUege, 

Ohtando, FLY SAM PEARSALL, Loyota. Matymouwt. U n i v m U y ,  Lot Ang^u ,  

CA, JOHN H .  SCOTT, M a c a l u t U t  CoUe.ge., St. Paul,  MN, HARRY SEDINGER, 

St. Bonuve.ntuhe. U ~ v m ~ ,  MY, WADE H .  SHERARD, F m a n  UiM.vui&^ty, 

Gke.e.nvJuuLe., SC, W .  R. UTZ, Columbia, MU, HAO-NHIEN QUI VU, P u ~ d u e  

Un^vm^ ty ,  W U t  La/ayeAte, IN, KENNETH M .  WILKE, Topefea, KS, and the. 

PROPOSER. PwitiaJL bo&i-fccon by FRANK P .  BATTLES, MabbachuAe^ti 

M W e .  Academy, BuzzmdA Bay. 

591. [Spring 19851 P~opobed by Chaf i iu  W. T/u-ggy Sari u a g o ,  

cciU.f,oJLMM.. 



Find a l l  three-term ar i thmet ic  progressions of th ree- dig i t  

primes i n  t h e  decimal system with f i r s t  and l a s t  terms t h a t  a r e  

permutations of t h e  same d i g i t  s e t  and with only four  consecutive 

d i g i t s  involved i n  t h e  th ree  terms of each progression. 

SoitLfet.on by K e n n e A  M.  W-Like., Topeka., Kanbab. 

Let p, q, and r be t h e  t h r e e  desired primes with p < q < r. 

I f  p (hence a l s o  r )  i s  formed from t h r e e  d i s t i n c t  d i g i t s ,  

then r - p 5 0 (mod 9 ) .  Since p, q, and r a r e  a l l  primes, then 

r - p s 0 (mod 4 ) .  Hence r - p = 0 (mod 3 6 ) .  Since only four  

consecutive d i g i t s  a, a + 1, a + 2 ,  and a + 3 a r e  involved, then both 

a and a + 3 a r e  found i n  both p and r .  Of course, t h e  o ther  d i g i t  i n  

p and r is  e i t h e r  a + 1 o r  a + 2.  Also, t o  give a so lu t ion ,  a prime 

must have a matching prime formed from a permutation of its d i g i t s .  

Primes of th ree  d i s t i n c t  d i g i t s  a r e  103, 241*, 421*, 431, 523, 463*, 

563*, 643*, 653*, 457*, 467*, 547*, 647*, 587*, 857*, and 967. The 

s t a r r e d  primes have permutations t h a t  a r e  a l s o  primes. From these p a i r s  

we get  t h e  so lu t ions  (pi q, r )  = (241, 331, 421) and (467, 557, 647).  

Clearly p must contain a t  l e a s t  two d i s t i n c t  d i g i t s  t h a t  

d i f f e r  by no more than 3 .  Such primes containing exact ly two d i g i t s  

a r e  113*, 131*, 211, 223, 233, 311, 313, 433, 443, 353, 557, 577, 677, 

757, 787*, 877*, 887, 797*, 977*, 997, where s t a r r e d  primes have 

permutation mates. Here we f i n d  only t h e  add i t iona l  so lu t ion  

(797, 887, 977) which contains not four  but j u s t  t h r e e  consecutive 

d i g i t s .  

A t i o  b o i v e d  by FRANK P. BATTLES, Mabachu~e-fctA MoUttffie. 

Academy, Buzzotdb Bay, VICTOR G. FESER, Mahg C o U e g e ,  B^Amotck, NV, 
RICHARD I .  HESS, Rancho P d o b  V v i d u ,  CA, GLEN E .  MILLS, V o t o i d  

ComtnunLtg CoUege. ,  OA-toido, FL, JOHN H.  SCOTT, M a c d u t v i  CoUege., 

St. P d ,  MN, and the .  PROPOSER. 

592. [spr ing  19851 P h o p o b d  by S2unf.e.y Rab-LnoMtctz, VJLgJUbsJL 

Equipment Cohp., N a h u a ,  NW Hampb^i-iA.e. 

Find a l l  2 by 2 matrices A whose e n t r i e s  a r e  d i s t i n c t  non- 

zero in tegers  such t h a t  f o r  a l l  p o s i t i v e  in tegers  n the  absolute  

value of t h e  e n t r i e s  of A a r e  a l l  l e s s  than some f i n i t e  bound M. 

S o l u t i o n  by VA-chuhd 1 .  H u f i .  Rancho P& V d u ,  C w o h W U J L .  

The eigenvalues of  t h e  given matrix 

n 
For a l l  elements of A t o  be bounded we must have 1X.l < 1 f o r  i = 1 

and 2. 
2 

~f a + d = 0, then X = Â±/b - a , which implies t h a t  
2 2 132 

bo = a  o r  a2 - 1 o r  a + 1. I f  a j d =  Â±1 then 

which implies t h a t  be = -a(a T 1 )  o r  -a(a 7 1 )  - 1. 

ACAO pcuvt^.aUg boLved by the. PROPOSER. 

593. [ S p r i n g  19851 P~opobe.d by Joe. V a n  A u s t i n ,  Emohq 

UnLvm-t . tg ,  W w t a ,  G e o q h .  

Russian r o u l e t t e  is played with a gun having n chambers, i n  

which k b u l l e t s  a r e  placed a t  random (0 < k < n ) .  Find t h e  expected 

number of t r i e s  u n t i l  t h e  f i r s t  b u l l e t  is f i r e d  i f  t h e  chambers a r e  

spun 

(i) be fore  each sho t .  

(ii) only  before  t h e  f i r s t  sho t .  

So-LUttLon by John M. HOW&, L L t t i v i o c k ,  C ~ O * .  

( i )  The probabi l i ty  of  f i r i n g  t h e  first shot on t r y  x is 

P(x)  = ( 1  - -lx-l($; x = 1, 2, 3, . . . 
and t h e  expected number of  t r i e s  is given by 

( i i )  Here we have 

n -  k n -  k - l ) . . . ( n  - k - x +  2 
P ( x )  = (-Ã‘Ã ( - 1 

1 
n - x + 2  ) ( n - x + 1  

For k = 1 t h i s  y ie lds  P(x)= 1/n  f o r  x = 1, 2, . . . , n. When k = 2 

have P(x)  = 2 ( n  - x ) / n ( n  - 1 )  f o r  x = 1 ,  2, ..., n - 1. For k = 3, P(x), 

= 3<n - x ) ( n  - x - l ) / n ( n  - 1 ) ( n  - 2)  f o r  x = 1, 2, ..., n - 2, e t c .  
A 



Now t h e  expected number of t r i a l s  t o  t h e  f i r s t  shot is ca lcu la ted  f o r  

each k. For k = 1 we ge t  t h a t  

For k = 2 we have 

n + 1  and s o  f o r t h .  In general ,  E =-â 
k + l  

A&o 6oLve.d. by RICHARD I .  HESS, Rancho P&6 U e ~ d u ,  CA, HENRY 

S. LIEBERMAN, Waban, MA, HARRY SEDINGER, St. Boreaventu~e. UriiveMnUy, 

NY, and the. PROPOSER. One. h ~ c o - t ~ e e - t  6o fu lLon  was heceivrd.  

594. [Spr ing 19851 Phopo6e.d by R. S. Lu-tteA, U i^vm.c ty  06 
W-cAconb-Cn Ce.nte~,  Jane.6v-iJU.e. 

Prove t h a t  

0 0 

Satiat ion by Jack Go~,$nke-fc, F-CuAd-uig, N w  Yohk. 

Equivalently we show t h a t  

x where u = x , since limit xx = 1. The given equation follows. 

A i i o  6oUMsA by EDWARD S. ARISMENDI, JR., Cati60hM.a. S t a t e  

Ur i i vm- tA / ,  Long Beach, FRANK P .  BATTLES, Moa~(X&fcuAeAt& Maft-i-fcune. Academy, 

BuzzoAdA Bay, BARRY BRUNSON, W u t w i  Ke.ntu.cky U r i i v m L t y ,  BouUag Gheen, 

RUSSELL EULER, Nov thwut  Wuk^ouJu. State. Ur i i vm-L ty ,  Mo~yv-UuLe., MARK 

EVANS, LoiLL&vUZe., KY, ROBERT C. GEBHARDT, Hopo- too~ ,  NJ, RICHARD I .  
HESS, Rancho PaLok UeAdu, CA, RALPH K I N G ,  St. Boreavewtune. UniveA^Uy, 

NY, BOB LABARRE, United. Techno.Â£og-C R u & a ~ c h  Cen- te~,  E a t  H w o h d ,  CT, 
HENRY S. LIEBERMAN, Waban, MA, PETER A. LINDSTROM, U&&u-itg 06 

W-tAconbh Ce.wt:ui, Januv-iJU.e.. BOB PRIELIPP, U n i v m . c t y  06 (ll-cAcoro~^n- 
Obhkobh, JOHN PUTZ, &a Cortege, M I ,  JOHN H .  SCOTT, Macatu-tiyi. Cottege., 

S t .  PauJL, MN, HARRY SEDINGER, S t .  Bonave.ntu~.e. U r i i v U y ,  NY, WADE H. 

SHERARD, F w a n  UvU.ve^^ty, Ghe.e.nvi-&, SC, VIS UPATISRIMGA, ffumboUt 

State. UiM.v&u.Lty, Ahco-faJ CA, HAO-NHIEN QUI VU, PuA.du.e. U h i W i U y ,  W u t  

La6ay(Ltte., I N ,  and the. PROPOSER. 

595. [Spr ing 19851 Phopohed by f f m y  Herein, LweAmote., 

CaJU-^ohnia. 

I f  t h e  in tegers  from 1 t o  5000 a r e  l i s t e d  i n  equivalence - 
c lasses  according t o  t h e  number of wr i t t en  characters  (including 

blanks and hyphens) needed t o  wr i te  them out i n  f u l l  i n  cor rec t  

English, there  a r e  exact ly f o r t y  such nonempty c lasses .  For example, 

c l a s s  "4" contains 4, 5, and 9, s ince  FOUR, FIVE, and NINE a r e  t h e  

only such numbers t h a t  can be wr i t t en  out with exact ly four  characters .  

Similar ly,  c l a s s  "42" contains  3373, 3377, 3378, 3773, 3777, 3778, 

3873, 3877, and 3878. Find the  unique c l a s s  "n" t h a t  contains j u s t  

one number. 

SohiJLion by Bob LaBme., Uni ted Technotogwi  ReA&aAch CenteA, 

E a t  HaAt60/ui, Coime.c.fct.eat. 

F i r s t  note t h a t ,  of t h e  nine nonzero d i g i t s ,  3 requ i re  3 

characters ,  3 requ i re  4 characters ,  and 3 requ i re  5 characters .  

Additionally, only t h e  number 17 (9 characters)  has a unique 

representat ion f o r  numbers l e s s  than 20. But 42 a l s o  uses 9 characters .  

Consequently, the  l a s t  d i g i t  of t h e  unique number i n  c l a s s  "n" must 

be a zero (using no charac te rs ) .  The tens  d i g i t  i s  a l s o  zero s ince  

10 uses 3 characters  (as  does 01), 20, 30, 80 and 90 use 6 characters ,  

and 40, 50 and 60 requ i re  5. The number 70 uses 7 characters ,  but s o  

a l s o  does 15. The above discussion f o r  t h e  u n i t s  d i g i t  a l s o  app l ies  

t o  t h e  hundreds d i g i t ,  s o  it too  i s  zero. Therefore, uniqueness has 

implied t h a t  the  number i s  1000, 2000, 3000, 4000, o r  5000. Again 

uniqueness implies t h a t  t h e  number i s  3000 and t h e  c l a s s  is  "14". 

lUAo 6oLve.d by FRANK P .  BATTLES and LAURA L. KELLEHER, 

Moa~achub&t-tA M a e .  Academy, BuzzoAdA Bay, MARK EVANS, LouAAvJUULe., 

KY, VICTOR G. FESER, M o ~ y  CoUe.ge., B-cima~ck, MI, RICHARD I .  HESS, 

Rancho PaX.06 VeMlu ,  CA, GLEN E .  MILLS, V&n& Cornuni ty  CoU&ge., 

O/Lia.ndo, FL, JOHN H .  SCOTT, MaMtes-teA Cottage., S t .  Pa& MN, and the. 
PROPOSER. 

596. [Spring 19851 Phopo6e.d by StanJLm RatM-noMuAz, VÂ¥tflJUtsJ 
Equipment Cohp., N o a h ,  New HampbhiAe.. 

Two c i r c l e s  a r e  ex te rna l ly  tangent and tangent t o  a l i n e  L 



a t  points  A and B .  A t h i r d  c i r c l e  is  inscr ibed i n  t h e  curv i l inear  

t r i a n g l e  bounded by these two c i r c l e s  and L and it touches L a t  point  

C.  A four th  c i r c l e  is inscr ibed i n  t h e  curv i l inear  t r i a n g l e  bounded 

by l i n e  L and t h e  c i r c l e s  a t  A and C and it touches the  l i n e  a t  D. 

Find t h e  re la t ionsh ip  between t h e  lengths AD, DC, and CB. 

S o W o n  by Hawuj S e d i n g a ,  S t .  BonaveHitttAe UnLv&u^ty, S t .  

Bonaventuhe, New Yolk .  

Consider two c i r c l e s  with r a d i i  R .  and R each tangent t o  
2 j y 

a l i n e  a t  points  I and J respect ively and tangent external ly t o  each 

o ther  a t  point  T. The segment connecting t h e  centers  a l s o  contains  

point  T, has length R .  + R and is the  hypotenuse of a r i g h t  t r i a n g l e  
l- jy 

with legs  of length \E . - R . \ and IJ. Thus ^ 3 

I J = 2 W .  

Now we have t h a t  

AD- CB = 2 / f f - 2 %  = 2/Rnff"-2= = DC-AB. A D 

Thus we have 

AD-CB = DC-AB o r  equivalent ly AD-CB = DCfAD + DC + 

A&Ao &otve.d by MARKEVA-NS, LoU-LAuJUULe., KY, RICHARD I. HESS, 

Rumcho Patoi  V v u i u ,  CA, JOHN M. HOWELL, LtAfcÂ£e~ock CA, RALPH KING, 

St. Bon0.uwtLLH.e. U r ~ L v m . L t y ,  NY, HENRY S .  LIEBERMAN, Wabum, MA, 
NORTHWEST MISSOURI STATE UNIVERSITY MATHEMATICS CLUB, M a k y v ~ e ,  

STEPHANIE SLOYAN, Ge.ofig&n C o d  C o U q e ,  Lakemod, NJ, JOHN H. SCOIT, 

MocoteAte~  CoUnge., St. Paul!, MN, and the. PROPOSER. 

597. [ S p r i n g  19851 P u p o i e d  by Staniey  Rab^Jiouiitz, V L g L t a t  
EquLpmewt Coup., N a b h ,  New HampihAJLe. 

Find t h e  smallest  n such t h a t  t h e r e  e x i s t s  a polyhedron of 

non-zero volume and with n edges of  lengths 1 ,  2, 3, . . ., n. 
I .  S o l u t i o n  by t h e  p ~ t o p o ~ e ~ .  

The edge of length 1 must appear i n  two faces.  Neither face  

can be a t r i a n g l e  s ince t h e  s i d e s  a r e  i n t e g r a l  and would have t o  d i f f e r  

by l e s s  than 1. Thus t h e  smallest  number of s i d e s  these  two faces  

can have is  4 each, which y ie lds  a polyhedron of 9 edges. Such a 

polyhedron e x i s t s ,  a s  shown i n  t h e  sketch, so  n = 9. 

IT.. So lu t ion  by 1U.chaft.d I .  H u h ,  Rancho Patoi V e ~ d u ,  

Cati<oIUVLCL. 

The bes t  I can do is n = 9. See t h e  f igure .  

2 2 fR,  + R . )  = fR,  - R j )  + 113)  , 
3 

which y i e l d s  



The. -two ~ o ^ u A c o w ~  OAS. each -Copo^ogica&Ey e q u i v a j i w t  t o  a 

Â¥t/UJO.ngute p d m  and wehe dtauin @wm utite. mod&. 

598. [Spr ing 19351 Pmpobed by Gwi~o iu f  WuJLczyn, BuckneJUL 

U i w / w L t y ,  Le iaUbu~g ,  P e n n h y L v ~ .  

Establ ish t h e  formula 

PX n-2 2 i f ( e m c o s a x )  = e  c o s m  [rn-  ( 2 ;  a  + tz) r n - 4 a 4 -  ... I 
n - S a 3 -  n  n-5 5 + em sin ax I-(;) rn"' a  + P ( )  r a  + ... I 

and f i n d  t h e  corresponding formula f o r  

D" (em S M I  ax). 

S o l u t i o n  by F m k  P. W e b ,  Ma~ba&hu&a.ttA MoA-t-fcune. Academy, 

Buzzo~dA Bay. 

Euler ' s  i d e n t i t y  s t a t e s  t h a t  

em (cos ax + i sin ax) = e  fr+ia)x 

where i2 = -1. Hence we have 

n  (&a)x f i e s o s  ax + i sin ax) I = (r + {a) e  
n n  n-j j r x  

= 1 ( j ) r  ( ia)  e  ( o o s a x + i s i n a x ) .  
j=O 

Equating t h e  r e a l  p a r t s  of  t h i s  equation y ie lds  t h e  s t a t e d  r e s u l t .  

Equating t h e  imaginary c o e f f i c i e n t s  gives 

~ ~ ( e ~  sin ax) 
m n  n-3 3  n  n-55 - 

= e  w e  Ã§ [rn-'a - (3)r  a  + (,)P 

n  n-22 n  n-4a4-...,. + em sin ax [rn - ( ~ r  a  + 

Ai&o bo l ved  by RUSSELL EULER, NoIthwebt AUAAOUA^. S-tote. 

U v U v w i L t y ,  M~vyv-tZ-ee, MARK EVANS, Lou^iviLUe., KY, RICHARD I .  HESS, 

Rancho Poto i  VeAdu,  CA, JOHN H .  SCOTT, MacaÂ£a&tv Cortege., St. P d ,  

MN, VIS UPATISRINGA, Humbotitt State UvUvw>U^, Ah&, CA, HAO-NHIEN 

QUI VU, P h e  U n i u w L t y ,  W u t  Ladayutte., IN, and the. PROPOSER. 

599. [Spr ing 19851 Pmpobed j o W y  by G u q g  Pof iuno, 

P/u.nce-ton U n i v w - i t y ,  New J w i i y ,  and M w  S. Ktonkui, U w L u ~ - i t y  

04 AtbeAta, Edmonton, Canada. 

Prove t h a t  

2 2 w s  x  cos y - 2 00s x  - 00s q 
2 

2 2 -  2 2 cot x  cot y  cot x  - cot y  
and general ize t h i s  r e s u l t  by f ind ing  under what condit ions on 

funct ions f and g  it is t r u e  t h a t  - - , - -  - 
f ( X I -  f  (u) _ f ( X I  - f  (x )  
g (x ) -g fy )  g(x) - g fy )  

S o W o n  by Hao-NhLen 2u.i Vu, PuAdae Univw-L-fa/, W u t  
ia.f.ayitte., IncUana. 

Consider t h e  general izat ion,  where g(x) # 0. Clearly t h i s  

equation is s a t i s f i e d  i f  f (x )  = 0 f o r  a l l  x .  Otherwise t h e  equation 

is equivalent t o  

and f i n a l l y  t o  

This equation is s a t i s f i e d  if and only i f  each s i d e  is  a constant.  

Conversely, i f  we have e i t h e r  

f ( x ) = O f o r a l l x  o r  1 1 - =- 
f ( X I  g(x) + c3 

then t h e  above argument reverses  t o  prove t h e  s t a t e d  equation. 

Since 
1 2 2 - - + = s e e  x -  tan = = I ,  2 

0 0 8 X  w ~ X  

a constant ,  t h e  first s t a t e d  equation is t r u e  whenever t h e  denominators 

a r e  nonzero. 

ALbo bolve.d by FRANK P .  BATTLES, M a ~ ~ a c h u b a t t A  MaAtAune 

Academy, Buzzard* Bay, RUSSELL EULER, N o I t h u t u t  M c i ~ o o t t .  S-tote 

U n i v i i U U y ,  ModyvUte, RICHARD I .  HESS, Rancho Pô &A V v i d u  , CA, and 

the. PROPOSER. PoAtiai AOWO~A w a e .  4ubmitte.d by VICTOR G. FESER, 

Mmy CoUege., U&ma~.ck, W ,  RALPH KING, S t .  Bonave.wt.w~e. UnLvm- i t y ,  My, 

BOB LABARRE, Un i ted  T e . c h n o ^ o g i ~  Rebeowh C e w t e ~ ,  Ea&t HiVtt$ond., CT, 

JOHN H .  SCOTT, Macatutvi CoUege., St. P d ,  MN, and VIS UPATISRINGA, 

Humbo-Ut State U n i v w - i t y ,  AAauvta., CA. 



The Pmf,ec.C P~obtem Sotvm - by the Late Rogm Kuehi. 

To become t h e  pe~f,e.ct puibiw AoiueA you vniJUL need a comb.i&n 
of, Logic and f,lalÃˆ. You m u ~ t  be hound on. bA^C^tant HA the  o c m i o n  
demanda. You m u A t  be oMe t o  dAd(U t h e  î-tflfe-t in((mence <h0m the  phobLem 
A & ~ k . t M n t ,  u-cAuaAt.ze aU. the. pohhit,b.ULLtA.fci and gmuip what the. pmpohm 
-c6 flying t o  bay, o&n be6on.e on. b e ^ r e ~  than he aatuaU.q doe6 it, i n  
0Hd.m t o  6e-tec.t the. m o ~ t  ~ o n u ^ i n g  app~.oach. On top of, thLk you titUJL 
need t o  know what o t h m  i n  t h e  p a t  have done with the  hame 0/1 6vnvULaM. 
p m b h  owl how they have been h-iAtoIULCJuJULy app~oached and be wpawui  
t o  coUabo/iate with othuui. 

edit on.'^ Note - Rogm KuehL um a highway enginem who took gaeat 
intaut Â¥in the. Paobiem VepaAtment of, t he  J o w a t .  

On a L&m t o  t h e  Editon.: 

A L&Â£ t o  the. Editon. wUch ula& pubUhed Â¥in the  S N n g  1984 
h h u e  of, t he  J o W  contuined home un~ohtunate o m i ~ h i o n ~  of, hymboL6 
and o thm .tqpogha.phicoJL m o r n .  The titter. which f,oVLoutf, um i n  
k e - s p o ~ ~ e  t o  an inqUAA.y (LUIefted t o  t h e  LeAÂ£eAKM-t-t by t h e  cuhhent 
Editoh. 

Dear Editor: 

If I remember cor rec t ly ,  my previous statement was: 

I f  a 2 1 and b > I, then tan- la  t tan-lb t tan-1- = n .  
ab - 1 

However, t h e  one t h a t  I give now is s t i l l  more general:  I f  
a and b a r e  pos i t ive  and ab > 1, then ( the  same equa l i ty  holds).  

's r e s u l t  follows a s  a coro l la ry  t o  my new statement. 
The proof of my new statement (omitted here, Ed.) is  given on t h e  
next page. 

Sincerely, 
R. S. Luthar 
University of  Wisconsin 
Janesv i l l e  

Anacrostic Puzzles  for  S c i e n t i s t s ,  Technologists ,  
and Engineers. Texts are s e l e c t e d  from the 
l i t e r a t u r e  o f  s c i ence  and technology, f a c t  and 
f i c t i o n .  About ha l f  the c lue  words are chosen 
from the biography and terminologies  o f  s c i ence  
and technology. 

Anacrostic puzzles  on d i sks .  The e n t i r e  so lu t ion  
process  takes  place on the screen o f  your 
computer. 

Write t o  

Robert Forsberg 
P.  0. Box 281 

Lexington, MA 02173 

YOUR BADGE - a  triumph of skilled and highly trained Balfour 
craftsmen is a steadfast and dynamic symj^&pa@ngin&,p@& , 

" . 
Official Badge 1; a d  : 8, 8 

Official one piece key 
Official one piece key-pin 
Official three-piece key 
Official three-piece key-pin 
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