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The. 1985
J. Swth%u&and Frame
Lecture
THE RUSSELL PARADOX
by Eanst Snapped o
Dantmouth College
Section 1. Before 1901. | believe that it is correct to say

that up to about the turn of the last century, mathematicians and
philosophers did not really distrust the foundations of mathematics.
On the contrary, the prevailing attitude before 1901 was that !
mathematics is the paradigm of an entirely rigorous science based

on unassailable principles of logic.

As a consequence of this overconfident attitude, it was always
believed that contradictions could never occur in mathematies.

Definition 1.1, A CONTRADICTION in mathematics is a mathematical
statement which can be proved by rigorous mathematical methods to be
at the same time true and false.

Very probably, no reader has ever seen such a contradiction.
However, one can very well imagine them. |n fact, almost any theorem
in mathematics can be imagined to be a contradiction. Take for
example the Euclidean theorem that the area of a triangle of height

h and base b is %hb, W all know how to prove this, but now
let your imagination run wild and imagine that some day some wicked
mathematician comes along who is able to construct a triangle of
which he can prove rigorously that its area is not equal to 3y,
This evil mathematician will then have shown that the above theorem
iS a contradiction.

By now, readers may become impatient and say that, although they
can of course imagine anything, they don't have time to play silly

games like this. They know that once a mathematical theorem has been

* The J. Sutherland Frame Lecture is named in honor of Pi Mi Epsilon's
ninth president who served from 1957 - 1966. |n 1952, Dr. Frame
initiated the concept and made possible the Pi Miu Epsilon student
participation and student paper sessions at the Joint Summer Meetings
of the American Mathematical Society and the Mathematical Association
of America. Since then, he has offered insights and inspiration to
our student mathematicians at the summer meetings.

-
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proved, no one will ever disprove it later on. This is indeed
precisely the attitude of philosophers and mathematicians from
before 1901. They were convinced that the queen of the sciences,

mathematics, would never be infested by contradictions.

Section 2. The. year 1901. The present century began in 1901.
That i s the year Bertrand Russell (1872-1970) shocked the intellectual

community by producing a contradiction in mathematics. This
contradiction i s called THE RUSHHL PARADOX and was a veritable bomb
thrown in the midst of all those who think. The aftershocks of this
bomb are still being felt today and in order to understandthis
intellectual crisis, we must first study the paradox itself. | will
use the words "paradox" and " contradiction" interchangeably.

The reason why the Russell paradox is so serious for mathematics
is that it is a contradiction in set theory and it was already clear
in the beginning of the present century that all of mathematics can
be based on set theory. Hence if contradictions occur in set theory,
one can expect them anywhere in mathematics, say in seventh grade

arithmetic. | begin by making a few remarks about sets.

Section 3. Set theony. First of all, the words "set" and

"collection” mean the same thing and | will use these words also
interchangeably. The set Y of all yellow flowers in the world is
a finite set since there are only finitely many yellow flowers. The
set Zz of all integers 0, *1, A+2+3, ... is an infinite set since
there are infinitely many integers.

Observe that a set is defined by specifying what the objects are
which make up that set. These objects are called THE MBVBERS (F THE
SET. The members of the set Y are the yellow flowers and the
members of the set Z are the integers.

In order to understand the Russell paradox, one has to know what
a normal set is and one very light theorem about normal sets.

Definition 3.1, A set S isNRWAL if S, considered as an
object, is not one of the objects which make up S. In other words,
a set is NRVWAL if the set is not one of its owmn members.

Is the above set Y normal? Can that huge collection Y be
identified with, say, the yellow rose in ny kitchen window?

course not and Y cannot be identified with any other specific
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yellow flower either. Clearly, Y is anorma set. Similarly,
the infinite set Z cannot be identified with the integer 97 or any
other specific integer whence Z is also a normal set.

Actually, it turns out that any down-to-earth set is normal. As
the Chinese philosopher said: W you see a cow and a horse in &
field, you see three things, a cow, a horse and the set consisting of
the cow and the horse. The fact that the philosopher saw three things
and not two shows that the set consisting of the cow and the horse is
a normal set. In order to understand the Russell paradox, it is not
necessary to know that in philosophical thinking, as contrasted with
mathematical thinking, sets may occur which are not normal. However,
for the sake of completeness, | et ne give an example of a set which
is not normal.

Hereto, think of the set C of all concepts which make sense to
a person. This set varies of course from person to person. W all
know what is meant by beauty or cold, but not everyone knows what a
hyperbola is. However, for each person, the set C of all things
that person knows about is a well defined set. But now it comess The
whole set C itself is a concept which makes good sense and may be
entered into philosophical discussion. For instance, a college student
better make sure that his personal set C is larger at graduation
time than when he entered college, otherwise he won't graduate. Hence
the set C is a member of itself and is, consequently, not a normal
set.

The theorem one has to know in order to understand the Russell
Paradox is the following.

Theorem 3.1. Every set is either normal or not normal but not

both at the same time.

Proof. To know a set S is to know what the objects are which
meke up that set. Either S is itself one of these objects in which
case S is not normal, or S is not one of these objects in which

case S is normal. These two cases are clearly exclusive.

Section 4. The Russefl paradox. Russell personifies the wicked

mathematician of Section 1 by producing a set which shows that Theorem
3.1 is a contradiction. This set is simply the set N whose members

are the normal sets.
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Since we have been told what the members of the set N are, this
set is well defined. For instance, the set of all yellow flowers in
the world and also the set of all integers are both members of N,
but the set of all concepts which make sense to a person is not
(Section 3). O course, something which is not even a set, say a
squirrel, certainly is not a member of N In order to be a member
of N, an object has to be a set and moreover a normal set.

According to Theorem 3.1, the set N is either normal or not
normal but not both at the same time. Let us find out what the
situation is.

Suppose first that the set N isnormal. This means that N is
not one of its om members and since the members of N are all the
normal sets, this simply says that N is not normal. But then N
would be both normal and not normal at the same time and this is
impossible by Theorem 3.1. Consequently, our hypothesis i s false and
we have proved that N is not normal. There is no contradiction
here, we have simply given an everyday's proof that the set N is
not normal.

But what does it mean that N is not normal? It means that N
is a member of itself and since the members of N are the normal sets,
it means that N is normal. Hence we have now proved that N is
both normal and not normal at the same time and this contradicts
Theorem 3.1. W conclude that Theorem 3.1 is a contradiction!!!

The contradictoriness of Theorem 3.1 is called THE RUSSELL PARADOX.

Section 5. Reactions to the Russell paradox. Anyone who sees the

Russell paradox for the first time has the feeling that some silly
error must have been committed which causes the contradiction.
Please reader, stop reading here and try to find that silly error for
yourself. Soon you will be overcome by feelings of frustration and
defeat. True, an error was committed but one of the greatest
evasiveness. It took Russell and other great philosophers and
mathematicians about nine YEarsto solve this paradox. Look what the
German philosopher-logician-mathematician Gottlob Frege (1848-1925)
wrote to Russell after Russell had written to him abouth the paradox
[11, p. 3881:

"Anithmetic has become suspicious."
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Frege was the first men to show that arithmetic can be based on set
theory and hence was deeply aware of it that if contradictions occur
in set theory, they can also occur in arithmetic. Here is what
Russell himself wrote [11, pp. 388-3891:

"At 4inst, 1 hoped the. matter was triviaf and could be easify = --
cleaned Up;, but early hope-were bucceeded by something very neat to
despain. Throughout 1903 and 1904, 1 puwrsued will-o'-the-wisps and
made no progress. At Last, in the spring of 1905, a different problem,
which proved aoluble, gave the §inst glimmer of, hope... ."

By the way, is this not beautiful English? No wonder, Russell
received the Nobel prize for literature in 1950.

Section 6. The ewwon in the Russell paradox. Wy was it so
difficult to find the error which causes the Russell paradox? The

reason was that none of the logic which was available in 1901 was
violated in the construction of the paradox. The totally unexpected
fact the paradox revealed was that this logic is insufficient for
exact reasoning. Wha logic was available in 1901?

Modern logic started in the 4th century BC when Aristotle (384-
322 BC) codified the laws of logic. He did such a magnificent job
that the great Immanuel Kant (1724-1804) wrote 21 centuries later that
Aristotelian logic is" t0 all appearance a closed and completed body
of,doctrine” [10, p. 171. Yet, in the nineteenth century George
Boole (1815-1864) and his followers made decisive improvements in
this logic. The logic which was available in 1901 was, basically,
Aristotelian logic with Boolean improvements. | will refer to this
logic simply as Aristotelian logic.

Those who searched for the error in the Russell paradox checked
of course the proof of Theorem 3.1 and the proof that the set N, in
spite of this theorem, i s both normal and not normal at the same time.
However, every step in these proofs is explicitly permitted by some
Aristotelian law. At last, after years of sweat and tears, people
began to realize that there is nevertheless one step in the
construction of the Russell paradox which, although no Aristotelian
law forbids it, no such law permits it either. This is the step one
makes when one accepts the set N as a well defined set which may
be treated as any other mundane set such as the set of yellow flowers -



286

or the set of integers. This step i s not forbidden by any Aristotelian
law since Aristotelian logic does not discuss what the proper ways of
set formation are. Finally then it was recognized that, as soon as
the set N is accepted as an everyday's set, the fatal Russell
paradox is unavoidable. In short, the correct conclusion was:

The error which causes the Russell paradox is the acceptance of

the set N as an ordinary, common set.

%don 7. Sofution of, the. Rub~& paradox. Once the error in

the Russell paradox had been found, what was one going to do about it?

Since all of mathematics can be based on set theory, one certainly
needs a set theory which is free of contradictions. Yet the Russell
paradox showed that a too free and easy manipulating of sets can give
rise to contradictions. |t became clear that the only way out was to
meke set theory axiomatic by means of precise axioms which control
set formation. These axioms should on the one hand be restrictive
enough to block the Russell paradox, but on the other hand allow still
enough freedom so that all of mathematics can be based on them. In
other words, Aristotelian logic had to be complemented by an
axiomatic set theory whose axioms have these two properties.

Several such axiomatic set theories were developed during the
first decade of the present century. These theories are, basically,
all equivalent, in the sense that, although their axioms differ,
they give rise to the same theorems. These set theories should be
considered as equivalent solutions of the Russell paradox and one may
indeed say that the paradox was solved by 1910.

One such set theory was developed by Russell himself in
cooperation with Alfred North Whitehead. Their theory was published
in the famous book Prineipia Mathematics of which the first edition
appeared in 1910. This iswhy | said that it took about nine years
to solve the paradox. Most mathematicians nowadays consider the set
theory developed by the mathematicians Zermelo and Fraenkel, denoted
ZF, the most efficient for modern mathematics. | will therefore

discuss in the next section how ZF blocks the Russell paradox.

Section §. How ZF blocks the. Rusself paradox. 2F has only ten

axioms and is hence not all that complicated. (! suppress the fact

that several of these axioms are actually axiom schemas.) Let us
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study the one axiom among these ten which actually bars the Russell’
paradox. |t was formulated by Zermelo.

Wha really is the trouble with that set N2 |ts members are
the normal sets and "to be norma" is a perfectly well defined
property of sets. So in what sense then is this set different frbr;,"_
say, the set of all yellow flowers?

Zermelo observed that no one can talk about yellow flowers
unless one knows two things. One must know what flowers are and what
it means for flowers to be yellow. Only then can one talk about the
subset of the set of all flowers which happen to be yellow.
Expressing this in precise language, he obtained his " separation
axiom™ which says that one mey “separate” a subset y from a given
set X by means of a property P.

Separation axiom. If one is given a set X and a property P,
one mey form the subset Y of X which consists of those members
of X which happen to have the property P.

In ZF one is not allowed to form a set if one is only given a
property P without also being given a set X to which the objects
which may or may not have that property belong. vet this is precisely
what Russell did when he formed his set N.  He had in his possession
a property P, namely the property of sets to be normal, but he did
not have in his possession a set X to which all sets belong. It
is clear now why the Russell paradox cannot be constructed in ZF; it
is blocked by the separation axiom.

Ore should not say that it i s logically or philosophically

unsound to form the "extension" of all things which have a given
property P without also having in one's possession a set X to
which all these things belong. One should say, instead, that such
an "extension" cannot be treated in the same way as a set which is
formed by means of the two given data, the set x and the property
P, which occur in the separation axiom. These "extensions" should
hence not be called "sets" and in ZF and other axiomatic set theories
they are usually called OLASSES (or proper classes). phjlosophers
sometimes refer to the formation of classes by means of only a
property as THE UNRESTRICTED COMAREHENSON AXIOM. The class N is
formed by means of this unrestricted comprehension axiom. Tpe

Russell paradox is caused by considering N not as a class but as a



set.

Section 9. The aftershocks of, the. Russell panadox. Ve have seen
that the Russell paradox was solved by 1910 in view of the appearance
of several equivalent, axiomatic set theories whose axioms al |
blocked the Russell paradox but were still powerful enough so that
all of mathematics could be based on them. Could then in 1910 the
mathematical community slip back into that overconfident attitude
that mathematics i s of course such an enormously rigorous science
that it is absurd to suspect for even one moment that contradictions
could ever occur in it? Nothing could be farther from the truth.

Having been burned once by the Russell paradox, mathematicians
now asked themselves the obvious question: HW do we know that these
axiomatic set theories, which are indeed free of the Russell paradox,
are free of all contradictions, also of contradictions which have
nothing to do with the Russell paradox? Equivalently: Hw do we
know that if we base our mathematics on the axioms of one of these
set theories, the resulting axiomatic mathematics is free of
contradictions?

The lamentable fact is that none of these set theories gave any
answer whatsoever to this question. Mathematicians and philosophers
alike worked very hard until 1931 to obtain an answer, but all
efforts were in vain. Three schools of mathematics, Logicism,
Intuitionism and Formalism arose from these efforts and although each
of these schools has been very beneficial for mathematics, they all
failed to give us the kind of solid foundation for our science from
which we can conclude that classical mathematics is free of
contradictions. The worst blow came in 1931 when Kurt Godel showed
that it isin principle impossible t o show that mathematics is free
of contradictions, using only the rigorous proof methods of
mathematics [7]. These unhappy developments have been described in

[17].

Section 10. The present state of, the. philosophy of mathematics.
When Godel showed in 1931 that mathematics i s too wesk a science to

prove its own freedom of contradictions, people threw up their hands

and turned away from the philosophy of mathematics. Mathematical

research has progressed enormously since 1931, but the philosophy of

289

mathematics is still in the same unsatisfactory state as it was in
1931. | feel strongly however that the time has come that some of
us should return to the true philosophy of mathematics. The annotated
references, below, will enable the reader to become acquainted with- )
the true philosophy of mathematics. ’

Should one be convinced that mathematics is free of contradictions
or should one doubt it? | believe that one should not doubt it.

Should one take the freedom of contradictions of mathematics as
an article of faith or should one try to prove it? | pelieve that
one should try to prove it. ,

V¢ know from Godel's work that mathematics, alone, cannot prove
that mathematics is free of contradictions. Wwha further ingredient
then, besides mathematics, is necessary to give us the proof we are
searching for? | believe that this extra ingredient is a certain
amount of philosophy.

Mathematicians are afraid of philosophy and this is the main
obstruction to progress in the philosophy of mathematics. | pelieve
that the principal problem in the philosophy of mathematics today is
to find the right kind of philosophy which, together with mathematical
logic, will give us the proof that classical mathematics is free of
contradictions. This is a beautiful problem but incredibly hard and
Frege, Russell, Peano, L. E. J. Brouwer, Hilbert and scores of other
great philosophers and mathematicians have all failed to solve it.
There is no doubt that only those among us have even a ghost of a
chance of succeeding in this terribly difficult field who are
thoroughly experienced with mathematical research and thoroughly
trained in philosophy.
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SOME FAM LI ES OF CONVERGENT SERIES WTH SUMS

by H. M. Srivastava
University of Vietoria

Motivated by the fact that, in a standard calculus course,
little time is actually devoted to the determination of the sum of a
convergent infinite series (with the possible exception of some simple
geometric and telescoping series), Kahan [2] has recently evaluated

the sum:

1 m+ 1
€B) ] =emsE
=1 [m+k
m+1
for every positive integer m. Setting k =#n + 1, and replacing m by

m = 1, we can easily rewrite (1) in its equivalent form:

o

z 1 m

k]
n=0 (m#n m =&
n

where (following Kahan [2]) m is an integer > 2.

(2)

Formula (2) happens t o be one of numerous interesting (and
widely useful) consequences of a well-known result in the theory of

the hypergeometric series

a-+b ala+1)b(b+1) 2

(3) F(a,b;c;z)=1+1_cz+1.2_c(c+1)z F e,

which, for a=1 and b = e (or, alternatively, for a = ¢ and b=1),
reduces immediately to the familiar geometric series. In fact, in his
1812 thesis [t1]1, Carl Friedrich Gauss (1777-1855) proved his famous
summation theorem:

I'(c)T(c-a-b) o
(%) F(a,b;c;1) = Tloca)T(o-bT ° Re(c-a~b) > 0,

where, as usual, T(z) denotes the Gamma function satisfying the
relationships:
(5) T(a+l) = z T(z), T(N+1) = N! (N =0,1,2,...), and T'(}) = VT,

and Re(z) abbreviates the real part of the (complex) number 2 (see
also Srivastava and Karlsson [3, pp. 18-191).

From the definition

A A
(6) ]= 1, (]=U—’\—-—'1—)—'—'n—',—““"—+”(n=1,2,3,...),
0 n ’
for an arbitrary (real or complex) A, it follows readily that -
& Mol AOdD)- e Odne1)
n n! 2

where n is a nonnegative integer. Making use of (7), it is easy to
state the Gaussian summation theorem (&) in the (more relevant) form:
atn-1) (btn-1

o n n

(8) )

n=0 etn-1

_ TI(e)T(c-a-b)
" TI'(e-a)T(e-b) °

n
where (as before) a, b, e are complex numbers such that Ref(c-a-b) > O
provided that no zeros appear in the denominator.

Fora=b=1ande=u + 1, (8) evidently yields the sum:

©

(9) Lo ot Retw >,
n=0 [u+n L
n

where we have used the first relationship in (5). Formula (9)
obviously extends Kahan's result (2) to hold true for a (suitably
restricted) complex number m.

In its special casewhena = A+ 1, b=1, ande= pu+ 1, (8)

reduces immediately to the sum:

An
(10) of S b s Refu-x) > 1
n= un B=R~1 ’

n
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Formula (10) provides a generalization of (9), and hence also of Kahan's

result (2); indeed, (10) with A = O is precisely (9).
Yet another interesting consequence of the Gaussian summation
theorem (8) would occur when b = e. Since T'(z) becomes infinite when

z approaches the origin, we thus have



® in-1
(i1) n)0 =0, Refa) <0,
n

which incidentally is derivable also from (10) with A=a - 1 and » = 0.
Nw it follows from the definition (6) that [see also (7)]
atn-1 ~-a
(12) = -1)"
n n
for every nonnegative integer n. Consequently, (11) witha=-X1is
the well-known result:

Ll A
(13) yoo-0" =0, Re(\) >0,
n=0 "

which is an immediate consequence of the binomial expansion.
Finally, we set ¢ = -A, b= -u, and ¢ = 1 in the Gaussian
summation theorem (8), and apply the relationship (12). Ve thus

obtain the following generalization of (13):

o A u
T (A+p+1)
el ! = I‘(A+1)]IJ‘(1J+1) o BE(MY) 7 -1,
n=0 (n){n
which would obviously yield (13) in the special case when p = -1. In

particular, for
L=N (¥=20,1,2,...),
this last formula (14) readily assumes the elegant form:
N A N AN
(15) ) [ =[ s
n=0 7 n \ N
which holds true for all (real or complex) values of A. Formula (1)
is a rather straightforward consequence of the celebrated Vandermonde
Convolution in combinatorial analysis(Of., e.g., [3, p. 19, Equation
(22)31).
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LATTI CES OF PERI ODI C FUNCTI ONS

by Kirk tetler*
Haope College

Purpose: To prove that the periodic Z_ equivalence classes Form a
lattice.

Introduction: This paper was motivated by a problem which
appeared in the advanced problem section of the August-September, 1983
issue of the American Mathematical Monthly [2].

In the solution to this problem, it was shown that the set of
bounded and periodic functions do not, in general, form a lattice.

n the other hand, it was proven that the periodic and continuous
functions do form a lattice. In this paper, the results of the
periodic and continuous case are generalized to include the periodic
elements of L.

According to Littlewood's three principles, which can be found in
[4], the elements of L can be classified as being both 'nearly’
bounded and 'nearly' continuous. However, it is not uncommon for one
who is beginning the study of the space L_to identify L_ too closely
with the set of all bounded functions. In this paper, we make use of
the fact that every bounded measurable function is nearly continuous.
By proving that the L, equivalence classes, like the periodic and
continuous functions, form a lattice, we have an example of an instance
in which I, behaves more like the set of continuous functions.

Preliminary Definitions: W assume the reader i s familiar with

the fundamental concepts of measure of the real line. A discussion

of these concepts can be found in Chapters 7 and 11 of Goldberg [3].
Def. Let X be a set and R a relation on X. R is a partial order
if
(1) xRx for all X ¢ X
(ii) xRy and yRx imply X =y
(ii1) Ry and yRz imply xRz,

*This research was supported by a grant from the Shell Undergraduate

Research Program.



296

Def. A partially ordered set X is called a lattice if X Vy and
x A Yy exist for every pair x, y € X

Note: Ve will denote the supremum (infinum) of two functions in
a partially ordered set by v(a) and the pointwise supremum (infinum)
by sup(inf).

Def. The space L consists of all the equivalence classes of
measurable real-valued functions which are almost everywhere bounded.
Two functions are elements of the same equivalence class i f they are
equal almost everywhere. Whn f denotes a function, we use the
symbol [f] to represent the L_ equivalence class of f.

Discussion: As was already mentioned, the periodic and bounded
functions do not, in general, form a lattice. For completeness, the
example from the solution in 2] is included.

If Sis a subset of R, let 2(S) be the characteristic function
of 5. Let Z be the set of integers. W consider the functions

fp =202, f,= z(2-V2), fz= 2(Z + 2-v2),
f4
Then, fl’ f2, f3, f4 are periodic with periods 1, V2, 1, V3,

x((z* 2-V3) U (3.V2 + 2.V3)), fo==(2 U 2-V2) .

respectively, and f5 is not periodic. |If fl v fg exists, then
f5 = sup(fl,fg) < fyv fg < inf(fs,f4) = f5,
i.e., fl Vi, = fg i s not periodic, and this is a contradiction.

To prove that the elements of L form a lattice, many of the
elements of the proof which appears in the solution in [2] are used in
proving that the periodic L classes form a lattice. As an aid in the
explanation of how that proof will be used, it is included below.

To show that the functions which are periodic and continuous do
form a lattice, it is obviously enough to prove that any two such
functions have a supremum. Let fl’ f2 be continuous periodic functions
with periods A and B, respectively. |f A/B isrational, AIB = m/n
say, then fl vy = sup(fl,fz) has n4 = mB as a period. Suppose A/B
is not rational. Let M. = max ft for 2 =1, 2 (M. exists because f .
is periodic and continuous). V& may assume M; < M,. Let g = sup(M;,fgol.
V¢ show that g (continuous and periodic of period B) is f1 v fz.

Let # be any continuous, periodic function of period C, such that

h Zfl’ f2_ Then either AIC or B/C is not rational. |f A/C is not

rational and fl(aco) =M., then, for all integers m, n, we have

h(z, + nd + mC) = h(x, + nd) > f,(z, + nd) = f,(z)) = ¥;.
The set {z, t+ n4 + me|n,m ¢ 2} is dense in R and h is continuous,

therefore h > ¥, and > 0. Similarly, if B/C is not rational, then
h z M, and therefore h> sup(M,,f,) = Q. This proves that g = fq Vv Fy

In this paper, we will consider separately the cases in which the

ratio of periods is rational or irrational. |In the case of rational
periods, we will, asin [2], find a common period and define a
pointwise sup and inf. In the case of irrational periods, we will

show that m[R - U (d + T)1 =0, ford e {z, + nd + mCln,m € Z} and
T = {xlfl(x) ZM1 - ¢} where ¢ is a positive arbitrary real number.

From this, we will eventually be able to conclude that h > g a.e. -

Preliminary Results: This section contains a lemma and two

propositions which will serve as tools in the development of more
specific concepts.

The first proposition, which is an elementary version of the
Lebesgue Density Theorem, is needed in the proof of the lemma which
follows.

Proposition 1. Let m(X) > 0. Then, giveng e R, 0 < B < 1, there
exists (a,b) ¢ R such that m(a,b) < 1 and m(Xx N (a,b)) > Bm(a,b).

Proog. Let's assume m(X) < ». |f m(X) = =, then there exists
(e,d) © R such that 0 < m(X N (e,d)) < « . Replace X with (X n (e,d)).

Choose € = (1 - B)m(X).

Then, there exists an open set G such that G 2 X and m(¢) - m(X)
< €. Fromthe fact that m(G) = M(X) < ¢, we can write

m(X) s 1 €
m(G) ~ miG) *

from which it follows that m(x) > 8m(G).
Since G is an open set in R, we can write
ad=U I,

where each | is an open interval and

I.1 n I3. = g for every Z,4 such that £ # 4.
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Since m(x) > Bm(G), there exists |, e {1} such that
m(X N I) > en(I ).
I f m(Ik) < 1, the proof is complete.
I f m(Ik) > 1, then partition |, into subintervals, each of whose
length i s less than 1. Since m(X N Ik) > pn(Ik), then it is true for

at least one of the subintervals, say (a,b), that m(X N (a,b)) >
gm(a,b).

The following lemma is a vital tool in helping us to prove that
the periodic elements of L form a lattice.

Lemma If m(X) > 0 and D is a dense set in R, then
mR -4 (a+X)1 = 0.

aeD
Proof. From the previous proposition, m(X) > O implies that given

g ¢ R such that 0 < 8 < 1, there exists (a,b) € R such that m(a,b) < 1
and m(X N (a,b)) > gm(a,b). Consider the closed interval [n,n+11.

Since this set is bounded, it can be covered by a finite number, say

it, of (a+ (a,b)), where a ¢ D Choose a collection DE = {d;,dy, ...

dN} where DE ¢ D so that

N
n,n+1} < U (d, + (a,b)).
1 T

Let's assume that DE is chosen so that
(i) dp<dy<en <dy
(ii) (-=mn) N [di + (a,b)1 =g for i =2, 3, «ev s 1
(iii) (n#l,=) N [d. + (a,b)] = for i =1, 2, == » "1
(iv) ho point in [n,7n+1] is contained in more than two

{di + (a,b)).

Then, we can say that

N
Zm[di + (a,b)] = ml(-=,n) N (dl + (a,b))] + min,n+1]
1

it=1
+ I micd, # (a,b)) 0 (d,; + (a,b))]
1

+ ml(ntl,=) N (dlb' + (a,b))]
< 4,
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If (1) (-=,n) 0 (d; T a,b)) # 4 for somed =2 3 ...,n
(2) (n+1,0) N (d. t (a,b)) # g for somezi =1, 2, ... , n-1
(3) there is Xm e [n,n+1] such that Xm is contained in three or ~ ~ -

more of the intervals which cover [n,n+1],
then do the following:
In (1), designate the right-most interval which contains n as(g * (a,b)).

Remove from the set DE all d. such that 4. < g,
In (2), designate the left-most interval which contains the pointn +1
as (g * (a,b)). Remove from the set DE all 4. such that 4. > @.

In (3), designate the left-most interval which contains X 55 (1 + (a,b))
m
and the right-most interval which contains X g5 (p + (a,b))
- s
All (d. + (a,b)) which lie between (L t (a,b)) and (r * (a,b))

are subsets of (L + (a,b)) U (r * (a,b)). Since (L + (a,b)) N
(r* (a,b)) # 4, the di such that L < di < » can be removed

from the set DE. Once removed, X is contained in no more
than two (di + (a,b)). If we follow the same procedure for al |
such z s the above inequality will still hold.

Let's again consider the fact that
m(X N (a,b)) > Bmla,b).
From this, we can conclude that
m(a,b) - m(X N (a,b)) < (1-B)m(a,b).
Since (X N (a,b)) < (a,b), we can say
mi(a,b) - (X N (a,b))] = mla,b) - m(X N (a,b)).
Hence, for di e DE and ¥, a positive integer, we have that
y N
gm[(di *+ (a,b)) - (d, + (X 0 (a,b))] < (1-B) gm(di + (a,b)).

Since

N N
(1) m[g (d; + (a,b)) - (d; + (X0 (a,b))) < ] mi(d; + (a,b))
1

& (di + (X N (a,b))]
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N N N
(ii) U (d. + (a,b)) - U (d. + (X N (a,b)) c U ((d. + (a,b))
7 ;7 ¢ 7 7

- (di + (X N (a,b))]
and

N
(iii) ) mld. + (a,b)1 < 4,
7 1

we can write

b v
miU (d. + (a,b)) - U (d. + (X N (a,b))] < 4(1 - g).
1 ° i

Since N
n,n+1) ¢ U (d, + (a,b))
1 ¢

and
(x N (a,b)) ¢ X,

it follows that

N
mlln,n+1] - U {di + X)) < 4(1 - BJ).
1

Taking all a € D, we can conclude that

mlln,nt1l - U (a T X)) < 4(1 - B),
D

Since B is arbitrary, it follows that
mlin,ntll = U (a + X)1 =0,
D

which implies
m[iR - U (a + X)] = 0.
D

The following proposition will be of use to us in the next section.
Proposition 2. Let P € R such that q > O for every g € P and

inf(P) = 0. Then, if D= {ng|ln ¢ 2, q e P}, then D is dense in R

Proog. Lety ¢ R Given € > 0, show that there exists p € P such

that |p - y| <.
Sinceinf(P) = 0, we can choose? € P such that 13 < 6.
Choose m e Z so that
m >y, (m=1)p <y,
Therefore, ,

y e [(m-1)p, mpl.
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Sincez; < €, it follows that

[mp - (m-1)B| < .
Therefore, |mp = y| < 6. Since mp € PD, it follows that there exists

ap e PD, such that |p = y| < €.

Selection of a Representative Period: Before we can discuss

whether the ratio between the periods of two elements of L is
rational or irrational, we must first define the meaning of a periodic
equivalence class and establish what the representative period of

such a class will be.

Def. [fl e . P .
(@ + « | s periodic if there exists p € R such that
flz + p} = f(x) a.e..

Def. Let [f] ¢ L_ be periodic. Let P be the set of all possible
periods for periodic functions in [fl. Then, m = Znf(P) is the
period for [f].
To give justification to this definition, we will provide the following
proposition.

Proposition 3.

(i) m > ¢ implies 7 ¢ P

(ii) m =0 implies there exists K ¢ [fl such that k is

constant. Before proving (i), we note that if PPy € P, then for
nysty € Z, npg + ngpy & P.
pLE P implies there exists g, € [f1 such that
gl(:z: + nyp,) =g, (x) for every x.
p2 e P implies there exists 92 e [f] such that

gz(x + n2p2) = gg(x) for every X.

Now,
91[(93 + (nzpz + nzpz))] = gl(x + n2p2)
gz(x + ngpz) =g2(x + n2p2) a.e.
gz(:c + n2p2) =gylz) = gl(x) a.e. .
Hence,

gl(x + n.pq + n2p2) = gz(x) a.e.
which implies that

%Py + ngPgy € b,
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Proof of (£L}.  Suppose m £ P.

m = inf(P) implies that given 6 > 0 we can find y € P such that
y-m<6. Take6=m. In addition, we can find q € P such that
m<g <Y Sincey-w<eandnwn<g<y,y-q<e€ Sincey,qeP,
then we have from the note above that y - q ¢ P. Since 6 < 7, we
have that y = g < 11, which is a contradiction. Hence, our supposition
is false. Therefore, if 1 > 0, then m € P.

The following definitions will be used in the proof of (ii).

Def. Let f e [fl eL .

M is the essential sup(f) if for every € >0
miz|f(z) >4+ €} =0
m{x|f(z) > ¥ - €} > 0.

Def. Let fe [fleL.

m is the essential inf(f) if for every 6 > 0
mix|f(x) <m-€}=0
miz|fix) <m+6} >0

Proof of (idl). Let g € [F].
Between the essential supfg) and essential inf(g), there exists ¢ such
that if we let
E = {x|g(x) > a}, then m(E) > 0
and
F = {z|glx) < e}, then m(F) > 0.
Let h, e (f], p; € P, and M. & 2 such that h.(z + mp.) = h;(x) for

every x and £ = 1,2,3,... . Choose the h. € [f] so that p; > Py > Pg

. . Let PP = {ai|ai =mp.s my e 2, pye Py t= 1,280
Since g = h.a.e. for every ¢ = 1,2,3,..., > aa.e. ona; t £ for

every a. € PP, which implies that g > ¢ a.e. on

Ufa + E),
PP

Also, g < ¢ a.e. ona.t F for every ai e PP which implies that g < ¢

a.e. on

Ufla + F),
PP

Since p, > Py > Pz > =tes it follows that Znf(PP) = 0, which implies

from (i) of Proposition 3, that PP is dense in R.
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Since m(g) > O and m(F} > 0, it follows from the lemma in the previous
section that

m(R ~-U(a + E)] =0
PP
and ”
m[R -U(a + F)]1 =0 -

PP
Thus, it follows that g > ¢ a.e. and g < ¢ a.e., which implies

that g = ¢ a.e.. Thus, there exists k ¢ [f] such that k is constant.
Final Results: Before proving that the L_ equivalence classes

form a lattice, we define < ordering and V.
Def. Let [fl, [g] € L,

[fl < [g] if f(t) < g(t) a.e..
Def. Let [fl, [glel such that [fl, [g] are periodic.
Then [f] V [g]l = [s] for some [8] € L, if there exists g e [s] such
that g is periodic, q > f, g a.e. for f g [fl and g € [g]l, and if for
any periodic function F such that h > f, g a.e., h > q a.e..

Theorem. The L equivalence classes form a lattice.
Proof. Let [fll, [f2] e L_ such that
[f:l] is periodic with period A
[fy] is periodic with period B.
Since it follows quite readily that the L classes form a partially

ordered set under the ordering as defined above, it will be sufficient
to show that [fl] \" [j-‘2] exists.

(i) Suppose A, B = ¢ Then there exists kz € [fZ] such that

kl is constant and k2 € [f2] such that k2 i s constant.

kl Y% k2 = sup(kl,kz), where sup refers to the pointwise
supremum. Therefore,
[lev[fgl = [sup(kl,kz)].
(ii)  Suppose that A= 0, B # 0.
A = O implies that there exists kl € [le such that kl is
constant.
kl v fz = sup (kl"fz) which will have period B, Therefore,
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[f1] v [f2 = fsup(kl,fz)].

(iii) Suppose A# 0, B# 0, A/B isrational. Then, fl v f2 =
sup(fl,fz) which has period nd = mB, where n,m are relatively
prime. Therefore,

[fll \' [f2] = [Sup(fzsfz)]'
(iv) Suppose AB is not rational. Let M1,M2 denote the essential

sup for fl,fz, respectively. Let's assume MZ < MZ' From

the definition of essential sup, we can write for every ¢ > ¢
that
if T={z|fy(x) > M, -¢€}, then m(T) > O;

if U= {x|fy(x) > M, -€}, then m(V) > O.

Let g = sup(MI’fz)' g is periodic with period B.

Let (k] € L, such that (k] is periodic with period C and h 3_f1,f2 a.e..

Thus, either AC is not rational or B/C is not rational. Suppose that

AC is not rational. If we let z, e T, then for integers myn € Z,

we have h(zq + nd + mC) = h(xo + ndl) > fl(xo + n4) = fl(xo) 2 M -€,
The set
D= {x0+nA+mC'|x0 e T3 nyme 2}
is dense in R
Since m(T) > 0 and p is dense, we have from the lemma in preliminary

results that

m(R = U(d+ 7)1 =0ford e D.
D

This implies that h > M, = ¢ a.e..

Since ¢ is an arbitrary positive real number, it follows that h > M1

a.e., which implies that h > g a.e.. Similarly, if B/C is not rational,

h > M5a.e., which implies that h > g a.e.. This proves that

() VI, = Ig).
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THE ADEQUACY OF {~, -, A} FOR GODEL MANY-VALUED LOGICS

by John Reid Perkins
Oakland University

Sandard propositional logic is a truth-functional |ogic whose
truth-functions are restricted to the set {true,falsel in both their
domai n and range. A truth-function is a function froma set of truth-
val ues into another set of truth-values. The usual basic set of truth-
functions supplied for propositional logicis {A(and), v(or), " (not),
=+ (if-then)]. It is well known (0] that either the Sheffer stroke,
Peirce arrow or the set {~,~} can define every possible truth-function
in standard propositional logic. Such a set of truth-functions which
serves to define every other possible truth-function for a particul ar
logic will be called adequate for that |ogic.

A many-val ued l ogi ¢ is a | ogi c whose truth-functions can take
on nore val ues than just true or false. Ve nunber these values 1, 2,

3, «..on. Sif Fis ank-place truth-function, pys Pys +-s P
proposi tional variabl es, then
F(Pla Por oo Pk) : {(il’ i2, N ik) Il‘.'l < n,

j <k} -{1, 2 3, ..., n}h
& usual |y designate the value 1 as true and n as fal se, and every
other val ue as sonehowin between. An infinite-valued |ogic takes on
all integer valuesn, 1 <n< o, Werewis the first infinite
ordi nal nunber.

The Gsdel nany-val ued | ogi cs were introduced by Kurt Godell]
in order to exanine the rel ationship between Heyting's Intuitionistic
Proposi tional Cal cul us( PC) [2], and standard propositional |ogic.
The purpose of this paper is to state sone observations on the basic
truth-functions of Gsdel's system 6y and to generalize themto e, and

) G3, l'i ke nost systens, can be discussed as a senantic system
b#sed on truth tables or truth rules, or as an axi omati ¢ system In
this paper the senantic probl emof the adequacy of a set of truth-
functions wi Il be approached fromthe axi omatic point of view
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The truth tables for G, are:

3

Matrix 1
\B a+*B avh aAB ~a -
a
Sl123jreslizs]__
1[123[1]1]]23]3
2]1]3[122]223]3
3']11|123|333|1

Heyting original |y axiomatized P C [2] and both K eene [3] and
tukasiewicz[4 reaxiomatized the system gukasiewicz further [5]
noted that if he added the axi omschena (~a-»8)-(((B»a)+8)+8) to IPC
the theorens of this systemare exactly the G3 taut ol ogi es.

Lukasi ew cz's axi ons for G3 are:

al . (aAB)~a

a2. (anB )-8

a3. a~(ave)

ad. B-+(avB)

a5. a+(B-a)

ab. a+(~a-8)

a7. a+(B~>(anB))

as. (aB ) (B+1)

ag. (a+(B-v) )+((a>B)+(ay))

al10. (ay)>((B=y)>((avB)»v)

al. (~a8)-+(((B-a)+p)-8)
The rul es of inference are modus ponens, which states that fromthe
expressions at and a we can infer 8, and substitution, which allows
us to substitute any significant expressions for the variables. g
can now state the first result.

Theorem 1. The set {~, a, =}is an adequate set of truth-

functions for Ga'

Proof. Note that {~} isnt definable by {v, o, +}. To see
this consider the following truth table:
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pp
1
1
1

w N -
- W w

plppl~
l I
! |
I l

The only unary truth-functions definable by {v, A, =} are p and p»p, SO
{~} isn't definable.

In order to show that {+} and {A} aren't definable by the
other basic truth-functions we construct a larger model for Gg that
satisfies the axioms, and in which they are not definable. Our larger
model is the direct product of Matrix 1 with itself. Call it Matrix 2.

If we interpret the evaluation of the basic truth-functions like so,
~ <a,b> = <~a,~b>
<a,b> + <c,d> = <a»c,brd>
<a,b> A <c,d> o <aAc,bAd>

<a,b> V <c,d> = <ave,bvd>

then Matrix 2 depends solely on Matrix 1 for the evaluation of its
entries; hence Matrix 2 fulfills the axioms. Matrix 2 is found at
the end of the paper.

If pisa propositional variable, let [[pll] be its truth-value
To see that {+} is not definable in terms of {~, v, A}, notice that if
(lpl and [l e {11, 12, 22, 33} then [~pNl ¢ {11, 12, 22, 33},
lpvall e {11, 12, 22, 33}, IlpAaqll & {11, 12, 22, 33}. But if [[pll =
12 and [[qD = 22 thenllp~q] = 21, and no sentence composed of p, 4,
~, A, V can have value 21 when p and q have as their respective values
12 and 22.

The proof that {A} isn't definable by {~, A, +} is similar.
Let [fp] and f(fal e {11, 12, 13, 31, 33} then [~pll e {11, 12, 13,
31, 33}, llpvall e {11, 12, 13, 31, 33}, and [[p»qll ¢ {11, 12, 13,
31, 33}. However, if [[p]] = 12, and [[q]] = 31 then llpagll = 32.
No sentence composed of p, g, ~, + V can have this value with the
given valuations of p and q.

Finally, {v} is definable by {~ , A, +}. Explicitly, if we
note that pvq = ((p+q)+q)Aa((g+p)-p) we have our definition of {v}-
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This equivalence is shown by the following truth table.

a B | ((ap)BIA((B+a)+a) | avB

11 111 11 1

21 1171 21 1

31 11 7T 31 1 -
12 21 1T 11 1

22 122 12 2

32 1 2,2 31 2

13 317 11 1

23 312 12 2

33 133 13 3

Call the sentence on the right side of the definition FP . This
completes the proof.

W can generalize this definition for {v} by noting that the
Godel systems G can be described by the same truth rules for all
n [5]- The rules are as follows,

Rule 1. [l~pll =

1 if [[p]] = n
n otherwise

Rule 2. OIpaqll = max{ [[p]] , {qll }
Rule 3. [[pvg]] = min{ [P1 , qll }

|32 iflpnz= Iab
Rule 4. ip=qll = [[[q]] otherwise
Without loss of generality, we assume that [[p]] > (401 , since
qu is symmetric with respect to p and q. Then

[C(p>a)»q)a((g=p)+p)1 = max{ [[((p>q)=q)T , [[((g+p)+p ] }

max{ [[q)] , [[qll } if [[p]] = [[q]]
max{ [[q]] , 1 } otherwise

[l

i

and [[pva]] = min{ [[p]], gD} = Iiqn- Hence {~, A, =} is adequate for all
G systems. This leads to the next result.

Theorem 2. {~, A, =+} is adequate for G .
w

Proof. Suppose {v} weren't definable in Gw. Then given some
truth-valuation of a and B, [[avB]] = i while [ FaB]] = jandi #j.
Let n = max{i, j}. Then G wouldn't have a definition of {v} using
only {~, A, +}. But thisisn't true. gp {~, A, +} is adequate forg .

Thus this definition of {v},avy = F | is a tautology of G ,

but not of 72¢. So this also shows that all the tautologies of IPC
are also tautologies of G ,
[
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Matrix 2

<cd) <ab>-<ecd> <ab>v<ed>

<ab> 1M 12 13 21 22 23 31 32 33 1m 12 13 21 22 23 31 32 33

n 1M 12 13 21 22 23 31 32 33 nuunnnnnannn
12 1M 1 13 21 21 23 31 31 33 1M o12 12 1112 121z 12
13 n 1 n 2128 21 31 31 31 1M 1213 11 12 13 11 12 13
21 112 13 11 12 13 31 32 33 nuunaaaaaa
22 "N 113 ono o3 333 N 12 13 21 22 23 21 22 23
23 nmnnnnannaia a3 1M 12 13 21 22 23 21 22 23
31 m 12 13 1112131 12713 nmnnea 22121 3 3 3
32 m 1 13 11 1113 11 13 N 12 12 21 22 22 3N 32 32
33 nnnnnuninun 1M 12 13 21 22 23 31 32 13

< ab> A <cd > ~<ab>

<ab” 1M 12 13 21 22 23 31 32 3 a3

1 1M 12 13 21 22 23 31 32 313 33
12 12 12 13 22 22 23 32 32 33 33
13 13 13 13 23 23 23 33 33 33 31
21 21 22 23 21 22 23 31 32 33 33
22 22 22 23 22 22 23 32 32 33 33
23 23 23 23 23 23 23 33 33 33 31
N 31 32 33 31 32 33 31 32 13 13
32 32 32 33 32 32 33 32 32 33 13
33 33 33 33 33 33 33 33 33 B3 n
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RANDOM CANTOR SETS 4

by Janet Eckoif
Atbion College

In this paper, we define a binary removal process for the
unit interval and find the probability that the end product is a Cantor
set. This question arose from ny undergraduate honors thesisat
Albion College. 1 will incorporate the results of branching theory
to find the probability that the interval ends up empty.

The binary removal process starts with the unit interval
[ 0,1] and divides it into two intervals (0,1/2) and (1/2,1).

Let p
be the probability of keeping each interval and g = 1 - p be the
probability of removing each interval. |If p = 0 then nothing is
left, if p = 1, then nothing is ever removed. So we will only consider

0<p<l, 0<qg<1. W then remove all isolated points that appear

when these open intervals are removed. The probability of removing
an interval does not depend on whether another interval is removed.
Each of the remaining intervals is divided in half again. The
probability that each of these is removed is q. As before, the isolated
points are removed. V¢ continue dividing the remaining intervals in
half, test to see if the halves are removed and then remove the

isolated points.

Examples.

A X B

If A isremoved and B is not, in the next step we divide B in
half.

X B1 B2
If A and B are both removed, then X isremoved. |f A is
removed in the first step and B remains, and then 31 is removed,

then x is removed.
— ey

B

The point x remains until the intervals on both sides of x
are removed.
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Each stage in the process is the result of dividing the
intervals of the previous stage in half, testing to see if they are
to be renoved, and then removing the isolated points. MNotice that at
the end of each stage, the remaining set is closed.

The binary renmoval process is an exanpl e of a branchi ng
process. The first interval can either have zero, one, or two
offspring. Let X be the size of the nth generation. The

probability, p, of keeping an interval will determnethe
distribution of the Xn's.

Suppose X=1 and X, has probability distribution {pk} and
generating function p(s) = § pksk_ Let P be the generating function
of X FromFeller [11 , in his discussionof branching theory, we
know that P (s) = P(Pn_l(s)). Vé want X = Pn(o), the probability

that the process terminates at or before generation n. The sequence
)g,l isincreasing to a nunber &, where £ satisfiesg= P(£) and £is
the probability of eventual extinction. Feller's results state that
g<lifandonlyif P(1)>1 P'(1):=) kp, is the expected
nunber of offspring fromone interval.

Wat follows is a discussionof some of the results we will
need from branching theory for the binary renoval process.

Let G be the set that we get using the binary renoval process,
That is, Gis the intersection of the stages of the binary renoval
process. Let & be the probability that an interval eventually dies
out, which neans that at some stage, n, all remaining intervals are
r emoved.

In the case of the binary renoval process, here is an
elenentary proof that € exists. If E is the event that the process

terminates at or before the nth generation, then 51 CE, ¢ [
and % : Pr{process eventually terminates} : Pr{UE } : lim Pr{E_}.
n=l # ) n

Here we see that Ais the limit of an increasi ng sequence of real
nunbers bounded above by 1.

There are four ways the interval can eventually die out:
(1) both intervals can be renoved the first tine, (2) the left one
can be renoved the first time and the right one eventual Iy dies out,
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(3) the right one can be renoved the first tinme and the I eft one
eventual ly dies out, or (4) both intervals remainthe first time and
eventual ly die out. Hence

6 - q2 + 2pqE + pe?

0 = P2€2 + (2pg-1)g + q2.

The last equation is equivalent to £ = P(g), since in the
bi nary renoval process, we have P = g*g, P, = 2(p*q), and P, = P*p-

S q2 + 2pqg + p2€2 = P(&) is indeed the generating function.

2
The roots of £ = P(£) are £ = 1 and £ = Q‘%l_ . Therefore,
P
if ) kp, ¢ 1, Pr{eventual extinction} =1, and if } kp, > 1
N (1-p)?
Pr{eventual extinction}= g = g . Now
P

kpk = Oq2 + 1(2pq) + 2132
= 2p(1-p) + 2p2
- 2p
So, if p> 1/2, the probability that the interval eventually dies out

2
is (—1'5) T g
P
eventual ly dies out is g = 1

If p <1/2, the probability that the interval

If we are given the unit interval and the probability p that
an interval remains, what is the probability that the set Gresulting
fromthe binary renoval process will be a Cantor Set (that is,
hormeonor phic to the standard nmiddle thirds Cantor set)? To answer
this question, we will use the characterizationof the Cantor set
gi ven by Hocking and Young [2] : Gis a Cantor set if and only if G
is (1) metric, (2) conpact, (3) nonenpty, (u) totally disconnected,
and (3) perfect.

(ne way of obtaining Gsuch that Gis a Cantor set is to keep
both intervals in the first stage and renove the niddle two intervals
in the second stage. The sane thing is repeated for the remaining
intervals. It is not difficult to check that the intersection of
these stages satisfies the conditions |isted above. Hence it is a
Cantor set.
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Theorem. The probability that the set G resulting from the
binary removal process is a Cantor set is1 - £, where £ is the
probability that G is empty.

We will compute the probabilities of obtaining the five
properties listed above.

(1) Using the binary removal process, we get a set that is
metric.

(2) Lemma. G is compact.

Proof. G is the intersection of stages of removing intervals.
To show: a stage is closed. A stage is the result of dividing each

of the intervals remaining from the previous stage in half and testing

to see if each half is removed. |f both halves remain, the remaining
set is closed. |f both halves are removed, the endpoint between them
is also removed and the resulting set is closed. If one half remains

and the other is removed, the endpoint between them remains, and the
resulting set is closed. Since the intersection of closed sets is
closed and a closed subset of a compact set is compact, G i s compact.
(3) V& have shown that Pr{G = §} = &.
(4) Hewill show that the probability that G is totally

disconnected is 1.

Lemma. |f G is not totally disconnected, G contains an interval

of positive length.

Proof.  Suppose G is not totally disconnected. Let x,yeG such
that there is no disconnection of G separating x and y. If thereis
a point z, such that z¢G and x<z<y, then [0,2)NGU (2,11NG is a
disconnection of G. Hence no such z exists; so the interval [%x,y1<6G.

Next | et us compute the probability that G contains a binary

interval of the form [k— ,’_(il]_
n ' n

K+l
e

Pr{[i(n—ak—%] <Gl= Pr({at stage név
2 2 2

1 remains}

n{at stage n+l[ k—n ,21;3] remains}
27 2
2k+1  k+1 .
and [ 2n+1 » =] remains n .. )
i
- 2
=101 p =o.

Nw 1 - Pr{G is totally disconnected } =
o
Pr{G contains an interval} = Pr{ U G contains interval
n=0
that contains binary interval at stage n}

< ) Pr{] k—n.kni"!] ¢ G for some k=0,...,
n=0 n2 2 2- lat stage n}
g 2.1 wwl

=) PeC U {1 ) < 6h)
n=0 k=0 2
w 20-q

<1 I i KL gy
n=0 k=0

=0

Hence, Pr{G is totally disconnected } = 1
(5) Even though there are no isolated points at finite
stages, G mey contain isolated points. For example:

r—————————
—

If there is an isolated point xeG there exists >0 such that

{x-e,x+e) N G = {x}. W& can find a binary interval (k—n, kT'H-} such
27 2
k ki
that x e (§"2'r) < (x-e,xte). Divide (gﬁ,%‘g:') into four equal
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intervals. At most two of them contain x. The probability that each

of the other intervals is eventually removed iSE.

The next step is to divide the intervals that contain x into

four equal intervals. At most two of these contain x.

Continue this process of dividing the intervals that contain

x into four equal intervals.
The probability that x alone is left is the product of
probabilities that the intervals that do not contain x are

eventually removed.
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©

pelioXty 0 g =1} = me*= o,
2 2 £=0
where i = 2if x isin two intervals in the £th step, and

i=3if Xisin one interval in the £th step.
(If i = 2 fork?=m, i = 2 fork?> m.)

Therefore, Pr{G contains an isolated point} = 0.

Since Pr{G is totally disconnected) = 1, and Pr{G contains an
isolated point} = 0, Pr{G is a Cantor set} = 1 - Pr({G =g} U{G
contains an isolated point}) = 1 - Pr{G = g}y =1-E.

This completes the proof of the theorem.

From this result, if we start with the unit interval and use the
binary removal process with probability of keeping an interval p >_1/2.
the probability that we get a Cantor set is1 - £, where £ = (1-p) /p .
If p>1/2, £ = 1 and hence the probability of getting a Cantor set is
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AN ALGORI THM FOR PARTI AL FRACTI ONS

by Prem N. Bafaf
The. Wichita State. University

flx)

(z-a)" hlx)
integer and fx-a) does not divide h(x), the partial fractions

For the rational expression , Where In is a positive

corresponding to fx-a)are of the form

Ao + ——Al—-— A
m m-1 T Py T ——ml
(x-a) (x-a) 2! (x-a) (m-1)V(z-a)

Here, for convenience, we have taken constants to be /—lk instead of A
for each k.

The purpose of this note is to give an algorithm to find the A's .
Indeed, the algorithm is

fla) = A hia),

f'ta) =4, h (a) + A, hla),
f'a) =4, h"(a) + 24, h'(a) + Ay hla),

n .
ad ™M@ =] Ga ™, nen
=0
First, we give an illustration.
0 4
Example. Consider the quotient *_~ 4 -~ 1,
(z-2)% (ze1)

é

Let flx) =x - 4 - 1. Corresponding to the non-repeatcd linear

B
factor (x+1), there is only one partial fraction, :?4%' » where
f(-1) =B, (x-2)3) ields -4=-27 B_orp_ = &+
0 z=-1Y 0% %7
-

Corresponding to the factor (:c—-2)3, the partial fractions are of
the form
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A .
S I SE -
(x-2) (x-2) 21 (x-2)
Letting h(x) = x t 1, above algorithm yields
f2) =-1= Ao-3,
frea) = 64 = Ao-l + .41-3,

fre) = 288 = A0'0 + 2-,41-] + Az-S,

1 198 _ 2206
0=-32 4= and Ay = 57" -

Next, notice that in the example, the degree of the numerator

so that A

exceeds that of the denominator. Therefore, dividing the numerator by
the denominator, we obtain the quotient x% + 5z + 15. Hence, the

required partial fractions are

x2+ 5z o+ 15 - 1 s 193 S+ 1103 = . 4
3(x-2) 9(x~2) 27(x-2) 27 (x+1)
It will be instructive to compare the above algorithm with the

statement of the Binomial Theorem.

‘Proof of the algorithm. There is no loss of generality if we

takea = 0. In this case,
A A A glx)
m(x) = q(z) *‘Tf,* —mf—z+...+ el ¢
x h(x) x x (m-1) !z h(z)

and, so, using the Maclaurin expansions of f(x) and h(z),

2 3
Fl0) + zf'(0) + %f”(o) + FLpmoo) t ...
2 m-1 2

= X x ’ L 40
= (A + A + Ay Gr+oo+ A g o) (R(0) + &' (0) + 57 R"(0)

t..) t (glx)n(x) + glx))a.
Nw comparing, successively, the coefficients of x7',
t=0,1,2, ..., m1, the desired algorithm follows.

%
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A HORSE OF A DI FFERENT COLOR A NOTE ON I NDUCTI ON

by Sandra Keith .
St. Cloud Sate. University

This is an old one, so old that it probably deserves t o resurface.
| encountered it in an undergraduate philosophy class, the theorem
being presented as an example of everything that might go wrong with
language in an argument. But don't let the frivolous nature of the
theorem distract you from the lemma, whose proof | shall discuss
momentarily.

Lenma A ll horses are the same color.

Theorem: Al horses have infinitely many legs.

The proof of the theorem, to ny recollection, is as follows:
Take an average horse. It has forelegs and two hind legs, a total of
six legs. That's an odd number of legs for a horse to have! But six
is an even number, and the only numbers which can be odd and even
simultaneously are zero and infinity, and zero's out. Nw if a horse
does NO have infinitely many legs, that would be a horse of a
different color. But by the lemma, all horses are the same color...

W

(2

N

The proof of the lemma, which is by induction, is to be taken
seriously, however, and never fails to stimulate class discussion
when | teach induction, because students are not in general aware how =

to deal with the problem of a paradox.
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Most of us are rightfully suspicious of the word "same", but are
nevertheless helpless in the face of the proof. Eyen well-heeled
students are likely to protest that the assumption is false, and that
this makes the proof invalid, because from a false assumption anything
can be proved. (The story is that when Bertrand Russell mentioned
that one in a class, a voice from the back snapped, "Oh, yeah? From
the false assumption that 1 = 2, prove that I'm the pope!” 14 \which
Russell replied, "You and the pope are two, two is one, you're the
pope.”) In the discussion the problem initiates, these students may
only begin to see that the true essence of induction is in the
reasoning of the proof, not in the assumption of the conclusion.

The proof of the lemma is as follows: For n =1, it is trivially

true that a horse is the same color as itself. aAcqme now that n=k

horses are the same color. v show that » = k + 1 horses are the same
color as well. Take the k * 1 horses and corral k of them together so
one is excluded. Then the k corralled horses are the same color by

the hypothesis. Nw corral k of them in a different way, making sure
that the previously excluded horse is in the new corral.

corral 1: —

corral 2. ---

These k are the same color. Because of the overlap of horses in
the two corrals, all k + 1 horses must be the same color, and the proof
is finished. The error?*®
%

‘¢ = U0l T = UuwWoaF sn 9l 03 STTEJ Sutuosesa eyg,

*

Editon's Note = For another amusing article on the legs of a horse,
see On The Set 0 Legs 0 A Horse by Marlow Sholander,
Pi Mu Epsilon Journal, Volume 1, No. 3, November 1950,
page 103.
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THE CREATOR

by Dona Warren
Moorhead State University

In the beginning the Professor presented himself to the students,
and the students were without knowledge, and void, and darkness was
upon the face of the class. And the Professor paced before the front
of the class.

And the Professor said, "Please, | et there be intelligence.” And
there was intelligence.

And the Professor saw the intelligence, that it was good; and the
Professor proceeded to divide the intelligent from the stupid.

And the Professor called the intelligent '"those with the
necessary prerequisites” and the stupid he called "the luck of the
draw. "

Ard from 2 o'clock to 3 o'clock was the first day.

And the Professor said, "Let there be integral calculus in the
midst of the class, and let it divide the knowledge from the
ignorance."

And the Professor presented the integral calculus, and divided
the derivatives which were limiting quotients from the integrals which
were limiting sums; and it was so.

Ard the Professor called the result one lesson. A from 2 o'clock
to 3 o'clock was the second day.

And the Professor said, "Let the trigonometric integrals be
gathered into one place, and | et various approximating functiohs
appear.” And it was so.

And the Professor called most of the theorems trivial and the
corollaries immediate; and the Professor saw that it was good.

And the Professor said, "Let the students bring forth homework,
and the proofs by contradiction, and the premises yielding conclusions
after their kind, whose results are in the text within the class.™
And it was so.

And the class brought forth homework, and proofs yielding results..

after their kind, and premises yielding conclusions, whose results



322

were in the text, after their kind; and the Professor saw that it
was passable.

And from 2 o'clock to 3 o'clock was the third day.

Ard the Professor said, " Let there be much formulae in the class
of calculus to divide the Taylor series from the Maclaurin series;
and | et them be for arc length, and for integration by parts, and for
binomial expansion and hyperbolic functions.

And | et them be required in the class of calculus, to give
memorization to the students.” Ard it was so.

And the Professor proved two great theorems; the greater theorem
to rule the calculus and the lesser theorem to rule the algebra; he
proved lemmas al so.

Ard the Professor presented them to the class of calculus to
give understanding to the students, and to rule over the theory and
over the exercises, and to divide the studious from the idle; and the
Professor saw that it was good.

And from 2 o'clock to 3 o'clock was the fourth day.

And the Professor said, "Let the lecture instruct profoundly the
fidgeting student that squirms in the desk and the student that sits
in the back of the classroom far into the darkness.”

And the Professor presented great motivational devices and every
practical application that existed, which the theorems brought forth
abundantly, after their kind, and every trivial corollary after its
kind; and the Professor saw that it was good.

And the Professor blessed them, saying, "Be diligent and study,
and bone up on your integration techniques, and feel free to use your
calculator whenever necessary."

And from 2 o'clock to 3 o'clock was the fifth day.

And the Professor said, "Let the topics bring forth an hour exam
after their kind, with formulae of calculus and theorems and
applications after their kind." And it was so.

And the Professor created the hour exam after its kind, with
proofs after their kind, and every application that followed from the
theorems after their kind; and the Professor saw that it was content
valid.

And the Professor said, "Let nme administer the exam in ny own
class, to ny owmn students; and |l et them sit in every other desk, and

keep their eyes on their om papers, and show all their work, and

review their computations for accuracy if time allows them at the end
of the period."

So the Professor administered the exam to his omn students, to
his ovmn students he administered it; to male and female he _
administered it.

And the Professor blessed them, and the Professor said unto
them, "Be careful and accurate, and take the test and do well on it;
and logically prove all the theorems of the test, and carry out all
the applications and every computation that is printed upon the test."

And the Professor said, "Behold I have given you a straightforward
exam, which is on the subject of calculus, and every direct proof, in
which are the results for the applications; to you they shall appear
simple.

For to every student that sits attentively in class, and to
every student that carries out the homework assignments, wherein there
are many useful results, | have made clear every topic on the exam."
Ad it was so.

And the Professor saw the results of the exam that he had given,
and, behold, they were sorrowful.

And from 2 o'clock to 3 o'clock was the sixth day.

And on the seventh day, he rested.
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THE CORRECT VALUE OF P |

by Trwin Jungreis
Harvard University

In the recent past, there have been a number of unsuccessful
attempts to legislate a rational value of 1. In this article we discuss
why such a law would be useful, why these attempts have failed, and
what we can do about it.

The utility of having a rational value of = i s enormous.
Calculations involving i would be exact. Engineers would no longer
have t o memorize strings of digits for their calculations. School
children would no longer have to be told that the circumference of a
circle is 22/7 times its diameter when they are doing calculations and
something el se when they want to be exact. Fortran programmers would
no longer have to start all their programs with

Pl = 4.0 * ATAN(1.0)
but could simply use the exact ratio when needed. No longer would
amateur scientists be prevented from publishing their work because
they don't have a n key on their typewriters. Last but not |east,
the Japanese have recently used n as yet another opportunity to take a
jab at American technology, by calculating it to many more decimal
places than had been calculated here. Wouldn't they feel stupid if we
made 7 a rational number, thus making their calculations obsolete?

With all this in favor of a rational value of m, why have attempts
to legislate one failed? As usual, the answer is political. Like
other steps in the direction of progress, this reasonable and inevitable
improvement would tread upon the entrenched privileges of some powerful
groups. Most notable are the calculator companies that have invested
millions of dollars in = keys on their calculators. These multimillion
dollar companies have powerful lobbies in Washington. Next are the
typesetter's unions. These workers have traditionally been given
extra pay for typesetting technical documents with unusual symbols and
will fight to keep every one of them. Finally, there are the makers of
technical word processors. It has been estimated that 30%of the people
who use these word processors do so because they need to use n. \With

325

a rational value of = sales would plummet.

What can be done to correct this injustice? The problem is that
the values of = that have been suggested, most notably 3 and 22/7,
don't have enough widespread appeal. Though useful to engineers, . .
they don't much help the pure mathematician and theoretical physicist. .
I propose that a much better value of = is 1/8. The advantages of
this are numerous. First, the circumference of a circle would equal

its radius. Wha a help that would be to high school geometry students!
It would also mean that radians and rotations are the same thing. For
the physicists, the most obvious benefit would be the unification of
the two Plank's constants, h and & = h/(2x). Finally, for the pure
mathematician, those annoying 2n'’s that come up in Fourier integrals
would finally go away. The argument over where best to put them would
be over.

With ny suggested value for w, | an sure the support for
legislation will be broad enough to overcome the opposition. By
setting = = 1/2 we will be taking a bold new step for progress.

. it-
|-

A GRAPHICAL APPROACH TO e" > .

by ALan C. Benanden
Cleveland State Univensity

In this note another solution is given to the problem of proving

the inequality e - He. While not as elegant as Schaumberger's proof
[1] which uses the mean value theorem for integrals, it is interesting
in that it appeals to not much more than the definition of the natural
logarithm.
The inequality is shown if we show that
winle) > eln(w)

or ™ > eln(n).
ks 1 m
Nw ein(n) = e | z dt = f %dt. Graphically, this is equal to the
1 1

shaded area in Figure 1.

Now 1 is equal to the area of the rectangle with vertices (0,0),
(0,1), (m,1) and (m,0).
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d\

f(t) = e/t

/

7

1 e " t

Figure 1

The area of the shaded portion in Figure 1 above the horizontal
liney=1is

e
[ (2= 1) dt=elnfe) = (e - 11
1
= :I_7
which is equal to the area of the square with vertices (0,0), (0,1),

(1.1) and (1.0). Thus, the total shaded area i s less than the area of
the rectangle; that is,

m > eln(n).

Thus, eTT > ne.

REFERENCE

1. Schaumberger, Norman, Another Approach to €" » 'ﬂe, Pi Mi Epsilon
Journal, Spring 1986, Vol. 8, No. 4, p. 251.

p

Postens
A supply of 10" by 14" Fraternity Cresis are available.. One 4n each
colon combination will be. sent free t o each Chapter upon request.
Additional postens are availablfe at the. following hates
(1] Purpfe on Goldenrod StOCK wauwusnss $1.50/dozen
(2) Punpfe on Lavender on Goldenmrod .. $2.00/dozen

Send nequests and ondens to Dr, Richand A. Good, Secretary-Theasuren,

Depantment of Mathematics, Univensity of Maryland, Coflege Park, MD 20742.
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PUZZLE SECTION

Edited by
Joseph D, E. Konhauser

The PUZAZE FCITION i s for the enjoyment of those readers who
are addicted to working doublecrosties or who find an occasional
mathematical puzzle attractive. We consider mathematical puzzles to
be problems whose solutions consist of answers immediately recognizable
as correct by simple observation and requiring little formal proof.
Material submitted and not used here will be sent to the 'Problem,
Editor i f deemed appropriate for the FRCBBV DEPARTMENT.

Address all proposed puzzles and puzzle solutions to 'Professor
Joseph D. E. Konhauser, Mathematics and Computer Science Department,
Macalester College, St. Paul, Minnesota 55105. Deadlines for puzzles
appearing in the Fall Issue will be the next February IS, and for
puzzles appearing in the Spring Issue W || be the next September 15.

PUZZLES FOR SOLUTION

1. An oldie.

Wha is the most money one can have in pennies, nickels, dimes,
quarters, half-dollars, $1 bills, $2 bills, $5 bills and $10 bills with-
out being able to make change for a $20 bill?

2. Proposed by Joseph 0. E, Konhauser, Macalester College,
St. Paul, Minnesota.

Using four 1's and standard mathematical symbols, write an
expression for 71.

3.  Proposed by Joieph V. E. Konhauser, Macafester College,
St. Paul, Minnesota.

Are you able to dissect an arbitrary triangle into four pieces
which can be reassembled to form a quadrilateral such that no part of
the boundary of the quadrilateral is part of the original boundary of
the triangle?

4. Proposed by the Late Harnry Langman, New Yohk City.

In the sketch on the next page, the 16 points are vertices of 14
squares with horizontal and vertical sides. Are you able to label the
points with the integers 1 through 16 so that the sum of the numbers at
the vertices of each of the 14 squares i s the same for all 14 squares?

5. Attnibuted t o Nob. Yoshigahara, Tokyo, Japan.

Dissect the pentagon, in the sketch which follows, into four
congruent pieces.
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James Campbdl submitted the following for Puzzfe # L

J1+.2-.3+4+5 3146427 and V5*%-3 + 2+ 1 33146212, Seven
readers provided 888890 as "the" solution to Puzzle # ¢ which asked for
a six-digit number such that starting at the left successive groups of
four form three consecutive four-digit numbers. Only Mak Evans gave
111109 (the 9's complement) as a second solution. Mac |. Whingon
gave the following general solution for base n: from left to right,
write four (n-2)'s, one (n-1) and one 0. For example, in base 3, Marc's
solution gives 111120. Victor Feser gave this generalization: the n-
digit number (n = 3) consisting of (n-2) 8's, one 9 and one 0 is such
that starting at the left successive groups of (n-2) numbers form three
consecutive (n-2)-digit numbers. Only James Campbdl submitted a solu-
tion to Puzz€e # 3. The solution appears below. The given array has
been rendered " square-less” by the removal of just nine matchsticks.

For Puzzle # 4, the correct response 20 was supplied by three readers,
who noted that the proposed puzzle is equivalent to the plane problem
with circles. Two readers sent contributions toward the solution of
Puzzfe # 5. For a line segment, with endpoints on the sides of the
given angle and perpendicular to the bisector of the angle, the sum of
the distances from any point on that line segment to the sides of the
angle is the same. As the line segment moves away from the vertex the
sum increases. The points of contact of the circle with the two members
of the family which are tangent to the circle are the points on the cir-
cle for which the sum of distances to the angle sides is least and
greatest.

List of Responders: Curtis L. Blankespoor (1,2), James E. Campbdl
(1,2,3,4), Mak BEvans (2,4,5), Victor 6. Feser (2,4,5), Glen E Mills
(2), Stephen W Neson (2), Robert Prielipp (2) and Mac |. Whingon (2).

329

Sofution t0 Mathacrostic No. 27, (See Spring 1986 Issue).

Words:

A. Guesswork J. Rainbow S. Easy out

B. Edmond Halley K. Authenticate T. Tombstone

€. Outhouse L. Homunculus U. Out-of-round

D. Rotund M. First water V. Zwitterion

E. Grand unified N. Roots of unity W. Earth flattener
F. Evase 0. Outspin X. Ramsey number
G. Silicontraptions P. Minify Y. Oyster

H. Imbibition Q. Oftenness

I. Finitistic R. Notched stick

Quatation: Ouwr modern wiitten numeration ... secems 50 obvious to us
that it s difficult ton. us tO realize its profundity and. impostance.
(Be) use it unthinkingly ... and fend to be unaware of its merits. But
no one who considens the histony of numenical notations can fail to be
struck by the ingenuity of owr system ... .

Sofved by: Jeanette Bickley, Webster Groves High School, MO, Victor
G. Feser, University of Mary, Bismarck, ND; Robeat Forsberg, Lexington,
MA; Dr. Theodor Kaufman, Winthrop-University Hospital, Mineola, NY;
Hery S. Lieberman, John Hancock Mutual Life Insurance Co., Boston, MA;
Charlotte Maines, Caldwell, NJ; Beth and Rn Prielipp, Bethany College,
Lindsborg, KS Robet Prielipp, University of Wisconsin-Oshkosh; and
Stephanie Sloyan, Georgian Court College, Lakewood, NJ.

’ IMPORTANT ANNOUNCEMENT ‘

P M Epsilon's main source of steady income is the
National Initiation Fee for nav membeas

The fee covers the cost of a membership certificate
and a one-year subscription to the B Mi Epsilon
Journal.

For the past fourteen years the fee has bean set at

$4.00. Effective January 1, 1987, the National

Initiation Fee will be $10.00. After January 1, 1987,

any order for membership certificates should be -
accompanied by the nav fee.



Degdinitions Wonds

Mathacrostic No. 23 A. one-time claimant to the appellation "Mathe- e e R e B S G, R
matical Adam" for the giving of names to the 62 150 163 13 129 195 73 38 118 31 218
Proposed by Joseph D. E. Konhauser creatures of mathematical reasoning (1814~

1897) (initial d last
The 226 letters to be entered in the numbered spaces in the grid will be ) (initials and last name)
identical to those in the 24 keyed Words at the matching nunbers.  The key nunbers B. inattentive U —
have been entered in the diagramto assist in constructingthe solution. ~\wen 68 177 168 49 128 224 201

conpleted, the initial letters of the Words will give the nane of an author andthe ) )
T J C. in Euclidean space, a subset whose Hausdorff- __. __ ___ . __

tithe of a book; th? completed grid wll be a .qUOt.m'OH fromthat_book Besicovitch dimension strictly exceeds its 36 223 108 122 12 71 197
The sol ution to Mathacnostic No. 22 is given el sewhere in the PUZZLE topological dimension
SECTI O\ ~
D. a small loosely aggregated mass of material T ——
suspended i n or precipitated from a liquid 41 89 165 141 26 76 83 222
E. a winner of the highest honors in mathematics __ _ ___
T Fl2 N3 K2 R®[5 9l H7 ols 1 at Cambridge University 100 113 173 23 183 136 82 219
9 Pl10 s
1 Tz 13 A 14 ﬂ F. a gem or stone in convex form but not faceted __ ___ ___ _ __ _ _ .
(2 wds.) 101 171 202 210 134 1 87 111 123 107
158 16 N7 X 18 0(19 X|20 Uf21 V|22 L|23 E|2a 1125 M{26 D G. , the smashing down of our world by e
random forces that don't reverse. " Stephen 220 51 96 40 133 30 91
27 J]28 Q|29 R{30 G|31 A|32 N|33 Ul34 T % Wk C 7S o Leacock, Common Sense and the Universe
H. velocity modulated” beam tube e e S s gose s e
39 212 84 121 186 6 193 217 160
T% G191 Dj4z 0143 Ljag 7 45 s|a6 o[a7 v[s8 qfas B[s0 a[s1 6|52 R I. a drinking fountain on a ship e
24 211 143 187 127 132 114 8 39 172 65
53 N|54 XI55 M 56 Ri57 T 58 Q 59 U|60 T|61 W{62 A{63 Klea P J. the comedian with the punch line (2 wds.) U
117 206 27 209 135 166 188 5 50
65 1(66 0{67 R|68 B 69 T|70 ql71 cl|72 «k[73 A 78 wl7s K. name of a theorem which characterizes compact S —
75 N76 D77 M sets in Ry (comp.) 119 63 3 72 145 174 149 200 208 180
78 Si79 Qlso T 81 LI|82 L. perturbation of the moon's orbital motion due ____ ____ ____ . ___ __ _
E|B3 Djes H 85 M|B6 Li87 F188 u|89 Dfg0 P £o the attraction of the sun 799 221 151 43 81 22 86 189
M. sloping downward from opposite directions to s s e g e s ey e
91 G 92 093 N|94 W95 V 96 G{97 Q{98 S{99 M 100 E|101 F{102 V meet in a common point or line 55 99 178 205 77 25 164 142 85
7 N. point set obtained as a diagonal section ofa ___ __ . ____ _ _ ___ ____ __ . _ ———
03 P[104 0105 N 106 X[107 F 108 C 109 V[1T0 U111 F[11Z P[113 EJ114 T complete quadrangle (2 wds. 93 6 2 207 75 .200. 18 152105 53 192 32
M5 R1T6 Q117 4 N8 A119 Kf120 q121 H 122 C123 F124 p125 s{126 T i wes
0. the arithmetical method of solving questions
127 1128 B{129 A 130 P 131 0132 T]133 G134 F|135 9136 €37 P 1158 0 g%r;ﬁ?trirgggotrhsawé;ng of articles of different 7 198 46 18 131 42 92 66 181 104
P. the first mechanical inversor (2 wds.) U,
139 W[40 X147 D [142 M [143 1 [144 T[145 K 146 N 147 P 148 R [149 k|150 A [151 L 147 103 203 124 190 112 137 90 9 176 216 64
152 N [153 U {154 T [155 X [156 Q 157 Q [158 P [159 R [160 A 16T V 62 S [163 A 196 158 130
Q. a walk which uses each edge of a graph exactly
164 M {165 D166 J [167 V|168 B[169 X 170 T [171 F172 1173 E[178 K175 W76 P 177 B once (2 wds.) 120 116 70 156 28 214 58 79 157 194 48 97
R. to extremes of enthusiasm S
178 W[179 5 180 K [181 0 [182 V183 E T84 W[185 U [186 W [167 1188 3 [189 L [190 7 29 67 4 215115 56 159 148 52
- S. the most distinguish)ed international award in
mathematics (2 wds. 45 162 191 125 179 15 213 98 78 37 10
191 S 192 N (193 H 194 Q [195 A[196 P 197 C [198 0 [199 L [200 K pO1 B 202 F [203 P .I 2w
T. what it is when you unexpectedly stumble upon
5 something marvelous 144 44 60 170 57 126 11 69 154 80 34
04 N 205 M|206 J]207 N[208 K 209 J{210 Ff211 I]212 H 213 S|214 Q|215 R U. in stone-skipping, one in the fast series of
skips just before the sinkdown (comp.) 110 185 20 33 138 59 88 153
216 P 217 H[218 A _ 219 E[220 G221 L {222 D223 CJ224 B[225 W[226 N V. directed forward or upward [,
47 182 95 21 167 102 109 161 -

W. collection e g weeons s s
74 94 139 61 35 184 175 225

X. to form a ring around e
140 17 155 169 54 106 19
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PROBLEM DEPARTMENT

Edited by Clayton W. Dodge
University of, Maine

This department welcomes problems believed to be new and Gt a
Level appropriate forn the readens of, this fowwmal. 02d probLems
displaying novel and elegant methods of, solution are also invited.
Proposals should be accompanied by solutions 1¥,available and by any
information that wile assist the editor. Mn asterisk (*) preceding a
problem number indicates that the proposen did not submit a solution.

ALL communications should be addressed to C. W. Dodge, Math.
Dept., Univensity of, Maine, Ornono, ME 04469-0122. Prease submit each
proposal and solution preferably typed on clearly whitten on a
separate sheet [Oneside only) properly identified with nare and
addness. Solfutions t O problems i n this issue should be mailed by
Juby |, 1987,

We generally publish 13 problems PEI issue, one alphametric
followed by one o two problLems from each Of,the areas United below
SO a4 to provide varniety for our readers. Some areas attract moie
problem proposals than othens and of counse the suitability of,the
proposals varies greatly, 40 accepted proposals ane NOt necessarily
published iN the order iN. which they are received. M especiatty
timely proposal, such as numbern 627 in this issue, might be publLished
4in the very next issue. To aid. you i n submitting probfems for
sofution, the. problem areas are Listed here, along with the numbesrs
of, acceptable proposals i neach fite. The areas are algebra {14},
geomethy (12), alphametrics (4), number theory (3), analysis (3),
trigonometrny (2), Logic and combinatonics (0}, probability and
statistics (0], and miscellanecus (0). PrLease notice that only two
of, these areas are weld supplied with problLems butthat aff proposals
are afways Wecome.

Probl ems for Sol ution

626. Pioposed by Chartes . Trigg, Son Diego, California.
Reconstruct this doubly true German alphametric where, of course,

DRE and $ECHS are divisible by 3. They also have the same digit sum.
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EINS T 2 + DR = SECHS

627.  Pioposed by Robert C. Gebhardt, Hopatcong, New Jersey.

This problem has interesting applications for anyonewho is _ -
asked to take a Lie-detector test, a drug-use test, an ADS test, or
any similar test where the percentages are of the order shewn in the
guestion. It is known, let us say, that 0.1% of the general
population are liars. W people known to be liars take lie-
detector tests, the test results are correct 95% of the time. When
people known to be truthful take lie-detector tests, the test results
are correct 99%of the time. To get a certain job, you are asked to
take a lie-detector test. Itsresults indicate you are a liar. What

is the probability that you actually are a liar?

628.  Pioposed by At Terego, Malden, Massachusetts.

a) Hw mawy 4 x 6 cards can a paper wholesaler cut from a
standard 17 x 22-inch sheet of card stock?

b) Can the waste be eliminated if one is allowed to cut both

3 X 5and 4 x 6 cards from the same sheet?

629. Pioposed by Jack Garfunkef, Flushing, Nav York.

If A, B, C are the angles of a triangle, prove that
eos A cos B cos C < (1 - cos A)(1 - cos B)(1 - cos ().

630. Proposed by Russell Euler, Nonthwest Missouri State
University, Maryville, Missourd.
Evaluate
;’I 8in s .
=1 23 + 1
631.  Pioposed by Sm Pearsall, Pomona, California.
Let
Ypop = k(1 - yn)
for n=0, 1, 2 ... and k a given constant. If theinitial valuey,
has an absolute error g = Yp = Y where y i s the true value, show
that the formula is unstable for |k| > 1 and stable for |k| < 1.
632.  Proposed by R. S. Luthar, Univensity of, Wisconsin Centenr,

Janesville, Wisconsin.
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Show that
fol «(z + (x - 1)inz)de = 1. 637.  Proposed by R S. Luthar, University of Wisconsin Center,
Janesville, Wisconsin.
633.  Proposed by Dmitry P. Mavle, Moscow, USSR Let ABC be a triangle with #4BC = #4CB = 4¢°. Let BD be the
Leta, b, e>0,a+b+e=1, andn ¢ ¥. Prove that bisector of #4BC and produce it to E so that DE = AD. Find the -
[1 1 1 7 3 measure of #BEC., See the left figure below.
“n= = = - > (3" - 1)%,
) -
with equality if and only if a=5=¢ = 1/3. X
634. Proposed by Stanley Rabinowitz, Digital Equipment Conp., A
Nashua, New Hampshire. E
Find the condition for one root of the cubic equation D A
X3-pX2+qm—r=0 "
to be equal to the sum of the other two roots. N
635. Proposed by John M. Howele, Littlerock, California. 5 ‘ 7 ¢
Our old friend Professor Euclide Paracelso Bombasto Umbugio has
been amusing himself in his retirement with problems about infinite
series, continued fractions, and other nonterminating expressions.
He says that now he has the time to follow through with such
computations. So far he has found that y = v and y = 1 + X do not 638.  Proposed by R S. Luthar, Univensity of, Wisconsin Center,
intersect, and he i s working on finding the intersections of the Janesville, Wisconsin.
curves y = (z + /5)1/2 andy =1 + x/(1 * x). Proceed to the limit In the right figure above, the circle with center 0 is an
and help the good Professor by finding all intersections of the excircle of triangle ABC. Then BK is drawn so that #KBA = #40C,
curves defined by the continued expressions and QA is produced to meet BK in D. Prove that OCBD is a cyclic
y = (z t ot (Tt )1/2)1/2)1/2 quadrilateral.
and Solutions
y=1+ X
1+ X 595.  [Spring 1985, Spring 1986] Proposed by Harw Nelson,
1+ X Livenmore, California.
1+ ... If the integers from 1 to 5000 are listed in equivalence classes
for x > O. according to the number of written characters (including blanks and
hyphens) needed to write them out in full in correct English, there
636.  Proposed by Walter Blumberg, Count Springs, Flonrida. are exactly forty such non-empty classes. For example, class "4"
a) Prove that if p isan odd prime, then1 *p + p2 cannot be contains 4, 5, and 9, since FOUR, FIVE, and NINE are the only such
a perfect square or a perfect cube. numbers that can be written out with exactly four characters.
*b) Is part (a) true when p is not prime? Similarly, class "42" contains 3373, 3377, 3378, 3773, 3777, 3778,

3873, 3877, and 3878. Find the unique class "n" that contains just

one number.
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II. Comment by J. Suck, Essen, Gemwmany.

Yes, class-consciousness begins with the language you use. |t
is correct English the proposer alludes to, and so, to avoid any
possible surrender to the seductions of our common English, |
consulted the Oxford Advanced Learner's Dictionary of Current
English, Third Edition, 1974, p. 1036, Appendix 4, Numerical
Expressions, only to find, alas, that the proposer's numbers 3377
etc. are in the wrong class. Three thousand, three hundred and
seventy-seven etc. it should have been, with a comma separating off
the thousands and an "and” put in it, i.e. class "47",

Now, while obviously not expecting every character to do its
duty here, Mr. Nelson seems to insist, on the other hand, on "one"
where "a" is admissible in less formal speech. For otherwise he
would have found spoil-sports 104 and 105 nestling alongside 3000 in
class "14".

"So," says Harry Dumpty, "when | say 'correct English'... ."

III. Repty by Elizabeth Andy, New Limerick, Maine.

While the Oxford Dictionary is undoubtedly the standard for
proper usage in England, it is well known among mathematicians that
even proper persons don't know nothin' 'bout how to speak numbers.
Mathematically correct usage demands that the word "and" be reserved
for the decimal point only. Consider "two hundred thirty-four
thousandths,” "Two hundred and thirty-four thousandths,” and "Two
hundred thirty and four thousandths,” correctly naming (234,
200.034, and 230.004, respectively. Ore cannot blame just the
British for this all-too-common misuse of the language, for even the
Random House Dictionary gives the example of "three hundred and sixty
students.” Since this column is written for the mathematically
trained, it was assumed that correct mathematical usage was intended,
although 1 suppose it would have been helpful to have stated that
hyphens and spaces were the only punctuation to be counted. Thus we
have the following reply to the above comment:

There was a young men from Essen,
In order to remove all guessin',
Took Oxford Dictionary
For standard vocabulary,

But its numerals had been gefressen.

600. [Fall 1985] Proposed by John M. Howell, Littlenrock,
California.
|
AM e
NP

QURE, but if | <M<T and A <0, | think there are only five
solutions to this alphametric.

Solution by Victorn G. Fesern, Mary College, Bismarck, ND.

Immediately we have 5 =1, N=9 and U= 0. L&t 6 denote the
digital sum, modulo 9. Since all ten digits are used, then
DS(addends) + DS(sum) = 0; but also DS{addends) = DS(6um) 5o p3(sum)
- 0. Thus, because S=1 and U = 0, thenR+ E= g. Inthe units
column we havel, M, and T are at least 2 3, and 4, totaling at
least 9. Since 9, 0, 1 are taken, the total is at least IS, sol is
carried to the tens column, which in turn totals at |least 12. So
A+ o("on”) is at least 11. Therefore neither Anor O is 2. Also
none of 1 + 4,1 +T andM+T can be 20. There remain the

following possibilities:

I M T E R 0
2 4 7 5 3 6
2 5 6 3 5

2 5 7 ¢4 4 X

2 6 7 5 3 4
3 ¢4 5 2 6

3 ¢ 8 5 3 X

3 5 86 ¢4 4 X

3 5 8 6 2 4 7
3 6 8 7 1 X

4 5 7 6 2 3 8
4 5 8 7 1 x

5 6 7 8 0 X



Thus we have these five solutions:

2 2 3 3 4

64 46 74 45 35
987 987 985 978 087
1053 1035 1062 1026 1026.

ALso sofved by FRANK P. BATTLES, Massachusetts Maritime Academy,
Buzzands Bay, JAMES E. CAMPBELL, University of, Missouri, Columbia,
MARK EVANS, LowisvilLe, KY, RICHARD |. HESS, Rancho Palos Verdes, CA,
DAVID INY, Jerusalem, Isnael, GLEN E. MILLS, Valencia Community
Cottage, Onlande, FL, THOVAS E. MOORE, Bridgewater State Collfege, MA
JOHN HOWE SCOTT, St. Pauf, MN, J. SUCK, Essen, Germany, KENNETH M.
WILKE, Topeka, KS, and the PROPOSER.

601. [Fall 1985] Piopohed by Charles W. Trigg, San Diego,
California.

Without table searching, identify the three consecutive
integers in the decimal system whose squares have the form abcdef
with distinct digits and whose reverses have squares with the same
digits in the order efedab.

Solution by Richand 1. Hess, Rancho Palos Verndes, California.
Since the square contains 6 digits, 817 < the number < 999. Let

#n = 100p + 10g * v and #n® = abedef, m = 100r + 10q + p andm?=
efedab. Nw square out n and m to get that

n? - nf = 9999(p% - »2) + 1980q(p - ») = 99990(a - e) + 9999(b ~ £),
which implies that

101(p% - %) + 20q(p - ) = 1010(a - ) + 101(b - £).

Nowv
20q(p - ») = 0 (mod 101)

and since p # », then g = 0. Since p? and »Z are two-digit numbers,
thenp, g > 3. Also 2pg is the two-digit number cd, so pg < 50.
Hence the possibilities for n (with n < m) are 405, 406, 407, 408,
409, 506, 507, 508, 509, 607, and 608. That 4062 = 164836 has a
repeated digit eliminates the 400-series. |jkewise 5062 has a
repeated digit. Thus the only remaining possibility i s 507, 508,
509, which is indeed the solution.

Also solved by JAVES E. CAMPBELL, Univenrs.ity of, Missourni,
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Columbia, MARK EVANS, Lowisv.ilfe, KY, VICTOR G. FESER, Mary Cortege,
Bismanck, ND, DAVID INY, Jerusalem, Tsraef, JOHN HOWE SCOTT, St.

Paul, MN, J. SUCK, Esden, Genrmany, KENNETH M. WILKE, Topeka, KS, and
the PROPOSER ~

*602. [Fall 1985] Proposed by Jack Garfunkel, FLushing, New
Yank.

Given isosceles triangle ABC and a point O in the plane of the
triangle, erect directly similar isosceles triangles POA, QOB, ROC
(but not necessarily similar to triangle ABC). Prove that the apexes
P, @, R of these triangles determine a triangle similar to triangle
ABC.

1. Solution by M. S. Klamkin, University of Alberta, Edmonton.

I'f (p, q, ») and (a, b, e} denote the affixes of the
corresponding vertices of the two triangles PQR and ABC in the
complex plane, then a known necessary and sufficient condition that
the two triangles be directly similar i s that

p a 1
qg b 1}|=0.
r e¢ 1

Letting O be the origin, it now follows from the hypothesis that

0 0 1 0 0 1 0 0 1

a b 1{=|b e 1|l=]c a 1|=20

p q 1 g r 1 r p 1

Nw we have that

p a 1

qb1=1qb|-1pa+zlp“

p & 1 r e r c q b
=_|b _‘ al _ abl

q r p p q

0 0 1 0 0 1 0 0 1
= |b e 1|-fle a 1|-|la b 1}=0.
q r 1 r p 1 p q 1
II.  Sofution by William E. Hoff, Princeton, West Vinginia.
+

Let X denote the directed segment obtained by rotating the
<>
directed segment XY 80 degrees counterclockwise about point X. Its

length is XY. For a pair of nonzero real numbers k and j, and an
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arbitrarily chosen point 0 in the plane of triangle ABC, locate P,
@, and R by
0P = k(0h) + j(0A®), 04 = k(0B) + 7(0B°),
and  OR = k(d6) + j(06°),
assuring the similarity of triangles POA, QOB, and ROC. Then
@ = k(4B) + j(4B°),  RG = k(BL) + j(B®),
and Pk = k(CA) t j(CA®),
whence

(qp)?

: (@)% : (PR)2
a®+ 5 um? - al + 2 mer? - P+ 2 c)?

n

uB)? : me)? . (ca)?
Hence triangle PQR is similar to triangle ABC, whether or not ABC is

isosceles and whether or not the erected triangles are isosceles.

[Il.  Sofution by J. Suck, Essen, Germany.

Omit "isosceles" from the proposal altogether. Apply the
central dilation with center 0 and ratio 04/0P (= 0B/0Q = OC/OR).
Then apply the rotation about O through the angle AOP (= BOQ = COR).
The image of triangle ABC is triangle PQR. Both transformations are
known to be angle-preserving. Hence the conclusion.

Also sofved by RCHARD |. HESS Rancho Pafes Vendes, CA, DAVID
INY, Jerusalem, Isnaef, and JOHN HOWE SCOTT, S. Paul, MN.

603. [Fall 1985] Proposed by Russell Euler, Nonthwest Missouri
State University, Maryville.
Evaluate - "
tin ] (1" 22,
pre
Sofution by Richard 1. Hess, Rancho Palos Verdes, California.
Fom Abromowitz and Stegan, Mathematical 'rabies, page 369, we
have that the zeroth order Bessel function Jo(x) is given by

Lt 1 2({;22)2- Lo2a%% .
(11) (21) (31)

Thus the indicated summation is Jo(zx), and the desired limit is

Jo(z) =1 -

Lim _ lim 1 o
o JO(Z:x:) = e = cos (2w = 7) = 0.
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Also solved by WALTER BLUMBERG, Coral Springs, FL, DAVID INY,
Jeonwsalem, Tsnael, M. S. KLAVKIN, University of, Alberta, Edmonton, J.
JCK, Essen, Germany, and the PROPOFR Ore {incowrect solution was
neceived, Suck used the stamp befow, pictuning the. Bessel functions— .
Jo and J,, on his Letten,

-~k "
FKIEDRICH WILHELM !ESSE‘L\B’—-“/
74 Amrocomund Mathemsker 1846 O ¢
o

604. [Fall 1985] Proposed by David Iny, Renssalaer Polytechnic

Tnstitute, Thoy, New Yohk.
A unit square is covered by N congruent equilateral triangles of
side & with or without the triangles overlapping each other. Find

the minimum values for 8 forn =1, 2, and 3,

.  Solution for n = 1 and n = 3 by John Hone Scott, St. Paul,
Minnesota.

Fom the figures below we have X tan 6'00 =1, sox = 1//5 and
the side of the triangle has length 1+ 2x =1 + 2//3 » 2.155.
Also (g/2) tan 60° + z tan 60° = 1 and s = 1 + 2z. Eliminating z
between these equations we get that s = 1/2 + 1//& = 1.077.
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II. Solution fox n = 2 by the. proposen.

In the left figure below set t be the side of the triangle. Tpen
t=y* 2//3=1(1-y)+ 1//3, from which we obtain that t = 1/2 *
/3/2 = 1.336.

”

RACR RS A

™~

V

The. parnts fon n = 1 and n = 3 were also s0fved by MARK EVANS,
Lowisville, KY, VICTOR G. FESER, Mary Coffege, Bismaxch, ND, RICHARD
1 _ HESS, Rancho Pafos Vendes, CA, and the. PROPOSER. Only the
proposer found the. conrect figure for n=2. Fesen and Hess found the.
center figure above., giving a side Length of vZ = 1.414, whereas
Evan6 and Scott submitted the tight hand gigure, whose bide. Length is
1+ /373 = 1577

605. [Fall 1985] Proposed by Jack Garfunkel, Flushing, New
Yonk.
Given that x is an acute angle, find the value of x if

sin 4x sin X

2 Cos 3x = cos 2x t2sinaz.

Solution by Wade. H. Sherard, Fuwwman University, Greenv.ille,
South Carolina.

Recall that siny eos z = 1/2(sin (y - 2) T sin (y + 2)). Nw
clear the given equation of fractions to get

sin 4z cos 2x = 2 sin X cos 3z *t 4 sin x cos 2z cos 3z.
Next replace the products by sums, obtaining

%‘-(a-&n 2z + sin 6z)

= 2-%—(- sin &z * sin 4x) *+ 4 cos 2z - -lﬁ-(- sin 2¢ t sin 4z),
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sin 2z t sin 6x

= -2sin2: t 2sindx - 4sin 2z cos 2 T 4 sin 4z cos 2,
3sin 8% t sin 6x=2sin 4z - 2sin 4x + 4-312—(sin 2x + sin 6x),

3sin g t+ sin 6x = 2 sin 2z + 2 sin 6x,
sin 6x - sin 2x = 0,
sin (4x + 2z) - sin {4z = 2x) = 0,
cos 4x sin 2z = 0.

There is no acute angle x such that sin 2x = O, but eos 4x = 0 for
the acute angles x :% and X = ééL It is easy to check that these,

values satisfy the given equation.

ALso so0lved by FRANK P. BATTLES, Massachusetts Marnitime Academy,
Buzzards Bay, RUSSELL EULER, Noathwest Missouwrd State University,
Maryville, ROBERT C. GEBHARDT, Hopatcong, NJ, RICHARD I . HESS,

Rancho Palos Verdes, CA, JOHN M. HOWELL, Littlerock, CA, EMMANUEL
IMONITIE, Noathwest Missowdl Sate. Universdity, Maryville, RALPH KING,
Saint Bonaventure Univensity, NY, OXFORD RUNNING CLUB, University of
Mississdippd, Univensity, BOB PRIELIPP, University of Wisconsin-0shkosh,
JOHN HOWE SCOTT, St. Pauf, MN, ARTHUR H. SIMONSON, East Texas State
Univernsity at Texarkana, J. SUCK, Essen, Germany, VIS UPATISRINGA,
Humboldt State. University, Arcata, CA, and HAD NHIEN QUI VU, Punrdue
University, West Lagayette, IN. Partial sofutions were submitted by
MARK EVANS, Lowisvifle, KY, M. S. KLAMKIN, Univernsity of Alberta,
Edmonton, GEORGE W. RAINEY, California State Polytechnic University,
Pomona, and the. PROPOSER.  One. inconrect solution was neceived.

606. [Fall 1985] Proposed by Russell Eulen, Nonthwest Missouwri
State. Univeasity, Maryville.
Prove that

-1
pn {r2 - 2r cos [z - @—%l—)l] + 1} = r2p + 27 cos px + 1.

k=0

1. Solution by Charles R. Diminnie, Saint Bonaventure University,
Saint Bonaventure, New York.

Let 3 = r exp [i(x - w/p)1 and vy, = exp (2kn/p)s k=0, 1, ... ,

p - 1. Since the w, are the pth roots of unity, we have
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p-1
n (z-wk)=zp-1,
k=0
which implies that
p-1
nlz - wkiz = |4 - 1|2
k=0

from which the desired result follows.

II. Comment by M. S. Klamkin, University of ALberta, Edmonton.
The problem is a trivial variation of the proposer's problem 294
in the College Mathematics Journal, and either result is a
classical identity that appears in many English trigonometry books,
for example, Durell and Robson, Advanced Trigonometry, G. Bell &
Sons, London, 1953, p. 226.

Also sofved by WALTER BLUMBERG, Conal Springs, FL, DAVID INY,
Jenusalem, Tsnaef£, JOHN HOWE SCOTT, St. Pauf, MN, MICHIEL SMID,
Titburg, The Netherlands, J. SUCK, Essen, Gewmany, VIS UPATISRINGA,
Humboldt State University, Arcata, CA, and the. PROPOSER.

607. [Fall 1985] Proposed by Jack Garfunkel, Flushing, Nw
Yonk.

Triangles ABC and A'B'C' are right triangles with right angles
at ¢ and ¢'. Prove that if s/» > g'/r', then s/R < &8'/R’,
where g, 8’, n, »', R R’ are respectively the semiperimeters,
inradii, and circumradii of ABC, A’'B'C’.

Solution by M. S. Klamkin, Univernsity of ALbenta, Edmonton.

The given result can be generalized to hold for arbitrary
triangles 4BC and A'B'C' so long as C=C'. By using similar
triangles, we can assume without loss of generality that s = s'.
Then we wish to show that if »' > », then R> R. Since

2rg = gb sin¢ and e = 2R sin ¢, etc.,
we wish equivalently to show that
if a'b’ > ab, then e>etora +5b'>a+h.

Squaring the equation

e=1a%+b°-2abcosc=2s-a-b,
we obtain 4s(a + b) = 2ab(1 + cos ¢) + 482 and a similar expression

fora + b'. The desired implication now follows immediately.
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Also scfved by WALTER BLUMBERG, Coral Springs, FL, RICHARD 1.
HESS, Rancho Palos Verndes, CA DAVID INy, Jewsalem, Tsnael, RALPH

KING, St. Bonaventwre, NY, HENRY S. LIEBERMAN, %aban, MA BOB
PRIELIPP, University of Wisconsin-Oshkosh, JOHN HOME SCOTT, S%. T

Paul, MN, WADE H. SHERARD, Fumman University, Greenvifle, SC, ARTHUR
H. SIMONSON, East Texas State University at Texarkana, J. SUCK,
Essen, Gemmany, and the. PROPOSER.

608. [Fall 1985] Pnoposed by R S. Luthat, University of

Wisconsin, Waukesha.
Evaluate the following determinant:

1 1 1
n n+1 e n+k
(1) ( 1 ) ( 1 )
n+1 n+2 ntk+1
( 2 ) ( 2 ) ( P )
nt+k-1 nt+k o < n+8k-1
( % ) ! k ) ( k )

Amalgam o4 the. sofution by John M. Howelf, Littlerock,
Cakifornia, with that by Richard A Gibbs and Laszlo Szuees, Tout
Lewis Coflege, Durango, Colorado.

Using the relationships

n+a+l n+a _ Mt+a
( b ) - b ) = (b - 1)
and

PRIt mrar 1) - mra) =1,

we subtract -column k - 1 from column k, column k = 2 from column

k - 1, ==+y column 1 from column 2. Since the first row now is

1000 ... Q
expand the determinant D(n, k) by elements and minors of the first

row. It then reduces to
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1 1 T 1
A T 0 R %)
n+2 n+3 ntk+1
1 ( 2 ) ( 2 ) . ( 2 )
nt+k-1 n+k . n+2k-2
( k-1 ) (k-z) ( k-1 )

which is the given determinant with n replaced by » + 1 and of order

k instead of order K+ 1. That isD(n, k) =0t 1, k- 7). Nw

we can repeat the entire process k = 1 more times t o reduce the

determinant to the second order determinant D(n t k - 1, 1), that is,
1 1

(n;k) (n+i;+1) =m+k+1) - n+k)=1.

Also s0lved by MARK EVANS, Lowisville, KY, DAVID INY, Jerusalem,
Ianael, M. S. KLAMKIN, University of ALbenta, Edmonton, BOB PRIELIPP,
University of Wisconsin-0shkosh, JOHN HOME SCOTT, St. Pant, MN,
MICHIEL SMID, Tilburg, The. Netherlands, J. SUCK,  Essen, Germany, and
the. PROPOSER.  Suck peinted outthat this problem is sofved in Mwin,
A Treatise an the Theory of Determinants, Dovexr, 1960, p. 679.

609. [Fall 1985] Proposed by R C. Gebhardt, Parsippany,
New Jersey.

Determine whether there exist nonzero integersa b, ¢, and d
such that a2+ b2 = ¢2 and a® - b? = 42,

1. Sofution by Waltern Blumbeng, Coral Springs, Florida.

Assume that solutions exist. Then multiply the two equalities
together to get
at - b= (@%+ b2 @® - b2 = (ea)2
This is impossible since it is known that the equation X - y4 = z2

has no solutions in nonzero integers x, y, and z.

11 . Sofution by the. proposenr.

Construct the Fythagorean right triangle with legs 2a2b2 and

4 4
a -b'. Its hypotenuse will be a4+ b4and the area is

32809 - bY) = a%%a® + b9 - b7 = (abed)?
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Since Fermat proved that a right triangle with integer sides cannot have
an area that is a perfect square, there are no nonzero integers that
satisfy the given problem.

Also sofved by FRANK P. BATTLES, Massachusetts Maritime Academy,
Buzzands Bay, RUSSELL EULER, Noathwest Missouri State University,
Manyville, JOHN M. HOWELL, Litteerock, CA, DAVID INY, Jerusalem, Isnael,
M. S. KLAMKIN, University of ALberta, Edmontorn, MASSACHUSETTS GAMMA,
Bridgewater State College, JOHN HOWE SCOTT, St. Pant, MN, and KENNETH
M. WILKE, Topeka, KS. Massachusetts Gamma cited Sienpinski, Theory
of Fumbers, Hagner Publishing Co., MNew Yohk, 1964, pp. 52-54, and Wifke
neferned to Caumichael, Dicphantine Analysis, Dover Publications, New
Vork, 1959, pp. 14-17.

610. [Fall 1985] Proposed by Russefl Eulen, Nonthwest Missouni
State University, Maryville.

Find al |l twice-differentiable functions f such that the average
value of f on each closed subinterval of [a,b]l, a < b, is the mean of
f at the endpoints of the subinterval.

1. Solution by Ox§ord Running CRub, University of Mississippd,
University, Missisadfppd.

If £ is such a function, then for x € (a, bl we have

1 = 1
—I— [ f(t) dt = 5(f(x) + f(a))
a

T -a

or X 1
I fe) dt = E(.’l: - al(f(x) + flal)).
a

Differentiating yields
) =Ltz - aftte) + Hfl) +la)),

flx) = (xz - a)f'(x) + fla),
And another differentiation produces

fifz) = (x - a)f"(z) + f'(x),
that is,

(x - a)f!"(x) = 0.

Hence f"(x) = O on (@, »] and f is linear of (a, k1. By continuity f
is linear on [a, b], SO f(z) = mx + p for some constants m and p.

I1I. Sofution by David Iny, Jerusalem, Israel.

The condition that f be twice differentiable is unnecessary. ve”
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shall assume only that f is continuous on [a, b]. Choose ¢ and d so
thata < e <d<b Then
(e+d) /2
2 1 +d
75! fl) dz = 5 (fle) + 5591,
d- ¢ o) do = SipEE9) + pan,
(e+d)/2

g @ 1
s i fi(z) d’r—‘-g[f(C) + f(d)3.

Since f is continuous, we have that

(e+d) /2 d d
I flx) do + | flz) dz = f f(x) dx.
c (e+d) /2 e

It then follows that

etd, _ fle) + f(d)
fe——) = > .

Nw | et 3 be any fraction having a terminating base 2 expansion and
such that 0 < 2 < 1. By induction we have that

(1) flae + (1 - 3)d) = zf(e) + (1 = z)f(d).
By continuity this equation holds even when 3 does not have a
terminating base 2 representation. Since ¢ and d are arbitrary, then
equation (1) holds when ¢ and 4 are replaced by a and b. Nw we have
that f is linear since (1) is the equation of a line.

Also s0fved by FRANK P. BATTLES, Massachusetts Maritime Academy,
Buzzards Bay, MARK EVANS, Lowisville, KY, J. FOSTER, Weber State
College, Ogden, UT, RICHARD I. HESS, Rancho Palos Venrdes, CA, M. S.
KLAMKIN, University of, Albenta, Edmonton, BOB PRIELIPP, University of
Wisconkin-0shkosh, MICHIEL SMID, Tifburg, The Netherkands, and the.
PROPOSER. Battfes commented that this probLem i& Theohem 1 fnom
"Average Values and Linean Funetions” by David Dobbs, The College
Mathematics Journal, 7985, vof. 16, no. 2, pp. 132-135.

611. [Fall 1985] Pxoposed by Hao-Nhien Qui Vu, Puwridue
Univensity, West Lafayette, Indiana.
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Calculate the following integrals:

in2
af ,_:_dm_.
0e -1
b) fzd”-
0e -1

Solution by Vis Upatisrninga, Humbofdt State. University, Arcata,
Caligornia.

In Burington, Handbook of rathematical Tables and Formulas, 3rd
ed, Handbook Publishers, Sandusky, OH, 1949, p. 90, integrals 390 and

394 state 1 2
n x il
I J dr =
oz-x
and
1 2
1+x de 7,
J = fOZn(z :c):c_4
a) Let z=¢€X- 1. Then we have that
anmd’c ! n (2 + 1)
b = 5 === dz
0 &1 0 z(z + 1)
T tn (z+ 1) T in (z+ 1)
= f O EABTA g —-z_Jsz
0 2 0
1 1 _
= J_Zn(l_.i'_*’i)dz,._ I In (1-23) 4, _
2 1-2z 2
0 0
(in 2)%
2
2
(in 2)
S R
22 an2?_iE na)?
T4 T 6 ° 2 12 2
b) Here we use the substitution z = e ¥ sods = - exdx. Then
© « - 1 2
foEE Ly EE ey lzfz dz = -I =% .
0 & -1 0 d - g 0

ALso solved by FRANK P. BATTLES, Massachusetts Maritime Academy,
Buzzards Bay, WALTER BLUMBERG, Coral Springs, FL, RUSSELL EULER
(pant b onby), Nonthwest Missouri State University, Maryville, ED
GADE AND BOB PRIELIPP, University of, Wisconsin-Oshkosh, RICHARD 1.
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HESS, Rancho Palos Verdes, CA, DAVID INY, Jerusalem, Isnaef, M. S.
KLAMKIN, University of Aberta, Edmonton, MICHIEL SMID, T.ilburg, The.
Nethenbands, and the PROPOSER.

Eulen used Bernoulli numbens forn his sofution, Gade. and Prielipp
and Hess used the. gamma and zeta functions, whife most of the. othenrs
expanded one. or mote. 0§ the. integrands in powen senies and then
Anteghated texm by tUrn, most commonly awiiving at the. welf known
senies § (1/2%) = «%/s.

n=1

612. [Fall 1985] Proposed by David Iny, Renssalaer Polytechnic
Institute, Troy, New Yank.

A friend writes the letters A, B, ¢, D in some order unknown
to you. You may ask a fixed number of yes-no questions about the
permutation.

a) |If they are answered truthfully, show that less than half
a dozen questions will suffice to determine the permutation.

b) If there is at most one lie, then not over 10 questions
are needed.

e¢) |If there are at most two lies, show that not more than 15
questions are required.

*d) Are these limits the best possible?

. Solution by Richard |. Hess, Rancho Palos Verdes,
Califonnia.

a) Write down the 24 permutations and narrow down the
possibilities by the halving method. That is, ask i f the permutation
isin the top half of thelist? (Yes or No.) Reduce the list to
only those permutations still allowed. Then n questions will resolve

2" entries, so 5 questions are required to resolve the 24 < 25 items.

b, ¢, & d) Use the method of part (a) with a trick to get the
lies to come out correctly such as by asking, "If | wereto ask is
the true permutation in the top half of the list, what would your
answer have been?" This idea presumes that the answerer decides
before each question whether he will lie and then sticks to his
decision.
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1I. Sofution by the. proposer.

a) Write the numbers from 1 to 24 as five-digit binary numerals,
from 00000 to 11000, and assign each permutation to a numeral. Ask
the five questions, "Is the first digit 02 Is the second digit 02" = _
Ard so forth.

b) The binary numerals of part (a) differ from one another in
at least one place. To distinguish such numerals if one lie is allowed,
the binary numerals must differ one from another in at least three
places, such as 00000 and 00111. To obtain 24 such numerals, more
than five places are required. The following nine-digit code suffices.

000000000 000000111 000011010 000101100
000110001 001010100 001001011 010100010
011001000 110010000 101100003 100001001
011110110 010011111 001101111 100110111
101011101 110110100 110101011 111001110
111010011 111100101 111111000 111111111

Nw i f one digit is transmitted incorrectly, the answer will differ
from just one listed numeral by one digit. Thus one can always
decide which numeral, and hence which permutation, was intended.

c¢) Here we need numerals that differ from one another in five
or more places. | have found a set of fifteen-digit numerals that
suffice.

d) Clearly 4 digits (or questions) will not suffice for part
(a) since they can distinguish only 2 =16 items. Hence we have
found a minimal code for part (a). | do not know the answers for
parts (b) and (e¢). For part (b) there is an easy proof that a seven-
bit code is inadequate and the above nine-bit code leaves open the
question of whether eight bits are enough. Clearly this problem has
important applications in the transmission of data, such as pictures

from space rockets.

III. Parntial sofution by At. Terego, Malden, Massachusetts.

b) By programming a computer t 0 examine binary numerals in
strictly increasing order, | found the following list of nine-digit
numerals that differ from one another in at least 3 places. py
observing that list we see that 3 digits will distinguish 2 items, 5
digits 4 items, 6 digits 8 items, 7 digits 16 items, and 9 digits
suffice for 32 items.
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000000000 000000111 000011001 000011110
000101010 000101101 000110011 000110100
001001011 001001100 001010010 001010101
001100001 001100110 001111000 001111111
110000001 110000110 110011000 110011111
110101011 110101100 110110010 110110101
111001010 111001101 111010011 111010100
111100000 111100111 111111001 111111110

c) A similar program set to find binary numerals that differ
from one another in at least five places shows that 5 bits
distinguish 2 items, 8 bits 4 items, 10 bits 8 items, 11 bits 16
items, 13 bits 32 items, and 14 bits for probably 64 items. The
program was stopped after 41 items. The first 24 items are shown

here, proving that 13 digits are sufficient and probably necessary.

0000000000000 0000000011111 0000011100011
0000011111100 0001100100101 0001100111010
0001111000110 0001111011001 0010101001010
0010101010101 0010110101001 0010110110110
0011001101111 0011001110000 0011010001100
0011010010011 1100000100110 1100000111001
1100011000101 1100011011010 1101100000011
1101100011100 1101111100000 1101111111111

Also pantially solved by JOHN HOWE SCOTT, St. Pad, M
Late Solutions and Comments

Late sofutions were necelved §orn problems 587, 590, 591, 593,
594, 596, 598, and 599 grom J. Suck, Essen, Federal Republic of
Genmany, and forn problem 557 grom Chanfes W. Trigg, San Diego, CA.

"1 came in with Halley's Comet in 1835. 1t i s coming

again next year, and | expect to go out with it. It

will be the greatest disappointment of my lifeif I

don't go out with Halley’s Comet.” -- Mak Twain

"1 came i n with Halley's Comet in 1910. It is here

again in 1985 & 1986, and | do NOI expect to go out

with it. It will be the greatest disappointment of

my lifeif I do." -- John Howell

353

1986 NATIONAL PI MJ EPSILON MEETING

The National Meeting of the Pi Mu Epsilon Fraternity was held
at the University of California in Berkeley on August 3 through August 6.
Highlights included a reception for members and guests, a Council Lunch-

eon, the Annual Banquet and informal

student parties. The J. Sutherland

Frame Lecturer was Dr. Paul Halmos, Editor of The American Mathematical
Monthly and Professor of Mathematics at Santa Clara University. Professor
Halmos delighted the audience with a talk entitled "Problems 1 Cannot

Solve."

The program of student papers included:

Generation of Ore Million Prime
Nurmbers

A Proof of Primality Utilizing
Fermat’s Theorem

Solving Linear Diophantine
Equations Using Euclid's
Algorithm

Lame's Theorem and the Euclidean
Algorithm

A Nav Proof of a Lemma to the
Quadratic Reciprocity Len

A Representation of Squares in
Generalized Fibonacci Sequences

Class Numbers of Cyclotomic
Fields

Starting with Pascal ’s Triangle

$1000 Reward: San Loyd’s 14-15
Puzzle

Mathematical Models i n Population
Genetics

Entropy of the M/G/1 Queueing
System

witliam 0. Haas
Louisiana Delta
Southeastern Louisiana University

Sana 8. Fagan
Wisconsin Alpha
Marquetie University

Kathy KowelZt

Ohio Pelta

Miami University

Frederick Taverner

California Larbda

University of California, Davis
David Claussen

Ohio Delta

Miami University

Russ Shuttlewonth

Kansas Gama
Wichita State University

John E. Fischer, Jn.
Pennsylvania Alpha

Univernsity of Pennsylvonia
Extan Wheelen, 11

Virginia Beta

Vinginia Polytechnic Institute
Judith Borchlewicz-Symatlla

Minnesota Delta
St. John's University

Ridwan Tabbaa
Texas Nu

Univensity of, Houston - Downtown

Mitam W, Alken
Oklahoma A2pha
Univensity of OkLahoma



354

Estimating Age Specifics Fecundity
of Soft Shell Clans

An Objective Analysis of Rainfall
Data

The Absorbing Markov Process as
Applied to a Random Behavior
Mael

Linear-Time Three-Dimensional
Graphies with Hidden Line
Elimination

A Lok at the DoD's Trusted

Computer System Evaluation
Criteria

The Mathematical World of
Crypt Ology

Symbolic Computation

Does ¢ ekk.'/kk Converge O
Diverge?

Infinitesimals

A Method of Defining Infinitesi-
mals and Extending Functions

Beauty from Boredom - A View of
Fractal Geometry

Fractal Curves

The Dynamics of F(z) = 22 -1

The Equilic Quadrilateral

Counting Rectangles in a Multi-
reetangular Region

Graphs Uniquely Hamiltonian-
Connected from a Vertex

Anne. Kochendongfen
Connecticut Gamma
Fainfield Univernsity
Thomas A Kreitzberg
Pennsylvania Theta
Drexel University

Bridget Moore

Ohio Delta

Méami Unlvensity
Jefgrey S. Bomwdick
Delaware Atpha
Univernsity of Delaware

John Flaspohlen
Geongia Beta
Geongia Tnstitute of, Technology

Barwni Schoch
Connecticut Gama
Fainfield Univensity
Emil J. Volcheck
Defaware Atpha
Univensity of Delaware

Dawn ALisha Lott
Pennsylvania Beta
Bucknell University

Hunter Manshall
Texas Efa
Texas A § M Univensity

Kahen Sue BiLEings
Arkansas Beta
Hendnix Coflege

Jim Shea
Massachusetts Atpha
Woncesten Polytechnic Tnsiitute

Michael J. Cullen
Wisconsin Atpha
Marquette University

Connie. Lou Overzet
Massachusetts Epsilon
Boston University

Rob MWatling

Ohio Delta

Miami Univernsity
Steven D. Van Lieshout

Wisconsin Delta
St. Nonbert College

Carolyn R. Thomas
New York Epsilon
St. Lawnrence University

Approximating the Solution to
Ordinary Differential Equations
using Taylor Polynomial Ezpansions
Stability on a Finite Interval of
Time-Averaged Differential
Equations

Pressure Analysis in a Biomedical
Device

The Irag-Iran War

Locating Emergency Facilities in
Order t0 Minimize Response Time

The Effect of Einstein's Theory of
Relativity on Interstellar
Navigation

Modeling a Magnetic Oseillator

Applications of Helly's Theorem to
the Approximation of Functions by
Rolynomials

Using Residues to Evaluate Certain
Infinite Series

The Development of Outstanding
Secondary Mathematics Students
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Anthony Clacko

Ohio XL

Youngstown State University
Michael P. Pertrone

Massachusetts Alpha
Woncester Polytechnic Tnstitute- - --

Paula. A. Michaels
Ohio Delta

Miami University
Conchita Minon

Alabama Zeta
Alabama State. University

Craig J. Cote.

Ohio Delta

Miami Univensity
James G. Kinkiin
Ohio Omicron

Mount Union College

Bradley D. Paul
Ohio Delta

Miami Univernsity
Donna Vigeant
Massachusetts Delta
Univensity of Lowell

Mark Hassell Smith
Nonth Carolina Delta
East Carolina University

Biian A. Twitchell
Maine Atpha
University of Maine.

MJ EPSI LON MEETI NG

1t {4 time.to be. making plans to send an undergraduate defegate
on speaken gnom your Chapter, to the Annual Meeting of Pi Mu Epsilon

In Salt Lake City, August 5-8, 1987.

Each student who presents a paper

Wil neceive thavel support up to $500. Each defegate, up to $250.
Onty one Apeaker on defegate can. be funded from a single chapter, but

othens are encounaged to atiend.

Fon details, contact 0. Richard A.

Good, Secretary-Treasurer, Deparntment of Mathematics, University of

Maryland, College Pank, MD 20742.
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