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THE RUSSELL PARADOX 

b y  EJLVZA~ Snapped 
VaAtmovLth CoUege 

The. m5 
1. SuthvAia.nd Ftarne. 
Lectuke * 

Se.tLti.on 1. Be<oke 1901. I be l i eve  t h a t  it i s  c o r r e c t  t o  say 

t h a t  up t o  about t h e  t u r n  of t h e  l a s t  century,  mathematicians and 

philosophers d id  not  r e a l l y  d i s t r u s t  t h e  foundations of mathematics. 
, 

On t h e  contrary ,  t h e  p reva i l ing  a t t i t u d e  before  1901 was t h a t  

mathematics i s  t h e  paradigm of an e n t i r e l y  r igorous  sc ience  based 

on unassai lable  p r i n c i p l e s  of  l og ic .  

A s  a consequence of t h i s  overconfident a t t i t u d e ,  it was always 

bel ieved t h a t  con t rad ic t ions  could never occur i n  mathematics. 

Def ini t ion 1.1. A CONTRADICTION i n  mathematics is a mathematical 

statement which can be proved by r igorous  mathematical methods t o  be 

a t  t h e  same time t r u e  and f a l s e .  

Very probably, no reader  has ever  seen such a contradic t ion.  

However, one can very  wel l  imagine them. In  f a c t ,  almost any theorem 

i n  mathematics can be imagined t o  be a con t rad ic t ion .  Take f o r  

example t h e  Euclidean theorem t h a t  t h e  a r e a  o f  a t r i a n g l e  of height  

h and base b is  'shb. We a l l  know how t o  prove t h i s ,  bu t  now 

l e t  your imagination run wild and imagine t h a t  some day some wicked 

mathematician comes along who i s  ab le  t o  const ruct  a t r i a n g l e  of  

which he can prove r igorously  t h a t  i t s  a r e a  i s  not  equal  t o  Qhb. 

This e v i l  mathematician w i l l  then have shown t h a t  t h e  above theorem 

is a contradic t ion.  

By now, readers  may become impat ient  and say t h a t ,  al though they 

can of course imagine anything, they don ' t  have time t o  play s i l l y  

games l i k e  t h i s .  They know t h a t  once a mathematical theorem has  been 

* The J. Sutherland Frame Lecture is  named i n  honor of  P i  Mu Epsi lon 's  
n in th  pres ident  who served from 1957 - 1966. I n  1952, D r .  Frame 
i n i t i a t e d  t h e  concept and made poss ib l e  t h e  P i  Mu Epsilon s tudent  
p a r t i c i p a t i o n  and s tudent  paper se s s ions  a t  t h e  J o i n t  Summer Meetings 
of t h e  American Mathematical Socie ty  and t h e  Mathematical Association 
of  America. Since then,  he has  o f fe red  i n s i g h t s  and i n s p i r a t i o n  t o  
our s tudent  mathematicians a t  t h e  summer meetings. 



proved, no one w i l l  eve r  disprove it l a t e r  on. This is indeed 

p rec i se ly  t h e  a t t i t u d e  of  philosophers and mathematicians from 

before 1901. They were convinced t h a t  t h e  queen of  t h e  sc iences ,  

mathematics, would never be in fe s t ed  by contradic t ions .  

Sec-fcton 2. The. ye& 1 9 0 1 .  The present  century began i n  1901. 

That i s  t h e  year  Bertrand Russe l l  (1872-1970) shocked the  i n t e l l e c t u a l  

community by producing a con t rad ic t ion  i n  mathematics. This 

con t rad ic t ion  i s  c a l l e d  THE RUSSELL PARADOX and was a v e r i t a b l e  bomb 

thrown i n  t h e  midst of a l l  those  who th ink.  The af tershocks  of  t h i s  

bomb a r e  s t i l l  being f e l t  today and i n  o rde r  t o  u n d e r s t a n d t h i s  

i n t e l l e c t u a l  c r i s i s ,  we must f i r s t  s tudy t h e  paradox i t s e l f .  I w i l l  

use t h e  words "paradox" and " contradic t ion"  interchangeably.  

The reason why t h e  Russel l  paradox is s o  se r ious  f o r  mathematics 

is t h a t  it is a con t rad ic t ion  i n  s e t  theory and it was a l ready c l e a r  

i n  t h e  beginning of  t h e  present  century t h a t  a l l  of mathematics can 

be based on s e t  theory. Hence i f  con t rad ic t ions  occur i n  s e t  theory,  

one can expect them anywhere i n  mathematics, say  i n  seventh grade 

a r i thme t i c .  I begin by making a few remarks about s e t s .  

Section 3.  Se/t t h e . 0 ~ .  F i r s t  of a l l ,  t h e  words "set"  and 

" col lec t ion"  mean t h e  same th ing  and I w i l l  use these  words a l s o  

interchangeably.  The s e t  Y of  a l l  yellow flowers i n  t h e  world is 

a f i n i t e  s e t  s ince  t h e r e  a r e  only f i n i t e l y  many yellow flowers.  The 

s e t  Z of  a l l  i n t ege r s  0,  Â±I Â±2 Â±3 ... is an i n f i n i t e  s e t  s ince  

t h e r e  a r e  i n f i n i t e l y  many in t ege r s .  

Observe t h a t  a s e t  is  defined by speci fying what t h e  ob jec t s  a r e  

which make up t h a t  s e t .  These ob jec t s  a r e  c a l l e d  THE MEMBERS OF THE 

SET. The members of  t h e  s e t  Y a r e  t h e  yellow flowers and the  

members of  t h e  s e t  Z a r e  t h e  in t ege r s .  

In order  t o  understand t h e  Russe l l  paradox, one has t o  know what 

a normal s e t  is and one very l i g h t  theorem about normal s e t s .  

Def ini t ion 3.1. A s e t  S is NORMAL i f  S, considered a s  an  

o b j e c t ,  is one of t h e  ob jec t s  which make up S. I n  o the r  words, 

a s e t  is NORMAL i f  t h e  s e t  is  not one of i t s  own members. 

Is the  above s e t  Y normal? Can t h a t  huge c o l l e c t i o n  Y be 

i d e n t i f i e d  with,  say, t he  yellow rose  i n  my ki tchen window? Of 

course no t  and Y cannot be i d e n t i f i e d  with any o the r  s p e c i f i c  

yellow flower e i t h e r .  Clear ly ,  Y i s  a normal s e t .  S imilar ly ,  

t h e  i n f i n i t e  s e t  Z cannot be i d e n t i f i e d  with t h e  in t ege r  97 o r  any 

o t h e r  s p e c i f i c  i n t ege r  whence Z is a l s o  a normal s e t .  

Actually,  it t u r n s  out  t h a t  any down-to-earth s e t  is normal. A s  
t h e  Chinese philosopher s a i d :  When you see  a cow and a horse i n  a' 

- 
f i e l d ,  you s e e  t h r e e  th ings ,  a cow, a horse and the  s e t  cons i s t ing  of 

the  cow and t h e  horse.  The f a c t  t h a t  t he  philosopher saw t h r e e  th ings  

and not two shows t h a t  t h e  s e t  cons i s t ing  of  the  cow and the  horse is 

a normal s e t .  In o rde r  t o  understand t h e  Russe l l  paradox, it is not  

necessary t o  know t h a t  i n  phi losophical  th inking,  a s  contras ted  with 

mathematical th inking,  s e t s  may occur which a r e  not normal. However, 

f o r  t he  sake of completeness, l e t  me give  an example of a s e t  which 

is no t  normal. 

Hereto, t h ink  of the  s e t  C of a l l  concepts which make sense t o  

a person. This s e t  v a r i e s  of  course from person t o  person. We a l l  

know what is meant by beauty o r  cold ,  bu t  not  everyone knows what a 

hyperbola is. However, f o r  each person, t h e  s e t  C of  a l l  th ings  

t h a t  person knows about is a we l l  defined s e t .  But now it comes: The 

whole s e t  C i t s e l f  is a concept which makes good sense and may be 

entered i n t o  phi losophical  d iscuss ion.  For ins tance ,  a col lege  s tudent  

b e t t e r  make s u r e  t h a t  h i s  personal  s e t  C is l a r g e r  a t  graduation 

time than when he entered co l l ege ,  otherwise he won't graduate.  Hence 

t h e  s e t  C i s  a member of  i t s e l f  and is ,  consequently, not  a normal 

s e t .  

The theorem one has  t o  know i n  order  t o  understand t h e  Russel l  

Paradox is t h e  following. 

Theorem 3.1. Every s e t  is e i t h e r  normal o r  not  normal but not 

both a t  t h e  same time. 

Proof. To know a s e t  S is t o  know what t h e  ob jec t s  a r e  which 

make up t h a t  s e t .  E i the r  S is i t s e l f  one of these  ob jec t s  i n  which 

case S is not  normal, o r  S i s  not  one of  these  ob jec t s  i n  which 

case  S is normal. These two cases  a r e  c l e a r l y  exclusive.  

Section 4 .  The ~?UAA& pa~a.dox. Russel l  pe r son i f i e s  t h e  wicked 

mathematician of  Section 1 by producing a s e t  which shows t h a t  Theorem 

3.1 is a contradic t ion.  This s e t  is  simply t h e  s e t  N whose members , 

a r e  t h e  normal s e t s .  



Since we have been t o l d  what t h e  members of t h e  s e t  N a r e ,  t h i s  

s e t  is wel l  def ined.  For in s t ance ,  t h e  s e t  of a l l  yellow flowers i n  

t h e  world and a l s o  the  s e t  of  a l l  i n t ege r s  a r e  both members of N ,  

but  t h e  s e t  of  a l l  concepts which make sense  t o  a person is not  

(Sect ion 3) .  Of course,  something which is not  even a s e t ,  say a 

s q u i r r e l ,  c e r t a i n l y  is  not  a member of N. In  o rde r  t o  be a member 

of  N, an object  has t o  be a s e t  and moreover a normal s e t .  

According t o  Theorem 3.1, t h e  s e t  N i s  e i t h e r  normal o r  not 

normal but  not  both a t  t h e  same time. Let us f i n d  out  what t h e  

s i t u a t i o n  is. 

Suppose f i r s t  t h a t  t h e  s e t  N is normal. This means t h a t  N is 

no t  one of  its own members and s ince  t h e  members of N a r e  a l l  t h e  

normal s e t s ,  t h i s  simply says  t h a t  N is  no t  normal. But then N 

would be both normal and not  normal a t  t h e  same time and t h i s  is 

impossible by Theorem 3.1. Consequently, our  hypothesis i s  f a l s e  and 

we have proved t h a t  N is not  normal. There i s  no con t rad ic t ion  

here ,  we have simply given an everyday's proof t h a t  t h e  s e t  N is  

not  normal. 

But what does it mean t h a t  N is no t  normal? It means t h a t  N 

is a member of i t s e l f  and s i n c e  t h e  members of N a r e  t h e  normal s e t s ,  

it means t h a t  N is normal. Hence we have now proved t h a t  N is 

both normal and no t  normal a t  t h e  same time and t h i s  con t rad ic t s  

Theorem 3.1. We conclude t h a t  Theorem 3.1 is a contradiction!!! 

The con t rad ic to r iness  of  Theorem 3.1 is  c a l l e d  THE RUSSELL PARADOX. 

S e d o n  5 .  Reac,tion& t o  the RubhOU. p ~ d o x .  Anyone who sees  t h e  

Russel l  paradox f o r  t h e  f i r s t  t ime has  t h e  f e e l i n g  t h a t  some s i l l y  

e r r o r  must have been committed which causes t h e  con t rad ic t ion .  

Please  r eade r ,  s top  reading here  and t r y  t o  f i n d  t h a t  s i l l y  e r r o r  f o r  

your se l f .  Soon you w i l l  be overcome by f e e l i n g s  of f r u s t r a t i o n  and 

de fea t .  True, an e r r o r  was committed but  one o f  t h e  g r e a t e s t  

evasiveness.  I t  took Russe l l  and o t h e r  g r e a t  philosophers and 

mathematicians about n ine  years t o  so lve  t h i s  paradox. Look what t h e  

German philosopher- logician-mathematician Gottlob Frege (1848-1925) 

wrote t o  Russel l  a f t e r  Russel l  had w r i t t e n  t o  him abouth t h e  paradox 

[ l l ,  p. 3881 : 

"M^thmitic hm become .iubpLc/cou-i. " 

Frege was t h e  f i r s t  man t o  show t h a t  a r i thme t i c  can be based on s e t  - 

theory and hence was deeply aware of it t h a t  i f  con t rad ic t ions  occur 

i n  s e t  theory, they can a l s o  occur i n  ar i thmet ic .  Here is what 

Russel l  himself wrote 111, pp. 388-3891: - -- 
"At dvust, 1 hoped the. rnCLbfeA uxui tAA.vi.ai and could be e a d 2 j " -  -- 

c l e a t e d  up; but  w\in h o p e ~  w m e  bucceeded by bornatking ve-y neat  t o  

dupcwi. .  Thoughoivt 1903 and 1 9 0 4 ,  1 pumued U - o r - f i e - & P A  and 
made no phoghu i .  At W t ,  i n  the. &pm.ng 0 6  1 9 0 5 ,  a cU.66u.ent phobtem, 
which phoved i o h b t e ,  gave t h e  {,.LUX g!i.nUW& of, hope . .  . . I r  

By t h e  way, is  t h i s  not  b e a u t i f u l  English? No wonder, Russe l l  

received t h e  Nobel p r i z e  f o r  l i t e r a t u r e  i n  1950. 

SetitLon 6 .  The nhAoh -in. t h e  RubbOU. pa~.a.dox. Why was it s o  

d i f f i c u l t  t o  f i n d  t h e  e r r o r  which causes t h e  Russel l  paradox? The 

reason was t h a t  none of t h e  l o g i c  which was ava i l ab le  i n  1901 was 

v io l a t ed  i n  t h e  const ruct ion of t h e  paradox. The t o t a l l y  unexpected 

f a c t  t h e  paradox revealed was t h a t  t h i s  l o g i c  is i n s u f f i c i e n t  f o r  

exact reasoning. What l o g i c  was ava i l ab le  i n  1901? 

Modern l o g i c  s t a r t e d  i n  t h e  4 th  century BC when A r i s t o t l e  (384- 

322 BC) cod i f i ed  t h e  laws of log ic .  He d id  such a magnificent job 

t h a t  t h e  g r e a t  Immanuel Kant (1724-1804) wrote 21 cen tu r i e s  l a t e r  t h a t  

A r i s t o t e l i a n  l o g i c  is "to aVL appemance a cLobed and cornpi&te.d body 

o f ,  doeAUnel' [ l o ,  p. 171. Yet, i n  t h e  n ineteenth  century George 

Boole (1815-1864) and h i s  fo l lowers  made dec i s ive  improvements i n  

t h i s  logic .  The l o g i c  which was a v a i l a b l e  i n  1901 was, b a s i c a l l y ,  

A r i s t o t e l i a n  l o g i c  with Boolean improvements. I w i l l  r e f e r  t o  t h i s  

l o g i c  simply a s  A r i s t o t e l i a n  l o g i c .  

Those who searched f o r  t h e  e r r o r  i n  t h e  Russel l  paradox checked 

of course t h e  proof of  Theorem 3.1  and the  proof t h a t  t he  s e t  N ,  i n  

s p i t e  o f  t h i s  theorem, i s  both normal and not normal a t  t he  same time. 

However, every s t e p  i n  these  proofs  is  e x p l i c i t l y  permitted by some 

A r i s t o t e l i a n  law. A t  l a s t ,  a f t e r  years  of sweat and t e a r s ,  people 

began t o  r e a l i z e  t h a t  t h e r e  is never theless  one s t e p  i n  t h e  

const ruct ion of  t h e  Russel l  paradox which, although no A r i s t o t e l i a n  

law f o r b i d s  it, no such law permits it e i t h e r .  This is  t h e  s t e p  one 

makes when one accepts  t h e  s e t  N a s  a we l l  defined s e t  which may 

be t r e a t e d  a s  any o the r  mundane s e t  such a s  t h e  s e t  of yellow flowers 



o r  t h e  s e t  of i n t ege r s .  This s t e p  i s  not forbidden by any Ar i s to t e l i an  

law s ince  A r i s t o t e l i a n  l o g i c  does not  d iscuss  what t h e  proper ways of 

s e t  formation a re .  F ina l ly  then it was recognized t h a t ,  a s  soon a s  

the  s e t  N i s  accepted a s  an  everyday's s e t ,  t h e  f a t a l  Russe l l  

paradox is  unavoidable. In  s h o r t ,  t h e  co r rec t  conclusion was: 

The e r r o r  which causes t h e  Russel l  paradox is t h e  acceptance of -- 
t h e  s e t  N a s  an ordinary ,  common s e t .  -- 

. % d o n  7. SoLuvUon of, the. R u b ~ &  pahadox. Once the  e r r o r  i n  

t h e  Russel l  paradox had been found, what was one going t o  do about i t ?  

Since a l l  of  mathematics can be based on s e t  theory,  one c e r t a i n l y  

needs a s e t  theory which is f r e e  of contradic t ions .  Yet t h e  Russel l  

paradox showed t h a t  a t oo  f r e e  and easy manipulating of s e t s  can give  

r i s e  t o  con t rad ic t ions .  I t  became c l e a r  t h a t  t h e  only way ou t  was t o  

make s e t  theory axiomatic by means of  p rec i se  axioms which con t ro l  

s e t  formation. These axioms should on the  one hand be r e s t r i c t i v e  

enough t o  block t h e  Russel l  paradox, but on t h e  o the r  hand allow s t i l l  

enough freedom s o  t h a t  a l l  of mathematics can be based on them. In  

o the r  words, Ar i s to t e l i an  l o g i c  had t o  be complemented by an 

axiomatic s e t  theory whose axioms have these  two p rope r t i e s .  

Several  such axiomatic s e t  t heo r i e s  were developed during t h e  

f i r s t  decade of t h e  present  century.  These theo r i e s  a r e ,  bas i ca l ly ,  

a l l  equivalent ,  i n  t h e  sense  t h a t ,  al though t h e i r  axioms d i f f e r ,  

they give  r i s e  t o  t h e  same theorems. These s e t  t h e o r i e s  should be 

considered a s  equivalent  so lu t ions  of  t h e  Russel l  paradox and one may 

indeed say t h a t  t h e  paradox was solved by 1910. 

One such s e t  theory was developed by Russel l  himself i n  

cooperation with Alfred North Whitehead. Their theory was published 

i n  t h e  famous book Principia Mathematics of which t h e  f i r s t  e d i t i o n  

appeared i n  1910. This is why I s a i d  t h a t  it took about n ine  years  

t o  solve  t h e  paradox. Most mathematicians nowadays consider  t h e  s e t  

theory developed by t h e  mathematicians Zermelo and Fraenkel,  denoted 

ZF, t h e  most e f f i c i e n t  f o r  modern mathematics. I w i l l  t he re fo re  

d i scuss  i n  t h e  next s ec t ion  how ZF blocks t h e  Russel l  paradox. 

Sedan S.  How ZF b-Eock~ the. R u b ~ e l i  pmadox.  ZF has only t e n  

axioms and is  hence not  a l l  t h a t  complicated. ( I  suppress t h e  f a c t  

t h a t  s e v e r a l  of these  axioms a r e  a c t u a l l y  axiom schemas.) Let us 

study t h e  one axiom among these  t en  which a c t u a l l y  ba r s  t h e  R u s s e l l '  

paradox. I t  was formulated by Zermelo. 

What r e a l l y  is t h e  t roub le  with t h a t  s e t  N? Its members a r e  
t h e  normal s e t s  and " t o  be normal" is  a p e r f e c t l y  wel l  defined - - -- 
property of  s e t s .  So i n  what sense  then is  t h i s  s e t  d i f f e r e n t  from, - 
say,  t h e  s e t  of a l l  yellow flowers? 

Zermelo observed t h a t  no one can t a l k  about yellow flowers 

un le s s  one knows two th ings .  One must know what flowers a r e  and what 

it means f o r  flowers t o  be yellow. Only then can one t a l k  about t h e  

subset  of t h e  s e t  of  a l l  f lowers which happen t o  be yellow. 

Expressing t h i s  i n  p rec i se  language, he obtained h i s  " separat ion 

axiom" which says  t h a t  one may "separate" a subset  Y from a given - 
s e t  X by means of a proper ty  P. 

Separation axiom. ~f one is given a s e t  X and a proper ty  P ,  

one may form t h e  subset Y of X which c o n s i s t s  of  those  members 

of X which happen t o  have t h e  proper ty  P. 

I n  ZF one is not  allowed t o  form a s e t  i f  one is only given a 

proper ty  P without a l s o  being given a s e t  X t o  which the  ob jec t s  

which may o r  may not  have t h a t  proper ty  belong. Yet t h i s  is p rec i se ly  

what Russel l  d id  when he formed h i s  s e t  N.  He had i n  h i s  possession 

a property P,  namely t h e  property of  s e t s  t o  be normal, but he d i d  

not have i n  h i s  possession a s e t  X t o  which a l l  s e t s  belong. It 

is c l e a r  now why the  Russel l  paradox cannot be const ructed i n  ZF; it 

is blocked by the  separa t ion axiom. 

One should not  say t h a t  it i s  l o g i c a l l y  o r  phi losophical ly  

unsound t o  form t h e  "extension" of  a l l  t h ings  which have a given 

proper ty  P without a l s o  having i n  one 's  possession a s e t  X t o  

which a l l  t hese  th ings  belong. One should say ,  i n s t ead ,  t h a t  such 

an "extension" cannot be t r e a t e d  i n  t h e  same way a s  a s e t  which is 

formed by means of  t h e  two given da ta ,  t h e  s e t  X and t h e  proper ty  

P, which occur i n  t h e  sepa ra t ion  axiom. These "extensions" should 

hence not  be c a l l e d  "sets"  and i n  ZF and o the r  axiomatic s e t  t h e o r i e s  

they a r e  usua l ly  c a l l e d  CLASSES ( o r  proper c l a s s e s ) .  Philosophers 
sometimes r e f e r  t o  the  formation of c l a s s e s  by means of only a 

property a s  THE UNRESTRICTED COMPREHENSION A X I O M .  The c l a s s  N is 

formed by means of t h i s  u n r e s t r i c t e d  comprehension axiom. The 
Russel l  paradox is caused by consider ing N not a s  a c l a s s  but  a s  a 



s e t .  

Se.&on 9 .  The. a 6 t i ~ h o c . k i l  of, the.  Ra4Ae.U p m d o x .  We have seen 

t h a t  t h e  Russel l  paradox was solved by 1910 i n  view of t h e  appearance 

of s e v e r a l  equivalent ,  axiomatic s e t  t heo r i e s  whose axioms a l l  

blocked t h e  Russel l  paradox but  were s t i l l  powerful enough s o  t h a t  

a l l  of mathematics could be based on them. Could then i n  1910 t h e  

mathematical community s l i p  back i n t o  t h a t  overconfident a t t i t u d e  

t h a t  mathematics i s  of course such an enormously r igorous  sc ience  

t h a t  it is  absurd t o  suspect  f o r  even one moment t h a t  contradic t ions  

could ever  occur i n  i t ?  Nothing could be f a r t h e r  from t h e  t r u t h .  

Having been burned once by t h e  Russel l  paradox, mathematicians 

now asked themselves t h e  obvious question: How do we know t h a t  t hese  

axiomatic s e t  t h e o r i e s ,  which a r e  indeed f r e e  of  t h e  Russel l  paradox, 

a r e  f r e e  of a l l  con t rad ic t ions ,  a l s o  of con t rad ic t ions  which have 

nothing t o  do with t h e  Russel l  paradox? Equivalently:  How do we 

know t h a t  i f  we base our mathematics on t h e  axioms of  one of these  

s e t  t heo r i e s ,  t h e  r e s u l t i n g  axiomatic mathematics is  f r e e  of  

contradic t ions?  

The lamentable f a c t  is  t h a t  none of  these  s e t  t h e o r i e s  gave any 

answer whatsoever t o  t h i s  ques t ion.  Mathematicians and philosophers 

a l i k e  worked very  hard u n t i l  1931 t o  ob ta in  an answer, but  a l l  

e f f o r t s  were i n  va in .  Three schools of  mathematics, Logicism, 

In tui t ionism and Formalism a rose  from these  e f f o r t s  and although each 

of these  schools has  been very  b e n e f i c i a l  f o r  mathematics, they a l l  

f a i l e d  t o  g ive  us t h e  kind of  s o l i d  foundation f o r  our sc ience  from 

which we can conclude t h a t  c l a s s i c a l  mathematics is f r e e  of 

contradic t ions .  The worst blow came i n  1931 when Kurt Godel showed 

t h a t  it is  i n  p r i n c i p l e  impossible t o  show t h a t  mathematics is f r e e  

of con t rad ic t ions ,  us ing only t h e  r igorous  proof methods of  

mathematics [71. These unhappy developments have been described i n  

[I71 . 
Se.&on 10. The. pn.Â£~e.n ~tate. of, the.  phULo~ophq 06 mwthematich. 

When Godel showed i n  1931 t h a t  mathematics i s  t o o  weak a sc ience  t o  

prove i ts  own freedom of con t rad ic t ions ,  people threw up t h e i r  hands 

and turned away from t h e  philosophy of mathematics. Mathematical 

research has  progressed enormously s ince  1931, bu t  t h e  philosophy of  

mathematics is  s t i l l  i n  t h e  same unsa t i s f ac to ry  s t a t e  a s  it was i n  

1931. I f e e l  s t rong ly  however t h a t  t h e  time has  come t h a t  some of 

us should r e t u r n  t o  t h e  t r u e  philosophy o f  mathematics. The annotated 

references ,  below, w i l l  enable t h e  reader  t o  become acquainted w i t h -  
a -  - 

t h e  t r u e  philosophy of mathematics. 

Should one be convinced t h a t  mathematics is  f r e e  of con t rad ic t ions  

o r  should one doubt i t ?  I be l i eve  t h a t  one should not  doubt it. 

Should one t ake  the  freedom of  con t rad ic t ions  of  mathematics a s  

an a r t i c l e  of f a i t h  o r  should one t r y  t o  prove i t ?  I be l i eve  t h a t  

one should t r y  t o  prove it. i 

We know from Godel 's  work t h a t  mathematics, a lone,  cannot prove 

t h a t  mathematics is  f r e e  of  contradic t ions .  What f u r t h e r  ing red ien t  

then, bes ides  mathematics, is  necessary t o  g ive  us t h e  proof we a r e  

searching f o r ?  I be l i eve  t h a t  t h i s  e x t r a  ingredient  is  a c e r t a i n  

amount of  philosophy. 

Mathematicians a r e  a f r a i d  o f  philosophy and t h i s  is t h e  main 

obst ruct ion t o  progress  i n  t h e  philosophy o f  mathematics. I be l i eve  

t h a t  t h e  p r i n c i p a l  problem i n  t h e  philosophy of  mathematics today is 

t o  f i n d  t h e  r i g h t  kind of  philosophy which, together  wi th  mathematical 

l o g i c ,  w i l l  g ive  us t h e  proof t h a t  c l a s s i c a l  mathematics is f r e e  of  

contradic t ions .  This is a b e a u t i f u l  problem bu t  inc red ib ly  hard and 

E'rege, Russel l ,  Peano, L. E. J.  Brouwer, H i lbe r t  and sco res  o f  o the r  

g r e a t  philosophers and mathematicians have a l l  f a i l e d  t o  so lve  it. 

There is no doubt t h a t  only those  among us have even a ghost of a 

chance of  succeeding i n  t h i s  t e r r i b l y  d i f f i c u l t  f i e l d  who a r e  

thoroughly experienced wi th  mathematical r e sea rch  and thoroughly 

t r a i n e d  i n  philosophy. 
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SOME FAMILIES OF CONVERGENT SERIES WITH SUMS 

by H, M. SU.vabtava 
UvuMmity of, Vti.ct0U.a 

Motivated by t h e  f a c t  t h a t ,  i n  a s tandard ca l cu lus  course,  

l i t t l e  t ime is a c t u a l l y  devoted t o  t h e  determination of  t h e  sum of  a 

convergent i n f i n i t e  s e r i e s  (with t h e  poss ib l e  exception of  some simple 

geometric and te lescoping s e r i e s ) ,  Kahan [2] has  r ecen t ly  evaluated 

t h e  sum: 

IffitlJ 
f o r  every p o s i t i v e  in t ege r  m. Se t t i ng  k = n + 1, and r ep lac ing  m by 

m - 1, we can e a s i l y  r e w r i t e  ( 1  ) i n  i t s  equivalent form: 

where (following Kahan [ 21 ) m is an in t ege r  2 2. 

Formula ( 2 )  happens t o  be one of  numerous i n t e r e s t i n g  (and 

widely u s e f u l )  consequences of a well-known r e s u l t  i n  t h e  theory of 

t h e  hypergeometric s e r i e s  

which, f o r  a = 1 and b = c (o r ,  a l t e r n a t i v e l y ,  f o r  a = C and b = 11, 

reduces immediately t o  t h e  f a m i l i a r  geometric s e r i e s .  I n  f a c t .  in h i s  

1812 t h e s i s  [ I ] ,  Car l  F r i ed r i ch  Gauss (1777-1855) proved h i s  famous 

summation theorem: 

where, a s  usual ,  T(z) denotes t h e  Gamma funct ion s a t i s f y i n g  t h e  

r e l a t ionsh ips  : 

and Re(z) abbrevia tes  t h e  r e a l  p a r t  of t h e  (complex) number z (see  

a l s o  Sr ivas tava  and Karlsson [ 3 ,  pp. 18-191 ).  

From t h e  d e f i n i t i o n  

f o r  an a r b i t r a r y  ( r e a l  o r  complex) A, it follows r e a d i l y  t h a t  -: -- # .  

~. 

where n is a nonnegative in t ege r .  Making use of (71, it is easy t o  

s t a t e  t h e  Gaussian summation theorem ( 4 )  i n  t h e  (more r e l evan t )  form: 

L n  ̂ 
where ( a s  before)  a, b, c a r e  complex numbers such t h a t  Re(c-a-b) > 0, 

provided t h a t  no zeros  appear i n  t h e  denominator. 

For a = b = 1 and c = u + 1, ( 8 )  evident ly  y i e l d s  t h e  sum: 

k J  
where we have used t h e  f i r s t  r e l a t i o n s h i p  i n  (5) .  Formula ( 9 )  

obviously extends Kahan's r e s u l t  ( 2 )  t o  hold t r u e  f o r  a ( s u i t a b l y  

r e s t r i c t e d )  complex number rn. 

In its s p e c i a l  case  when a = + 1, b = 1, and c = p + 1, ( 8 )  

reduces immediately t o  t h e  sum: 

Formula (10) provides a gene ra l i za t ion  of  (91, and hence a l s o  of Kahan's 

r e s u l t  ( 2 ) ;  indeed, (10)  with A = 0 is p rec i se ly  ( 9 ) .  

Yet another  i n t e r e s t i n g  consequence of  the  Gaussian summation 

theorem (8 )  would occur when b = c. Since T(z) becomes i n f i n i t e  when 

z approaches t h e  o r i g i n ,  we thus  have 



(11) n=O ; m . 0 ,  Re(a) - 0 ,  

which inc iden ta l ly  is  der ivable  a l s o  from (10) with A = a - 1 and !J = 0. 

Now it follows from t h e  d e f i n i t i o n  (6 )  t h a t  [see  a l s o  (711 

(12) ( 4 ) n  (-) 
f o r  every nonnegative in t ege r  n .  Consequently, (11) with a = -1 i s  

t h e  well-known r e s u l t :  

which is an immediate consequence of the  binomial expansion. 

F ina l ly ,  we s e t  a = - A ,  b = -u, and c = I i n  t h e  Gaussian 

summation theorem ( a ) ,  and apply t h e  r e l a t ionsh ip  (12).  We thus  

obta in  t h e  following gene ra l i za t ion  of  (13) :  

which would obviously y i e l d  (13) i n  t h e  s p e c i a l  case when u = -1. In  

p a r t i c u l a r ,  f o r  

u = N (N = 0,1,2, ... ), 
t h i s  l a s t  formula (14) r e a d i l y  assumes t h e  e legant  form: 

- 
which holds t r u e  f o r  a l l  ( r e a l  o r  complex) values of A .  Formula (15) 

is a r a t h e r  s t ra ightforward consequence of the  ce lebra ted Vandemonde 

Ccnvolution i n  cornbinatorial a n a l y s i s  (of., e.g., [3,  p. 19, Equation 

( 2 2 ) l ) .  

REFERENCES 

1. Gauss, C. F . ,  Disquisitiones generates c i rca  seriem in f in i tam ..., 
Gottineen t h e s i s ,  1812, Comment. Soc. Reg. Sci .  Got t ingensis  
Recent. 2(1813). [Reprinted i n  Carl Friedri-ek Gauss Werke, 12 
vols . ,  vol.  3 ,  pp. 123-162 ( s e e  a l s o  pp. 207-2301, GBttingen, 
1870-1933.1 

2. Kahan, S., A Family o f  Convergent Series  With Sums, Pi  Mu Epsilon 
Journal ,  7(1984), 655-666. 

3. Sr ivas tava ,  H.  M . ,  and Karlsson, P. W . ,  Multiple Gaussian 
Hypergeometrie Ser ies ,  John Wiley and Sons, NY, 1985. 

LATTICES OF PERIODIC FUNCTIONS 

by ICmk WeZiefi* 
Hope. CoU.e.ge. 

- 
Purpose: To prove t h a t  t h e  pe r iod ic  L equivalence c l a s ses  f i r m  a 

l a t t i c e .  

Introduction: This paper was motivated by a problem which 

appeared i n  t h e  advanced problem sec t ion  o f  t h e  August-September, 1983 

i s sue  of t he  American Mathematical Monthly [21. 

In  the  so lu t ion  t o  t h i s  problem, it was shown t h a t  t h e  s e t  of  

bounded and pe r iod ic  funct ions  do no t ,  i n  general ,  form a l a t t i c e .  

On the  o the r  hand, it was proven t h a t  t he  pe r iod ic  and continuous 

funct ions  do form a l a t t i c e .  In  t h i s  paper,  t h e  r e s u l t s  of  t h e  

per iodic  and continuous case a r e  general ized t o  include t h e  pe r iod ic  

elements of Lm. 

According t o  Litt lewood's t h r e e  p r i n c i p l e s ,  which can be found i n  

[4 ] ,  t h e  elements of L can be c l a s s i f i e d  a s  being both ' nea r ly '  

bounded and ' nea r ly f  continuous. However, it is not  uncommon f o r  one 

who is beginning t h e  study of  the  space L t o  i d e n t i f y  L t oo  c lose ly  

with t h e  s e t  of a l l  bounded func t ions .  In  t h i s  paper,  we make use of 

t he  f a c t  t h a t  every bounded measurable funct ion is  nea r ly  continuous. 

By proving t h a t  t h e  L equivalence c l a s s e s ,  l i k e  t h e  per iodic  and 

continuous funct ions ,  form a l a t t i c e ,  we have an example of  an ins tance  

i n  which L behaves more l i k e  t h e  s e t  of continuous funct ions .  

Preliminary Def ini t ions:  We assume t h e  r eade r  i s  f a m i l i a r  with 

t h e  fundamental concepts of measure of t h e  r e a l  l i n e .  A d iscuss ion 

of these  concepts can be found i n  Chapters 7 and 11 of Goldberg [3 ] .  

Def. Let X be a s e t  and R a r e l a t i o n  on X. R is a p a r t i a l  order  - 
i f  

(i) xRx f o r  a l l  x e X 

(i-i) xRy and yRx imply x = y 

(W xRy and yRz imply XRZ. 

*This research was supported by a grant  from t h e  She l l  Undergraduate 
Research Program. 



Def. A p a r t i a l l y  ordered s e t  X is c a l l e d  a l a t t i c e  i f  x v y and - 
X A y e x i s t  f o r  every p a i r  x,  y e X. 

Note: We w i l l  denote t h e  supremum (infinum) of two funct ions  i n  - 
a p a r t i a l l y  ordered s e t  by V ( A )  and t h e  pointwise supremum (infinurn) 

by sup( in f ) .  

Def. The space L cons i s t s  of  a l l  t h e  equivalence c l a s s e s  of - 
measurable real- valued funct ions  which a r e  almost everywhere bounded. 

Two funct ions  a r e  elements of t h e  same equivalence c l a s s  i f  they a r e  

equal almost everywhere. When f denotes a funct ion,  we use t h e  

symbol [ f ]  t o  r ep resen t  t h e  Lm equivalence c l a s s  of f .  

Discussion: A s  was a l ready mentioned, t h e  pe r iod ic  and bounded 

funct ions  do n o t ,  i n  general ,  form a l a t t i c e .  For completeness, t h e  

example from t h e  so lu t ion  i n  121 is included. 

I f  S is a subset of R ,  l e t  x ( S )  be t h e  c h a r a c t e r i s t i c  funct ion 

of 5. Let Z be t h e  s e t  of i n t ege r s .  We consider  the  funct ions  

f1  = x w ,  f 2  = x ( Z - V S ) ,  f ^  = x ( Z  + Z-1/2), 

f4  = x f f Z  + Z . 6 )  U rz.V2 + Z.V3) ) ,  f 5  = x ( Z  U z.VS) . 
Then, f l ,  f 2 ,  f ,  f a r e  pe r iod ic  with per iods  1, 6, 1,  6, 

r e spec t ive ly ,  and f is not  pe r iod ic .  I f  f v f 2  e x i s t s ,  then 5 1 

f = s u p ( f 1 , f 2 )  5 f1  v f 2  5 i . n f f f y f ^  = f s ,  

i.e., f 1  v f = f i s  no t  pe r iod ic ,  and t h i s  is a contradictimon. 
2 5 

To prove t h a t  t h e  elements of L form a l a t t i c e ,  many of  t h e  

elements of t h e  proof which appears i n  t h e  so lu t ion  i n  121 a r e  used i n  

proving t h a t  t he  pe r iod ic  L c l a s s e s  form a l a t t i c e .  A s  an a i d  i n  t h e  

explanation of how t h a t  proof w i l l  be used, it is included below. 

To show t h a t  t h e  funct ions  which a r e  pe r iod ic  and continuous do 

form a l a t t i c e ,  it is obviously enough t o  prove t h a t  any two such 

funct ions  have a supremum. Let f ,  f be continuous pe r iod ic  funct ions  

with per iods  A and B ,  r e spec t ive ly .  I f  A/B is r a t i o n a l ,  A/B = m/n 

say, then f v f = s u p ( f  , f  ) has  nA = mB a s  a per iod.  Suppose A/B 
1 2  1 2  

is not  r a t i o n a l .  Let M. = max f .  f o r  i, = 1,  2 ( M .  e x i s t s  because fi 
2 

is pe r iod ic  and continuous).  We may assume M < M Let g = sup fM1, f2 ) .  
1 - 2' 

We show t h a t  g (continuous and pe r iod ic  of per iod B )  i s  f1 v f y .  

Let h be any continuous, pe r iod ic  funct ion of per iod C ,  such t h a t  

h 2, f,, f2 .  Then e i t h e r  A/C o r  B/C is not  r a t i o n a l .  I f  A/C is  not  

r a t i o n a l  and f f x  ) = MI, then,  f o r  a l l  i n t ege r s  m, n, we have 
1 0  

The s e t  { x o  + nA + mc\n,m e Z] is dense i n  R and h is continuous, - 

therefore  h >_ Ml and h 2 g. Similar ly ,  i f  B/C is  not  r a t i o n a l ,  then 

h '>. M2 and the re fo re  h? supfM1,f2)  = g. This proves t h a t  g = f1 v f2 .  

In  t h i s  paper, we w i l l  consider  sepa ra t e ly  t h e  cases  i n  which t h e  

r a t i o  o f  per iods  is r a t i o n a l  o r  i r r a t i o n a l .  In  t h e  case  of  r a t i o n a l  

per iods ,  we w i l l ,  a s  i n  [21,  f i n d  a common per iod and def ine  a 

pointwise sup and i n f .  In t h e  case  of  i r r a t i o n a l  per iods ,  we w i l l  

show t h a t m [ R -  U f d + T ) ] = O ,  f o r d  e { x  + n A + m C \ n , m  e Z }  and 
0 

T = { x i  f1  f x )  2 MI - â } where ? i s  a p o s i t i v e  a r b i t r a r y  r e a l  number. 

From t h i s ,  we w i l l  eventual ly  be ab le  t o  conclude t h a t  h ? g a.e.  . 
Preliminary Results:  This sec t ion  conta ins  a lemma and two 

proposi t ions  which w i l l  serve  a s  t o o l s  i n  t h e  development of more 

s p e c i f i c  concepts.  

The first proposi t ion,  which is an elementary vers ion of t h e  

Lebesgue Density Theorem, is  needed i n  t h e  proof of  t h e  lemma which 

follows. 

Proposi t ion 1. Let m f X )  > 0 .  Then, given 6 e R ,  0 c 6 < 1, t h e r e  

e x i s t s  (a ,b )  c R such t h a t  mfa,'b) < 1 and mfX fl f a , b ) )  =- emfa,b). 

Pkoofd Let ' s  assume m(X)  < -. I f  m(X)  = -, then t h e r e  e x i s t s  

c R such t h a t  0 c m(X fl (e, d ) )  < - . Replace X with (X fl ( c , d ) ) .  

Choose ? = ( 1  - $)m(X) .  

Then, t h e r e  e x i s t s  an  open s e t  G such t h a t  G 3 X and mfG)  - m f X )  

< â ‚  From t h e  f a c t  t h a t  mfG)  - MfX) < f ,  we can wr i t e  

m(X) > 1 - 2 - 
mfG)  mfG)  ' 

from which it fol lows t h a t  m f X )  > BrnfG). 

Since G is  an open s e t  i n  R ,  we can wr i t e  

G = u In, 

where each I i s  an  open i n t e r v a l  and 

I. fl I. = 0 f o r  every i.,j such t h a t  i, # j .  
2 3 



Since m ( X )  > Gmfff), t h e r e  e x i s t s  I ,  E { I }  such t h a t  

m ( x  n I,) > ma,). 

I f  m(Ik)  < 1, t h e  proof is  complete. 

I f  m(I ) > 1, then p a r t i t i o n  I ,  i n t o  sub in te rva l s ,  each of  whose k - 
length  i s  l e s s  than 1. Since m ( X  D I,) > BvI(I k ), then it is t r u e  f o r  

a t  l e a s t  one of t h e  sub in te rva l s ,  say  (a,b), t h a t  m(X 0 (a,b) 1 > 

6m(a,b). 

The following lemma is  a v i t a l  t o o l  i n  helping us t o  prove t h a t  

t he  pe r iod ic  elements of L form a l a t t i c e .  

Lemma. I f  m ( X )  > 0 and D is a dense s e t  i n  R ,  then 

Pl-006. From t h e  previous proposi t ion,  m ( X )  > 0 implies t h a t  given 

E E R such t h a t  0 < 6 < 1, t h e r e  e x i s t s  (a,b) c R such t h a t  m(a,b) < 1 

and m(X n (a,b)) > m(a,b) .  Consider t h e  c losed i n t e r v a l  [n,n+11. 

Since t h i s  s e t  is bounded, it can be covered by a f i n i t e  number, say 

i f ,  of (a + (a,b)) ,  where a E D. Choose a c o l l e c t i o n  DE = {dl,dy . . . , 
dN} where DE c D s o  t h a t  

N 
[n,n+11 c U (d, + (a,b)) .  

1 

L e t ' s  assume t h a t  DE is  chosen s o  t h a t  

( i )  dl < d2 < . . . < dif 

( i i )  (--,n) n [a,+ (a,b)] = 0 f o r i = 2 ,  3, 

( i i i )  (n+l,-) 0 [ d .  + (a,b)] = 0  f o r  i = 1 ,  2, . 
( i v )  no point  i n  [n,n+l] is contained i n  more than two 

(d, + (a, b )  ) . 
Then, we can say t h a t  

i f-  1 
+ I m[(d, + (a,b)l 1-1 (aiil + (a,b))l 

1 

I f  (1) (--,n) 0 (d, + a,b)) # 0  f o r  some i =  2, 3, ..., n 

( 2 )  (n+l,m) n ( d .  + (a,b)) # 0 f o r  some Â¥ = 1, 2, ... , n-1 

- 
(3 the re  is x E [n,n+11 such t h a t  x is contained i n  t h r e e  o r  - - - 

m m 

more of t h e  i n t e r v a l s  which cover [n,n+l], 

then do the  following: 

In  (11, designate t h e  right-most i n t e r v a l  which conta ins  n a s  (0 + (a,b)) ,  

Remove from t h e  s e t  DE a l l  d .  such t h a t  d .  < 0 .  

In  (21, des ignate  the  left-most i n t e r v a l  which conta ins  the  point in  + 1 

a s  (g + (a,b)). Remove from t h e  s e t  DE a l l  d .  such t h a t  d .  > g. 

In  (31, des ignate  t h e  left-most i n t e r v a l  which conta ins  x a s  (L + (a,b)) m 
and t h e  right-most i n t e r v a l  which conta ins  x a s  (r + (a,b)l .  m 
*11 (ai + (a,b)) which l i e  between (L + (a,b)) and ( p  + (a,b)) 

a r e  subse t s  of (L + (a, b l )  U (r + (a,b)J. Since (L + (a,b)) n 
(r + (a,b)) # 0, t h e  d, such t h a t  L < di < r can be removed 

from t h e  s e t  DE. Once removed, x is contained i n  no more m 

than two (d, + (a,b)) .  I f  we follow t h e  same procedure f o r  a l l  

such x ,  t h e  above inequa l i ty  w i l l  s t i l l  hold. 

L e t ' s  again consider  t h e  f a c t  t h a t  

m(X 0 (a,b)) > 6m!a,b). 
From t h i s ,  we can conclude t h a t  

m(a,b) - m(X n (a,b)) < (1 - 6)m(a,b). 
Since ( X  n (a,b)) c (a, b ) ,  we can say 

m[(a,b) - ( X  f l  (a,b))l = rn(a,b) - m ( X  n (a,b)) .  

Hence, f o r  di E DE and N, a p o s i t i v e  i n t e g e r ,  we have t h a t  

Since 



and 

we can wr i t e  

Since N 
[n,n+l]  c U Cd. + (a,b)-l 

1 

it follows t h a t  
N 

rn[[n,n+l]  - U fdi + X) l  < 41'1 - 6 ) .  
1 

Taking a l l  a E D, we can conclude t h a t  

m[[n ,n+l l  - U ( a  + X ) ]  < 4 ( 1  - 5 ) .  
D 

Since f3 i s  a r b i t r a r y ,  it follows t h a t  

mt[n,n+ll  - U ( a  + X) l  = 0 ,  
D 

which implies 

The following proposi t ion w i l l  be of use t o  us  i n  t h e  next sect ion.  

Proposi t ion 2. Let P c R such t h a t  q > 0 f o r  every q E P and 

i n f ( P )  = 0 .  Then, i f  PD = {nq\n E 2, q e P} ,  then PD is dense i n  R. 

P A O O ~ .  Let y E R. Given 6 > 0 ,  show t h a t  t h e r e  e x i s t s  p E PD such 

t h a t  \ p  - y \ < 6 .  

Since <nf (P)  = 0, we can choose p E P such t h a t  f i  < 6. 

Choose m E 2 s o  t h a t  

n@ > ,y, (m- l )p  5 y .  

Therefore,  

y E [ fm- I ) ; ,  61 . 

.. 
Since p < â ‚  it fol lows t h a t  

Therefore,  14 - y \  < 6 .  Since mi e PD, it follows t h a t  t h e r e  e x i s t s  - -  - 
a p  E PD, such t h a t  \ p  - y\ < â‚ 

Select ion of a Representative Period: Before we can discuss  

whether t h e  r a t i o  between t h e  per iods  of two elements of  L is 

r a t i o n a l  o r  i r r a t i o n a l ,  we must f i r s t  def ine  t h e  meaning o f  a pe r iod ic  

equivalence c l a s s  and e s t a b l i s h  what t h e  r ep resen ta t ive  per iod of 

such a c l a s s  w i l l  be. 

Def' [ f l  i s  pe r iod ic  if t h e r e  e x i s t s  p E R such t h a t  
f f x  + p )  = f f x )  a.e. . - 

Def. Let [ f ]  E L be per iodic .  Let P be t h e  s e t  of a l l  poss ib l e  - 
per iods  f o r  pe r iod ic  funct ions  i n  [ f ] .  Then, -IT = i n f f P )  is t h e  

per iod f o r  [ f l  . 
To give  j u s t i f i c a t i o n  t o  t h i s  d e f i n i t i o n ,  we w i l l  provide t h e  following 

proposi t ion.  

Proposi t ion 3 .  

( i )  i f > O i m p l i e s v  E P 

( i i )  IT = 0 implies t h e r e  e x i s t s  k E I f ]  such t h a t  k is 

constant.  Before proving ( i ) ,  we no te  t h a t  i f  p1,p2 E P, then f o r  

n13n2 E 2, nlPl + n 2 p  E P. 

p E P implies t h e r e  e x i s t s  g1 E [ f l  such t h a t  1 

g ( x  + n l p )  = g f x )  f o r  every x. 
1 1 

p 2 E P implies t h e r e  e x i s t s  g 2  E [ f l  such t h a t  

g2 ( x  + n^p,) = g2 ( x )  f o r  every x. 

Now, 

Hence, 

g ( x  + n p + n2p2) = g l f x )  a.e. 1 1 1  

which implies t h a t  

nlpl  + "$2 E p- 



Pk006 0 6  [ L ) .  Suppose IT ,E! P. 

TT = i n f ( P )  implies t h a t  given 6 > 0 we can f i n d  y E P  such t h a t  

y - -IT < 6.  Take 6 5 ir. In add i t ion ,  we can f i n d  q E P  such t h a t  

IT < q < y .  Since y - I T <  6 and II < q < y, y - q < C .  Since y, q E P, 

then we have from t h e  note  above t h a t  y - q E P.  Since 6 < I T ,  we 

have t h a t  y - q < IT,  which is  a contradic t ion.  Hence, our supposi t ion 

is f a l s e .  Therefore,  i f  IT > 0, then II E P. 

The following d e f i n i t i o n s  w i l l  be used i n  the  proof of ( i i ) .  

Def. Let f  E [ f ]  E Lm. - 
M i s  t h e  e s s e n t i a l  &) i f  f o r  every â > 0 

r n { x \ f ( x )  > M  + â ‚  = 0 

r n { x \ f f x )  > M  - 61 > 0. 

Def. Let f  E [ f  1 E Lm. - 
rn is  t h e  e s s e n t i a l  i n f ( f )  i f  f o r  every 6 > 0 

r n { x \ f ( x )  ~ r n  - 6 1 = 0 

m { x \ f ( x )  5 m + 6 1 > 0. 

Pk006 06 ( i i l .  Let g  E [ f l .  

Between t h e  e s s e n t i a l  s u p ( g )  and e s s e n t i a l  Â ¥ i n f ( g )  t h e r e  e x i s t s  c such 

t h a t  i f  we l e t  

E = { x \ g ( x )  2 a } ,  then m(E)  > 0 

and 

F = { x \ g ( x )  ̂ _ a} ,  then m ( F }  > 0. 

Let hi E [ f l ,  pi E P, and rn . E Z  such t h a t  h . ( x  + mipi) = hi ( x )  f o r  

every x  and i = 1,2,3,. . . . Choose t h e  h .  e [ f l  s o  t h a t  p1 > p2 > p3 

. . L e t P P = { a . \ a . = r n p  r n i e Z ,  p i e P ,  i = 1 , 2 , 3  ,... 1. 
2 I ii' 

Since g =  h . a . e .  f o r  every i =  1,2,3 ,..., g >_ a a.e.  o n a  + E  f o r  i 

every a .  E PP, which impl ies  t h a t  g  > e a.e.  on 

Also, g  5 c a.e.  o n a .  + F f o r  every a E PP which implies t h a t  g  <_ c i 

Since p1 > p  > p  > . . . , it follows t h a t  i n f  (PP) = 0, which impl ies  

from ( i )  of Proposi t ion 3 ,  t h a t  PP is dense i n  R.  

Since m(E) > 0 and m(F) > 0 , it fol lows from t h e  lemma i n  t h e  previous 

sec t ion  t h a t  

and 

t h a t  g  = c a .e . .  Thus, t h e r e  e x i s t s  k  E [ f ]  such t h a t  k  is  constant.  

F ina l  R e s u z :  Before proving t h a t  t h e  Lm equivalence c l a s s e s  

form a l a t t i c e ,  we def ine  5 order ing and V. 

Def. Let [ f l ,  [ g l  E Lm - 
[ f l  5 [ g l  if f(t-1 <_ g f t )  a.e. . 

Def. Let [ f  I ,  [ g ]  E L such t h a t  [fl, [ g l  a r e  per iodic .  - 
Then [ f l  v [ g l  = [ s l  f o r  some [ 8 ]  E L i f  t h e r e  e x i s t s  q E [ s l  such 

t h a t  q is per iodic ,  q > f ,  g  a .e .  f o r  f  E [ , f l  and g  E [ g l  , and i f  f o r  

any per iodic  funct ion h  such t h a t  h 2 f ,  g  a.e. ,  h  >_ q a .e . .  

Theorem. The L equivalence c l a s s e s  form a l a t t i c e .  

Ph005. Let [ f l ,  I f 2 ]  E Lm such t h a t  

[ f l  i s  pe r iod ic  with per iod A 

[ f l  is pe r iod ic  with period B .  

Since it follows q u i t e  r e a d i l y  t h a t  t h e  L c l a s s e s  form a p a r t i a l l y  

ordered s e t  under the  order ing a s  defined above, it w i l l  be s u f f i c i e n t  

t o  show t h a t  [ f  I v I f 2 ]  e x i s t s .  
1  

( i )  Suppose A, B = 0. Then t h e r e  e x i s t s  k ,  E I f  I such t h a t  
1  

k  is constant  and k E I f , ]  such t h a t  fc is  constant .  
1 2  2  

k1 V k 2  = m p f k  ,k 1, where s u p  r e f e r s  t o  t h e  gointwise 
1 2  

supremum. Therefore,  

I f ,]  v I f g ]  = i ~ ~ p f k ~ , k ~ ) l .  

( i i )  Suppose t h a t  A  = 0, B # 0. 

A = 0 implies t h a t  t h e r e  e x i s t s  k1 E [ f , ]  such t h a t  k  i s  

constant .  

k1 v f 2  = s u p ( k l  f  ) which w i l l  have per iod B ,  Therefore,  ' 2  
.4 



[ f l l  v [f21 = !sup(k1,f2)I. 

Suppose A # 0, B # O> A/B is  r a t i o n a l .  Then, f1 v f2 = 

sup(f1,f2) which has per iod nA = mB, where n,m a r e  r e l a t i v e l y  

prime. Therefore,  

[ f 1 1  v tf21 = [sup(^, f2)1.  

Suppose A/B is not  r a t i o n a l .  Let M 1 2  ,M denote t h e  e s s e n t i a l  

sup f o r  f1,f2, r e spec t ive ly .  L e t ' s  assume M 5 M2. From 

t h e  d e f i n i t i o n  of e s s e n t i a l s u p ,  we can wr i t e  f o r  e v e q  6 > 0 

t h a t  

i f  T = { x \ f l ( x )  1 Ma - 6 1 ,  then m(T) > 0; 

i f  U = { x \ f 2 ( x )  2 M -0, then m(U) > 0. 

Let g = sup(M1, f 2 ) .  g is  pe r iod ic  wi th  per iod B .  

Let [h]  E L- such t h a t  [h]  is pe r iod ic  with ~ e r i o d  C and h 2 f1,f2 a.e.. 

Thus, e i t h e r  A/C is  not  r a t i o n a l  o r  B/C is no t  r a t i o n a l .  Suppose t h a t  

A/C i s  not r a t i o n a l .  I f  we l e t  a ;  e T, then f o r  i n t ege r s  m,n E 2, 

we have h(x  + nA + mC) = h ( x  + nA) ^_ f 1 ( x  + nA) = f  ( x  ) > _ M I  - $ .  0 1 0  

The s e t  

D =  {xo + nA +mc\x0  E T; n,m E 21 

i s  dense i n  R. 

Since m(T) > 0 and D is dense, we have from t h e  lemma i n  preliminary 

r e s u l t s  t h a t  

m[R - U(d + T ) l  = 0 f o r d  E D. 
D 

This impl ies  t h a t  h >_ M1 - â a .e .  . 
Since 6 is an a r b i t r a r y  p o s i t i v e  r e a l  number, it follows t h a t  h > U, 

a.e. ,  which implies t h a t  h 2 g a.e.. S imilar ly ,  i f  B/C is not  r a t i o n a l ,  

h > M  a.e., which impl ies  t h a t  h ^ _ g  a.e.. This proves t h a t  2 

[ ^ I  v [ f 2 1  = (9'1. 
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The truth tables for G are: 

Matrix 1 

by John R e i d  Pithin^ 
Oakiand UWLvm^ty 

Standard propositional logic is a truth-functional logic whose 

truth-functions are restricted to the set {true,false} in both their 

domain and range. A truth-function is a function from a set of truth- 

values into another set of truth-values. The usual basic set of truth- 

functions supplied for propositional logic is  and), V (or), - (not), 
+ (if-then)]. It is well known [o] that either the Sheffer stroke, 

Peirce arrow or the set { - ,+I  can define every possible truth-function 
in standard propositional logic. Such a set of truth-functions which 

serves to define every other possible truth-function for a particular 

logic will be called adequate for that logic. 

A many-valued logic is a logic whose truth-functions can take 

on more values than just true or fa lse .  We number these values 1. 2. 

3 ,  ..., n. So if F is an k-place truth-function, pl, p2, ..., pk 
propositional variables, then 

F(pl, p2, ..., pk) : {(it, i2, ..., i li. < n ,  
k 1 -  

j ~ k }  +{I, 2, 3 ,  ..., n}. 
We usually designate the value 1 as true and n as false, and every 

other value as somehow in between. An infinite-valued logic takes on 

all integer values n, 1 5  n 5 co. where eo is the first infinite 
ordinal number. 

The Gtidel many-valued logics were introduced by Kurt Gtidel [1] 

in order to examine the relationship between Heyting's Intuitionistic 

Propositional Calculus (PC) [2], and standard propositional logic. 

The purpose of this paper is to state some observations on the basic 

truth-functions of Gtidel's system G and to generalize them to G and 

G .  
G ,  like most systems, can be discussed as a semantic system 

based on truth tables or truth rules, or as an axiomatic system. In 

this paper the semantic problem of the adequacy of a set of truth- 

functions will be approached from the axiomatic point of view. 

Heyting originally axiomatized P C  [2] and both Kleene [3] and 

tiukasiewicz [4] reaxiomatized the system. fcukasiewicz further [S] 

noted that if he added the axiom schema (-a+8)+( ((B->a)-<)+B) to P C  

the theorems of this system are exactly the G tautologies. 3 
Lukasiewicz's axioms for G are: 

3 

al. 

3.2. 

a3. 

a4. 

as. 

a6. 

a7. 

as. 

a9. 

al0. 

all. 

The rules of inference are modus ponens, which states that from the 

expressions a+ and a we can infer B, and substitution, which allows 

us to substitute any significant expressions for the variables. We 
can now state the first result. 

T h c . 0 ~  1 .  The set {-, A ,  +} is an adequate set of truth- 

functions for G 
3' 

Proof. Note that {-} isn't definable by {v, A ,  +}. To see 
this consider the following truth table: 

A 



The only unary t ru th- funct ions  def inable  by {v, A ,  +} a r e  p  and p p ,  s o  

{-} i s n ' t  def inable .  

In  order  t o  show t h a t  {+} and {A} a r e n ' t  def inable  by t h e  

o the r  bas i c  t ru th- funct ions  we cons t ruc t  a  l a r g e r  model f o r  G t h a t  
3  

s a t i s f i e s  t h e  axioms, and i n  which they a r e  not  def inable .  Our l a r g e r  

model i s  t h e  d i r e c t  product of Matrix 1 with i t s e l f .  Ca l l  it Matrix 2. 

I f  we i n t e r p r e t  t he  evaluat ion of  t h e  b a s i c  t ru th- funct ions  l i k e  so ,  

then Matrix 2  depends s o l e l y  on Matrix 1 f o r  the  evaluat ion of i t s  

e n t r i e s ;  hence Matrix 2  f u l f i l l s  t h e  axioms. Matrix 2  is found a t  

t h e  end of  t h e  paper. 

I f  p  is  a  p ropos i t iona l  va r i ab le ,  l e t  [[p]] be i ts  t ru th- value  

To s e e  t h a t  {+} is  n o t  def inable  i n  terms of  {-, V ,  A}, n o t i c e  t h a t  i f  

[[pl] and [[qll e { I I ,  12, 22, 33} then [I-pll E 111, 12, 22, 33}, 

[[pvqll E i l l ,  12, 22, 331, [[pAqll E (11, 12, 22, 33}. But i f  [[PI] = 

12 and [[qJ = 22 then [[p-q]] = 21, and no sentence composed of p ,  q ,  

-, A ,  v can have value 21 when p and q  have a s  t h e i r  r e spec t ive  values  

12 and 22. 

The proof t h a t  {A} i s n ' t  def inable  by {-, A ,  +} is s imi l a r .  

Let [[p]] and [[qll E { I I ,  12, 13, 31, 33} then  [[-PI] E 12, 13,  

31, 33}, [[pvq]] E { I I ,  12, 13, 31, 33}, and [[p-~ql] E 111, 12, 13, 

31, 33}. However, i f  [[p]] = 12, and [[q]] = 31 then [ [p~q]]  = 32. 

No sentence composed of p ,  q ,  -, -+, v can have t h i s  value with t h e  

given valuat ions  of  p  and q. 

F ina l ly ,  {v} is de f inab le  by {- , A ,  +}. Expl i c i t l y ,  i f  we 

note  t h a t  pvq = ((p+q)-*q)~((q+p)+p) we have our  d e f i n i t i o n  of {v}. 

C a l l  t h e  sentence on t h e  r i g h t  s i d e  of t he  d e f i n i t i o n  F This 
pq- 

completes the  proof.  

We can gene ra l i ze  t h i s  d e f i n i t i o n  f o r  {v} by not ing t h a t  t h e  

Godel systems G can be described by t h e  same t r u t h  r u l e s  f o r  a l l  

n  [61. The r u l e s  a r e  a s  fo l lows,  

Rule 1. 

Rule 2. f f p ~ q l l  = maxi [[PI] , Uqll } 

Rule 3. [[pvq]] = min{ [[pll , [[qll 1 

Rule 4. 
1 if [[PI] 2 [[qll 

[[pqll = [Hqll otherwise 

Without l o s s  of  gene ra l i t y ,  we assume t h a t  [[PI] 2 [[qll , s ince  

Fpq is symmetric with r e spec t  t o  p  and q. Then 

and [[pvq]] = mint [[p]], [[q]]} = [[q]]. Hence {-, A ,  +} i s  adequate f o r  a l l  

G systems. This l eads  t o  t h e  next r e s u l t .  

Theokem 2. {-, A ,  +} is  adequate f o r  G . 
CO 

Proof. Suppose {v} weren't def inable  i n  G .  Then given some 

t ru th- valuat ion of a  and 6, [[avBll = i while [[ F I] = j and i # j.  a0 
Let n  = max{i, I}. Then G wouldn't have a  d e f i n i t i o n  of {v} using 

only {-, A ,  +}. But t h i s  i s n ' t  t r u e .  So {-, A ,  +} i s  adequate f o r  G 
CO' 

Thus t h i s  d e f i n i t i o n  of {v}, a  v  F Ã £  is a  tautology of  G 
ai ' 

but  not  of IPC. So t h i s  a l s o  shows t h a t  a l l  t h e  t au to log ies  0 f I P C  ; 
a r e  a l s o  t au to log ies  of  G 

(1). 
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RANDOM CANTOR SETS 

In  t h i s  paper, we def ine  a  b inary  removal process f o r  t h e  

u n i t  i n t e r v a l  and f ind  t h e  p r o b a b i l i t y  t h a t  t h e  end product is a  Cantor 

s e t .  This question a rose  from my undergraduate honors t h e s i s a t  

Albion College. I w i l l  incorporate  t h e  r e s u l t s  of  branching theory 

t o  f i n d  the  p robab i l i t y  t h a t  t he  i n t e r v a l  ends up empty. 

The binary  removal process s t a r t s  with t h e  u n i t  i n t e r v a l  

[ 0,1] and d iv ides  it i n t o  two i n t e r v a l s  (0,1/2) and (1/2,1). Let p  

be the  p robab i l i t y  of  keeping each i n t e r v a l  and q = 1 - p be t h e  

p robab i l i t y  of removing each i n t e r v a l .  I f  p = 0 then nothing is 

l e f t ,  i f  p  = 1, then nothing i s  ever  removed. So we w i l l  only consider  

0 < p < I, 0 < q < I. We then remove a l l  i s o l a t e d  po in t s  t h a t  appear 

when these  open i n t e r v a l s  a r e  removed. The p robab i l i t y  of removing 

an i n t e r v a l  does not  depend on whether another  i n t e r v a l  is  removed. 

Each of t h e  remaining i n t e r v a l s  is divided i n  ha l f  again.  The 

p robab i l i t y  t h a t  each of these  is removed i s  q.  A s  before ,  the  i s o l a t e d  

po in t s  a r e  removed. We continue d iv id ing  t h e  remaining i n t e r v a l s  i n  

h a l f ,  t e s t  t o  see  i f  t h e  halves  a r e  removed and then remove t h e  

i so l a t ed  points .  

Examples . 

I f  A is  removed and B is  n o t ,  i n  t h e  next  s t e p  we divide  B i n  

ha l f .  I I 

Bl B2 

I f  A and B a r e  both removed, then x i s  removed. I f  A is 

removed i n  t h e  f i r s t  s t e p  and B remains, and then Bl is removed, 

then x is  removed. 

The po in t  x  remains u n t i l  t h e  i n t e r v a l s  on both s i d e s  of  x  

a r e  removed. 



Each stage in the process is the result of dividing the 

intervals of the previous stage in half, testing to see if they are 

to be removed, and then removing the isolated points. Notice that at 

the end of each stage, the remaining set is closed. 

The binary removal process is an example of a branching 

process. The first interval can either have zero, one, or two 

offspring. Let X be the size of the nth generation. The 

probability, p, of keeping an interval will determine the 

distribution of the Xnls. 

Suppose X = l  and X has probability distribution {pk} and 

k 
generating function P(s) = 1 p s  . Let P be the generating function 

of X .  From Feller [ll , in his discussion of branching theory, we 

know that P (s) = P(Pn-l(s)). We want X = Pn(0), the probability 

that the process terminates at or before generation n. The sequence 

X is increasing to a number 6, where E. satisfies 6 = P(E.) and 6 is 
n 

the probability of eventual extinction. Feller's results state that 

< 1 if and only if P1(l) > 1. P1(l) = I k p  is the expected 

number of offspring from one interval. 

What follows is a discussion of some of the results we will 

need from branching theory for the binary removal process. 

Let G be the set that we get using the binary removal process, 

That is, G is the intersection of the stages of the binary removal 

process. Let 6 be the probability that an interval eventually dies 

out, which means that at some stage, n, all remaining intervals are 

removed. 

In the case of the binary removal process, here is an 

elementary proof that exists. If E is the event that the process 

teminates at or before the nth generation, then El 5 E2 5 E3 5 ... 
and E. = Pr{process eventually terminates} = pr{! En 1 = lim Pr{En 1 .  

n=l I-+- 

Here we see that Â is the limit of an increasing sequence of real 
numbers bounded above by 1. 

There are four ways the interval can eventually die out: 

(1) both intervals can be removed the first time, (2) the left one 

can be removed the first time and the right one eventually dies out, 

(31 the right one can be removed the first time and the left one 

eventually dies out, or ( 4 )  both intervals remain the first time and 

eventually die out. Hence 
2 

6 = q + 2pqS + p2c2 - -  - 
2 2 2 

0 = p e + (2pq-116 + q .  
The last equation is equivalent to 6 = P(6) , since in the 

binary removal process, we have P = qfiq, pl = 2(p"sq), and p = p*p. 

2 
So q + 2pq6 + p2c2 = P(6) is indeed the generating function. 

if I kpk ̂ _ 1, Pr{eventual 

Pr{eventual extinction 1 = 

I kpk = 

- - 
- - 

extinction } = 1, and if 1 kpk > 1 

So, if p > 1/2, the probability that the interval eventually dies out 

(1-PI^ is - = 6. If p < 1/2, the probability that the interval 2 
P 

eventually dies out is 6 = 1. 

If we are given the unit interval and the probability p that 

an interval remains, what is the probability that the set G resulting 

from the binary removal process will be a Cantor Set (that is, 

homeomorphic to the standard middle thirds Cantor set)? To answer 
this question, we will use the characterization of the Cantor set 

given by Hocking and Young [21 : G is a Cantor set if and only if G 

is (1) metric, (2) compact, (3) nonempty, (4)  totally disconnected, 

and ( 5  ) perfect. 

One way of obtaining G such that G is a Cantor set is to keep 

both intervals in the first stage and remove the middle two intervals 

in the second stage. The same thing is repeated for the remaining 

intervals. It is not difficult to check that the intersection of 

these stages satisfies the conditions listed above. Hence it is a . 
Cantor set. 



The.omnt. The p robab i l i t y  t h a t  t h e  s e t  G r e s u l t i n g  from t h e  

binary  removal process i s  a Cantor s e t  i s  1 - E . ,  where E. i s  t h e  

p robab i l i t y  t h a t  G is empty. 

We w i l l  compute t h e  p r o b a b i l i t i e s  of  obta ining the  f i v e  

p rope r t i e s  l i s t e d  above. 

(1 )  Using t h e  binary  removal process ,  we ge t  a s e t  t h a t  i s  

metr ic .  

( 2 )  Lemma. G is  compact. 

Proof. G is the  i n t e r s e c t i o n  of s t ages  of  removing i n t e r v a l s .  

To show: a s t age  is  closed. A s t age  is the  r e s u l t  of  d ividing each 

of the  i n t e r v a l s  remaining from t h e  previous s t age  i n  h a l f  and t e s t i n g  

t o  s e e  i f  each ha l f  is  removed. I f  both halves  remain, t he  remaining 

s e t  is closed.  I f  both halves  a r e  removed, t h e  endpoint between them 

is  a l s o  removed and t h e  r e s u l t i n g  s e t  is c losed.  I f  one h a l f  remains 

and the  o t h e r  is removed, t h e  endpoint between them remains, and the  

r e s u l t i n g  s e t  is closed.  Since t h e  i n t e r s e c t i o n  of c losed s e t s  is 

closed and a c losed subset  of  a compact s e t  is compact, G is compact. 

( 3 )  We have shown t h a t  Pr{G = 0 1 = C .  

( 4 )  He w i l l  show t h a t  t h e  p robab i l i t y  t h a t  G is  t o t a l l y  

disconnected is  1. 

L m a .  I f  G is not  t o t a l l y  disconnected, G con ta ins  an  i n t e r v a l  - 
of  p o s i t i v e  length .  

Proof. Suppose G is  no t  t o t a l l y  disconnected. Let x,yeG such 

t h a t  t h e r e  is no disconnection of G separa t ing x and y. I f  t he re  i s  

a point  z ,  such t h a t  zi.G and x < z < y ,  then [O,z)nGU(z,l]nG is a 

disconnection of  G.  Hence no such z e x i s t s ;  s o  t h e  i n t e r v a l  [x,Y] 9. 
Next l e t  us compute t h e  p robab i l i t y  t h a t  G conta ins  a b inary  

i n t e r v a l  of  t h e  form 

K k + l  k + l  
Pr t  [- 9 -1 5 G 1 = P r ( { a t  s t age  n [Ã 7 -1 remains} 

2" 2" 2" 2" 
k n { a t  s t age  n+ l  [ - ,El remains} 2n 2n+l 

a n d [  Ã ‘ Ã ‘ Ã ‘ 3  remains " ... ) 
,n+l 2" 

Now 1 - PrtG is t o t a l l y  disconnected 1 = 
CO 

Pr{G conta ins  an in t e rva l}  = Pr{ U G conta ins  i n t e r v a l  
n=O 

t h a t  conta ins  b inary  i n t e r v a l  a t  s t age  n} 
- .- 

CO 

k k+ l  < lPr{[- , - I  ~ G f o r s o m e k = O ,  ..., - 
n=0 2 " z n  

2 - 1  a t  s t age  n - 2"-1 
k k+ l  = [ Pr(  U { [ - 7 - ] c G l )  

n=0 k=0 2" 2" 

= 0 

Hence, pr{G is t o t a l l y  disconnected } =  1 

(5) Even though t h e r e  a r e  no i s o l a t e d  po in t s  a t  f i n i t e  

s tages ,  G may conta in  i s o l a t e d  po in t s .  For example: 

I f  t h e r e  is  an i s o l a t e d  po in t  xeG t h e r e  e x i s t s  E > O  such t h a t  
k k + l  (x-e,x+e) fl G = {XI. We can f i n d  a b inary  i n t e r v a l  [-, -1 such 

k k + l  
2" 

k k+ l  t h a t  x E (-Ã̂- 5 (x-e,x+e). Divide (--) i n t o  fou r  equal  
2" 2" 2" 

i n t e r v a l s .  A t  most two of  them conta in  x. The p robab i l i t y  t h a t  each 

of  the  o the r  i n t e r v a l s  is  eventual ly  removed is 6. 

The next  s t e p  is t o  d ivide  the  i n t e r v a l s  t h a t  conta in  x i n t o  

fou r  equal i n t e r v a l s .  A t  most two of these  contain x. 

Continue t h i s  process of  d ividing the  i n t e r v a l s  t h a t  conta in  

x i n t o  fou r  equal i n t e r v a l s .  

The p robab i l i t y  t h a t  x a lone is  l e f t  is  t h e  product o f  

p r o b a b i l i t i e s  t h a t  t h e  i n t e r v a l s  t h a t  do not  conta in  x a r e  

eventual ly  removed. 



where i = 2 i f  x is i n  two i n t e r v a l s  i n  t h e  l t h  s t ep ,  and 

i = 3 i f  x is i n  one i n t e r v a l  i n  t h e  Lth s t ep .  

( I f  i = 2 f o r k ?  = m y  i = 2 f o r k ?  > m.) 

Therefore,  Pr{G conta ins  an i s o l a t e d  point} = 0. 

Since Pr{G is  t o t a l l y  d isconnected)  = 1, and Pr{G conta ins  an 

i s o l a t e d  po in t  1 = 0 ,  Pr{G is  a Cantor s e t  1 = 1 - pr({G = 0 1 U {G 

conta ins  an i s o l a t e d  po in t  1) = 1 - Pr{G = 0 = 1 - E;. 

This completes t h e  proof o f  t h e  theorem. 

From t h i s  r e s u l t ,  i f  we start with t h e  u n i t  i n t e r v a l  and use t h e  

binary removal process with p robab i l i t y  of  keeping an i n t e r v a l  p > 1/2.  
2 2 

t h e  p robab i l i t y  t h a t  we g e t  a Cantor s e t  is 1 - g ,  where E; = (1-p) /p . 
I f  p > 1/2 ,  E; = 1 and hence t h e  p robab i l i t y  of  g e t t i n g  a Cantor s e t  is 
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AN ALGORITHM FOR PARTIAL FRACTIONS 

by Phem N. k j a j  
The. Wichita S t a t e .  Un.il~m-ctg 

For t h e  r a t i o n a l  expression ) , where rn is a p o s i t i v e  
(x-aJrn h fa)  

i n t ege r  and fx-a) does not  d iv ide  h f x ) , t h e  p a r t i a l  f r a c t i o n s  

corresponding t o  f x - a )  a r e  of  t h e  form 

A. +A A + A2 + ... Am-l rn 
fx-a) fz-a)m-l Z !  ( x - a ~ ~ - '  frn-1) ! fx-a) 

Ak Here, f o r  convenience, we have taken constants  t o  be - i n s t ead  of  A 
k! k 

f o r  each k .  

The purpose o f  t h i s  note is t o  g ive  an  algorithm t o  f ind  t h e  A's . 
Indeed, t h e  algorithm is 

f ( a )  = A h fa ) ,  

f f f a )  = A. h

f  

f a )  + A h f a ) ,  

f " f a )  = A. hn fa )  + 2 Â  h r f a )  + A h f a ) ,  

... 
n 

and f fn) fa)  = I f", A; hfn-^)  f a ) ,  n 5 rn. 
G O  

F i r s t ,  we give  an i l l u s t r a t i o n .  

4 
Example. Consider t h e  quo t i en t  x6 - - . 

fx-2) fx+1) 

4 Let f f x )  = x - 4x - 1. Corresponding t o  the  non-repeatcd l i n e a r  

^ f a c t o r  ( M ) ,  t h e r e  is  only one p a r t i a l  f r a c t i o n ,  - x+l 3 where 

3 f (-1) = B0fx-2) l x  = y i e l d s  -4 = -27 fl o r  B = L .  
0 0 27 

4 

3 Corresponding t o  t h e  f a c t o r  fx-2) , t h e  p a r t i a l  f r a c t i o n s  a r e  of  

t h e  form 



A 
Ã‘Â¡Ã A 2  

3  + -. 
(x-2)  (x- 2  2! (x-2) 

Let t ing h ( x )  = x  + 1, above algorithm y i e l d s  

f ( 2 )  = -1 = A  -3 ,  
0  

1  s o  t h a t  A = - - A  = 
2206 

0  3 '  1  and A  = - 2  27 ' 

Next, no t i ce  t h a t  i n  t h e  example, t h e  degree o f  t h e  numerator 

exceeds t h a t  of t he  denominator. Therefore, d iv iding t h e  numerator by 

the  denominator , we ob ta in  t h e  quot ient  x2 + ih + 15. Hence, t h e  

required p a r t i a l  f r a c t i o n s  a r e  

2  1  193 1103 + 4 x  + 5 x + 1 5 - -  3+90 3(x-2) 2 7 ( x + l ) '  

It w i l l  be i n s t r u c t i v e  t o  compare the  above algorithm with t h e  

statement of t h e  Binomial Theorem. 

'Proof o f  t h e  a'igo~it'hm. There i s  no l o s s  of gene ra l i t y  i f  we 

t ake  a = 0. In  t h i s  case ,  

and, s o ,  us ing t h e  Maclaurin expansions of f ( x )  and h ( x ) ,  

2  3  
f ( 0 )  + x f ( 0 )  + 3 fW(0)  + - a - f " ' ( 0 )  3.' + ... 

+ ... ) + ( q ( x ) h ( x )  + g ( x ) ) x m .  
i, 

Now comparing, success ively ,  t he  c o e f f i c i e n t s  of x  , 
i = 0,1,2, . . ., m-1, t h e  des i r ed  algorithm follows. 

Y O W L  Chapter can make. ii&e 0 6  t h e  Pi Mu &ph-t^on AwcLtd CWti.f,-ic.atu, a v a U -  
abie  t o  h a p  you m c o g n i z e .  rnathwtu5c.d ac(bt.evemen-tA of, yo& iitudevlts,. 

A HORSE OF A DIFFERENT COLOR: A NOTE ON INDUCTION 

by Sandha K i i t h .  
S t .  CLoud State. Un.LveA^iUy 

This is an o ld  one, so  o ld  t h a t  it probably deserves t o  resurface .  

I encountered it i n  an undergraduate philosophy c l a s s ,  t he  theorem 

being presented a s  an example of  everything t h a t  might go wrong with 

language i n  an argument. But don ' t  l e t  t h e  f r ivo lous  na tu re  of t he  

theorem d i s t r a c t  you from the  lemma, whose proof I s h a l l  d i scuss  

momentarily. 

Lemma: A l l  horses a r e  t h e  same color .  

Theorem: A l l  horses have i n f i n i t e l y  many l egs .  

The proof of  t h e  theorem, t o  my reco l l ec t ion ,  is a s  fo l lows:  

Take an average horse .  It has  fo re l egs  and two hind l e g s ,  a t o t a l  of  

s i x  l egs .  That 's  an odd number of  l e g s  f o r  a horse t o  have! But s i x  

is an even number, and t h e  only numbers which can be odd and even 

simultaneously a r e  zero  and i n f i n i t y ,  and ze ro ' s  out .  Now i f  a horse 

does NOT have i n f i n i t e l y  many l e g s ,  t h a t  would be a horse of  a 

d i f f e r e n t  color .  But by t h e  lemma, a l l  horses a r e  t h e  same color . . .  

The proof of t h e  lemma, which is by induct ion,  is t o  be taken 

se r ious ly ,  however, and never f a i l s  t o  s t imula t e  c l a s s  d iscuss ion 

when I teach induct ion,  because s tuden t s  a r e  not  i n  gene ra l  aware how i 

t o  d e a l  with t h e  problem of a paradox. 



Most of us a r e  r i g h t f u l l y  suspic ious  of  t h e  word "same", but  a r e  

never theless  he lp le s s  i n  t h e  f ace  of  t h e  proof.  Even well-heeled 
s tuden t s  a r e  l i k e l y  t o  p r o t e s t  t h a t  t h e  assumption is f a l s e ,  and t h a t  

t h i s  makes t h e  proof inva l id ,  because from a f a l s e  assumption anything 

can be proved. (The s t o r y  is  t h a t  when Bertrand Russel l  mentioned 

t h a t  one i n  a c l a s s ,  a voice from t h e  back snapped, "Oh, yeah? From 
t h e  f a l s e  assumption t h a t  1 = 2, prove t h a t  I ' m  t h e  pope!" To which 
Russel l  r e p l i e d ,  "You and t h e  pope a r e  two, two is one, you're the  

pope.") In  t h e  d iscuss ion t h e  problem i n i t i a t e s ,  these  s tudents  may 

only begin t o  see  t h a t  t h e  t r u e  essence of  induct ion is i n  t h e  

reasoning of t h e  proof,  not  i n  the  assumption of  t h e  conclusion. 

The proof of  t h e  lemma is a s  follows: For n = 1, it is  t r i v i a l l y  
t r u e  t h a t  a horse is the  same co lo r  a s  i t s e l f .  Assume now t h a t  n = k 
horses a r e  t h e  same color .  We show t h a t  n = k + 1 horses a r e  t h e  same 

co lo r  a s  well .  Take t h e  k + 1 horses and c o r r a l  k of  them together  so  

one is  excluded. Then t h e  k co r ra l l ed  horses a r e  t h e  same co lo r  by 

the  hypothesis.  Now c o r r a l  k of  them i n  a d i f f e r e n t  way, making sure  

t h a t  t h e  previously  excluded horse i s  i n  the  new c o r r a l .  

c o r r a l  1: - 
c o r r a l  2: --- 

These k a r e  t h e  same color .  Because o f  t h e  overlap o f  horses  i n  

t h e  two c o r r a l s ,  a l l  k + 1 horses must be t h e  same co lo r ,  and the  proof 

is f in i shed .  The e r r o r ?  * 

Ectt-tok'~ N o h  - For another amusing a r t i c l e  on t h e  l egs  of  a horse,  
s e e  On The Set Of Legs Of A Horse by Marlow Sholander, 
P i  Mu Epsilon Journal ,  Volume 1, No. 3 ,  November 1950, 
page 103. 

THE CREATOR 

In  t h e  beginning t h e  Professor  presented himself t o  t h e  s tuden t s ,  

and t h e  s tudents  were without knowledge, and void,  and darkness was 

upon t h e  f ace  o f  t h e  c l a s s .  And t h e  Professor  paced before  t h e  f r o n t  

of  t h e  c l a s s .  

And t h e  Professor s a i d ,  "Please,  l e t  t h e r e  be in t e l l igence ."  And 

t h e r e  was in t e l l i gence .  

And t h e  Professor saw the  i n t e l l i g e n c e ,  t h a t  it was good; and t h e  

Professor  proceeded t o  d iv ide  t h e  i n t e l l i g e n t  from t h e  s tup id .  

And t h e  Professor c a l l e d  t h e  i n t e l l i g e n t  "those with t h e  

necessary p re requ i s i t e s"  and t h e  s tup id  he c a l l e d  "the luck of t h e  

draw. " 
And from 2 o 'c lock t o  3 o lc lock  was t h e  f i r s t  day. 

And t h e  Professor  sa id ,  "Let t h e r e  be i n t e g r a l  ca l cu lus  i n  t h e  

midst of t h e  c l a s s ,  and l e t  it divide  t h e  knowledge from t h e  

ignorance. " 

And t h e  Professor  presented t h e  i n t e g r a l  ca lculus ,  and divided 

t h e  de r iva t ives  which were l i m i t i n g  quo t i en t s  from t h e  i n t e g r a l s  which 

were l i m i t i n g  sums; and it was so.  

And t h e  Professor  c a l l e d  t h e  r e s u l t  one lesson.  And from 2 o'clock 

t o  3 o'clock was t h e  second day. 

And t h e  Professor s a i d ,  "Let t h e  t r igonometr ic  i n t e g r a l s  be 

gathered i n t o  one place ,  and l e t  var ious  approximating funct iohs  

appear." And it was so. 

And t h e  Professor c a l l e d  most of  t h e  theorems t r i v i a l  and t h e  

c o r o l l a r i e s  immediate; and t h e  Professor  saw t h a t  it was good. 

And the  Professor s a i d ,  "Let t h e  s tuden t s  b r ing  f o r t h  homework, 

and t h e  proofs  by con t rad ic t ion ,  and t h e  premises y i e ld ing  conclusions 

a f t e r  t h e i r  kind, whose r e s u l t s  a r e  i n  t h e  t e x t  wi th in  t h e  c lass ."  

And it was so. 

And t h e  c l a s s  brought f o r t h  homework, and proofs  y i e ld ing  r e su l t s .  

a f t e r  t h e i r  kind, and premises y i e ld ing  conclusions,  whose r e s u l t s  



were i n  t h e  t e x t ,  a f t e r  t h e i r  kind; and t h e  Professor  saw t h a t  it 

was passable.  

And from 2 o 'c lock t o  3 o 'c lock was the  t h i r d  day. 

And t h e  Professor  s a i d ,  " Let t h e r e  be much formulae i n  t h e  c l a s s  

of ca l cu lus  t o  d ivide  t h e  Taylor s e r i e s  from t h e  Maclaurin s e r i e s ;  

and l e t  them be f o r  a r c  length ,  and f o r  i n t eg ra t ion  by p a r t s ,  and f o r  

binomial expansion and hyperbolic funct ions .  

And l e t  them be required i n  t h e  c l a s s  of  ca l cu lus ,  t o  g ive  

memorization t o  t h e  s tudents ."  And it was so. 

And t h e  Professor  proved two g r e a t  theorems; t h e  g r e a t e r  theorem 

t o  r u l e  the  ca l cu lus  and t h e  l e s s e r  theorem t o  r u l e  t h e  a lgebra;  he 

proved lemmas a l s o .  

And t h e  Professor  presented them t o  t h e  c l a s s  of ca l cu lus  t o  

g ive  understanding t o  t h e  s tuden t s ,  and t o  r u l e  over t h e  theory and 

over t h e  exe rc i se s ,  and t o  d ivide  t h e  s tudious  from t h e  i d l e ;  and t h e  

Professor  saw t h a t  it was good. 

And from 2 o 'clock t o  3 o 'c lock was t h e  fou r th  day. 

And t h e  Professor  s a i d ,  "Let t h e  l e c t u r e  i n s t r u c t  profoundly t h e  

f idge t ing  s tudent  t h a t  squirms i n  t h e  desk and the  s tudent  t h a t  sits 

i n  t h e  back of t h e  classroom f a r  i n t o  t h e  darkness." 

And t h e  Professor  presented g rea t  mot ivat ional  devices and every 

p r a c t i c a l  app l i ca t ion  t h a t  ex i s t ed ,  which t h e  theorems brought f o r t h  

abundantly, a f t e r  t h e i r  kind, and every t r i v i a l  c o r o l l a r y  a f t e r  its 

kind; and the  Professor  saw t h a t  it was good. 

And t h e  Professor  b lessed them, saying, "Be d i l i g e n t  and study, 

and bone up on your in t eg ra t ion  techniques,  and f e e l  f r e e  t o  use your 

c a l c u l a t o r  whenever necessary."  

And from 2 o 'clock t o  3 o'clock was t h e  f i f t h  day. 

And t h e  Professor  s a i d ,  "Let t h e  t o p i c s  br ing f o r t h  an hour exam 

a f t e r  t h e i r  kind, with formulae of ca l cu lus  and theorems and 

app l i ca t ions  a f t e r  t h e i r  kind." And it was so.  

And t h e  Professor c rea t ed  t h e  hour exam a f t e r  i t s  kind, with 

proofs a f t e r  t h e i r  kind, and every app l i ca t ion  t h a t  followed from t h e  

theorems a f t e r  t h e i r  kind; and t h e  Professor  saw t h a t  it was content 

va l id .  

And t h e  Professor  s a i d ,  "Let me adminis ter  t h e  exam i n  my own 

c l a s s ,  t o  my own s tudents ;  and l e t  them si t  i n  every o the r  desk, and 

keep t h e i r  eyes on t h e i r  own papers,  and show a l l  t h e i r  work, and 

review t h e i r  computations f o r  accuracy i f  time allows them a t  t h e  end 

of  t h e  period."  

So t h e  Professor administered t h e  exam t o  h i s  own s tuden t s ,  t o  

h i s  own s tudents  he administered it; t o  male and female he - -- 
administered it. 

" -- .- 
And t h e  Professor b lessed them, and t h e  Professor  s a i d  unto  

them, "Be c a r e f u l  and accurate ,  and t ake  t h e  t e s t  and do wel l  on it; 

and l o g i c a l l y  prove a l l  t h e  theorems of  t h e  t e s t ,  and ca r ry  ou t  a l l  

t h e  app l i ca t ions  and every computation t h a t  i s  p r in t ed  upon t h e  t e s t . "  

And t h e  Professor s a i d ,  "Behold I have given you a s t ra ightforward 

exam, which is on t h e  sub jec t  o f  ca lculus ,  and every d i r e c t  proof ,  i n  

which a r e  t h e  r e s u l t s  f o r  t h e  app l i ca t ions ;  t o  you they s h a l l  appear 

simple. 

For t o  every s tudent  t h a t  s i t s  a t t e n t i v e l y  i n  c l a s s ,  and t o  

every s tudent  t h a t  c a r r i e s  out  t h e  homework assignments, wherein t h e r e  

a r e  many u s e f u l  r e s u l t s ,  I have made c l e a r  every t o p i c  on t h e  exam.'' 

And it was so. 

And t h e  Professor saw t h e  r e s u l t s  of t h e  exam t h a t  he had given, 

and, behold, they were sorrowful.  

And from 2 o'clock t o  3 o 'clock was t h e  s i x t h  day. 

And on the  seventh day, he r e s t ed .  
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THE CORRECT VALUE OF P I  

In t h e  r ecen t  pas t ,  t h e r e  have been a  number o f  unsuccessful 

a t tempts  t o  l e g i s l a t e  a  r a t i o n a l  value of IT.  In  t h i s  a r t i c l e  we d i scuss  

why such a  law would be use fu l ,  why these  a t tempts  have f a i l e d ,  and 

what we can do about it. 

The u t i l i t y  of having a  r a t i o n a l  value of  n i s  enormous. 

Calcula t ions  involving IT would be exact .  Engineers would no longer 

have t o  memorize s t r i n g s  of  d i g i t s  f o r  t h e i r  ca l cu la t ions .  School 

ch i ld ren  would no longer  have t o  be t o l d  t h a t  t h e  circumference of a  

c i r c l e  is  22/7 t imes i t s  diameter when they  a r e  doing ca l cu la t ions  and 

something e l s e  when they  want t o  be exact .  For t ran  programmers would 

no longer have t o  s t a r t  a l l  t h e i r  programs with 

P I  = 4 . 0  * ATAS(l.0) 

but  could simply use t h e  exact r a t i o  when needed. No longer  would 

amateur s c i e n t i s t s  be prevented from publ ishing t h e i r  work because 

they  don ' t  have a  II key on t h e i r  typewri ters .  Last but  not  l e a s t ,  

t h e  Japanese have r ecen t ly  used II a s  y e t  another opportunity t o  t ake  a  

jab a t  American technology, by c a l c u l a t i n g  it t o  many more decimal 

p laces  than  had been ca l cu la t ed  here .  Wouldn't they f e e l  s tup id  i f  we 

made IT a  r a t i o n a l  number, thus  making t h e i r  ca l cu la t ions  obsole te?  

With a l l  t h i s  i n  f avor  of  a  r a t i o n a l  value of TT, why have attempts 

t o  l e g i s l a t e  one f a i l e d ?  A s  u sua l ,  t h e  answer is p o l i t i c a l .  Like 

o the r  s t e p s  i n  the  d i r e c t i o n  of  progress ,  t h i s  reasonable and inev i t ab le  

improvement would t r e a d  upon t h e  entrenched p r i v i l e g e s  of  some powerful 

groups. Most notable  a r e  t h e  c a l c u l a t o r  companies t h a t  have invested 

mi l l i ons  of d o l l a r s  i n  II keys on t h e i r  ca l cu la to r s .  These mul t imi l l ion 

d o l l a r  companies have powerful l obb ies  i n  Washington. Next a r e  t h e  

t y p e s e t t e r ' s  unions. These workers have t r a d i t i o n a l l y  been given 

e x t r a  pay f o r  t ypese t t ing  t echn ica l  documents with unusual symbols and 

w i l l  f i g h t  t o  keep every one of them. F i n a l l y ,  t h e r e  a r e  t h e  makers of 

t echn ica l  word processors.  It has  been estimated t h a t  30% of  t h e  people 

who use these  word processors  do s o  because they need t o  use IT. With 

a  r a t i o n a l  value of II s a l e s  would plummet. 

What can be done t o  co r rec t  t h i s  i n j u s t i c e ?  The problem is  t h a t  

t h e  values of  II t h a t  have been suggested, most notably  3 and 22/7, 

don ' t  have enough widespread appeal.  Though use fu l  t o  engineers,  - -  - - 

they don ' t  much he lp  the  pure mathematician and t h e o r e t i c a l  phys ic i s t .  . 
I propose t h a t  a  much b e t t e r  value of v is  1/2 .  The advantages of 

t h i s  a r e  numerous. F i r s t ,  the 'circumference of  a  c i r c l e  would equal  

its rad ius .  What a  help t h a t  would be t o  high school geometry s tudents!  

It would a l s o  mean t h a t  radians  and r o t a t i o n s  a r e  t h e  same th ing.  For 

t h e  phys ic i s t s ,  t h e  most obvious bene f i t  would be t h e  un i f i ca t ion  of 

t h e  two Plank 's  cons tan t s ,  h and h = h/(2v). Fina l ly ,  f o r  t h e  pure 

mathematician, those  annoying 3 v ' s  t h a t  come up i n  Four ier  i n t e g r a l s  

would f i n a l l y  go away. The argument over where bes t  t o  pu t  them would 

be over. 

With my suggested value  f o r  TT, I am su re  t h e  support  f o r  

l e g i s l a t i o n  w i l l  be broad enough t o  overcome t h e  opposi t ion.  By 

s e t t i n g  IT = 1 / 2  we w i l l  be taking a  bold new s t e p  f o r  progress.  

it- 
'I- 

A GRAPHICAL APPROACH TO e" > -ir
e 

In  t h i s  no te  another  so lu t ion  i s  given t o  t h e  problem of  proving 

TT e  
t h e  inequa l i ty  e > IT . While n o t  a s  e legant  a s  Schaumberger's proof 

[I] which uses  t h e  mean value theorem f o r  i n t e g r a l s ,  it is  i n t e r e s t i n g  

i n  t h a t  it appeals  t o  not  much more than t h e  d e f i n i t i o n  of the  n a t u r a l  

logarithm. 

The inequa l i ty  is  shown i f  we show t h a t  

-irZn(e) > eZn(v)  

o r  > e l n ( v ) .  

v 1  
TT 

Now eln(-s)  = e f 7 d t  = f 2 d t .  Graphically,  t h i s  i s  equal  t o  the  
1 1 

shaded a r e a  i n  Figure 1. 

Now IT is equal  t o  the  a rea  of t h e  r ec t ang le  with v e r t i c e s  ( 0 , 0 ) ,  a 

( 0 , 1 ) ,  h,1) and   IT,^). 



Figure 1 

The a rea  of  t he  shaded por t ion i n  Figure 1 above t h e  ho r i zon ta l  

l i n e  y = 1 is 

e 
1 (z - 1)  d t  = e ln(e)  - (e  - 11 
1 

= 1, 
which is equal  t o  the  a rea  of t h e  square with v e r t i c e s  (0,0), (0,1), 

(1.1) and (1.0). Thus, t h e  t o t a l  shaded a r e a  i s  l e s s  than t h e  a rea  of 

t he  r ec t ang le ;  t h a t  is, 

TI > e ln(v) .  
TT e Thus, e > TI . 

REFERENCE 

n e 1. Schaumberger, Norman, Another Approach t o  e > TI , P i  Mu Epsilon 
Journal ,  Spring 1986, Vol. 8,  No. 4, p. 251. 

A &iwp.P.y o/i 10" by W F H a t v w i t t y  C h u t t ,  a ~ e .  a v a i l a b l e . .  One i n  each 
coton. wmb-tna-tion wiU. be. he.& t o  each Chaptek upon h t q u u t .  
AddJUt-A.0m.t p o i t m  me.  a v a i l a b t e .  at the .  { .oU.odng k a t u  

( 1 I PmpSLe on Goidemod Stock  . . . . . . . . $1 .50 /dozen  

( 2 )  P m p t e  on Laue.nde~ on Gotdemod . . $2.00/doze.n 

S tnd  m q u u - t i  and o h d m  t o  V k .  VIchand A. Good, S e . c / ~ e - t o A y - T ~ . t a ~ m e ~ ,  
0e.paAtme.n.t 0 6  M a t h e m a t i u ,  Uwivm-t-Cy 04  Makyland, CoU-we. P m k ,  MU 20742. 

PUZZLE SECTION 

The PUZZLE SECTION i s  for the enjoyment of those readers who 
w e  addicted t o  working donblecrostics or who find an occasional 
mathematical puzzle at tract ive.  We consider mathematical puzzles t o  
be problems whose solutions consist of answers immediately recognizable 
as correct by simple observation and requiring l i t t l e  formal proof. 
Material submitted and not used here w i l l  be sent t o  the 'Problem, 
Editor i f  deemed appropriate for the PROBLEM DEPART.MEN1, 

Address a l l  proposed puzzles and puzzle solutions t o  'Professor 
Joseph D. E. Konhauser, Mathematics and Computer Science Department, 
Macalester College, S t .  Paul, Minnesota 55105. Deadlines for puzzles 
appearing i n  the Fall Issue w i l l  be the next February IS, and for 
puzzles a p p e k n g  i n  the Spring Issue will be the next September 15. 

PUZZLES FOR SOLUTION 

1. A n o i d i . t .  

What is t h e  most money one can have i n  pennies,  n i c k e l s ,  dimes, 
qua r t e r s ,  ha l f- do l l a r s ,  $1 b i l l s ,  $2 b i l l s ,  $5 b i l l s  and $10 b i l l s  with- 
out  being a b l e  t o  make change f o r  a  $20 b i l l ?  

2. Phopoied by Joheph 0 .  E. Konhoi ise~,  M a c d u t e A  C o i i t g e ,  
S t .  P d ,  Mumuo- ta .  

Using fou r  1's and s tandard mathematical symbols, w r i t e  an 
expression f o r  71. 

3. Phopohed by J o i e p h  V .  E .  Konhaube~ ,  M a c a t u t ~ .  CoUige . ,  
S t .  Pout ,  Winnuoto. .  

Are you a b l e  t o  d i s s e c t  an a r b i t r a r y  t r i a n g l e  i n t o  f o u r  p ieces  
which can be reassembled t o  form a  q u a d r i l a t e r a l  such t h a t  no p a r t  of  
t h e  boundary of t h e  q u a d r i l a t e r a l  is  p a r t  of  t h e  o r i g i n a l  boundary of 
t h e  t r i a n g l e ?  

4. Pkopoie.d by t h e  W e  H m y  Lungman, Nwi Yohk C h y .  
In  t h e  sketch on t h e  next p a g e , t h e  16 po in t s  a r e  v e r t i c e s  of 14 

squares with ho r i zon ta l  and v e r t i c a l  s ides .  Are you ab le  t o  l a b e l  t h e  
po in t s  with t h e  i n t e g e r s  1 through 16 s o  t h a t  t h e  sum o f  t h e  numbers a t  
t h e  v e r t i c e s  of each of  t h e  14  squares  i s  t h e  same f o r  a l l  14 squares? 

5. Atfu.bute.d t o  Hob. Yoihigahc~ia. ,  Tokyo, Japan. 

Dissect t h e  pentagon, i n  t h e  sketch which fol lows,  i n t o  fou r  
congruent pieces.  



COMMENTS ON PUZZLES 1 - 5 ,  SPRING 1986 

James Campbell submitted t h e  following f o r  Puzzie. # 1: 

,/ 1 + .2 - .3  + 4 + 5 3.146427 and i^4x"3 + 2 + 1 3 3.146212. Seven 
readers  provided 888890 a s  "the" s o l u t i o n  t o  PUZZ& # 2 which asked f o r  
a s ix- d ig i t  number such t h a t  s t a r t i n g  a t  t h e  l e f t  success ive  groups of 
fou r  form t h r e e  consecutive fou r- d ig i t  numbers. Only Mark Evans gave 
111109 ( t h e  9 ' s  complement) a s  a second so lu t ion .  Marc I .  Whinston 
gave t h e  following general  so lu t ion  f o r  base n: from l e f t  t o  r i g h t ,  
wr i t e  fou r  (n-2) ' s ,  one (n-1) and one 0. For example, i n  base 3, Marc's 
so lu t ion  gives  111120. Victor Feser gave t h i s  genera l iza t ion:  t h e  n- 
d i g i t  number (n  s 3 )  cons i s t ing  of  (n-2) 8 ' s ,  one 9 and one 0 is such 
t h a t  s t a r t i n g  a t  t h e  l e f t  success ive  groups of (11-21 numbers form t h r e e  
consecutive (n-2)-digi t  numbers. Only James Campbell submitted a solu-  
t i o n  t o  Puzzie # 3 .  The so lu t ion  appears below. The given a r r ay  has 
been rendered "square- less" by t h e  removal of j u s t  n inematchst icks .  

For Puzzie <f 4 ,  t h e  c o r r e c t  response 20 was supplied by t h r e e  readers ,  
who noted t h a t  t h e  proposed puzzle is  equivalent  t o  t h e  plane problem 
with c i r c l e s .  Two readers  sen t  con t r ibu t ions  toward t h e  so lu t ion  of 
P u z z k  ff 5 .  For a l i n e  segment, with endpoints on t h e  s i d e s  of  t h e  
given angle and perpendicular  t o  t h e  b i s e c t o r  of t h e  angle ,  t h e  sum of 
t h e  d i s t ances  from any po in t  on t h a t  l i n e  segment t o  t h e  s i d e s  of t h e  
angle is t h e  same. A s  t h e  l i n e  segment moves away from t h e  ver tex  t h e  
sum increases .  The po in t s  of contact  of t h e  c i r c l e  with t h e  two members 
of t h e  family which a r e  tangent  t o  t h e  c i r c l e  a r e  t h e  p o i n t s  on t h e  c i r -  
c l e  f o r  which t h e  sum of d i s t ances  t o  t h e  angle s i d e s  is l e a s t  and 
g rea te s t .  

L i s t  of Responders: Curtis L .  Blankespoor (.1,2), James E .  Campbell 
(1,2,3,4), Mark Evans (2,4,5), Victor G .  Feser (2,4,5), Glen E. Mills 
(2 ) ,  Stephen W. Nelson (2 ) ,  Robert Prielipp (2 )  and Marc I .  Whinston (2) .  

SotwUon t o  Mathacho~ t i c  No. Z!!. (See Spring 1986 Issue) .  

Words : - 
A. Guesswork 
B. Edmond Halley 
C. Outhouse 
D. Rotund 
E. Grand un i f i ed  
F. Evase 
G. S i l i con t rap t ions  
H. Imbibition 
I. F i n i t i s t i c  

J. Rainbow S. Easy out  
K. Authenticate T. Tombstone --* - 
L. Homunculus U . Out -of -round 
M. F i r s t  water V. Zwitterion 
N. Roots of  un i ty  W. Ear th  f l a t t e n e r  
0. Outspin X. Ramsey number 
P. Minify Y. Oyster 
Q. Oftenness 
R. Notched s t i c k  

Quotation: h ) c   mod^ uvi^itte.n numeration ... Aeemh A 0  obuAou~ to' in -- 
that ̂ t Juts cLi66AcuU ton. U A  to ' l e a t i z e  -ctA p'lo6undLty and. h p o v t a n c e .  
(Be)  o4e -c-t uwtd-t.nfei.ngLg . . . and tuvi t o  be. unmuhe. 06 meA^ti. B u t  
no one wtfio c o n ~ i d e ~ ~  khe lu^itohy o< numVU-cat nota t ions  can { ,a2 t o  be 
~-tt.uck b y  t h e  A n g e n d y  06 OWL Aybtem . . . . 
Soived by: Jeanette Bickley, Webster Groves High School, MO; Victor 
G. Feser, Univers i ty  of  Mary, Bismarck, ND; Rob& f o u b e . ~ j ,  Lexington, 

MA; Dr. Theodor Kaufman, Winthrop-University Hospital ,  Mineola, NY; 

Henry S. Lieberman, John Hancock Mutual Life  Insurance Co., Boston, MA; 

Charlotte Maines, Caldwell, NJ; Beth and Ron Priel ipp, Bethany College, 

Lindsborg, KS; Robert Prielipp, Univers i ty  of Wisconsin-Oshkosh; and 

Stephanie Sloyan, Georgian Court College,  Lakewood, N J .  

IMPORTANT ANNOUNCEMENT 

Pi Mu Epsilon's main source of steady income i s  the 
National Initiation Fee for new members. 

The fee covers the cost of a membership certificate 
and a one-year subscription to the Pi Mu Epsilon 
Journal. 

For the past fourteen years the fee has been set at  
$4.00. Effective January 1, 1987, the National 
Initiation Fee will be $10.00. After January 1 ,  1987, 
any order for membership certificates should be 
accompanied by the new fee. 



M a t h a c ~ o ~ t i c .  No. 23 

The 226 letters to be entered in the numbered spaces in the grid will be 
identical to those in the 24 keyed Koncto at the matching numbers. The key numbers 
have been entered in the diagram to assist in constructing the solution. When 
completed, the initial letters of the Won& will give the name of an author and the 
title of a book; the completed grid will be a quotation from that book. 

The solution to M a t h a c ~ o ~ ~ i c  No. 22 is given elsewhere in the PUZZLE 
SECTION. 

one-time claimant t o  t he  appe l l a t i on  "Mathe- 
mat ica l  Adam" f o r  the  g i v i n g  o f  names t o  t he  
creatures o f  mathematical reasoning (1814- 
1897) ( i n i t i a l s  and l a s t  name) 

i n a t t e n t i v e  

i n  Euclidean space, a subset whose Hausdorff- 
Bes icov i tch  dimension s t r i c t l y  exceeds i t s  
topo log ica l  dimension 

a small l oose l y  aggregated mass o f  mater ia l  
suspended i n  o r  p rec i p i t a t ed  from a l i q u i d  

a winner o f  t he  h ighest  honors i n  mathematics 
a t  Cambridge Un i ve rs i t y  

a gem o r  stone i n  convex form b u t  n o t  faceted 
( 2  wds.) 

, the smashing down o f  o u r w o r l d  by 
randomforces t h a t  don ' t  reverse. Stephen 
Leacock, Common Sense and the  Universe 

v e l o c i t y  modulated" beam tube 

a d r i nk i ng  f oun ta i n  on a sh ip  

the  comedian w i t h  the  punch l i n e  (2 wds.) 

name o f  a theorem which character izes compact 
se ts  i n  R (comp.) 

pe r t u rba t i on  o f  the  moon's o r b i t a l  mot ion due 
t o  the  a t t r a c t i o n  o f  t he  sun 

s lop ing downward from opposi te d i r ec t i ons  t o  
meet i n  a common p o i n t  o r  l i n e  

p o i n t  se t  obtained as a diagonal sec t ion  o f  a 
complete quadrangle ( 2  wds.) 

the  a r i t hme t i ca l  method o f  so lv ing  quest ions 
concerning t he  mixing o f  a r t i c l e s  o f  d i f fe rent  7 198 46 18 131 42 92 66 181 104 
q u a l i t i e s  o r  values 

the  f i r s t  mechanical i n ve rso r  (2  wds.) 
147 103 203 124 190 112 137 90 9 176 216 64 

a walk which uses each edge o f  a graph exac t l y  
once (2 wds.) 120 116 70 156 28 214 58 79 157 194 48 97 

t o  extremes o f  enthusiasm -------- - 
29 67 4 215 115 56 159 148 52 

the  most d is t ingu ished i n t e rna t i ona l  award i n  
mathematics ( 2  wds. ) 45 162 191 125 179 15 213 98 78 37 10 

what i t  i s  when you unexpectedly stumble upon 
something marvelous 144 44 60 170 57 126 11 69 154 80 34 

i n  stone-skipping, one i n  the  f a s t  ser ies  o f  
sk ips  j u s t  be fore  t he  sinkdown (comp.) 110 185 20 33 138 59 88 153 

d i r ec ted  forward o r  upward - - - - - - 
47 182 95 21 167 102 109 161 4 

c o l l e c t i o n  

t o  form a r i n g  around 



PROBLEM DEPARTMENT 

EcUted by Ctayton W .  Dodge 
Uniuvui-ity of, Mdne. 

Tfcti department welcome4 p k o b h  be^-teued t o  be new fluid (it a 

Levd  app^op^Uate f,oi t h e  ieadvui of, thUs j o m d .  OU pfi.obie.mb 
dJLsiphying novel and elegant mi-thodb of, io tu t ion  uke a h 0  inv i ted .  

Piopobo&A shouid be. accompanie.d by sotu-tconh if, cwaUcLbte. and by any 

Â¥in.f,omOtA.o that wWt, aaht the  idi toh.  An ( ~ t e A c i f z  [ * I  piweding a 
phobtem number -in.dic(it&.li t ha t  t h e  p i o p o b ~ .  did not submit a solution. 

AU communicottonh shotitd be. a d d ~ ~ u s e d  t o  C .  W .  Dodge., M(ith . 
D i p t . ,  U n b e ~ ~ L t y  of, Maine, Ohono, ME 04469-0122. P u e  bubmLt each 
p m p o d  and sotution pite.f,s~ab& typed on. d e d y  WluJtten on a 

bepafiate. h e , t  [one A d e  only] piope-Uy idewbi.<ied ui-Lth name and 

ad-. So-iutionh t o  pmblemi i n  t f c tA  -CAbue bhou^d be iwJJLcd by 

Jiiiy I ,  79i37. 

We geneAeLiiy pubtiiih 13 phob im  p e r  h s u e ,  one CLtphamcUu.c 

,$~Uowe.d by one. oh two piobiem ^tom each of ,  -the aAea United bitow 

so (M t o  pkouide. v a f u . Q  doh OWL f i eadm.  Some meOA 0tteac.t m0he 
piobtm pkoposaA4 than o t h m  and o f ,  c o m e  the  su-UabJUULty of, the. 
pmposati, uafu.n& g u y ,  so accepted phoposati, m e  not nec~tiohJiMj 

pubtiiihed in t h e  o i d e ~  in. which they me. heceived. An upeU.oJULy 
tism.tq pioposaJL, such OA numbwt 627 in t f c t i  h b u e ,  m i g h t  be. pubiUhe.d 

in. the. vvuf nevt- hbue .  To aid. you i n  submitting piobiwt, ((oh 
sotu-tcon, the. p o b t m  u k e u  m e  tu i ted  hem, dong w-ith the. numbvui 

of, acce.pta.bte p~opao&A i n  each &i&. The. mnai &e dgebxa i 141, 
geomeAty I I ! ? ) ,  aJLphamvbu.&~ [41, number theohy (31, a n o t y ~ h  ( 3 ) ,  
~ o n o m v U u j  I2 I ,  Logic and comb~n(ito>u.as, (0 1,  phobab^^Uy and 

b - t e t ^ - t t c~  (01, and iin^ce t̂oi.e.ou~ ( 0 ) .  Pt&o~e. notcce that only two 
of, tkut m e a ~  me. weJU. &wpp&ied laLth phobte.m b& that aU. popoiioJUi 

uke always welcome.. 

Problems for Solution 

626. Pioposed by C h d u  !U. T w g ,  Son Diego, CaAt,f,o.^^ta. 

Reconstruct t h i s  doubly t r u e  German alphametric where, of course,  

DREI and SECHS a r e  d i v i s i b l e  by 3. They a l s o  have t h e  same d i g i t  sum. 

EISS + ZWEI + DREI = SECHS. 

627. Pioposed by Robert C .  Gebhmdt, Hopatcong, N e w  Jemty.  

This prob1em has interesting applications for anyone who i s  - - - 

asked to  take a Lie-detector t e s t ,  a drug-use t e s t ,  an AIDS t e s t ,  or - 

any similar t e s t  where the percentages are of the order shewn i n  the 

question. It is known, l e t  us say, t h a t  0.1% of t h e  general  

population a r e  l i a r s .  When people known t o  be l i a r s  t ake  l i e -  

de t ec to r  t e s t s ,  t h e  t e s t  r e s u l t s  a r e  co r rec t  95% of t h e  time. When 

people known t o  be t r u t h f u l  t ake  l i e- de tec to r  t e s t s ,  t h e  t e s t  r e s u l t s  

a r e  co r rec t  99% of t h e  time. To g e t  a c e r t a i n  job, you a r e  asked t o  

t ake  a l i e- d e t e c t o r  t e s t .  Its r e s u l t s  i nd ica t e  you a r e  a l i a r .  What 

is t h e  p robab i l i t y  t h a t  you a c t u a l l y  a r e  a l i a r ?  

628. Pioposed by A t  T m g o ,  Matden, Ma&sachubvU^. 

a )  How many 4 x 6 cards  can a paper wholesaler c u t  from a 

s tandard 1 7  x 22-inch sheet  of card  s tock? 

b )  Can t h e  waste be eliminated i f  one is  allowed t o  cu t  both 

3 x 5 and 4 x 6 cards  from t h e  same sheet?  

629. Pioposed by Jack G&unke.i, F t u b h i n g ,  New Yohfz. 

If A ,  B ,  C a r e  t h e  angles  of a t r i a n g l e ,  prove t h a t  

COS A cos B cos C 5 (1 - cos A) (1 - cos B )  (1 - cos C). 

630. Piopobed by Rubs& E u i e ~ ,  NoIVfhiaUt M-cisod S-tOite 

Uniuvuiity, M u k w e ,  H u i b o d .  

Evaluate 

631. Pioposed by Sam Pw&, Pomom, CaU.f,oMa. 

Let 

Yn+l = k(1 - yn) 

f o r  n=0,  1, 2, ... and k a given constant .  I f  t h e  i n i t i a l  value yo 

has  an absolute  e r r o r  e = yo - y, where y i s  t h e  t r u e  value ,  show 

t h a t  t h e  formula i s  unstable  f o r  Ikl > 1 and s t a b l e  f o r  Ik\ < 1. 

632. Ptoposed by R. S. L u t h . u k ,  U n h m - i t y  of, Wil.conh .̂n CintVi, 

JanuuiUte, W h  conhin. 
4 



Show t h a t  

633. Pkopobe.d by  VmiCHy P. Mauto, Mobcow, U.S.S.R. 

Let a, b,  c  > 0. a + b + c =  1. and n e N. Prove t h a t  

with equa l i ty  i f  and only i f  a = b = c  = 1 /3 .  

634. Ptopobed by  St0.nte.y Ratu.nouiUz, D i g H a t  Eqiu.pme.at Cokp. , 
Natihua., N w i  Hcmp.liUte.. 

Find t h e  condi t ion f o r  one roo t  of t h e  cubic  equation 

3 2 x  - p x  + q x - r = o  

t o  be equal  t o  t h e  sum of t h e  o the r  two roo t s .  

635. Pkopobfcd by John M. Howe^U., IMM.uiock,  Caii.f.ofuu.a. 
Our o ld  f r i e n d  Professor Euclide Paracelso  Bombasto Umbugio has  

been amusing himself i n  h i s  re t i rement  with problems about i n f i n i t e  

s e r i e s ,  continued f r a c t i o n s ,  and o the r  nonterminating expressions.  

He says  t h a t  now he has t h e  time t o  follow through with such 

computations. So f a r  he has found t h a t  y  = /c and y  = 1 t x  do not  

i n t e r s e c t ,  and he i s  working on f ind ing  t h e  i n t e r s e c t i o n s  of  t h e  

curves y  = (x + &)'I2 and y  = 1 + x / ( l  + x). Proceed t o  t h e  l i m i t  

and help  t h e  good Professor  by f ind ing  a l l  i n t e r s e c t i o n s  of t h e  

curves def ined by t h e  continued expressions 

y =  (x + ( x +  ( x +  ... )1 /2 ,1 /2 )1 /2  

and 

y = 1 +  x  

1 + x 

1 + x  

1 + ... 
f o r  x  > 0. 

636. Pkopobed by 1UaJU.ut B&imbucg, Count Spaiflgb, Floiwia. 
2 a )  Prove t h a t  i f  p is  an odd prime, then 1  + p  + p cannot be 

a pe r fec t  square o r  a pe r fec t  cube. 

*b) Is p a r t  (a) t r u e  when p  is not  prime? 

637. Pkop0~e.d by R. S .  Luthuh, UfUMm-i ty  of, Whco i i i i n  Cents, 

JanuvÂ¥UULe. W-L&coni.in. 

Let ABC be a t r i a n g l e  with W C  = $ACE = 40'. Let BD be t h e  
-- 

b i sec to r  of M C  and produce it t o  E s o  t h a t  DE = AD. Find t h e  LL - 
measure of W E C ,  See t h e  l e f t  f i g u r e  below. 

638. Phopo&e.d by R. S .  Luthuh, Uni.ue.u^y of, W-LAcoiii-UI C t n t m ,  
JanuuuJie . ,  W-uicoiiiin. 

In t h e  r i g h t  f igu re  above, t h e  c i r c l e  with cen te r  0 is  an 

e x c i r c l e  of  t r i a n g l e  ABC. Then BK i s  drawn s o  t h a t  ^KBA = $AOC, 

and OA is produced t o  meet BK i n  D. Prove t h a t  OCBD is a c y c l i c  

quadr i l a t e ra l .  

Solu t ions 

595. [Spr ing 1985, Spr ing 19861 Pkopoied by U m y  NeAson, 

Liurnone. ,  c q o h . v u A .  

If t h e  i n t e g e r s  from 1 t o  5000 a r e  l i s t e d  i n  equivalence c l a s ses  

according t o  t h e  number of  wr i t t en  cha rac te r s  ( including blanks and 

hyphens) needed t o  wr i t e  them out  i n  f u l l  i n  co r rec t  English,  t h e r e  

a r e  exact ly  f o r t y  such non-empty c l a s ses .  For example, c l a s s  "4" 

conta ins  4 ,  5, and 9, s ince  FOUR, F IVE ,  and NINE a r e  t h e  only such 

numbers t h a t  can be w r i t t e n  out with exact ly  fou r  characters .  

Similar ly ,  c l a s s  "42" conta ins  3373, 3377, 3378, 3773, 3777, 3778, . 
3873, 3877, and 3878. Find t h e  unique c l a s s  "n" t h a t  conta ins  j u s t  

one number. 



11. Commwt by 3 .  Suck, a h e n ,  Gemany. 

Yes, class- consciousness begins with the  language you use. It 

is co r rec t  English t h e  proposer a l ludes  t o ,  and so ,  t o  avoid any 

poss ible  surrender  t o  t h e  seductions of our common English,  I 

consulted t h e  Oxford Advanced Learner's Dictionary of Current 

KnqUsh, Third Edi t ion,  1974, p. 1036, Appendix 4 ,  Numerical 

Expressions,  only t o  f i n d ,  a l a s ,  t h a t  t h e  proposer 's  numbers 3377 

e t c .  a r e  i n  t h e  wrong c l a s s .  Three thousand, t h r e e  hundred and 

seventy-seven e t c .  it should have been, with a comma separa t ing o f f  

t h e  thousands and an "and" put  i n  it, i . e .  c l a s s  "47". 

Now, while obviously not  expecting every cha rac te r  t o  do i ts  

duty here ,  M r .  Nelson seems t o  i n s i s t ,  on the  o the r  hand, on "one" 

where "a" is admissible i n  l e s s  formal speech. For otherwise he 

would have found spo i l- spor t s  104 and 105 n e s t l i n g  alongside 3000 i n  

c l a s s  "14". 

"So," says Harry Dumpty, "when I say ' co r rec t  English'  ... . ' I  

111. Reply by E&LzabvC.h Andy, New L i m d c k ,  M&ne.. 

While the  Oxford Dictionary is undoubtedly t h e  s tandard f o r  

proper usage i n  England, it is  wel l  known among mathematicians t h a t  

even proper persons don ' t  know nothin '  'bout how t o  speak numbers. 

Mathematically co r rec t  usage demands t h a t  t h e  word "and" be reserved 

f o r  t h e  decimal po in t  only. Consider "two hundred th i r ty- four  

thousandths," "Two hundred and th i r ty- four  thousandths," and "Two 

hundred t h i r t y  and fou r  thousandths," c o r r e c t l y  naming 0.234, 

200.034, and 230.004, r e spec t ive ly .  One cannot blame j u s t  t h e  

B r i t i s h  f o r  t h i s  all-too-common misuse of t h e  language, f o r  even t h e  

Random House Dictionary g ives  t h e  example of " three  hundred and s i x t y  

s tudents ."  Since t h i s  column is wr i t t en  f o r  t h e  mathematically 

t r a i n e d ,  it was assumed t h a t  c o r r e c t  mathematical usage was intended, 

although I suppose it would have been he lp fu l  t o  have s t a t e d  t h a t  

hyphens and spaces were t h e  only punctuation t o  be counted. Thus we 

have t h e  following r ep ly  t o  t h e  above comment: 

There was a young man from Essen, 

In  order  t o  remove a l l  guess in ' ,  

Took Oxford Dictionary 

For s tandard vocabulary, 

But its numerals had been gefressen. 

600. [ F a l l  19851 Pmpohid. by John M. H o d ,  LU.U.e~ock, 

ca.mon.VU.CL. 

I 
* -. 

AM --- .- 

NOT - 
SURE, but i f  I < M < T  and A < 0, I t h ink  t h e r e  a r e  only f i v e  

so lu t ions  t o  t h i s  alphametric.  

SotwUon by V-ictot G. Faen., Lh~y CoU.nqe, Bt4mo~Ck, W .  
Immediately we have S = 1, S = 9, and U = 0. Let DS denote t h e  

d i g i t a l  sum, modulo 9. Since a l l  t e n  d i g i t s  a r e  used, then 

DSfaddends) + DS(sum) = 0 ;  but a l s o  DSf'addends) = D S f s m )  , s o  DSf8m) 

= 0. Thus, because S = 1 and U = 0 ,  then R + E = 8 .  In  t h e  u n i t s  

column we have I, M, and T  a r e  a t  l e a s t  2, 3, and 4, t o t a l i n g  a t  

l e a s t  9. Since 9, 0, 1 a r e  taken, t h e  t o t a l  is a t  l e a s t  IS, s o  1 is 

c a r r i e d  t o  t h e  t e n s  column, which i n  tu rn  t o t a l s  a t  l e a s t  12. SO 

A  + Offfoh") is a t  l e a s t  11. Therefore n e i t h e r  A nor  0 is  2. Also 

none of I + Ma I  + T, and M + T  can be 10. There remain t h e  

following p o s s i b i l i t i e s :  

I M T  E R A 0  

2 4 7  5 3 6 8 



Thus we have these  f i v e  so lu t ions :  

2 2 3 3 4 

64 46 74 45 35 

987 - 987 - 985 - 978 987 

1053 1035 1062 1026 1026. 

Aha botve.d by FRANK P .  BATTLES, MahbachuAe-Â£t Mar i t ime Academy, 

BuzzoAdA Bay, JAMES E .  CAMPBELL, UnLvefUlLty of, Wil,hoUA(-, C o h n b h ,  

MARK EVANS, LoILfcAvWLe., KY, RICHARD I .  HESS, Rancho Pdoh  V v t d u ,  CA, 

DAVID I N Y ,  Jvuu,aJLw, I hmeL ,  GLEN E .  MILLS, V a i e n d a  Commum.ty 

Cottage, Odando, FL, THOMAS E .  MOORE, ZmdgWUJt.vt S t a t e  CoUege, MA, 

JOHN HOWE SCOTT, S t .  P d ,  MN, J .  SUCK, EAhen, G m a n y ,  KENNETH M .  

WILKE, Topeka, KS, and t h e  PROPOSER. 

601. [Fa l l  19851 Piopohed by C h w i t u  W. T l i g g ,  Sun Viego, 

Cf&&$ohfUJH. 

Without t a b l e  searching,  i d e n t i f y  t h e  t h r e e  consecutive 

in t ege r s  i n  t h e  decimal system whose squares  have t h e  form abcdef 

with d i s t i n c t  d i g i t s  and whose r eve r ses  have squares with t h e  same 

d i g i t s  i n  the  o rde r  efcddb. 

S o l u t i o n  by TUcllCLfld I .  H u h ,  Rancho Paioh Vefu lu ,  CaUf,ohnLa. 

Since t h e  square conta ins  6 d i g i t s , 3 1 7 < t h e  number 999. Let 

n =  l o @  + 1Oq + r and n 2 =  dbcdef, m = 1OOr + 1Oq + p a n d m
2

=  

efcdab. Now square out  n and m t o  g e t  t h a t  

2 n2 - m2 = 9999fp2 - r I + l980q(p - r )  = 99990(a - e )  + 9999(b - f ) ,  

which implies t h a t  

2 
I O I ( ~ ~  - r ) + 20qfp  - r )  = 1010(a - e )  + 101(b - f ) .  

Now 

20qfp  - r )  s 0 (mod 101) 

and s ince  p # r ,  then q = 0 .  Since p2 and r2 a r e  two-digit  numbers, 

then p, q > 3 .  Also 2pq is  t h e  two-digit  number cd, s o  pq < 50. 

Hence t h e  p o s s i b i l i t i e s  f o r  n (with n < m) a r e  405, 406, 407, 408, 

409, 506, 507, 508, 509, 607, and 608. That 4 0 6 ~  = 164836 has a 

repeated d i g i t  e l imina te s  t h e  400- series.  Likewise 5 0 6 ~  has a 

repeated d i g i t .  Thus t h e  only remaining p o s s i b i l i t y  i s  507, 508, 

509, which is indeed t h e  so lu t ion .  

A h  hotved by JAMES E .  CAMPBELL, UnLve~~Â¥c t  of, MhhoUA(-, 

Co&unbia, MARK EVANS, Lom^vUte ,  KY, VICTOR G. FESER, M o ~ y  Cortege, 
. 

RcAmmck, M, DAVID I N Y ,  Je^oJLem, T.lmeL, JOHN HOWE SCOTT, S t .  

P d ,  MN, J .  SUCK, m e n ,  G-any, KENNETH M .  WILKE, Topeka, KS, and 

t h e  PROPOSER. - - -  - 

*602. [ F a l l  19851 Piopohed by Jack Ga~f,unket,  FtahAJflg, New 

Yank. 

Given i s o s c e l e s  t r i a n g l e  ABC and a po in t  0 i n  t h e  p lane  of  t h e  

t r i a n g l e ,  e r e c t  d i r e c t l y  s i m i l a r  i s o s c e l e s  t r i a n g l e s  POA, QOB, ROC 

(but not necessa r i ly  s i m i l a r  t o  t r i a n g l e  ABC).  Prove t h a t  t h e  apexes 

P, Q, R of these  t r i a n g l e s  determine a t r i a n g l e  s i m i l a r  t o  t r i a n g l e  

ABC. 

I .  S o l u t i o n  by M .  S. Kiamlun., U n u i W i i t y  06 A&uvta, Edmonton. 

I f  (p,  q,  r )  and (a,  b, c )  denote t h e  a f f i x e s  of  t h e  

corresponding v e r t i c e s  of t h e  two t r i a n g l e s  PQR and ABC i n  t h e  

complex plane,  then a known necessary and s u f f i c i e n t  condi t ion t h a t  

t h e  two t r i a n g l e s  be d i r e c t l y  s i m i l a r  i s  t h a t  

Le t t ing  0 be t h e  o r i g i n , i t  now fol lows from t h e  hypothesis t h a t  

Now we have t h a t  

11. Sotti lUon by WWUuam E. Hof,f,, Plu.nc.it-ton, W u t  VVLginia. 
+ 

Let x denote t h e  d i r ec t ed  segment obtained by r o t a t i n g  t h e  
-+ 

d i r e c t e d  segment XY 90 degrees counterclockwise about po in t  X. Its 

l eng th  is  XY. For a p a i r  of  nonzero r e a l  numbers k and j, and an 



a r b i t r a r i l y  chosen point 0 i n  the  plane of t r i ang le  ABC, locate P, 

Q, and R by 

0 3 = k ( 0 A ) + j f o V ) ,  o Q = ~ ( o B ) + ~ ( o P ) ,  

and 0; = k f d )  + j ( 0 P ) ,  

assuring the  s imi la r i ty  of t r i ang les  POA, QOB, and ROC. Then 

$ = k f ~ z ) + j ( A % ~ ) ,  R ~ = k f ~ ' Â £ ' ) + j f ~ ~ )  

and PR = k ( 6 )  + j ( d s ) ,  

whence 

(QP)' : (RQ)' : (PR) 2 

= f k 2  + j 2 )  (AB)' : ( k 2  + j 2 )  fBCI2 : f k
2  + j 2 )  ( C A ) ~  

2 
= ( A B ) ~  : (BC)' : (CA) . 

Hence t r i ang le  PQR is  s imilar  t o  t r i ang le  ABC, whether o r  not ABC i s  

isosceles  and whether o r  not the erected t r i ang les  a re  isosceles. 

I I I .  Sotu-Uon by  J .  Suck,  &&en, G m a n y .  

O m i t  "isosceles" from the  proposal altogether. Apply the  

cen t ra l  d i la t ion  with center 0 and r a t i o  OA/OP f= OB/OQ = OC/OR). 

Then apply the  rotat ion about 0 through the angle AOP f= BOQ = COR). 

The image of t r i ang le  ABC i s  t r i ang le  PQR. Both transformations a re  

known t o  be angle-preserving. Hence the conclusion. 

A&so b0tve.d by  RICHARD I .  HESS, Rancho P d o b  IWa, CA, DAVID 

I N Y ,  J e ~ ~ u b o t o n ,  I b w i i ,  and JOHN HOME SCOTT, St. P a d ,  MN. 

603. [Fall  19851 Phopo~cd b y  R u A A & Â £  Edm, Nolufkusi&t UttAboui^i 

S t a t e  U n i u ~ i - L t y ,  MakyuiW.e. 

Evaluate 
00 

2 
lim I f - ~ ) ~ f $ )  . 
a?*- n=O 

Sotu-Uon by Richcuid 1. Hm, Rancho P o t o  V a d u ,  CaLLdohiwiL. 

From Abromowitz and Stegan, Mathematical 'rabies, page 369 ,  we 

have t h a t  the  zeroth order Bessel function J f x )  is  given by 
0 

Thus the  indicated summation is  J o f 2 x ) ,  and the  desired l i m i t  is  

lirn J o f 2 x )  = k2 e o s  f 2 x  - x) = 0. 
a*- G 4 

A-fcso b o i w d  by  WALTER BLUMBERG, C o d  Spiu.ng&, FL, DAVID I N Y ,  

JeAoiatem, 1 b ~ 0 . i t ,  M. S .  KLAMKIN, UwMeAAJLky of ,  A L b W ,  Edmonton, J .  

SUCK, EAbe.n, G m a n y ,  and t h e  PROPOSER. One. Â¥LncowieC- &o!.dion uxu> 

hec&t.ued. Suck ubed the  b h p  biiow. pÂ¥Lctu/u.n the.  Behbi i  f,u.n.cti.o~&-- .- 
Jo and J , ,  on Ui Zfcfcte~. 

604. [Fall  19851 Phopobed by Vauid Iny ,  R m b & e h  PoLytechVU,~ 

Inb-ttAtte., Thoy, N e w  Yohk. 

A un i t  square is covered by n congruent equ i la te ra l  t r i ang les  of 

side s with o r  without the t r i ang les  overlapping each other. Find 

the minimum values f o r  s f o r  n = 1 ,  2, and 3, 

I .  ~o.fcuAt.on 601 = 7 and n = 3 by  John Howe S c o t t ,  3. P&, 

Minneho-ta. 

From the f igures  below we have x tan 60' = 1 ,  so  x = 1 / ^ 3  and 

the s ide  of the t r iangle has length 1 + 2 x  = 1 + 2/-/3'- 2.156. 

Also ( s / 2 )  tan 60' + z tan 60' = 1 and s = 1 + 22. Eliminating 2 

between these equations we get t h a t  s = 1 / 2  + I /&-*  1.077. 



11. So lu t ion  fok n = 2 by the. pfi.opobm. 

In  t h e  l e f t  f i g u r e  below s e t  t be t h e  s i d e  of  t he  t r i a n g l e .  Then 
t = y + 2 / 6 =  (1 - y) + l / / g  from which we ob ta in  t h a t  t = 1/2 + 
^/2 i 1.336. 

The. poA-ti fok  n = 1 and n = 3 wme. d o  b0ive.d by MARK EVANS, 

Loiu^vUJLe., KY,  VICTOR G. FESER, Md~y CoLLege., W c k ,  NV, RICHARD 

I. HESS, Rancho Pd04 V a d w  CA, and the. PROPOSER. O n l y  t h e  

p f i . opo~e~ 6ound the. covi.e.at ( j i g m e  doh n=2. F u ~  and H u b  found the. 

c p u t m  digme. above., g i v ing  a b-uk Length of /2'i 1.414, whe~e.u.4 

Evan6 and Sco t t  bubmitte.d t h e  t i g h t  hand &igu~e., whobe. bide. Length Â¥it 

1 + m 3  : 1.577. 

605. [ F a l l  1 9 8 5 1  Pnopobtd by Jack Gan.^wb.it, FiuJSshLng, Men) 

Y0fi.k. 

Given t h a t  x is  an acute  angle ,  f i n d  t h e  value of x i f  

s in  4x s in  x 
2 cos 3s = c o s x  + 2 s in  x. 

So lu t ion  by Wade. H. S h m d ,  F m a n  UMMemLty, Gfi.e.e.nv^JU.e., 

South CaAotLna. 

Reca l l  t h a t  s in  y cos a = 1/2fs in  fy  - z )  + s in  fy  + 2) ) .  Now 

c l e a r  t h e  given equation of  f r a c t i o n s  t o  g e t  

s in  4x cos 2x = 2 s in  x cos 3x + 4 s in  x cos 2x cos 3x. 

Next r ep lace  t h e  products by sums, obta ining 

1 
-$sin 2x + s in  6x1 

1 1 = 2sT(- s in  2x + s in  4x) + 4 cos 2x - 4- sin  2x + s in  4x1, 
2 

s in  2x + s in  6x 

= -2 s in  2x + 2 s in  4x - 4 s in  2x cos 2x + 4 s in  4x cos 2x, 

1 
3 s in  2x + s in  6x = 2 s in  4x - 2 s in  4x + 4--j-(sin 2x + s in  6x1, - - 4 

3 s in  2x + s in  6x = 2 s in  2x + 2 s in  6x. 

s in  6x - s in  2x = 0 ,  

s in  (4x + 2x1 - s in  f4x - 2x) = 0, 

cos 4x s in  2x = 0. 

There is no acute  angle x such t h a t  s i n  3x = 0, but  C O s  4x = 0 f o r  

3ll 
t h e  acute  angles  x = $ and x = -- 8 It is easy t o  check t h a t  these,  

values s a t i s f y  t h e  given equation. 

A& boLved by FRANK P .  BATTLES, Mo~~achu4e-fctA MafuJLume. Academy, 

Buzza~di  Bay, RUSSELL EULER, NoA-tfcwebt H i s , ~ o d  S Z d e  UM-ueAi-Ut.y, 

Ma~yv^Un, ROBERT C. GEBHARDT, Hopatc.ovi~, NJ, RICHARD I. HESS, 

Rancho Palab Vendu, CA, JOHN M .  HOWELL, L U t t a o c k ,  CA, EMMANUEL 

IMONITIE,  Noithwe~-t H i s , ~ o d  State. Uni .vnuUy,  Man.yvÂ¥cfcte RALPH KING, 

Sa in t  Bonuvdztu~c U t ~ L ~ e m Â ¥ c t t f  MY,  OXFORD RUNNING CLUB, U M . U M  of 

M^Abht, ippi ,  Uni.vmÂ¥ay BOB P R I E L I P P ,  UtM.vmUy of WAAconiin-Obhkobh, 

JOHN HOME SCOTT, S t .  P a d ,  MN, ARTHUR H .  SIMONSON, E a t  TexoA Sta te  

U n i v ~ s L i y  at Te.xa~.kana, J. SUCK, EAbe.n, G w n y ,  V I S  UPATISRINGA, 

Hwnbotdt State. U t M . v m a ,  m a ,  CA, and HA0 NHIEN Q U I  VU, P d u e .  

Uiu.vmit-ty, Wut LafayeAte., I N .  P0At t .d  boLuAt.on6 (0efi.e. bubnU,ttcd by 

MARK EVANS, LomAv-Ote, KY, M. S. KLAMKIN, UvwiJe.h4Uy of ALbe^ta, 

Edmonton, GEORGE W .  RAINEY, C o & t . f ~ f i . ~ ~  S ta te  PoLyte.chiu.c UwiveAiUy, 

Pomona, and the. PROPOSER. One. Jw.covi.e.ct botuJtA-on uxu> fi.e.ceived. 

606.  [ F a l l  1 9 8 5 1  Ptopobed by R u ~ b a ^  E u ^ i ,  No^thitfe~A Mc4boUA-C 

State. UrU.vmUy,  MaAyv-UULe. 

Prove t h a t  

I. SotuJtA-on by ChaldLu, R. Vh inn ie . ,  Scwit  BonavenAiAe U n i . v e ~ ~ U y ,  

Sa in t  BonavputuAe., N e w  Y0fi.k. 

Let z = P exp [ i ( x  - v/p)]  and wk = exp f S k v / p ) ,  k = 0. 1. ... , 
p - 1. Since t h e  wk a r e  t h e  p th  r o o t s  of un i ty ,  we have 

A 



which implies t h a t  

from which t h e  des i r ed  r e s u l t  follows. 

11. Comment by M. S. K h h i n ,  U n i u e ~ L t y  ofi Atbewta., Edmonton. 

The problem is a t r i v i a l  v a r i a t i o n  of t h e  proposer ' s  problem 294 

i n  t h e  College Mathematics Jownal, and e i t h e r  r e s u l t  i s  a 

c l a s s i c a l  i d e n t i t y  t h a t  appears i n  many English trigonometry books, 

f o r  example, Durel l  and Robson, Advanced Trigonometry, G. Bel l  & 

Sons, London, 1953, p. 226. 

A h 0  &ot\)e.d by WALTER BLUMBERG, C o k d  SpAoigb, FL, DAVID INY,  

J w t ~ i a i m ,  I{skaeJL, JOHN HOME SCOTT, S t .  P a d ,  MN, M I C H I E L  SMID, 

TUbUn.g, The NathVULa.ndt,, J. SUCK, E&en, Gurnany, V I S  UPATISRINGA, 

Humbo-tdt S ta te  Un iue~ iJ i t y ,  A W a ,  CA, and the. PROPOSER. 

6 0 7 .  [ F a l l  1 9 8 5 1  Pkopo~ed by Jack Gutdunkit ,  F h f c u i g ,  N w  

Yokk. 

Triangles ABC and A'B'C' a r e  r i g h t  t r i a n g l e s  with r i g h t  angles  

a t  C and C ' .  Prove t h a t  if s/r  > s '/r', then s/R < sr/R' ,  

where s ,  s f ,  r, r', R, R' a r e  r e spec t ive ly  t h e  semiperimeters,  

i n r a d i i  , and c i rcumradi i  of ABC, A 'B'C'. 

So-tution by U. S. Klamhin, UvuMmLty 06 .Ube&a, Edmonton. 

The given r e s u l t  can be general ized t o  hold f o r  a r b i t r a r y  

t r i a n g l e s  ABC and A'B'C' s o  long a s  C = C ' .  By using s i m i l a r  

t r i a n g l e s ,  we can assume without l o s s  of  gene ra l i t y  t h a t  s = 8 ' .  

Then we wish t o  show t h a t  if r' > r, then R > R'. Since 

2rs = ab s i n  C and c = 2R s in  C, e tc . ,  

we wish equivalent ly  t o  show t h a t  

i f  arb' > ab, then c > c' o r  a' + b' > a + b. 

Squaring t h e  equation 

c = /a2 + b2 - 2ab cos C = 2s - a - b, 

we obta in  4s(a + b )  = 2aW1 + cos C )  + 4 s  and a s i m i l a r  expression 

f o r  a' + b ' .  The des i r ed  impl ica t ion now follows immediately. 

Amalgam 06 the. {so lu t ion by John M. H o d ,  Li t t i&n.ock, 

CutY,6oWtia., w i t h  that by T U c W  A. G i b b ~  and Lc~ iz io  Szue.c~, Tout 

Leioa CoUege, V m g o ,  C o t o ~ d o .  

Using t h e  r e l a t ionsh ips  

and 

we sub t rac t  .column k - 1 from column k, column k - 2 from column 

k - 1, . . . , column 1 from column 2 .  Since t h e  f i r s t  r o w  now is 

1 0 0 0 ... 0, 

expand the  determinant D(n, k) by elements and minors o f  t h e  f i r s t  

row. It then reduces t o  

AUo i0ive.d by WALTER BLUMBERG, C o d  Sp-'K.ng{s, FL, RICHARD I. 

HESS, Rancho Palo& lW~de-4, CA, DAVID INV, J w a t m ,  I ~ m e t ,  RALPH 

KING, S t .  ZonauentUn.e, N Y ,  HENRY S. LIEBERMAN, Waban, MA, BOB 

P R I E L I P P ,  UHAWL&LQ 06 fUhcovis,Jin-O&hko~h, JOHN HOME SCOTT, S t .  - - - 

Paul, MN, WADE H. SHERARD, Fmman U h m L t y ,  G/m.enuWLe, SC, ARTHUR 
- 

H. SIMONSON, E a t  T e x a  S-ta-te U & w . ^ n  at Texmhm. ,  J .  SUCK, 

E M U ,  G m a n y ,  and the. PROPOSER. 

608 .  [ F a l l  1 9 8 5 1  Pkopo-ied by R. S. Luthafl, UvU.vmUy 06 

W-cAcott~in, Waukuha. 

Evaluate t h e  following determinant:  



which is t h e  given determinant with n replaced by n + 1 and o f  order  

k in s t ead  of order  k + 1. That is  Dfn, k )  = D(n + 1, k - 1) .  Now 

609. [ F a l l  19851  Pkop0be.d by R. C. GebhoA.cte, Pmippany ,  

N w i  JUL4e.q. 

we can repeat  t h e  e n t i r e  process k - 1 more t imes  t o  reduce t h e  

determinant t o  t h e  second order  determinant D(n + k - 1, 11, t h a t  is, 

Determine whether t h e r e  e x i s t  nonzero i n t e g e r s  a, b, c, and d 

2 2 2 2 such t h a t  a + b = c and a2 - b = d2. 

1 1 

(n+k, (n+k+l 
1 1 )  

I. SoiiLUon by W & a  Biwnbmg, C o d  Sp'u.ngb, F&ofuda. 

Assume t h a t  so lu t ions  e x i s t .  Then mul t ip ly  t h e  two e q u a l i t i e s  

together  t o  g e t  
4 2 2 2  2 2 a

4 - b = (a + b  ) (a  - b ) = (cd) . 
This is impossible s ince  it is known t h a t  t h e  equation x

4 - y4 = z 2 

has no so lu t ions  i n  nonzero in t ege r s  x, y, and z .  

= ( n +  k + 1 )  - ( n +  k )  = 1 .  

I I. SoiiLUon by the. pmpobm. 

Mbo bolved by MARK EVANS, Lou-civ-cfcte, KY, DAVID INY, J a a ~ d e m ,  

Ibme.t,  M. S. KLAMKIN, U r u k ~ i U y  06 A lb fv ta ,  Edmowton, BOB PRIELIPP, 

Umuu,̂  06 WAAcomLn-Obhkobh, JOHN HOWE SCOTT, S t .  Pant, MN, 
MICHIEL SMID, T i l bo / i q ,  The. Ne-theAAindi, J. SUCK, E~ben,  Gumany, and 
the. PROPOSER. Suck poiwtitd out that thU> p~~oblem AA b0iuv.d in Mu&, 
A Treatise an the Theory of Determinants, DOUUL, 1960, p. 679. 

Construct t h e  Fythagorean r i g h t  t r i a n g l e  with l e g s  2a2b2 and 

4 4 a
4 - b4. Its hypotenuse w i l l  be a + b and t h e  a rea  is 

1 2 2 4  4 2 2 2  2 2  2 2 ,(Sa b ) (a  - b ) = a b (a + b ) (a  - b ) = (abed) . 

Since Fermat proved t h a t  a  r i g h t  t r i a n g l e  with i n t e g e r  s i d e s  cannot have 

an a rea  t h a t  is a  pe r fec t  square,  t h e r e  a r e  no nonzero i n t e g e r s  t h a t  

s a t i s f y  t h e  given problem. 

ALbo bo iu id  by FRANK P. BATTLES, !Aaibacfeubfc.tti MoActune. Academy, - -  - 
Buzzah& Bay, RUSSELL EULER, NoVLhvne~Z AttAbou/K: S-ta-Â£ UnivWi-t/fa/, 

Mcw.yvW.e., JOHN M. HOWELL, Lt-ttCaock, CA, DAVID INY, Je~oioZem, I b m d ,  

8 .  S. KLAMKIN, U w i . v m i t y  06 MLbeJvta., Edmowton, MASSACHUSETTS GAMMA, 

& d g w a t a  S t a t e  CoLLege, JOHN HOWE SCOTT, St .  Pant, MN, and KENNETH 

M. WILKE, Topeka, KS. Mo~bacfeubÂ£-t-t G m a  ciAe.d S a p h b h i ,  Theory 

of Nwnbers, Ha6na PubtL&hing Co., flwi Yohk, 1964, pp. 52-54, and (Uilkt? 

f te .6~ ie .d  t o  C(Uuiu,chad, Diophantine Analysis, DovVL Pub.6t .cdon~,  N w i  

Y O J L ~ ,  1959, pp. 14-17. 

61  0. [ F a l l  1 9 8 5 1  Ph0pobit.d by RubbeJU. Eaim, Novthwut  M-IAboU/M. 

Find a l l  tw ice- d i f f e ren t i ab le  funct ions  f such t h a t  t h e  average 

value of f on each c losed sub in te rva l  of [a,bl, a < b, is  t h e  mean of 

f a t  t h e  endpoints of  t h e  sub in te rva l .  

I. So lu t ion  by Ox6oh.d Running d u b ,  U~ve .U-L*y  06 Abhbdbipp i ,  

U & t v ~ i a y ,  !d.hb.&b@pi. 

I f  f is such a  function, then f o r  x E (a, b]  we have 

o r  x 1 
1 f ( t )  d t  = -g(x - a )  ( f ( x )  + f ( a ) ) .  
a 

Dif fe ren t i a t ing  y i e l d s  
1 1 f ( x )  = -g-(x - a)  f '  ( x )  + j ( f  ( x )  + f (a)  1, 

f ( x )  = ( x  - a ) f l ( x )  + f ( a ) ,  

And another  d i f f e r e n t i a t i o n  produces 

f r ( x )  = ( x  - a ) f r l ( x )  + f ' ( x ) ,  

t h a t  is, 

( x  - a ) f " ( x )  = 0. 

Hence fr '(x) = 0 on (a, b ]  and f is  l i n e a r  of (a, b ] .  By con t inu i ty  f 

is l i n e a r  on [a, b ] ,  s o  f ( x )  = mx + p f o r  some constants  m and p.  

11. SoiiLUon by David Iny ,  J w a t e m ,  I b ~ e t .  

The condi t ion t h a t  f be twice d i f f e r e n t i a b l e  is unnecessary. We * 



s h a l l  assume only t h a t  f  is  continuous on [a,  b ] .  Choose c  and d  so  

t h a t  a  5 c  < d  5 b. Then 

d - c  f i x )  dx = ^[f f+ + f ( d ) l .  
(e+d)/2 

Since f  is continuous, we have t h a t  

(c+d)/2 d  d 
r f f x )  dx + r f  ( x )  dx = r f ( x )  dx. 
c  (c+d)/2 c  

It then follows t h a t  

c  + d  f f c )  + f f d ) .  f(-) = 2 2  

Now l e t  3 be any f r a c t i o n  having a terminat ing base 2  expansion and 

such t h a t  0 5 2 5 1. By induction we have t h a t  

( 1 )  f  ( z c  + (1 - 3 ) d )  = z f  (el + (1 - .If ( d l .  

By con t inu i ty  t h i s  equation holds even when 3 does not  have a 

terminat ing base 2  representa t ion.  Since c  and d  a r e  a r b i t r a r y ,  then 

equation ( 1 )  holds when e  and d  a r e  replaced by a  and b .  Now we have 

t h a t  f is l i n e a r  s ince  ( 1 )  is t h e  equation of  a l i n e .  

A&io boiued by FRANK P .  BATTLES, Maibachu-ifcttA MoAiAune Academy, 

Buzzo~dA Bay, MARK EVANS, Lou^Au-t^e, KY, J. FOSTER, Webut S ta te  

CoUege, Ogden, UT, RICHARD I. HESS, Rancho Po&b Vutdeb, CA, M. S. 

KLAMKIN, U m k i M U y  of, Wswta, Edmowton, BOB P R I E L I P P ,  Un.Lve~i i i ty 06 
~Â¥ciconb-~n-~bhkobh M I C H I E L  SMID, T.cfcbu~g, The N r f h e A t o i h ,  and the. 
PROPOSER. Bat-U.u commented thcut tUA pkobiem -tA Theo~em 1 hkom 

' A v ~ . a g e  VO&I&A and LLneuh FunwLionbl' by David Dobbb, The College 

Mathematics Journal, 1985, v o i .  1 6 ,  no. 2, pp. 132-135. 

61 1. [ F a l l  19851 Pkopobed by Hcm-Nhen Qui Vu, PuAdue 

Ui ime~i -L ty ,  W i & t  Laf,aytt te,  Indiana. 

Calcula te  t h e  following i n t e g r a l s :  

So lu t i on  by V-tA Up(LfctAfu.nga, Humboidt State. UWLU~AAAJS.~, M-ovta., 

CaLifio'Lnm. 

In Burington, Handbook of flathematieal Tables and F o m I a s ,  3rd 

ed, Handbook Publ ishers ,  Sandusky, OH,  1949, p .  90, i n t e g r a l s  390 and 

394 s t a t e  

and 

a )  Let a = ex - 1. Then we have t h a t  

b )  Here we use t h e  s u b s t i t u t i o n  a = e-^ s o  da = - e x  dx. Then 

AAio bolved by FRANK P .  BATTLES, Mo~bachu-ifc-fcti MoAiAone Academy, 

BuzzoAdA Bay, WALTER BLUMBERG, C o k d  Sphingb, FL, RUSSELL EULER 

(pOAt b o n l y ) ,  NoA-tfuvebt His,boVJu. S ta te  U n i v e u i t y ,  M0~yvi.U.e~ ED 

GADE AND BOB P R I E L I P P ,  UnLueu-Lty of, Whconfsifi-Obhfeobh, RICHARD I. 



HESS, Rancho P d o h  Wnitda,  CA, DAVID INY, Je~i~~oten,  Ih^ie^, M .  S. 

KLAMKIN, U L v W i U y  06 Wovvta, Edmowton, MICHIEL SMID, T U b u ~ g ,  The. 

N<tkinto.ndl,. and f i e .  PROPOSER. 
Eu-ten u4e.d Ba~nou-fcfct. numbe.~i i o n  UA m i i v b i o n ,  Gade. and P d e . U p p  

and H u h  u e d  the. gamma and ze-ta. 6unft iowti ,  1uhZie mokt 06 the. o t h W i  

expanded one. on mote. 0 6  the. wte.gnandt, i n  powe.n h U u , u  and t h e n  

L n t e g i a t e d  teAm by turn, most commonty aVu.uii.ng at the. 10& known 

6 1 2 .  [ F a l l  19851 Phop0he.d by Vau^id. I n y ,  R e . n ~ b o A i a ~  PoLyte.chLc 
Jwtiti-tute.,  T m y ,  New Yank. 

A f r i e n d  wr i t e s  t h e  l e t t e r s  A, B, C, D i n  some o rde r  unknown 

t o  you. You may ask a f ixed  number of yes-no quest ions  about t h e  

permutation. 

a )  I f  they a r e  answered t r u t h f u l l y ,  show t h a t  l e s s  than h a l f  

a dozen quest ions  w i l l  s u f f i c e  t o  determine t h e  permutation. 

b )  I f  t h e r e  is  a t  most one l i e ,  then not  over 10 quest ions  

a r e  needed. 

c )  I f  t h e r e  a r e  a t  most two l i e s ,  show t h a t  not  more than 15 

quest ions  a r e  required.  

*d) Are these  l i m i t s  t h e  b e s t  poss ible?  

I .  S o t w U o n  by R i c h m d  I .  H u h ,  Rancho Poto i  W a d u ,  

C.aLH0nvu.a.. 

a )  Write down t h e  24 permutations and narrow down the  

p o s s i b i l i t i e s  by t h e  halving method. That is ,  ask i f  t h e  permutation 

i s  i n  t h e  top  h a l f  of t h e  l i s t ?  (Yes o r  No.) Reduce t h e  l ist  t o  

only those  permutations s t i l l  allowed. Then n quest ions  w i l l  r e so lve  

2" e n t r i e s ,  so  5 quest ions  a r e  required t o  r e so lve  t h e  24 < 2 items. 

b, c ,  & d )  Use t h e  method of  p a r t  ( a )  with a t r i c k  t o  g e t  t h e  

l i e s  t o  come ou t  c o r r e c t l y  such a s  by asking,  " If  I were t o  ask is 

t h e  t r u e  permutation i n  t h e  top  h a l f  of  t h e  l ist ,  what would your 

answer have been?" This idea  presumes t h a t  t he  answerer decides 

before  each quest ion whether he w i l l  l i e  and then s t i c k s  t o  h i s  

decis ion.  

11. S o t w t i o n  by the. p h o p o h a ~ .  

a )  Write t h e  numbers from 1 t o  24 a s  f ive- d ig i t  binary numerals, 

from 00000 t o  11000, and ass ign each permutation t o  a numeral. Ask 

t h e  f i v e  quest ions ,  "Is t h e  f i r s t  d i g i t  O? Is t h e  second d i g i t  O?" - 
a - -- 

And s o  f o r t h .  

b )  The binary  numerals of  p a r t  ( a )  d i f f e r  from one another i n  

a t  l e a s t  one place .  To d i s t ingu i sh  such numerals i f  one l i e  is allowed, 

t h e  b inary  numerals must d i f f e r  one from another i n  a t  l e a s t  t h r e e  

p l aces ,  such a s  00000 and 00111. To ob ta in  24 such numerals, more 

than f i v e  places  a r e  required.  The following nine- digi t  code su f f i ces .  

000000000 0000001 11 00001 101 0 000101100 

0001 10001 001010100 001 001 01 1 01 01 0001 0 

01 1001 000 11001 0000 101100003 100001001 

011110110 010011111 001101111 100110111 

101011101 110110100 110101011 111001110 

111010011 111100101 111111000 111111111 

Now i f  one d i g i t  is  t r ansmi t t ed  i n c o r r e c t l y ,  t h e  answer w i l l  d i f f e r  

from j u s t  one l i s t e d  numeral by one d i g i t .  Thus one can always 

decide which numeral, and hence which permutation, was intended. 

c )  Here we need numerals t h a t  d i f f e r  from one another i n  f i v e  

o r  more places .  I have found a s e t  of f i f t e e n- d i g i t  numerals t h a t  

s u f f i c e .  

d )  Clear ly  4 d i g i t s  (o r  quest ions)  w i l l  no t  s u f f i c e  f o r  p a r t  

( a )  s ince  they can d i s t ingu i sh  only 2 = 16  i tems. Hence we have 

found a minimal code f o r  p a r t  ( a t .  I do not  know t h e  answers f o r  

p a r t s  ( b )  and ( c ) .  For p a r t  ( b )  t h e r e  is  an  easy proof t h a t  a seven- 

b i t  code is inadequate and t h e  above nine- bi t  code l eaves  open t h e  

quest ion of  whether e i g h t  b i t s  a r e  enough. Clear ly  t h i s  problem has 

important app l i ca t ions  i n  t h e  t ransmiss ion of d a t a ,  such a s  p i c t u r e s  

from space rocke t s .  

111. Pa^tioJL h o ~ u A t o n  by At. T e ~ e g o ,  MoAten, Ma~hacAue- t t4 .  

b)  By programming a computer t o  examine binary numerals i n  

s t r i c t l y  increas ing order ,  I found t h e  following l ist  of n ine- d ig i t  

numerals t h a t  d i f f e r  from one another  i n  a t  l e a s t  3 places .  By 

observing t h a t  l i s t  we s e e  t h a t  3 d i g i t s  w i l l  d i s t ingu i sh  2 i tems,  5 

d i g i t s  4 i tems, 6 d i g i t s  8 i tems, 7 d i g i t s  16  i tems,  and 9 d i g i t s  

s u f f i c e  f o r  32 items. 



111001010 111001101 111010011 111010100 

111100000 111100111 111111001 111111110 

c )  A s i m i l a r  program s e t  t o  f i n d  binary  numerals t h a t  d i f f e r  

from one another i n  a t  l e a s t  f i v e  p laces  shows t h a t  5 b i t s  

d i s t ingu i sh  2 i tems, 8 b i t s  4 i tems,  1 0  b i t s  8 i tems, 11 b i t s  16  

i tems, 1 3  b i t s  32 i tems, and 14  b i t s  f o r  probably 64 i tems. The 

program was stopped a f t e r  41 i tems. The f i r s t  24 i tems a r e  shown 

here ,  proving t h a t  13 d i g i t s  a r e  s u f f i c i e n t  and probably necessary.  

0000000000000 0000000011111 0000011100011 

0000011111100 0001100100101 0001100111010 

0001111000110 0001111011001 0010101001010 

0010101010101 0010110101001 0010110110110 

0011001101111 0011001110000 0011010001100 

0011010010011 1100000100110 1100000111001 

1100011000101 1100011011010 1101100000011 

1101100011100 1101111100000 1101111111111 

Aha pcwtiaU.y iotved by JOHN HOME SCOTT, S t .  Pad,  MN. 

Late Solut ions  and Comments 

Late ~o.eu-fct.ort~ wvie x.eceLve.d ((OIL pobtonA 587, 590, 591, 593, 

5 9 4 ,  596, 5 9 8 ,  and 599 6mm 3. Suck, EAAnn, Fndvtd Ripfibfie 06  
G m n y ,  and {,OIL p~~obton 5S7 6kom Ch& W .  T G g ,  Sun V-Ligo, CA. 

"I came i n  with Bailey's Comet i n  1835. It  i s  coming 

again next year, and I expect t o  go out with it. It 

w i l l  be the greatest disappointment of my l i f e  i f  I 

don't go out with Halley's Comet. " -- Mark m a i n  

"I erne i n  with Halley's Comet i n  1910. I t  i s  here 

again i n  1985 & 1986, and I do NOT expect t o  go out 

with it. I t  w i l l  be the greatest disappmn'kment of 

my l i f e  i f  I do." -- John Howell 

1986 NATIONAL P I  MU EPSILON MEETING 

The National  Meeting o f  the  P i  Mu Epsi lon F r a t e r n i t y  was he ld  

a t  t h e  Univers i ty  o f  C a l i f o r n i a  i n  Berkeley on August 3 through August 6. 

H ighl ights  included a recept ion f o r  members and guests, a Council Lunch- 

eon, the  Annual Banquet and informal student p a r t i e s .  The J. Sutherland 

Frame Lecturer  was Dr. Paul Halimos, E d i t o r  o f  The American Mathematical 

Monthly and Professor o f  Mathematics a t  Santa Clara  Univers i ty .  Professor 

Halmos de l ighted t h e  audience w i t h  a t a l k  e n t i t l e d  "Problems I Cannot 

Solve.' '  
The program o f  student papers included: 

Generation of One Million Prime 
Numbers 

A Proof of Primality Ut i l i z ing  
Fermat ' s  Theorem 

Solving Linear Diophantine 
Equations Using Euclid ' s  
A lgorithm 

Lame's Theorem and the Euclidean 
Algorithm 

A New Proof of a Lemma t o  the 
Quadratic Reciprocity Lean 

A Representation of Squares i n  
Generalized Fibonacci Sequences 

Class Numbers o f  CyeZotomic 
Fields 

Starting with Pascal ' s  Triangle 

$1000 Reward: San Loyd ' s  14-15 
Puzzle 

Mathematical Models i n  Population 
Genetics 

Entropy of the M/G/1 Queueing 
System 

w a r n  V. WOOA 
LoU-LAiana VvJbta 
SoutheA&tvin Lotû AJOLnu UnivmiUy 

S a m  S. Fagan 
(UhcortA-Ln ktpha 
McmquCAte UvuMwi-Lty 

Kathy KowaU. 
Ohio Delta 
A4i~m-i Univwi-ity 

F~~edeA^.ck Tavvtnvt 
C w o h n i a  Lambda 
Univeu-Lty of, CaLidoknLa, Davh 

David. Cfauhien 
Ohio Ditta 
AUanM. unive.JlA-ity 

RUAA ShwUii'wovc.h 
KanhCLSi Gamma 
WichLta S a t e  U ~ v e ~ ~ - L t y  

John E .  F-tAchvt, J/L. 
PenrtAytvania k t p h  
UnivWiLty 0 6  PnnnbyLvanLa 

EfLUn lUhee^vt, 11 
VitAg-LiMA B& 
VitAg-LWIA Potyte.chnic ImtUute.  

Judith Kohchtedcz-SymaUa. 
UinnM oto. V i u a  
S t .  John'i UniumJULy 

Ridwan Tabbua 
T e r n  Nu 
.UnivmÂ¥Lt of, Houston - Downtown 

MHsm W. Aiknn 
Oklahoma A & h  
Univwi-ity 06 Oktahoma 



Estimating Age Specifics Fecundity 
of Soft  Shell Clams 

Anne. Kochendok6et 
Conne-efcecut Gamma 
F(LtA6inid UvuMm-Ltq 

Approximating the Solution t o  
Ordinary Differential Equations 
u s i q  T&or Polynomial Expaneions 

Anthonu Cto.cko 
Ohio Xt 
Youngstown S ta te  Un ivm-L tq  

An Objective Analysis of Rainfall 
Data 

Thomas A. KAeLtzbe~g 
Penn6qivanh Thwta 
Dnexni Unium-Ltq 

Stabil i ty  on a T w i t e  Interval o f  
Time-Averaged D i f f e r e n t w  
Equations 

Michael P. Pwione. 
Massach~~& eJhtt, Alpha 
W0ncu.te.n Polytechnic 1 n ~ t i t u t e  - - -- 

Paula. A. M-cchae-CA 
Ohio D f U a  
tUwni UwMm-Lty  

ConchLta Hincn 
Atabama Zwta 
Alabama State. Univw>-Lty 

CfuUg J .  Cote. 
Ohio D f U a  
Hiami u v u . v m a q  

Jamu G. U A k i i n  
Ohio Oim.c~on 
Mount Union CoUege 

Viadtey D. P d  
Ohio VeJUa. 
wiarni uniumJULy 

The Absorbing Markov Process as 
Applied t o  a Random B e h d o r  
Mode 2 

W d g w t  Moone 
Ohio D&ua 
M-uum. um.vmJiJLy 

Pressure Analysis i n  a Biomedical 
Device 

Linear-Time Three-Dimensional 
Graphics with Hidden Line 
Elimination 

Je.66ne.q S. BoMttK.ck 
DitcwiaA.e Atpha 
UyuMm-Ltq 06 D&tawaAe 

The Iraq-Iran War 

A Look a t  the DoDrs Trusted 
Computer System EvaZuation 
Criteria 

John F&upofcEe~ 
G e o 1 ~ i a  BeAa 
Ge-otgh 1 0 ~ t i f u t e  of, Technoiogy 

Locating Emergency Fac-ilities i n  
Order t o  M*ze Response Time 

The Mathematical World of 
cryp t o  logy 

B d  Schoch 
Conne.c'tt.cut Gamma 
F a h 6 i n i d  U y u M m i A j  

The Effect  of Einstein's Theory of 
Relativity on Interstel lar 
Navigation 

Symbolic Computation EmLC 3.  Voicheck 
0itawcUi.e Atpha 
UnLveu-Lty 06 De-comaAe 

Modeling a Magnetic 0sci.llator 

k k  Does Z e k!/k Converge or 
Diverge? Applications of Helly ' s  Theorem t o  

the Approximation of Functions by 
Po lynomials 

Donna Vigeant 
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GLEANINGS FROM CHAPTER REPORTS 

CONNECTICUT GAMMA ( F a i r f  i e l d  Un i ve rs i t y ) .  In January, even before the 
charter was installed, the chapter sponsored a lecture by Vh. Ca/ioi 
"Tte/tko{.{., Brooklyn College. Her topic was "Complexity Classes Inside 
Linear Space." EJUieen Poian-t., Pi Mu Epsilon President-Elect, installed 
the charter on February 23, 1986. There were 43 charter members from 
the classes of 1985 and 1986 and the faculty. As part of the charter 
installation, V h .  Jo~eph MacVonnvJUL, S. J., Fairfield University, 
presented a talk entitled "Double Points of a Curve." On April 23, 1986, 
at the first annual initiation ceremony, 23 students from the classes 
of 1985 through 1988 were inducted. Vh. KatcLUn Bencbafh, Manhattan 
College, presented "Mathematics: Unexpected Applications." During the 
Annual Arts and Sciences Awards Ceremony, two charter members, Pat/u.& 
Vomn and Je{.{.hey G a ,  received recognition for their outstanding 
performance in mathematics. Each was given a Pi Mu Epsilon certificate 
of achievment, MetanagicaZ Them by VougÂ£.a tfo{.~to.dteh and one-year 
memberships in the Mathematical Association of America. 

NEW YORK ALPHA GAMMA (Mercy Co l lege) .  Applications of Mathematics was 
the theme of the 1985/1986 academic year. Vft. John VclJLgLI.4 gave the first 
talk of the series on "Techniques in Applied Mathematics." Student 
officers VlViMi&z Stelmuch and Kathy ZWtieWia are interested in recreational 
mathematics and spoke on "Using Mathematics to Solve Puzzles" at a club 
meeting in December. "Applications of Mathematics to Computer Graphics" 
was the topic of a lecture in March by Vt. Ho~an.d f f . i U . 0 ~ ~ .  At the annual 
initiation of new members in May, V h .  John VaAgLI.4 presented the final 
lecture on "The One-Dimensional Heat Equation." 

NEW YORK OMEGA ( S t .  Bonaventure U n i v e r s i t y ) .  Lectures during 1985-1986 
included "Voter Wars" by Pho{.fc~~oh J. Theodoie Cox of Syracuse University, 
"Problem Solving Techniques" by Pko'f.~^iol Rdph King of St. Bonaventure 
University, and "The Tower of Hanoi: an Application of Mathematical 
Induction" by PAO~{&AAOA ChaHtU VimnuJn.nk of St. Bonaventure University. 
The chapter sponsored two problem solving sessions at which students and 
faculty were invited to discuss problems appearing in the Pi Mu Epsilon 
Journal, School Science and Mathematics, and the College Mathematics 
Journal. As a result, two student solutions and several faculty solutions 
were submitted to the various journals. The chapter plans to enlarge on 
this activity in the future. 

AddLCLonat gLeaningb {.torn chapteh hepo-ltA wWL be pubJU&he.d i n  t he  Sphing 
7987 &hue o{. t he  P i  Mu Ep&.cÂ£o Jouhnat. 
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Back Issues $ 4.00 per issue 

Complete volume $30.00 (5 years, 10 issues) 
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volume subscription) 


