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ON THE LARGEST RAT-FREE SUBSET OF A FINITE SET OF POINTS 

During t h e  summer of  1985, Professor William Moser supervised my 

a c t i v i t y  while I held an NSERC Summer Undergraduate Research Award a t  

McGill University. H i s  now well-known, p r iva te ly  c i r cu la t ed ,  Research 

Problems i n  Discrete Geometry is a cumulative record o f . p r o g r e s s  made 

on many unsolved and p a r t i a l l y  solved problems i n  d i s c r e t e  geometry. 

While examining t h i s  co l l ec t ion  I noticed t h a t  I understood many of t h e  

problems, and f o r  some I could comprehend t h e  associa ted  published 

research papers. Several of  t h e  problems were fea tured by Martin 

Gardner i n  h i s  S c i e n t i f i c  American column "Mathematical Games," and 

progress i n  these  had been made by readers ,  t h a t  is ,  by amateur 

mathematicians using only pre-calculus mathematics. I n  t h i s  paper, I 

would l i k e  t o  r epor t  on one problem (No. 49) i n  W. Moser's co l l ec t ion  

[I] which is not  completely solved and which I bel ieve  t o  be s u i t a b l e  

f o r  readers  of t h i s  journal  t o  inves t iga t e  fu r the r .  

B a s i c a l l y ,  t h e  problem is  a s  follows. Suppose one is  given a s e t  

o f  n points ,  and the  object ive  is t o  s e l e c t  a s  many of  them as poss ible  

so  t h a t  no th ree  (of t h e  chosen po in t s )  a r e  t h e  v e r t i c e s  of a r igh t-  

angled t r i ang le .  How many can one be assured of choosing no matter how 

the  n points  a r e  d i s t r ibu ted?  Let us phrase t h e  question i n  a more 

precise  manner. By an n-set we mean a s e t  of  n points  i n  t h e  plane, and 

we c a l l  t h e  v e r t i c e s  of a right- angled t r i a n g l e  an RAT. Let f(n)  denote 

the  l a r g e s t  i n t ege r  f o r  which every n-set contains an  RAT-free f(n)- 

subset. The problem is t o  determine f(n)  o r ,  f a i l i n g  t h i s ,  t o  e s t a b l i s h  

good upper and lower bounds on f (n) .  Note t h a t ,  t o  e s t a b l i s h  t h e  lower 

bound m ,  t h a t  is, t o  show f(n)  Lm,  it is necessary t o  show t h a t  every 

n-set conta ins  an  RAT-free m-subset. To e s t a b l i s h  t h e  upper bound 2, 

t h a t  is, t o  show f(n)  c 2, it su f f i ces  t o  exh ib i t  a p a r t i c u l a r  n-set 

which does not  conta in  an RAT-freel-subset. The main r e s u l t  is 

contained i n  

Theorem 1 .  

(1) Â ¥ / n < f ( n  52&, n =  4, 5, 6. ... . 



The lower bound was es tabl ished by Abbott 121 using a famous theorem 

of Erdtls and Szekeres 131. For t h e  l a t t e r  theorem we w i l l  g ive  a 

p a r t i c u l a r l y  elegant proof due t o  Seidenberg 141. 

A sequence of  numbers 

(2 )  al, a p  a3, ... , a, 

is sa id  t o  be monotone imsreaahg i f  

(3 )  a1 l a 2  l a 3  5 ... i a 9  

monotone decreasZng i f  

(4)  a1 z a 2  :a3 2 ... >a9 

and monotone i f  it is e i t h e r  monotone increasing o r  monotone decrea&zg. 

Theorem 2. (SpdOs-Szekeres). Let m, n be pos i t ive  in tegers .  Then 

every sequence of  length  mn + 1 (but  no t  every sequence of  length  mn) 
contains e i t h e r  a monotone increas ing subsequence of length m + 1 o r  a 

monotone decreasing subsequence of length  n + 1. 

Proof. Let 

( 5 )  Y!' Y p  Y y  "' 3 Ym, 

be an a r b i t r a r y  sequence of length mn + 1. To each y.  i n  (5) we 

a s soc ia t e  the  pair (u .,v .) o f  in tegers ,  where u . (resp.  v . ) is t h e  length  
2 2 

of t h e  longest  monotone increas ing (resp. decreasing) subsequence of ( 5 )  

beginning a t  yi. Let t ing u = maxiuia v = mdxivi, we have 

s o  t h e  number of d i s t i n c t  points  ( u . , ~ . )  is a t  most uv, Furthermore, 

these  mn + 1 points  ful,vl), fu2,V2), ... , ( U ~ + ~ , V ~ + ~  1 a r e  d i s t i n c t .  

> u j ;  i f  For suppose i # j ,  say 1 <_i < j ^_mn + 1. I f  yi  5. V -  then 
3 

yi 2 y j  then vi > v It follows t h a t  3' 
(7) mn+ 1 <uv,  

from which e i t h e r  u >m+ 1 o r  v > n + 1. 

To const ruct  an  example f o r  t h e  "but not  every sequence of length  

ran" p a r t  of Theorem 2 ,  we s t a r t  with t h e  sequence of  in t ege r s  from 1 t o  

mn 

1,2, ... ,n, n+l,n+2, ... ,2n, ... , (i-Dn+l,(i-Dn+2, ... ,in, -- 
Block 1 Block 2 B ~ O C ~  i 

. , fm-Dn+1, .. . ,mn, 
P 

Block m 

revers ing the  order  i n  each block, we obta in  

n,-1, ... , I ,  2n, ... ,n+l, ... , in,  ... , ( i - l)n+l,  -- " 
Block 1 Block 2 Block i 

- 
Block m 

Notice t h a t  any increas ing subsequence of (8 )  has a t  most one term i n  

any block, and hence has length a t  most m. Any decreasing subsequence 

has length  a t  most n s ince  a l l  terms must be i n  t h e  same block. These 

proper t ies  a r e  n i ce ly  seen i n  Figure 1 where t h e  i t  term of (8 )  is t h e  

ordinate  of t he  point  with abscissa  i. 

Figure 1 

v I 

m groups 

4 

When m and n a r e  equal, say k,  we have 
2 CoroZZaty 1. Every sequence of length  k + 1 (but not every 

2 sequence of length  k ) has a monotone subsequence of  length  k + 1. 

It is  now poss ible  t o  g ive  a proof of  Abbottls Theorem. 

Theorem 3. 

2 'Proof. Suppose we have a s e t  o f  2 = k + 1 points.  Choose a 

Cartesian coordinate system whose x-a& is not perpendicular t o  any of 

t h e  Z ( Z  - 1)/2 segments joining p a i r s  of  t h e  points.  Then no two po in t s*  



have t h e  same abscissa.  Let t h e  points  fx l ,y l ) ,  (x2,y,), . . . , fx-,,y-,) 
be named s o  t h a t  x1 c X ,  < ... < x,. The sequence yl, y2, ... , Y- ,  con- 
t a i n s  (by Corollary 1 )  a monotone subsequence 

of length k + 1. It is  easy t o  see  t h a t  t h e  k + 1 points  ( x i ,  yi ), 

3 2  if 
j = 1, 2, ... , k + 1 form an RAT-free f k  + 1)- subset of  the  k + 1 

given points .  

The l e f t  i nequa l i ty  of Theorem 1 follows by considering, f o r  a 

given in t ege r  n ,  the  in t ege r  k uniquely determined by 

( k  - I ) ~  + 1 5 n 5 k2. 

Then, using f f k )  5 f f k  + 11,  

: f ( ( k  - I ) ~  + 1 )  < f ( n ) .  

2 ~ r d o s  151 remarked t h a t  t h e  s e t  S f ' )  of  k l a t t i c e  points  
k 

S :  = { ( x ,  y )  ]xi  y in tegers ,  0 5 x,  y 5 k - 11 

shows 

Theorem 4. 

(10) f ( k2 )  5 2k - 2, k 2 2. 

Pmof .  To e s t a b l i s h  t h i s  inequal i ty ,  l e t  P be an RAT-free subset  
( 1 )  of Sk . We c a l l  a point  p6P an a-point (resp.  a 6-point)  i f  t h e  

hor izonta l  row i n  which it l i e s  contains no ( resp ,  a t  l e a s t  one) o ther  

point of P. Let a (resp.  b )  denote the  number o f  a-points (resp.  6- 

p o i n t s )  i n  P. No column contains two &points ,  nor an a-point and a 

6-point ( together) .  Clearly,  a < k  and b ~ k .  I f  t h e r e  a r e  a = k 

a-points then every row conta ins  an a-point,  allowing no r o w  f o r  a 

6-point ( b  = O ) ,  and then a + b = k <2k - 2. Similarly,  i f  t he re  a r e  

b = k 6-points t h e r e  w i l l  be no column f o r  an a-podnt, s o  a = 0 ,  and, 

again,  a + b = k 5 2 k  - 2. 

In  a l l  o the r  cases ,  a < k  - 1 and b < k - 1 ,  and hence a + b 5 
2k - 2. Figure 2 shows t h a t  s") does contain an RAT-free f2k - 2)- 

k 
subset.  Indeed, a l l  RAT-free (2k - 2)- subsets of  5':) must have t h e  

configuration of  Figure 2, s ince  the  column containing t h e  f k  - 1 )  a- 

points and t h e  row containing t h e  ( k  - 1 )  6-points meet a t  a point  (of 

SF) which must be a t  a corner of t he  square S ( 1 )  
k .  

Figure 2 

The r i g h t  inequal i ty  of Theorem 1 follows from Theorem 4. I f  k i s  

t h e  unique in t ege r  f o r  which 

2 
k2 5 n 5 ( k  + 1 )  - I ,  

then 

An improvement of (10) is obtained by removing two adjacent corner 

po in t s  from SY, f o r  example, S" = s?\{ ( 0 ~ 0 ) .  (0,  k - I ) }  yie lding 

(11 f k2  - 2)  5 2k - 3. 

For i f  P,  an RAT-free subset of S f ,  contains 2k - 2 points ,  then P 

must ( a l so )  be congruent t o  Figure 2; but  t h i s  configuration cannot be 
(2 )  found i n  Sk . Therefore, I P I  <_ 2k - 3. 

This r e s u l t  was improved by H. L. Abbott [S]. He considered t h e  

s e t  

of  a kx(k  + 1 )  rec tangular  a r r ay  of  l a t t i c e  points  with corner points  

removed and found t h e  l a r g e s t  RAT-free subset t o  be 2k - 3, t h a t  is, 

Based on t h e  same idea,  we present  t h e  proof of a s l i g h t l y  b e t t e r  

r e s u l t .  

Theorem 5. 

(13) 



Proof .  Consider t h e  s e t  

S ?  = {(v,y) \st, y i n t e g e r s ,  0 5 s, y 5 k - 1 I\ 

{ ( O , O ) ,  (0 ,k  - 11, ( k  - 1 , 0 ) ,  (k - l , k  - 1 ) } ,  k >_ 5 

of a kxk square a r r ay  of  l a t t i c e  points  with corner po in t s  dele ted;  

k2 - 4 points  i n  t o t a l .  We show t h a t  we can f i n d  an RAT-free subset of  

2k - 4 points  while it is not  poss ible  t o  f i n d  an RAT-free subset of 

2k - 3 points .  Once again,  following t h e  proof of  Theorem 3, we l e t  

t he re  be a a-paws and b E- points .  

k - 2  

Figure 3 

Figure 3 shows an SAT-free subset  of 2k - 4 points .  Now, assume 

the re  is an SAT-free subset of  2k - 3 points ,  t h a t  is, a + b = 2k - 3 .  

The number of r o w s  is equal t o  o r  g rea t e r  than a ( the  number of a- p o i n t s )  

and a t  l e a s t  one row occupied by t h e  ^-poin t s .  

Thus 

a + l < k .  

Replacing a, 

S k - 3 - b + l < k  

gives 

b > k - 2 .  

It is s u f f i c i e n t  t o  show t h a t  t he re  does not  e x i s t  an  RAT-free sub- 

s e t  o f  b = k - 2 6-po in t s  and a = k - 1 a- poin t s  s ince  the  case  b = k - 1 

and a = k - 2 can be reduced t o  t h e  former. 

Since a = k - 1 t he re  e x i s t s  only one row i n  which the  ( k  - 2 )  B- 

p o i n t s  can be placed; t h e  a- p o i n t s  can occupy two columns. There a r e  

fou r  cases  t o  consider,  a l l  r e l a t e d  t o  t h e  d i s t r i b u t i o n  on t h e  two 

t t a - c o Z m s t l .  It can happen t h a t  

( i )  the  columns a r e  not adjacent ,  

( i i )  columns a r e  a t  c1  and c ( o r  c k l  and c k ) ,  2 
where c -denotes t h e  <a column, i * ~. 

( i i i )  columns a r e  a t  c 2  and c3 (o r  ck-2 and c ~ - ~ ) ,  o r  -- - 
( i v )  columns a r e  adjacent o the r  than i n  ( i i )  and ( i i i ) .  

Figures 4,  5, 6 and 7 i l l u s t r a t e - t h e  impossibi l i ty  of  having an SAT-free 

subset of a + b = 2k - 3 po in t s  f o r  cases  ( i ) ,  ( i i ) ,  ( i i i )  and ( iv ) ,  

respect ively .  

2 Figure 4 

Figure 5 

For Figures 4,  5, 6a, 6b, and 7, we have 0 f o r  be ta  points .  0 f o r  
alpha po in t s  and @ f o r  i l l e g a l  points .  



for k = 5 

Figure 6b 

^7 

Figure 6a 

Figure 7 

Theorems 2, 3, 4 and 5 restrict f ( n )  for large n to 

By considering the set of lattice points contained in a circle, we 

conjecture that the upper bound can be reduced to 

It is of interest to find the value of r = Zim f ( n ) / ^ n  if it exists. 
n- 

Also of interest is the exact value of f ( n )  for small n. Using 

inequalities (I), (9), (10). (12) and (13). we have the following: 

f f 7 )  = 3 

3 5 f f 8 )  5 4 

3 5 f < 9 )  5 4  

f (10 )  = 4 

4 2 f f i )  5 5 ,  i - 1 1 ,  l2, 13, 14 

4 5 f f i )  5 6, i. = 15, 16 

5 < f ( O <  6, i = 17, 18, 19, SO, 21 

5 2 f ( i )  5 7, l. = 22, 23, 24, 25 

6 2 f (26) 5 7 

6 < f ( i )  5 8 ,  i = 27, 28, ... , 32 

6 < f f i )  2 9, i = 33, 34, 35, 36 

7 5 f f i )  5 9, i = 37,38 

7 5 f f i )  10, i = 39, 40, .. . , 45. 

Theorem 2 gives f ( 5 )  > 3 and f (10)  2 4. f ( 5 )  = f f 6 )  = f f 7 )  = 3 

follows from Figure 8. The configuration in Figure 9 shows f (10)  = 4. 

Perhaps a reader can settle some of these cases, for example, is f f 8 )  = 

3 or 4? 

0 0 0 

0 0 

Figure 8 Figure 9 

ErdBs [2] also asked the same question in three dimensions, that is, 
3 for the n lattice points (x,y,z), 0 5 a, y, 2 5 n - 1, determine the 

largest SAT-free subset. 

For n = 2, the largest RAT-free subset consists of four (of the 

eight) points forming the vertices of a regular tetrahedron (see Figure 

10). 

For n = 3, the largest SAX-free subset is 6 points, verified by 

computer analysis. The two groups of configurations are shown in Figures 

11 and 12. 

For n = 4, RAT-free subsets of 10 points were found. The subsets are 

congruent to the form f f0,0,0), (1,1,1), f2,2,2), (3,3,3), (3,1,0), (3.0,1). 

f0,3,1), f1,3,0), (0,1,3), (1,0,3) 1. On the other hand, this configuration- 



Figure 10 

Figure 11 

Figure 12 

does not work for n = 5. It was found that any collection of 3 f 5 )  - 2 
= 13 points with points (0,0,0) and (1,1,1) have no KAT-free subsets. 

3 Our set of n points determines n2 columns parallel to each of the 

coordinate axes. Call the columns cx, c and a .  In any configuration 
Y 

of an RAT-free subset, there are four types of points. 

(1) a-points, points occupying the same c with other points, x 

(2) B-poÂ£nts points occupying the same c Y with other points, 

(3) y-points, points occupying the same a with other points, 

(4) 6-points, points occupying a a ,  a c Y and a a alone. 

Let there be a, b, c and d of these points, respectively. 
+- - - -- 

We have found two groups of RAT-free (3n - 3)-subsets. One has 
. 

d = 0 and a = n  - 1, b = n - 1 and c = n - 1. Another has a = n  - 2 

{(1,0,0), ... , (n - 2,0,0)}, b = n - 2 { ( O , l , O ) ,  ... , (0.n - 2.0)1, 

c = n - 2 {(0,0,1), ... , (0,O.n - 2 ) )  and d = 3 { f n  - l,O,n - I ) ,  

(n - l,n - 1,0), (0,n - l,n - I ) }  for k2 $ n - 1. Are there any other , 

configurations? 

We suspect that for large n the largest RAT-free subset is of size 

3n - 3. 

We have yet to show (i) that for a = b = c = 0 the largest BAX-free 

subset of only 6-p&nts has size d 5 3n - 3 ,  and (ii) for a # 0, b # 0, 

a # 0 and d 0, a + b + a + d 5 3n - 3. This would confirm our 

conjecture. 
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ON BUFFON'S NEEDLE PROBLEM USING 
CONCENTRIC CIRCLES 

by H. 3. Kham-LA 
W Q h t  Sta te .  U n u / i ~ ' L t y  

One o f  t h e  o ldes t  problems i n  geometrical  probabi l i ty  is  Buffon's 

Needle Problem (1777): A board (of l a r g e  s i z e )  is ru led  with equidis-  

t a n t  p a r a l l e l  l i n e s  d u n i t s  apar t .  A needle of length  i c d i s  dropped 

a t  random on t h e  board. What i s  t h e  probabi l i ty  t h a t  t h e  needle w i l l  

i n t e r s e c t  one of  t h e  l i n e s ?  

The answer is t h a t  t h e  needle w i l l  c ross  a l i n e  with probabi l i ty  

g/ird.  It is i n t e r e s t i n g  t o  note  t h a t  t h e  answer involves the  t ran-  

scendental  number, Pi. In  f a c t ,  t h i s  formula was used i n  ea r ly  attempts 

a t  approximating Pi;  v i z ,  drop t h e  needle onto t h e  board of p a r a l l e l  

l i n e s  a l a r g e  number of times, ca l cu la t e  t h e  r e l a t i v e  frequency.of 

"crosses", rec iprocate ,  and multiply by &/d. 

A s  one might expect f o r  such an important method, a l a rge  number 

of  va r i a t ions  of  t h e  Buffon Needle Problem have been studied. Duncan 

(1967) s tudied t h e  case i n  which a needle is dropped onto a s e t  of 

r a d i a l  l i nes .  Gnedenko (1962) generalized the  problem first t o  n-sided 

convex polygons with diameter l e s s  than d ,  and then t o  convex closed 

curves with diameter l e s s  than d by considering such curves a s  l i m i t s  

of inscr ibed polygons, g iving the  p robab i l i t y  of a "cross" a s  i / r d .  

Other va r i a t ions  of Buffon1s Needle Problem have been discussed by 

Ramaley (1969), Perlman and Wichura (19751, and Robertson and Siege1 

(1986). 

In  t h i s  paper, we consider t h e  following na tu ra l  var ia t ion:  

Randomly drop a needle of  length  i onto a board containing N concentr ic  

c i r c l e s ,  where t h e  d i f ference  i n  t h e  r a d i i  between any two consecutive 

such c i r c l e s  is a constant d,  with L < d. What is t h e  probabi l i ty ,  pN, 

t h a t  t h e  needle crosses  one of  the  N circumferences? The only mathe- 

mat ical  t o o l s  t h a t  a r e  required f o r  t h e  so lu t ion  of t h i s  problem a r e  

in tegra t ion techniques and elementary probabi l i ty  theory. 

To begin, l e t  X represent  t h e  d is tance  between the  midpoint (M) of 

the  needle and t h e  neares t  circumference, a s  measured along the  r ad ius  

extending from the  center  (0) of  t h e  concentric c i r c l e s  through t h e  
' . 

midpoint of t h e  needle. See Figure 1. Let Y represent  t he  acute  angle 

c rea t ed  by OM and t h e  needle. Assume t h a t  M f a l l s  within t h e  k th  

annulus, k = 1, 2, . . . , N; t h a t  is, (k-l)d < OH c kd (k = 1 c o r r e s p o ~ d s  -'- -. 

t o  the  c i r c l e  having r ad ius  d) .  Then, t he re  a r e  two cases  t o  consider: 

Case 1. (k - l / 2 ) d  c OM c kd., k = 1, 2, ... , N, and 

Case 2. (k - l ) d  c OM < (k - l / 2 )d ,  k = 2, 3, ... , N. 

The f i r s t  case corresponds t o  t h e  event t h a t  M f a l l s  i n s ide  the  

''outer half"  of the  k th  annulus, and t h e  second case t o  t h e  event t h a t  

M f a l l s  i n s ide  t h e  " inner hal f"  of t h e  kth annulus. Let t hese  two 

events be represented by I' and I,, respect ively .  We consider each 

case separately.  

Figure 1 

Case 1. F i r s t ,  note  t h a t  i f  X c kd - i^d2 - ^/Us then the  - 
needle crosses  t h e  k th  circumference regardless  of  t h e  value of  Y. To 

see  t h i s ,  th ink about t h e  needle a s  a chord of  t h e  c i r c l e  (see  Figure 2) .  

Using t h e  Pythagorean Theorem, t h e  value of x i n  Figure 2 can e a s i l y  be 

determined t o  be 

x = kd - AW - L2/4. 
0 

Hence, when X < xo, t h e  needle crosses  t h e  k th  circumference with 

p robab i l i t y  



Figure 2 

When x < X < i / 2 ,  t h e  probabi l i ty  t h a t  t he  needle crosses  t h e  kth 
0 

circumference depends on Y. By the  law of cosines (see Figure I ) ,  

Note t h a t  the  needle crosses  t h e  k th  circumference i f  and only i f  r > kd, 

which i s  equivalent t o  

- f i )  - (kd - X) I , x < x < Z/2. 
(kd - X)t 

Now, Y is t r e a t e d  a s  a uniform random va r i ab le  on [0,n/2]. The densi ty  

function f o r  X, however, must be derived ( i t  is not  uniform!). Note 

t h a t  X takes  values i n  t h e  i n t e r v a l  (0, 6.11). The p robab i l i t y  t h a t  M 

f a l l s  a t  a d is tance  between zero and x from the  kth  circumference, F ( x ) ,  

is t h e  r a t i o  of t h e  a rea  of  t h e  annulus having inner  r ad ius  kd - x and 

ou te r  r ad ius  kd t o  t h e  a rea  of  t he  annulus having inne r  r ad ius  (k - 1/2)d  

and o u t e r  radius  kd; v i z ,  

Hence, t h e  p robab i l i t y  densi ty  funct ion of  X is 

The random va r i ab le s  X and Y a r e  assumed t o  be independent. 

If we l e t  Ck represent  t h e  event t h a t  t h e  needle crosses  a circum- 

ference when M f a l l s  i n s ide  t h e  k th  annulus, then the  condi t ional  prob- 

a b i l i t y  of C ,  given t h a t  (k - 1/2)d  < kd, is 

< x < i / 2 ,  Y < cos -I (k2d2 - 2 1 4 )  - (kd - [ ( k d - X I Â  

-- . -- - 

" 
The f i r s t  i n t e g r a l  is  straightforward. The second can be evaluated, 

a f t e r  a g rea t  dea l  of computation, using in t eg ra t ion  by p a r t s  and h 

s e r i e s  of  subs t i tu t ions .  The f i n a l  expression is 

This takes  ca re  of t h e  case  i n  which M f a l l s  i n s ide  t h e  ou te r  ha l f  

of t h e  kth annulus (Case 1 ) .  

Case 2. Assume t h a t  M f a l l s  i n s i d e  the  inner  ha l f  of t h e  k th  

annulus. See Figures 3 and 4. By the  law of  cosines,  

r2 = (h  + x ) ~  + 2/4 - .Â£( + X)cosY, where h:= (k - l ) d .  

Figure 3 



Now, l e t  x represent  t h e  value taken on by X when t h e  l e f t  end- 1 
point  of  t he  needle coincides with t h e  point  a t  which t h e  needle is  tan-  

gent t o  t h e  c i r c l e  having r ad ius  h (See Figure 5). It can e a s i l y  be 

ve r i f i ed ,  by using t h e  Pythagorean Theorem, t h a t  

Figure 4 

Figure 5 

Also, Y w i l l  again be assumed t o  be uniform on [0,n/2]. Then the  prob- - 

a b i l i t y  densi ty  funct ion f o r  X can be found t o  be 

f (x) = 2 ( ~  + h )  , 0 < x < d/2,  
(k  - 3/4)d2 + . 

a- - 
by expressing t h e  cumulative d i s t r i b u t i o n  funct ion of  X a s  a r a t i o  of . 
two annular a reas ,  j u s t  a s  was done i n  Case 1. Again, X and Y a r e  

assumed t o  be independent. 

Case 2 w i l l  be handled i n  two separa te  pa r t s :  

Case 2a. 0 < X < xl (see Figure 3 ) ,  and 

Case 2b. xl < X c i / 2  (see  Figure 4).  

In  Case 2a, t h e  needle crosses  the  (k - 1 ) s t  circumference i f  and 

only i f  

The right-hand s ide  o f  t h i s  inequal i ty  is t h e  value of  r2 when t h e  

needle i n  Figure 3 is tangent t o  t h e  c i r c l e  of  radius  h,  o r ,  equiva- 

l e n t l y ,  

Y < c o s " l [ ~  - h2/(h + XI2]. 

Then, t he  j o i n t  p robab i l i t y  of  C, f o r  t h e  case  0 < X < xl, given 

t h a t  (k - l ) d  < < (k - 1/2)d, is 

Once again ,  t h i s  i n t e g r a l  can be evaluated using in t eg ra t ion  by pa r t s .  

After some lengthy computations, we have 

In  Case 2b, xl < X < i/2, and t h e  needle crosses  t h e  (k - 1 ) s t  

circumference i f  and only i f  r c h (see  Figure 4 ) ,  o r ,  equivalently,  



So, t h e  jo in t  probabi l i ty  of C f o r  t he  case  x c X c i/2, given t h a t  
k 

(k - l ) d  < c (k - l /2)d ,  is  

a f t e r ,  once again,  using in t eg ra t ion  by pa r t s .  

Combining the  expressions i n  (2.2) and (2.31, we have t h a t  t he  

condi t ional  probabi l i ty  t h a t  t h e  needle crosses  the  (k - 1 ) s t  circum- 

ference, given t h a t  (k - 1 )d c OM < (k - l / 2 )d ,  is, upon s impl i f ica t ion,  

I t  is i n t e r e s t i n g  t o  note t h a t  t h i s  probabi l i ty  is smaller than i n  t h e  

c l a s s i c a l  Buffon Needle Problem by a f a c t o r  of (k - l ) / ( k  - 3/4).  

The p robab i l i t i e s  of t he  events I, and 1' a r e  e a s i l y  obtained by 

computing r a t i o s  of annular areas :  

P(1') = (k - 1 / 4 ) / ~ " ,  k = 1, 2, ... , N ,  and 
(2.5) 

P ( 1 )  = (k - 3/4)/N2, k = 2, 3, . .. , N. 

Then, f i n a l l y ,  t h e  probabi l i ty  t h a t  t he  needle crosses  a circum- 

ference when randomly dropped onto a s e t  of  N concentric c i r c l e s  is, by 

the  Law of Tota l  P robab i l i t i e s ,  

and upon subs t i tu t ion  from (2.11, (2.4) and (2.5), we g e t  

Certain i n t u i t i v e  p rope r t i e s  about the  formula (2.6) can e a s i l y  be 

es tabl ished.  For ins tance ,  when t = d ,  p is  independent of t and d. 

Hence, when t h e  length  of t h e  needle is t h e  same a s  t h e  d is tance  between- 

concentric c i r c l e s ,  t h e  p robab i l i t y  of  a "cross" depends upon nei ther .  

One would expect t h a t  a s  t h e  length  of t he  needle g e t s  smaller and small- 

e r  (holding d constant) ,  t he  p robab i l i t y  of a "cross" would become small. 
-7 

Indeed, it can e a s i l y  be seen from (2.6) t h a t  l i m p N =  0. One would a-feo- 
Â£+ - - 

expect t h a t  a s  d becomes large ,  p would become small. In  f a c t ,  

l imp  = 0. 
d-w> 

N 

Because the  curvature of  a c i r c l e  approaches zero a s  t h e  r ad ius  of  

t h e  c i r c l e  extends t o  i n f i n i t y  (so  t h a t  t he  circumference of t h e  c i r c l e  , 
becomes more l i k e  a s t r a i g h t  l i n e  a s  t h e  radius  increases) ,  one would 

expect P(Ck 1 I ^ )  and P(Ck 1 I k )  t o  approach 2k?/vd, t h e  p robab i l i t y  asso- 

c ia t ed  with the  c l a s s i c a l  Buffon Needle Problem. A s  can e a s i l y  be 

determined from (2.1) and (2.4), 

With t h i s  i n  mind, one can show from (2.6) (using the  f a c t  t h a t  (2.6) 

represents  a convex combination of  P(Ck 1 1, ) and P ( C  11,) ) t h a t  

p := l i m p  = 2L/77d, s o  t h a t  f o r  an i n f i n i t e  number of  concentric c i r c l e s  
N 

on an i n f i n i t e  plane region, t h e  p robab i l i t y  of a "cross" is t h e  same a s  

f o r  p a r a l l e l  l i n e s .  In  Table I, values of p(cN1 IA), P(cN1 1 ~ 1  and pN a r e  

computed f o r  t h e  case i = d, i l l u s t r a t i n g  convergence of  each of  these  

terms t o  2/77 K .63662. 

Table I 
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CONVBGENCE OF WEIGHTED AVERAGES 

by D o u g h  1.. Cd~fu-ng 
and. chaAfce~ R. D i n L e e  

St. Bonauenttite. Unhe~4-& 
- 

After Cauchyls convergence c r i t e r i o n  is covered, advanced calculus  

t e x t s  such a s  [I] and [4] of ten  include a version of t h e  following 

excercise:  I f  a,  and a, are arbitrary real numbers, and i f  an = 

(an-1 + a 2 ) / 2  for n > 2, shm that the sequence {an} converges. 

The standard proof cons i s t s  of  showing t h a t  l a  - a ,  1 < ] a n 1  - a 2 1  /2 

fo r  n > 2, and then using some form of  Theorem 1 below. Following t h e  

suggestion i n  Exercise 7b, p. 107 of [3] ,  we consider t h e  extension of  

t h i s  r e s u l t  t o  a recurs ive  de f in i t i on  i n  terms of  weighted averages of 

t he  previous k terms of  the  sequence. The proof of t h i s  r e s u l t  depends 

on t h e  following theorem, which can be found i n  t h e  f i r s t  chapter of  [ I ] .  

n 
T h e o m  I .  Let A > 0 and c be i n  (0, l) .  I f  - anl 5 Ac f o r  

n s u f f i c i e n t l y  l a r g e ,  then { a }  is a Cauchy sequence, and hence 

converges. 

ThUJ&?Jn 2. Let k 2 2,  and l e t  w l ,  . . ., w k be i n  (0,l) sa t i s fy ing  

t h e  condition ]wi = 1. I f  al, . . ., a k a r e  a r b i t r a r y  r e a l  numbers, and 

i f  an = 1wianei f o r  n > k, then {an} converges. 

Proof. For n > k def ine  r=max {lan_^ - an_jl: 0 L i  < j 5 k - 1 ) .  

Then f o r  n > k and i = 1, ..., k-1, 

Ian+1 - = I (IWA+~- j )  - an+l-i 1 
- - lbj(an+l-j  - anH-i) I 
W n + l - j  - I 
< rnIw3' with j # i. - 

= (1 - w 2. .)r n" 

I f  w = max { I  - wi : i = 1, . .., k-11 then we have t h a t  



( 1  Ian+1 - an+l-+n 

fo r  n > k and i. = 1, ..., k-1. Therefore, f o r  n > k ,  we g e t  

( 2 )  rn+l = max {lan+l-i - an+l-jl : 0 5 i. < 3 9 - 1 1  5 r n ' 
For l a r g e  values of  n ,  repeated appl ica t ions  of ( 1 )  and (2 )  y i e l d  

(3 )  'n ^n-(k-l)' 

For any n,  t h e  Division Algorithm implies t h a t  t he re  a r e  (unique) 

non-negative in t ege r s  q and s such t h a t  n = (k-1)q + s ,  with 0 5 s  < k-1. 

Hence, i f  we use (3 )  repeatedly f o r  s u f f i c i e n t l y  l a r g e  n ,  we obtain 

we def ine  W = v Â ¥ ' - ~ '  then 0 < W < 1 and, f o r  l a r g e  n ,  r < xun. 
n - 

Final ly ,  from condition (I), we have t h a t  - an 1 5 (wx)Wn. The 

conclusion then follows from Theorem 1. 

A s  an i n t e r e s t i n g  consequence, t h e  r e s u l t  is a l s o  t r u e  i f  t h e  

weighted ar i thmet ic  mean i s  replaced by the  weighted geometric mean. 

Also, we note t h a t  Theorem 2 is va l id  f o r  sequences i n  any Banach space, 

and t h a t  t h e  condition on t h e  weights can be relaxed t o  T W .  < 1. 
2 - 

Corollary. Let k >_ 2 and l e t  wl, . . ., w be i n  (0,1) sa t i s fy ing  k 
t h e  condition t h a t  ]wi = 1. I f  al ,  . . ., ak a r e  a r b i t r a r y  pos i t ive  

w numbers, and f o r  a l l  n > k we have a = n ( a n i )  i, then { a  } converges. 

Proof. For a l l  n ,  def ine  b = i n f a ) .  Since { b  } s a t i s f i e s  t h e  n 
conditions of  Theorem 2 ,  it is a convergent sequence. The convergence 

of { a  1 follows from the  cont inui ty  of  t h e  function ex. n 

In  t h e  same exerc ise  s e t  of [3], it i s  f u r t h e r  suggested t h a t  t h e  

ar i thmet ic  mean ( a  + b)/Z may be replaced by t h e  harmonic mean 

2 / ( l / a  + 1 / b ) .  A s  a p ro jec t ,  t h e  reader  might wish t o  consider t h i s  

problem, a s  well  a s  those  using o the r  generalized means, such a s  t h e  

logarithmic mean (b  - a)/(Znb - Zna) o r  the  root-mean-square 

2 /(a2 + b 112. AS a note of i n t e r e s t ,  i n  121 it is  shown t h a t  when 

0 < a < b, we have t h e  following ordering (from smallest  t o  l a r g e s t ) :  

a, 'harmonic, geometric, logapithnic, arithnetia, root-mean-square, b.  
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TREE, BRANCH AND ROOT Thus, x = E d + Sxl 1 1  

by No~miin Woo 
Ca&iioiiwi State Un-tue~i-t-ty 

Defini t ion 1: A s e t  o f  i n t ege r s  {b. } is ca l l ed  a base f o r  t h e  s e t  

of  a l l  i n t ege r s  whenever every in t ege r  n can be expressed uniquely i n  

t h e  form 

n = 1 eibi, where ei = 0 o r  1 and 1 ei < 
i=l Vl 

Theohem 1 .  Any base can, by rearrangement, be wr i t t en  i n  t h e  form 

{dl ,  2d2, 2 d 3 ,  $d4, ... 1 where t h e  dila a r e  a l l  odd. 

Proof. This i s  proved i n  reference  [I]. 

Note t h a t  a sequence [dl ,  d y  d3, d4, .. . 1 of odd numbers i s  ca l l ed  

a bas i c  sequence whenever { d l ,  2d2, z2d3, z3d4, . . . 1 i s  a base. 

Thwhem 2 .  Any in t ege r  x can be formally developed i n t o  a s e r i e s  
00 rn 

x = 1 e.2^di, where ei = 0 o r  1, 1 e .  < and t h e  diva a r e  a l l  odd. ' - i=l ' 
Proof. I f  x is odd, s e t  el = 1. I f  x is  even, s e t  el = 0. Set  

x - e d  1 1  =-. 
1 2 

I f  x is odd, s e t  e2 = 1. I f  x is even, s e t  e = 0. Set 1 1 2 

x2  = 2 
Xi-1 - E .d. 

In  general,  s e t  x - i - 2 
' ' . Set ei = 1 if x Ã  is  odd and 

s e t e . = O i f x  i s e v e n .  i- 1 

A t  t h e  k t h  s t age ,  we have t h e  following: 

x - 
x2 = 

2 e2d2 and x1 = 2x2 + e2d2 

k .  k k 
Therefore, x - 1 $-Idi = 2 xk E 0 (mod 2 ) . 

6 1  

Note t h a t  a l l  e .  ' 8  a r e  uniquely determined. 

Then, x - e d s x - 1 1  e i d  = 0 (mod 2 )  

e 1 1  d s. t - y  (mod 2) .  

Since f d  1 ,2) = 1, 5 = e l f  (mod 2) and el = el p .  

We can use an induction argument t o  show t h a t  en = < f o r  a l l  n .  

00 

Of course,  i f  {d l ,  2dy fd3 ,  z3d4, ... I is  a base, then &1 I el < 

1 
f o r  any x .  It is not  d i f f i c u l t  t o  show t h a t  { I ,  -2 , 2', -z3, z4, ... 
is a base o r  t h a t  [ I ,  -1, 1, -1, ... ] is  a b a s i c  sequence. I n  t h e  

following example, we w i l l  use 14 and express it using [ I ,  -1, 1, -1, ... 1 
as  our  bas ic  sequence. 

x -  e d  
1 1  - 14 - ( O ) ( I )  = 

=. 2 - 
2 



= (0) (1) + (1)  ( 2 5  (-1) + (0) ( 2 )  (1) + (0) (z3) (-1) + (1) (z4) (1) + ( 2 5  ( 0 )  

0 - 2 + 0 + 0 + 1 6 + 0  

Thus, we have a s e r i e s  of  mappings 

1 4 + 7 + 4 + 2 + 1 + 0  

1 4 + x 1  + x 2 + x 3 + x 4 + 0  

Below is i l l u s t r a t e d  a s e r i e s  of  mappings f o r  t h e  s e t  of  in tegers  

{I, 2, 3, ..., 501 using t h e  bas i c  sequence [I, -1, 1 ,  -1, ... I .  It is 

i n t e r e s t i n g  t o  observe t h a t  t h i s  s e r i e s  of mappings forms a E. Each 

mapping is a branch. Each s e r i e s  of mappings s tops  a t  0 ,  t h e  o f  

t h e  t r e e .  
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YOU CAN'T HURRY LOVE 
OR 

HOW MUCH MORE MUST ART WAIT? 

by Jo&* S. Ue~~duccA* 
The. O h i o  S ta te .  Urn-vvu-Uy 

1. INTRODUCTION 

Meet Arthur, a young American male about t o  f a l l  i n  love f o r  t h e  

f i r s t  time. Arthur has promised h i s  mother t h a t  he w i l l  not marry t h e  

f i r s t  g i r l  who bewitches him, but  being a romantic fe l low he does intend 

t o  marry and l i v e  happily ever a f t e r  with t h e  f i r s t  umopata with whom he 

experiences a q u a l i t y  o f  love g rea te r  than t h a t  i n  h i s  first a f f a i r .  How 

many a f f a i r s  should Arthur expect t o  have before he f inds  h i s  intended 

spouse? 

Let us assume t h a t  X measures t h e  qua l i ty  of Arthur 's  tth love 

a f f a i r ,  i = 1, 2, and s o  on, Considering the  vagaries of  love ,  we might 

assume t h a t  t hese  Xi a r e  independent, i d e n t i c a l l y  d i s t r ibu ted  random 

va r i ab le s  from some d i s t r i b u t i o n  P. Assuming t h a t  Arthur maintains h i s  

s t r a t egy ,  he w i l l  first propose marriage on h i s  T~~ love a f f a i r ,  where 2' 

is t h e  smallest  number n (= 2, 3, etc . )  such t h a t  X > XI. What is t h e  

expected value of  T? 

Four d i f f e r e n t  solut ions  t o  t h i s  problem a r e  given i n  t h e  next 

sect ion.  They correspond t o  d i f f e r e n t  assumptions about t h e  d i s t r i b u t i o n  

F, t h e  degree of Arthur 's  knowledge, and, most i n t r igu ing ly ,  Arthur 's  

personal a t t i t u d e  toward t h e  fu ture .  The l a s t  so lu t ion  r a i s e s  paradoxical 

i n t e rp re t a t ions  of  expectation t h a t  a r e  b r i e f l y  discussed i n  Section 3. 

* The author  thanks David Fa i r ly  and Dennis Pea r l  f o r  enjoyable 
conversations about t h i s  topic .  



2. SOLUTIONS 

The c lass ica l  solution found i n  most introductory textbooks (see, 

f o r  example, Fel ler ,  1971) takes only a l i n e  t o  present: 

m 00 

E(T)  = 1 P f T  > n )  = 1 ( 1 / n )  = -, 
n=l n=1 

but disturbs some students '  in tu i t ion ,  not t o  mention Arthur's heart.  

How could it possibly take forever t o  f ind a be t te r  love? One way t h i s  

could happen is i f  

one. For example, 

XI = k; then there 

and consequently T  

t h i s  example, E f T )  

the  f i r s t  love a f f a i r  happened t o  be the best possible 

i f  F  were concentrated on the  points { I ,  ..., kl and 

would be no chance of surpassing the f i r s t  love a f f a i r ,  

= . Since t h i s  event has posi t ive probability i n  
- - OO. 

2.1 A Merciful Solution 

We a l l  know t h a t  the  qual i ty  of love, l i k e  mercy, is  unbounded, so  

t h a t  F f x )  < 1 f o r  any a:. Suppose tha t  X  = x ,  some arbi t rary,  but fixed 1  

because the  { X i }  are  independent. Notice tha t  the c lass ica l  solution 

above does not f u l l y  use the fac t  t h a t  the {X i }  are  independent; fo r  

example, the  {X i }  might only be exchangeable. In contrast t o  the 

c lass ica l  solution, equation (2.1) implies t h a t  

m 00 

n-1 - E ( T ) =  I P ( T > ~ ) =  ]' [ F ~ x ) ]  - [ I  - f ~ a ; . ) ] ~ " ~ < - ,  ( 2 . 2 )  
n=l n=Z 

because F ( x )  c 1  no matter how good t h e  f i r s t  time was. This new 

solution is certainly heartening t o  Art, but t o  what do we owe t h i s  

promise of convergence? -- t h e  unlimited nature of love, o r  some darker 

assumptions? 

2.2 The Devil Laughs 

The above analysis works well i f  Arthur happens t o  know t h e  quality 

a; of h i s  f i r s t  a f f a i r .  Remember, even i f  Arthur were finished with t h i s  

a f f a i r ,  which has yet t o  happen, he is  a romantic and would loathe the  

crass task of actual ly measuring the quality of the a f f a i r .  According 

t o  Arthur, "I am confident tha t  I w i l l  recognize when a new a f f a i r  is  

be t te r  than my f i r s t ,  but I could never put a number o r  a pr ice on any. 

love a f f a i r .  'I 

A more careful  look a t  equation (2.2) shows t h a t  it gives not E(T)  

but the conditional expectation E I T \ X ~  = X I .  To get E f T ) ,  we must 

integrate as  follows: . 
a -  - 

E(T)  = IEV\X^ = X I ~ X )  = J [ I - F ( ~ ) I - ' ~ F ( ~ )  

= Zim a-w{ log [ I -Ff -a )  I - l og [ l -F ta )  ]  1 = -. 
Therefore, the  assumption tha t  F  is  unbounded is not,  by i t s e l f ,  

su f f ic ien t  t o  guarantee a f i n i t e  waiting time. 

Having integrated a l l  h i s  knowledge of love, Arthur f inds he does 

not know very much a f t e r  a l l .  Forever is  a long time t o  wait. Perhaps 

Arthur should make the devi l ' s  bargain, and spend h i s  time measuring 

the quality of h i s  f i r s t  love a f f a i r ,  once it is  over. In t h i s  way, a t  

l e a s t  he would be saved the despair of expecting t o  wait forever f o r  a 

be t te r  love. But Arthur is a lover, not a thinker, and so he writes 

f o r  advice t o  someone wiser about the  prospects of e terni ty.  

2.3 Dear Abbe 

The following is reprinted without permission from a short- lived 

loca l  column en t i t l ed  A d v i c e  t o  L o v e l o r n  S t u d e n t s  o f  S t a t i s t i c s :  

"Dear Arthur, 

No sense vegetating. Plan t o  have 1 love a f f a i r  t h i s  year, 3 love 

a f f a i r s  next year, 5 love a f f a i r s  the  year a f t e r  tha t ,  with progressively 

odd a f f a i r s  i n  a l l  the ensuing years. Then see how your expectations 

change. 

Best wishes, 

The Abbe " 

How w i l l  t h i s  advice help Arthur? Let Z  be the number of years 

tha t  Arthur must wait before finding a be t te r  love, and l e t  Xi be 

defined a s  before. Notice that  a f t e r  n  years Arthur plans t o  have had 

1  + 3 + . . . + ( 2n -1 )  = n  love a f fa i r s .  Thus 

2  
P{Z > n }  = PfX1 is largest  among { X I ,  . . . , X 2 )  = n' , 

and so 

E M )  = ~ n - ~  = (7r2)/6, 

l e s s  tha t  20  months. This l a s t  summation is a special  case of a 

convergent Fourier se r ies  [see f o r  example Abramowitz and Stegun (196511. 
a 



It is a l s o  an ins tance  of Riemann's ze t a  function ~ ( s ) .  In f a c t ,  i f  

Arthur becomes very aggressive and plans  t o  have if a f f a i r s  a f t e r  n 

years ,  f o r  some l a rge  p, then E ( Z )  = <i(p),  which approaches 1  a s  p 

increases.  

3. THE PARADOX 

I f  he adopts t h e  Abbe's p lan ,  Arthur expects t o  wait  l e s s  than 

two years t o  f i n d  t h e  r i g h t  woman, during which time he w i l l  have had 

no more than 4 a f f a i r s .  Does it then follow t h a t  he expects t o  have 

no more than 4 a f f a i r s ?  

The l a s t  ana lys i s  seems t o  contradic t  t h e  f i r s t  and t h i r d  analyses.  

In  these  e a r l i e r  analyses,  nothing was assumed about time schedules, 

s o  why should t h e  imposition of a time schedule change t h e  r e s u l t s ?  

The s i t u a t i o n  is analogous t o  t h e  f ab le  of Achilles and t h e  t o r t o i s e ,  

sometimes ca l l ed  Zeno's paradox. After  g iving t h e  slow t o r t o i s e  a head 

s t a r t  i n  a race ,  t h e  s w i f t  Achi l les  was never ab le  t o  pass t h e  t o r t o i s e  

because he had t o  first accomplish t h e  i n f i n i t e  sequence o f  events of 

halving t h e  gap between him and t h e  t o r t o i s e .  Ordinary a t h l e t e s ,  on t h e  

o the r  hand, have no t roub le  performing an i n f i n i t e  sequence of such 

f l e e t i n g  events i n  a f i n i t e  amount of  time. However, most ordinary 

men would f ind  themselves overtaxed by the  Abbe's suggested agenda, 

unless these  love a f f a i r s  themselves became almost a s  f l e e t i n g .  

I f  an ordinary mortal  can have no more than a f i n i t e  number N of 

love a f f a i r s  i n  h i s  l i f e ,  then, under t h e  given assumptions about t h e  

q u a l i t i e s  of these  a f f a i r s ,  t he re  is a pos i t ive  probabi l i ty  t h a t  

X  w i l l  be l a r g e s t  among t h e  {XI ,  . . ., XN}. In  t h i s  case Arthur w i l l  1  

never f ind  a s u i t a b l e  br ide ,  and, i n  e f f e c t ,  w i l l  wait  forever.  In 

t h i s  sense  he must expect t o  wait  forever .  You can ' t  hurry love, 

Arthur. 
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THE ANSWER I S  1 - 1/e. WHAT I S  THE QUESTION? 

(Two matching problems t h a t  have the  
same 1 imi t i n g  answer. ) 

by W o t  A. ToÃˆu 
Hope C o U i g e .  

An urn contains n b a l l s  numbered f r o m  1 through n. The b a l l s  a r e  

se l ec t ed  randomly from t h e  urn, one a t  a time, u n t i l  n b a l l s  have been 

se lected.  A match occurs i f  b a l l  numbered k is t h e  k t  b a l l  t h a t  is 

se lected.  We a r e  i n t e r e s t e d  i n  f ind ing  the  p robab i l i t y  t h a t  t he re  is 

a t  l e a s t  one match. 

Does se l ec t ing  the  b a l l s  with replacement o r  s e l ec t ing  without 

replacement a f f e c t  t h e  p robab i l i t y  of a t  l e a s t  one match? Does t h e  

number of b a l l s  i n  t h e  urn a f f e c t  t h e  probabi l i ty  o f  a t  l e a s t  one 

match? You should be ab le  t o  answer these  questions a f t e r  you have 

read t h i s  paper. 

Problem 1 .  An urn conta ins  n b a l l s  numbered 1  through n .  From 

t h e  urn n b a l l s  a r e  se l ec t ed  one a t  a time with replaoement. A match 

occurs i f  bal l  numbered k is t h e  k t  b a l l  t h a t  is selected.  Find t h e  

probabi l i ty  of a t  l e a s t  one match, say q .  

Problem 1'. Roll an  n-sided d i e  n times. A match occurs i f  s i d e  

k is t h e  outcome on t h e  kth roll, k = l , 2 , .  . . ,n. Find t h e  probabi l i ty  

of a t  l e a s t  one match during t h e  n r o l l s  of t he  d i e ,  say q .  

Solution. We f i n d  t h e  p robab i l i t y  of  no matches and sub t rac t  

t h i s  answer from 1. The p robab i l i t y  of no matches is easy t o  ca l cu la t e  

because t h e  t r i a l s  a r e  independent. We have 

q = P(at l eas t  one match) 
= 1  - P f m  matches) 



Note t h a t  a s  n increases  without bound, 
A s  n increases  without bound, 

and thus  we can wr i t e  a question f o r  which t h e  answer is 1 - 1/e. 

Problem 2. An urn conta ins  n b a l l s  numbered from 1 through n. 

From the  urn n b a l l s  a r e  se l ec t ed  one a t  a time without replacement. 

A match occurs i f  b a l l  numbered k is t h e  kth b a l l  se lec ted.  (Note t h a t  

t h i s  generates a random permutation of t h e  f i r s t  n pos i t ive  in t ege r s . )  

Find t h e  probabi l i ty  of  a t  l e a s t  one match, say p n" 

P r o b h  2'. Let A and B denote two i d e n t i c a l  decks of  cards ,  each 

deck containing n cards  numbered from 1 through n. Shuffle each deck. 

A match occurs i f  card numbered k, 1 5 k < n, occupies t h e  same posi t ion 

i n  each deck. Find t h e  p robab i l i t y  of  a t  l e a s t  one match, say p .  

Solut ion (when w 4 ) .  Let t he  event A .  denote a match on t h e  i t h  

draw. Then 

1 
P(A- n A n A n A )  =-  4 ! 

The probabi l i ty  of a t  l e a s t  one match is 

P(A^ u A~ U A~ u = ~ P C A ~ )  - P(A{ n A.) + 
3 

F ( A <  n A .  n A^) - P ( A  n A n A n AJ a 

-4f- 4! 2 ! + L L - L  - 
4! 2!2! 4! S!l! 41 4! 

1 1 1  1 . . -+ - - -  
2! 3! 4! 

The so lu t ion  f o r  any i n t e g e r n  is 

so we can wri te  a second question f o r  which t h e  answer is 1 - 1/e. 
- *  . 

It is i n t e r e s t i n g  t o  compare t h e  values of  p and q f o r  d i f f e ren t -  n 
values of  n. We can const ruct  t h e  following t ab le .  

Recall  t h a t  
1 

1 - w 0.63212 

We see  t h a t  t he  value of n has l i t t l e  a f f e c t  on p when n > 4 

and on q when n > IS. Also f o r  l a r g e  n, pn and q a r e  approximately n 
equal. 

An i n t e r e s t i n g  exerc ise  would be t o  i l l u s t r a t e  these  p r o b a b i l i t i e s  

empirically.  E i the r  use d ice ,  cards ,  o r  b a l l s  i n  an  urn - o r ,  wr i t e  

a program t o  simulate these  experiments on a computer. 

p = P(a t  l e a s t  one match) 



by J .  L .  SAenneA 
10 PhJUUUL* Road. 

P d o  AUo, CA 94303 

The accent on t h e  2 i n  T u r h  is not  a s t r e s s  mark; a l l  Hungarian 

words a r e  s t r e s sed  on t h e  f i r s t  sy l l ab le .  The word q t ~ l l a b l e t '  should 

remind one of  t h i s .  Thus, %&ti, z h n a n y i ,  ~ d s l y ,  &*ok, E d % ,  

Rad6, =or, ~ j e s - T G t h ,  =meredis - 
The dis t inguished Hungarian mathematician Paul Tursn (1910-1976) 

was a c t i v e  i n  many f i e l d s .  One of h i s  most famous works was "A New 

Method i n  Analysis," which o r ig ina l ly  appeared i n  1953. An English 

ed i t ion  was published by Wiley- Interscience i n  t h e  1970ts,  I believe.  

(A bibliography of  Tursn's work appeared i n  Mat. Lapok (Hungarian) i n  

t h e  June 1977 issue ,  but some d e t a i l s  a r e  missing.) This famous work is 

an example, but by no means an i s o l a t e d  example, of a s ign i f i can t  con- 

t r i b u t i o n  o f  a middle-aged o r  o lde r  mathematician. 

Tur& had i n t e r e s t s  outs ide  mathematics. Several times, he came 

t o  my house t o  hear s t r i n g  qua r t e t  music. He was charmed by some work 

of  Arriaga, a Spanish musician who died a t  t h e  age of  20 and was not  

well-known i n  Hungary. Later,  Tur& purchased some recordings of  t h e  

qua r t e t s  t o  t ake  home t o  Hungary. 

During t h e  1966 Moscow Congress I lunched with Tursn, h i s  wife, 

and h i s  wife ' s  s i s t e r .  I wish I had been ab le  t o  commit t o  f i lm  t h e  

a n t i c s  of one o f  t h e  t r ans l a to r- ass i s t an t s  during t h a t  luncheon. 

Tur& showed h i s  knowledge of  the  Russian Language by ordering 

t h e  food f o r  a l l  of  us: one of t h e  blue-plate s p e c i a l  number one and 

two of t h e  blue-plate spec ia l  number two. The women were overprotect ive  

o f  t h e i r  weight, and agreed t o  share  a s ing le  order.  We then gave t h e  

wai t ress ,  a business- like middle-aged woman, our meal ch i t s .  Shortly 

afterwards,  she  re turned t o  t h e  t a b l e ,  waving t h e  c h i t s  i n  h e r  hand. 

"You don ' t  have enough ch i t s ,"  she  remonstrated. This s e t  Paul T u r h  

o f f  i n t o  a mixture of English and Russian. The wai t ress  in ter rupted 

him. 

' I ' l l  go f e t c h  a t r ans l a to r ,"  she s a i d  ( a l l  i n  Russian). There 

was a Latin- looking t r a n s l a t o r ,  t a l l  and with a Don Quixote mustache, 
. . 

not  f a r  away. He was t h e  one she  fetched. They re turned together  - 
t h e  Lat in  undoubtedly i n  t h e  pos i t ion  of  a fore ign s tudent ,  studying i n  

a Russian univers i ty ,  and p a r t l y  repaying h i s  hos t s  by o f fe r ing  t h e  - 
courtesy o f  en te r t a in ing  what Spanish mathematicians t h e r e  were by - 

a- - 
i n t e rp re t ing  Russian f o r  them. 

When t h e  p a i r  a r r ived  a t  our  t a b l e ,  T u r h  overlooked t h e  l a r g e  

badge labeled l ' ~ s p a ~ o l "  on t h e  man's l ape l ,  and began explaining, i n  

English, what it was we wanted. This dismayed t h e  Spaniard s o  g r e a t l y  

t h a t  a l l  he could do was put out  h i s  tongue, attempting t o  a r t i c u l a t e ,  

but unable t o  say a word. He pointed repeatedly t o  h i s  badge, and ,  

began t o  look l i k e  a comedian. The impasse could only be resolved when 

one of us explained our  needs i n  good Russian t o  t h e  wai t ress ,  who 

understood perfect ly .  There is  a Russian word, BMECTE, t h a t  was very 

handy t o  explain t h a t  one blue p l a t e  s p e c i a l  number two was t o  be 

shared by t h e  women. It is a l s o  a convenient f a c t  t h a t  t h e  Russian word 

fo r  "women" is t h e  same a s  t h e  Russian word f o r  "wives", s o  it was 

i r r e l evan t  whether I was o r  was not  married t o  Mrs. ~ u r & ' s  s i s t e r .  

(She was, and is, ac tua l ly  t h e  wife of t h e  Hungarian f inance minis ter . )  

So t h e  food was brought serenely. 

A s  t h e  meal was f in i sh ing ,  t he re  was another joke, a q u i t e  good 

one, i n  view of t h e  f a c t  t h a t  English - l e t  alone American slang - is 

not Tur&i1s na t ive  language. H i s  wife, Vera s&, got  up abrupt ly  and 

sa id ,  "I have t o  run." "Yes, you a r e  r igh t ,"  Paul ~ u r &  sa id ,  "you 

have ~ u r s n .  I' 

He even knew how h i s  name was o f t en  mispronounced! 

r r r r r r r r r r r r r r r r r r r r r r r r r r r r r ~  
A SUMMATION FORMULA 

by John S h e .  
M a d u t e A  CoUege 

Let S be t h e  sum 1 + 2 + ... + (n-1). Then S is t h e  number o f  

elements below t h e  main diagonal of an nxn matrix and 2 s  is t h e  t o t a l  

number of elements o f f  t h e  main diagonal. Since the re  a r e  n diagonal 

e n t r i e s  we then have 2 s  = n2 - n s o  S = n(n - 1)/2. 

EdUoi'h note. - {[OK. mwoJL o t h a  p k o o h ,  u e  "A  O - i i c ~ f c t e .  Look at -- 
1 + 2 + . . . + n," by LOW C .  Lauon,  The. CoUege. 
MtttfiematccA Jouknot ,  V o t .  16, N O .  5 (19851,  pp. 369-382.> 



EXTENDING A FAMILIAR LIMIT 

by Noman. SckaumbpJcge~ 
Vitonx Community CoUege. 

In a recent  i s sue  of  t h i s  journal [I1 we used t h e  mean value 

theorem t o  prove t h e  well-known formula 

In t h i s  note we prove more general ly  t h a t  i f  a and b a r e  in t ege r s  with 

a > b ,  and a + b > 0 ,  then 

Thus, f o r  example, i f  a = 4 and b = -1, we g e t  

Our proof is completely elementary and can be offered immediately 

a f t e r  (1).  For another approach, s e e  [2] .  

Since a > b and a + b > 0 it follows t h a t  f o r  a l l  pos i t i ve  

in t ege r s  k ,  (k-l)a < ka+b < fk+l)a. Fuvthermore, s ince  a and b a r e  

in tegers  a + b> 1, hence / 

1-a-2a ... (n-l)a < fa+b)fZa+bl ... (na+b) < 2a.Sa ... fn+l )a .  

This double inequal i ty  can be wr i t t en  a s  

A s  ?I--, nlIn Â¥ 1, (n+1 )'In -> 2 and a'̂ " + 1. ( 2  ) now follows from 

(3 )  by l e t t i n g  n-w and using (1).  
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THE FOURTEENTH ANNUAL P I  MU EPSILON STUDENT CONFERENCE,- 

AT 

MIAMI UNIVERSITY 

I N  

OXFORD, OHIO 

OCTOBER 9- 10,  1 9 8 7  

WE INVITE YOU TO J O I N  US! THERE WILL BE SESSIONS OF THE 
STUDENT CONFERENCE OH FRIDAY EVENING AND SATURDAY AFTER- 
NOON. FREE OVERNIGHT LODGING FOR ALL STUDENTS WILL BE 
ARRANGED WITH MIAMI STUDENTS. EACH STUDENT SHOULD BRING A 
SLEEPING BAG. ALL STUDENT GUESTS ARE INVITED TO A FREE 
FRIDAY EVENING PIZZA PARTY SUPPER AND SPEAKERS WILL BE 
TREATED TO A SATURDAY NOON P I C N I C  LUNCH. TALKS MAY BE ON 
ANY TOPIC RELATED TO MATHEMATICS, STATISTICS OR COMPUTING. 
WE WELCOME ITEMS RANGING FROM EXPOSITORY TO RESEARCH, 
INTERESTING APPLICATIONS, PROBLEMS, SUMMER EMPLOYMENT, ETC. 
PRESENTATION TIME SHOULD BE FIFTEEN OR THIRTY MINUTES. 

WE NEED YOUR TITLE, PRESENTATION TIME (15 OR 3 0  MINUTES), 
PREFERRED DATE (FRIDAY OR SATURDAY) AND A 50  (APPROXIMATELY) 
WORD ABSTRACT BY OCTOBER 1, 1987. 

PLEASE SEND TO 

PROFESSOR MILTON D. COX 
DEPARTMENT OF MATHEMATICS AND STATISTICS 

MIAMI UNIVERSITY 
OXFORD, OHIO 45056 

THE STUDENT CONFERENCE I S  HELD I N  CONJUNCTION WITH THE CON- 
FERENCE ON "COMPUTERS AND MATHEMATICS" WHICH BEGINS FRIDAY 
AFTERNOON, OCTOBER 9. FEATURED SPEAKERS INCLUDE 
A. K.  DEWDNEY, ANTHONY RALSTON AND ROBERT TARJAN. CONTACT 
US FOR MORE DETAILS. 



3.  P~opo6e.d by the. EcUtot. 

Note t h a t  

PUZZLE SECTION 

The PUZZLE SECTION i s  for the enjoyment of those readers who 
are addicted to iiiorki.ng c7oubZecrostios or who find an occasional 
mathematical puzzle attractive. We consider mathematical puzzles t o  
be problems whose solutions consist of anawers immediately recognizable 
as correct by simple observation and requiring l i t t l e  formal proof. 
Material submitted and not used here will be sent t o  the Problem 
Editor i f  deemed appropriate for the PROBLEM DEPAROSENT. 

Address a l l  proposed puzzles and puzzle solutions t o  Professor 
Joseph D. E. Konhauser, Mathematics and Computer Science Department, 
Macalester CoZ lege, St .  Pccul, Minnesota 55105. Deadlines for puzzles 
appearing i n  the Fall Issue w i l l  be the next Febmasy 15, and for 
puzzles appearing i n  the Spring Issue will be the next September 15. 

PUZZLES FOR SOLUTION 

The numbers i n  t h e  sequence 1, 2, 4, 8, 16, 32, 64, ... s a t i s f y  
the  recurrence r e l a t i o n  

Are you ab le  t o  f i n d  an in t ege r  p a i r  (p,q) d i f f e r e n t  from (1 ,2)  such t h a t  

2 .  Phopoped by the. Edihh. 

Using only a s t ra ightedge (unmarked r u l e r )  l oca te  t h e  centroid  of  
t h e  L-shaped region i n  the  sketch. 

t h a t  

and t h a t  

F i l l  t h e  blanks with the'numbers 1 through 16 s o  t h a t  equa l i ty  
holds f o r  n = 1, 2 and 3. 

I f  t he  fou r  v e r t i c e s  of  a rec tangle  l i e  on a square (one ver tex  
on each s i d e  of t h e  square) is it poss ible  t o  move the  rec tangle  s o  t h a t  
a l l  fou r  v e r t i c e s  of t h e  rec tangle  become i n t e r i o r  points  of t h e  square? 

5. P m p o ~ e d  by the. Editot.  

The 25 squares of a 5x5  a r ray  have been colored red,  white and 
blue. Reading t h e  rows from l e f t  t o  r i g h t  and t h e  columns from top t o  
bottom, the  color  arrangements i n  nine of t h e  rows and columns a r e  

R R B W W  

R B R R R  

R B W R R  

W W B R B  

W B W R R  

W R B B R  

W B R R W  

B W W R B  

B W R B R  

What is t h e  remaining color  arrangement? 



COMMENTS ON PUZZLES 1 - 5, FALL 1986 

What is the  most money one can have i n  pennies, n ickels ,  dimes, 
quar ters ,  ha l f- dol lars ,  $1  b i l l s ,  $2 b i l l s ,  $5 b i l l s  and $10 b i l l s  
without being ab le  t o  make change f o r  a $20 b i l l ?  Glen E. M i l l s ,  jo in t-  
l y  with James Hansen, and Jason Pinkney observed t h a t  i f  we assume t h a t  
one must have at' l e a s t  one of  each type of coin and b i l l ,  then the  maxi- 
mum is $19.99 a s  follows: one $10 b i l l ,  one $5 b i l l ,  one $2 b i l l ,  two 
$1 b i l l s ,  one hal f- dol lar ,  one quar ter ,  one dime, two n icke l s  and fou r  
pennies. Otherwise, most respondents came up with t h e  answer $24.19. 
One solut ion is having one $10 b i l l ,  one $5 b i l l ,  fou r  $2 b i l l s ,  one 
hal f- dol lar ,  one quar ter ,  fou r  dimes and fou r  pennies. Several solvers  
found more than one. Edward F. Marks, Jr .  found e igh t  o the r  solut ions  
and claims t h a t  t h e r e  a r e  no more. Puszle # 2 asked f o r  an expression 
f o r  71 using fou r  1's and standard mathematical symbols. Victor  G. 
Feser offered 

[/AT ( 1  - .I)]. 

Edmund F. Marks, Jr .  and Robert P r ie l ipp  submitted 

where @ ( I l l )  = 0(3)x0(37) = 2x36 = 72. John D. Moores submitted 

[ [ / /H! l  t 1.11. 

Robert P r ie l  ipp a l s o  submitted 

and 

( .T ) -~  - 1 - ( l / , i )  = 81 - 
John H. Scott wrote "I bel ieve  t h a t  zero is  
symbol' used t o  ensure t h a t  t he  d i g i t s  of  a 
columns. So the  binary number 1000111 = 71 
For Puzzle # 3, Glen E. Mi l  1s submitted t h e  

1 - 9 = 71. 

t h e  'standard mathematical 
number a r e  i n  t h e  r i g h t  
decimal f i t s  t he  condition." 
following f igu re  ( l e f t ) .  

X ,  Y and Z a r e  s i d e  midpoints. Make t h e  jo ins ,  a s  shown, and c u t  along 
t h e  l i n e  segments i n t e r i o r  t o  t h e  t r i ang le .  The fou r  pieces can be re- 
assembled t o  form a parallelogram. Try it. It is an easy but n i ce  
puzzle. The f i g u r e  on t h e  r i g h t  (above) was submitted by John H. Scott. 
Pieces 1 and 2 a r e  half- turned i n t o  1' and 2 '  respect ively .  Piece 3 is 
t r a n s l a t e d  t o  3'. Again, no p a r t  of  t he  boundary of t h e  r e s u l t i n g  quad- 
r i l a t e r a l  is pa r t  of t h e  o r i g i n a l  boundary of t h e  t r i ang le .  John D. 
Moores sen t  still a d i f f e r e n t  so lu t ion  and suggested t h a t  readers  see  
the  haberdasher's puzzle i n  Henry E. Dudeney's The Cmterbicpy Puzzles. 

Seven readers responded t o  Puzzle # 4, t h e  l a b e l l i n g  of  a square a r r ay  
of s ix t een  points  so  t h a t  a l l  fourteen squares with hor izonta l  and ver t -  
i c a l  s i d e s  have equal "vertex sums." Al l  seven gave a t  l e a s t  one exam- 
p le  and s t a t e d  t h a t  t he re  were many more. With some machine help,  John 
M. Howell found 384 solut ions .  One is (below l e f t )  

The magic constant is, of course, 34. Doug Debski, Jason Pinkney And 
Glen E. M i l l s  submitted equivalent solut ions  t o  the  pentagon dissect ion 
puzzle (above r i g h t ) .  

L i s t  o f  responders: Doug Debski (4, S), Mark Evans ( I ) ,  Victor G .  Feser 
(1,2,4), James Hansen (11, John M. Howel 1 (4),  Joseph Jackson (21, Ed- 

mund F. Marks, Jr.  (1,2,4J, Glen E. M i l l s  (1,3,4,5), John D. Moores (1, 
2,3,4), Jason Pinkney (l ,5),  Robert P r ie l  ipp (2) ,  John H. Scott (1,2,3,4). 

Sohi%& t o  U a t h a c h o b ~ c  No. 2 3 ,  (See F a l l  1986 Issue) .  

Words : - 
A. J J Sylves ter  
B. e a r l e s s  
C. f r a c t a l  
D. f loccule  
E. wrangler 
F. en cabochon 
G. entropy 
H. k lys t ron 

s c u t t l e b u t t  
top  banana 
Heine-Bore1 
evection 
sync l ina l  
harmonic t e t r a d  
a l l i g a t i o n  
Peaucel l ier  c e l l  

Q. Eulerian path 
R. overboard 
S. Fie lds  medal 
T. serendipi ty  
U. p i t ty- pat  
V. ant rorse  
W. caboodle 
X. environ 

Quotation: OIU.en-ta.bJULU-y an Lnt/UJU-(-e pkop<wty . . . 06 a b u ~ f j a c t  ... tatlawieh.6 on a p m j u i t w e .  plane couJLdntt tell t o d y  that 
w m e n l t  on a b p h w e ,  but  they could titi gtob&y b e w e  a pkoje.ctLw 
p&ane -LA nonoIU.wtabte., and tong-CLUi-tonce. Vw.u&m can come. back 
w ~ h - ~ i e - ~ ~ i  i d .  

Jeanette Bickley, Webster Groves High School, MO; Victor G .  
eser University of Mary, Bismarck, ND; Robert Forsberg, Lexington, F. 

MA; Dr. Theodor Kaufman, Winthrop-University Hospital ,  Mineola, NY; 
Henry S. Lieberman, John Hancock Mutual Life Insurance Co., Boston, 
MA; Charlotte Maines, Caldwell, N J ;  Don P fa f f ,  University of  Nevada, 
Reno, NV; Robert P r ie l ipp  (with help from Pat C o l l i e r  and John Oman), 
University of Wisconsin-Oshkosh; Stephanie Stoyan, Georgian Court 
College, Lakewood, N J ;  Jef f rey Weeks and Nadia Marano, I thaca  College, 
I thaca ,  NY; and Barbara Zeeberg, Denver, CO. 

Late. bo&ttt.on: A l a t e  solut ion t o  Mathacrostic No. 
Barbara Leeberg, Denver, CO. 

22 was received from-. 



A. In the Ptolemaic system the c i r c l e  
around the earth in which a celes- 203 137 60 174 14 95 163 106 
t i a l  body o r  the center of the 
epicycle of i t s  o rb i t  was thought 
t o  move 

8. growing a t  high elevations but not 
above the timber l i ne  150 171 3 142 186 55 125 91 41 200 

C. a Texas unit  equal t o  33.33 inches 
169 197 43 138 

D. stamp 
39 222 173 33 121 99 54 

E. the a r t  or technique of cutting 
sol ids 128 206 132 234 166 5 103 114 209 154 

F. unpredictable 
111 97 184225123 57 151 9 29 

G. l e fse  (2  wds.) ------------- 
139 18 178113110 40 22 7 58 187 232201 37 

H. completely and determinedly fixed 
( c ~ P . )  88 118190107 93 4 76 

I. formerly a chief source of ammonia 
196 44 229 27 2 86 214 109 119 

J. orbi t s  
223 161 89 62 130 179 237 81 

K. balanced; complete ------- 
211 104 124 45 180 204 167 

L. sought attention by ostentatious 
behavior 73 189 207 144 133 177 219 12 68 117 

M. vehement o r  vigorous; violent o r  
rough 136 155 36 188 82 

N. a polygon whose in ter ior  consists 
of a11 the points i n  the plane 175 1 94 230 120 165 152 47 182 102 32 70 92 
which are  nearer t o  a particular 
l a t t i c e  point than t o  any other 
l a t t i c e  point (2  wds.) - 

0. obliquely o r  downward t o  one side 
74 191 129 87 176 160 13 66 

P. Viggo Brunts prime counter Ã ---A- 

146 56 127 193 50 

Q. one who asser ts  tha t  only those 
mathematical objects have real 231 172 220 156 64 67 25 147 85 71 31 20 140 164 
existence and are  meaningful which 
can be expl ic i t ly  exhibited 

R. onetime antispasmodic 
69 198 28 105 15 135 194 221 145 

S. branching ------ 
38 208 21 3 158 26 170 

T. an unexpected o r  malicious side- 
e f fec t  of a program tha t  otherwise 157 199 77 24 98 122 49 228 115 217 53 
operates correctly (2  wds. ) 

U. in music, a passage between s ta te-  
ments of a main subject o r  theme 149 226 126 84 59 215 192 

V. the catastrophe which can be 
interpreted as a s p l i t  o r  furrow 21 141 80 148 195 210 61 218 96 11 183 

U. in t h i s  kind of geometry any two 
s t ra ight  1 ines meet in two points 205 235 52 8 233 134 168 75 116 162 100 23 83 46 
(2 wds.) 

X. abounding ------- 
19 79 35 10 108 224 202 

Y. uniformly in  action o r  intensity 
212 51 34 16 6 112 153 

2.  of o r  relating t o  the summer -------- 
63 216 72 48 65 90 181 17 

a. a kind of t i l i n g  in  which a11 the 
t i l e s  a re  the same s i z e  and shape 78 42 131 30 227 101 159 143 185 236 

Mathoc~ottic.  No. 24 

Paopobed by Jobeph V .  E .  Konhame~ 

The 237 l e t t e r s  t o  be entered i n  t h e  numbered spaces i n  t he  g r i d  w i l l  be 
i den t i ca l  t o  those i n  t he  27 keyed WoÃ‡d a t  t he  matching numbers. The key numbers 
have been entered i n  t h e  diagram t o  a s s i s t  i n  constructing t h e  solut ion.  When 

completed, t h e  i n i t i a l  l e t t e r s  of t h e  Uolth w i l l  give the  name(s) o f  t he  a u t h d s )  
and the  t i t l e  of a  book; t h e  completed g r id  w i l l  be a quotation from t h a t  book. 

The solut ion t o  Hathac.~bCi,c No. 23 is given elsewhere i n  t h e  PUZZLE 
SECTION. - 

1- - 
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P iMu EpsiIon 

Regional Conference 

Sponsored by the St. Norbert Chapter o f  IT H E 

i n  Conjunction wi th the St. Norbert Math Club, I N A 

For information contact: 

a d  P o  Nd 
St. Norbert College 
De Pere, MI 54115 
(414) 337-3198 

 YO^ Chop-teh can. make UA& of, t h e  P i  Mu Ep&-tÂ£o Awa~d CeAtt-f,iCflteA av(itÂ£ 
able. t o  help you fiecognize. mathematicd achA.eveme.wta of, youh &tu.dent&. 

If, youh Chapteh p t e b w t i  LUULWL~A dot Ott.t4-tandt.ng Mdhema-txcafc Papm OA 
f o t  Student Acfctevement in Mdhmatccb, you mag apply t o  t h e  NatLonafc 
Of,f,ice (.on an amount equal t o  that Aped  by Chapteh up t o  a maximum 
of f , i f , ty  doVLau. 

PROBLEM DEPARTMENT 

Edited by U a y t o n  W. Dodge 

Utt^umb-t-ty of Maine 

TfccA depat-tment weZcomu ptobleiu biLLe.ve.d to be. n w  and at a 

tivet apf~iofWMtte. f o t  the. t e a d m  of -tfctA jouJwaJL. O i d  piwbiem6 
di.bp&ying n o v d  and &e.gayit mvthodli of, bo&4-fcion flAfc &o inv^ted. 

Ptopobab bkoutd be acwmpani.ed by boJtUit-Lonb if, avouJiabte and by any 

inf,o/ufwfccon that wilUL u.bb-CAt t h e  ecLUot. An a~te/ [A4k ( * I  pmceding a 

plobton numbut h c l t c a t u  that t h e  p k o p o b ~ .  did not  hub& a bofut idn. 

A U  commu.nA-CJiVCA.oiu bhou&d be. addn.u&ed t o  C. W .  Dodge, Mafh.. 
Dept., Univm.c.ty of,  Maine., Otono, ME 04469. PUcnie. bubmU each 

pwpobat and bo tu t ion  pm@abLy typed o t  cJLwiiy &en on a 

be.pcLnate. the& (one t i d e .  onty ]  pmpeAty uien.fct.<ied with. name and 

add i iu i .  SotutJuaiu t o  pkobteiu in t h h  h b u e  ~ h o u J u  be m d e d  by 

Ve.cembui 15, 19S7. 

Problems f o r  Solution 

639. Pmpobed by ChahUu W. T& Son Diego, CaELfowUa.. 

Find the smallest SLICE the KNIFE can cut from the CAKE if 

CAKE + KNIFE = SLICE. 

*640. Ptopobed by John M. How&, LitiU.uiock, C ~ o t V u . 0 . .  

Find the largest value of Sfn) and the limit of Sfn) as n Â¥ Â¥ if 

*641. Ptopobed by P d  A. McKtu.e.w, W w h ,  No& CahotLna.. 

Let f  1  = fg = 1 and fki2 = f k  + f k l  for k  > 0 define the 

k  
Fibonacci sequence. It is known that fflki1 = f ,  for any 

positive integer k .  Find a similar formula for the generalized 

Fibonacci sequence g k ,  where gl through g are given and for k  > 0, 



642. Ptopobed by Vm^Ltn.y P. Ma.ut.0, Mobww, U.S.S.R. 

Let v, ii, E > 0. Prove t h a t  

1 +A 1 +-  
(I +"Id (- ,,(I + E, Ef1 + TI) L3' 

with equal i ty  i f  and only i f  is = u = E = 1. 

643. Pmpobed M. S. Ktoikoi, UWi.vm'Lty 06 AtbeAta., Edmonton, 

AtbeAto., Canada. 

I f  a, b, a, d > 0, prove t h a t  

644. P m p o d  by Richatd 1. H u b ,  Rancho PotoA WeAda, CaU.6otvuJ3L. 

In  the  f i g u r e  below prove t h a t  regions A and B have equal areas .  

645. Ptopobltd. by VnuXu/ P. Mavio, Mobcow, U.S.S.R. 

Let M be an a r b i t r a r y  point  on segment CD o f  trapezoid ABCD 

having s ides  AD and BC p a r a l l e l .  Let S, S1, and S be the  a reas  of 2 

t r i a n g l e s  ABM, BCM, and A M  respect ively .  Prove t h a t  

S 2 min{S ,S2 } . 
646. Ptopobed by D i c k  F i e l d ,  Sawta. MonLca, C a U 6 o t h .  

Find t h e  smal les t  k f o r  which the re  is only one k- digi t  

palindrome t h a t  is  the  square of  an in teger .  

647. Pmpobed by RobeA-t C. Gebhaftdt, Hopatcong, New J m q .  

For each pos i t ive  in t ege r  n f ind  t h e  e a r l i e s t  row of Pascal ' s  

t r i a n g l e  i n  which t h e  f i r s t  n terms have t h e  property t h a t  each term 

a f t e r  t h e  f i r s t  i s  an i n t e g r a l  mul t ip le  of i t s  predecessor. 

648. Ptopobed by Jack Gan.@~b& F!lL&h.ing, Nw Yo&. 

I f  A, B, C a r e  t h e  angles o f  a t r i a n g l e  ABC, prove t h a t  

649. Pmpobed by E h d  3. h i m e n & ,  J t . ,  C w o t h  Sto-te - - -  --  

Un-t.um-ity, Long Beach, CaJuL60twM. 

How f a r  beyond t h e  edge of a.-table can a deck of  cards be 

stacked without the  p i l e  f a l l i n g  o f f  t h e  t ab le?  

650. Ptopobed by RicdaAd 1. H u b ,  Rancho P&A We~ .de~ ,  C o L U f o t h ,  

The 1980 Wimbleton f i n a l  between Borg and McEnroe involved a 

t iebreak game t h a t  went t o  18-16. Given t h a t  t h e  se rve r  has a 70%'  

chance of  winning the  point ,  what is t h e  probabi l i ty  t h a t  t he  two 

players  reach a 16-16 t i e  i n  a t iebreak game? ( I n  a t iebreak game 

the  f i r s t  p layer  serves  one point.  Thereaf ter  p layers  a l t e r n a t e  

serving 2 points  each. The f i r s t  p layer  reaching 7 o r  more points  

with an advantage of 2 o r  more po in t s  wins t h e  game.) 

651. Ptopobed by At T w g o ,  Matdw,  Mab~acfeuA attSi. 

Professor E. P. Umbugio has r ecen t ly  been s t r u t t i n g  around because 

he h i t  upon t h e  so lu t ion  of t h e  fou r th  degree equation which r e s u l t s  

when the  r ad ica l s  a r e  eliminated from t h e  equation 

x = fx - 1/dl^ + (1 - 1/x)1/2. 
Deflate t h e  professor by solving it using nothing higher than 

quadrat ic  equations.  [From Robinson's Mathematical Recreations, 1851.1 

Solutions 

613. [Spring 19861 Pmpobed by MOA-tfca MaAt^cfzb, Weazie, Mahe. 

Use a b i t  of number theory t o  solve  t h i s  alphametric t h a t  pays 

homage t o  geometry, algebra 2nd ana lys i s .  Find t h a t  so lu t ion  i n  base 

7 y ie ld ing a prime ANAL. 

GEOM 

ALG 

ANAL 

I .  CompobLte 06 bo^u.fccon~ by M a ~ k  Euanb, Lou-tAu-t^Ce, Kentucky, 

and Rob& C. Gebhaftdt, Hopatcong, Nw J m q .  

In base 7 the re  a r e  23 primes t h a t  f i t  t h e  form ANAL with A a t  

l e a s t  2: 2021, 2326, 2623, ..., 6562 (corresponding t o  t h e  numbers 

701, 853, 997, .. ., 2347 i n  base t e n ) .  Ten of  these  primes can be 



eliminated because 5 = A  - 1 and therefore  it # A  - 1 and L # A  - 1.  

An add i t iona l  12 primes a r e  eliminated quickly s ince  G = A  - 1 

determines E, 0,  and M .  For example, i f  ASAL = 2326, then G = 1 ,  s o  

M = 1.  Now 0 = 3 which con t rad ic t s  B = 3. We have t h e  unique 

so lu t ion  

4216 

534 - 
50 53. 

11. S o U n  by Fiank P. B a W . u ,  Mabachai&t.tA MaA f̂cune Academy, 

Buzz@ Van, Ha&Â£ac.hu^ett& 

It  is i n t u i t i v e l y  obvious t o  t h e  most casual  observer t h a t  

4216 + 534 = 5053 

is t h e  unique so lu t ion  t o  t h i s  base 7 alphametric. 

I 1  I. Comment by EUzabvth Andy, N w  Um&k, W n e . .  

A b r i l l i a n t  professor named Ba t t l e s  

With problem solut ions  j u s t  r a t t l e s .  

His craftsmanship "obvious" 

Yields work f o r  t h e  mobs of  us 

Who only can th ink i n  s m a l l  p r a t t l e s .  

A420 boLued by CHARLES ASHBACHER, Mount Macy CoZZefle, Cedm 
RoptdA, I d ,  JAMES E .  CAMPBELL, UvU.umAty 06 MIAboUAC, Co-Eumbb.~, 

VICTOR G. FESER, U w L u W i U y  06 Metty, SZimt~ick, W ,  RICHARD I. HESS, 

Rancho P&i V m d u ,  CA, JOHN M. HOWELL, L U t t . f ~ e c k ,  CAD GLEN E. 

MILLS, VaLenCAJO. Juiu.oi CoZZege, O/i&xndo, FL, JOHN H. SCOTT, 

I t a c a i u t u i  C o U q e ,  Saint Pauls MN, and t h e  PROPOSER. 

614. [ S p r i n g  19861 Piopobed by Lion. Bankoti6, Lob AngHiu, 

C~~U-~OAVUJO.,  and the. ed-Ltoi. 

A 10000-meter sec t ion  of s t r a i g h t  r a i l road  t r ack  expands 1 meter 

and buckles i n t o  a c i r c u l a r  a rc .  How high above ground is the  middle 

of t h e  a rc?  [This is an o ld  problem and easy t o  solve  using ordinary 

trigonometry. It is  repeated here because the  answer is  so  

su rp r i s ing ly  l a r g e  .I 
I. SoLU.fct.0n by Wade. H. SheAaAd, FoAmon UniumJULy, Gheereu-t^te, 

South COAJOfina. 

Assuming t h a t  t h e  t r ack  was o r i g i n a l l y  a s t r a i g h t  l i n e  KB with 

midpoint M, l e t  0 be t h e  center  of t h e  c i r c u l a r  a r c  it now forms, l e t  

OM c u t  t h e  a r c  a t  S ,  and l e t  x = OM, h = MS, and r = OA = OB = OS. 

Let 0 = h40.9 = MOB. Then we have 

r = x + h, x = 5000 c o t  9, 

r s i n  0 = 5000, and r e  = 5000.5. 

Therefore (5000)fB) = (5000.5) s i n  B .  An appl ica t ion of  Newton's -' 

method t o  t h i s  equation y ie lds  0 : 0.0245 radians .  Hence 

h = r - z ~ ? z ? s -  o o 2 4 5  5000'eot 0.0245 = 61.23 meters.  

I I. S o U o n  by Funk  P. Batd%?A and L a w  KeU.ih.w~, Mabbachbe-ttA 
Ma/wtime. Academy, BuzzoActA Bag, Ma~~achube-ttA. 

Let h be the  des i red  height.  I f  we assume t h a t  t he  curvature pf 

t h e  t r ack  a f t e r  bending is negl ig ible ,  we r e a d i l y  ob ta in  

h = h 0 0 0 .  s2 - 5 0 0 0 ~  a 71 meters .  

This r e s u l t  appears t o  be much too  l a r g e  and may be due t o  t h e  

approximations made. We the re fo re  proceed with a more exact solut ion.  
6 Let Re f= 6.371 x 10 m) denote t h e  e a r t h ' s  radius .  P r io r  t o  

buckling we place  an xy-coordinate system a t  t h e  center  of t h e  ea r th  

so  t h a t  t he  coordinates of t he  ends of  t he  t r ack  a r e  a t  ( Â ± a o , ~  and 

the  cen te r  of  t h e  t r ack  is a t  (0, yo + ho).  Let 9 be the  half angle 
0 

subtended by the  t r ack  a t  t he  center .  Then we have 

R e B  = 5000, x = R s i n  9 
0 e 0' 

y = R cos %, and ho = R ( 1  - oos B0). 0 e 

Then e0 = 0.0007848 radians  and he = 1.96 m .  

After t h e  t r ack  has buckled we place  an  xy-coordinate system a t  

t h e  cen te r  of t h e  c i r c l e  defined by t h e  t r ack  s o  t h a t  t h e  coordinates 

o f  t he  ends of t he  t r ack  a r e  a t  ( T , y l )  = (Â±xo,y-  and t h e  cen te r  

of t h e  t r a c k  is a t  (0, y1 + h ) .  Let 0 be t h e  ha l f  angle  subtended 
1 

by t h e  t r ack  a t  (0 .0) .  Then we have 

x= = R sin 9 = R s in  go and R1 8- = 5000- 5- 
1 1  1 e 

Eliminating 0 we g e t  

5000 5 R1 s i n  (-) = Resin O0 = 4999.99948?. 

By approximate means we ob ta in  t h a t  R, ; 204060 rn and 0, = 0.0245 



radians.  Then h1 = R1 (1 - cos  %) : 61.3 m. Final ly  

t o  the  neares t  meter. 

I I I. CommeMt by J o h n  H. S c o t t ,  M a c a ^ e ~ - t e ~  C o U e g e ,  S d n t  P a d ,  

McnneAo-ta. 

This r e s u l t  is shocking. I was a l l  s e t  f o r  a t i n y  number. I 

st i l l  f ind  it hard t o  believe.  I would l i k e  t o  see  the  spikes  t h a t  

could hold t h e  two ends i n  place.  

I V .  Commuvt by J a c k  Gat.f.unke^., F.Â£iLAUreg N w i  Yo&. 

Another dramatic way of i l l u s t r a t i n g  t h a t  i n t u i t i o n  cannot be 

t rus t ed  is t h e  following. Imagine a g i a n t  standing somewhere i n  

space and enc i r c l ing  t h e  e a r t h  a t  t h e  equator with a huge rope. He 

then lengthens t h e  rope by j u s t  40 f e e t  and t h i s  s lack is d i s t r ibu ted  

equally around t h e  globe, c rea t ing  a d is tance  between t h e  ea r th  and 

t h e  globe. What is t h i s  d is tance?  Although i n t u i t i o n  ind ica t e s  t h a t  

40 f e e t  d i s t r ibu ted  over 25000 miles would produce an in f in i t e s ima l  

d is tance ,  elementary c i r c l e  geometry shows it t o  be over 6 f e e t ,  more 

than enough f o r  an average man t o  walk underneath. 

AZAo w i v e d  by MARK EVANS, L o i i ^ u U e ,  KY, ROBERT C. GEBHARDT, 

ffopatc.ong, NJ, RICHARD I. HESS, Rancho PaZo.ti V e A d u ,  CA, JOHN M. 

HOWELL, U U t w c k .  CA, RALPH KING, St. Bowwen-tuAe. U n A / w - L t y ,  NY, 

JOHN H .  SCOTT, Macat&4teA C o U a g e ,  S L n t  Pout ,  MN, KENNETH M. WILKE, 

Tope.ka, KS, and the. PROPOSERS. 

615. [ S p r i n g  19861 PkopoAad by W w  S.  C d f Z n . 6 ,  LO& 

County  CommunLty CoUege.,  ti.ym.oi, O h i o .  
Although seve ra l  years  i n t o  re t i rement ,  Professor Euclide 

Pasquale Bombasto Umbugio s t i l l  p rac t i ces  mathematics with h i s  usual  

prowess and eff ic iency.  H i s  na t ive  country, Guayazuala, s t i l l  cannot 

af ford  a computer, but they do have a pocket four- function ca l cu la to r  

t o  which he has occasional access.  H i s  l a t e s t  project  is t o  f i n d  t h e  

sum of t h e  abscissas  of t h e  points  of i n t e r sec t ion  of t h e  seventh- 

degree polynomial 

5 2 
f ( x )  = x

7 - 3x6 - 13x + 55x4 - 36x3 - 52x + 48x 

with i ts  de r iva t ive  polynomial. So f a r  he has labor iously  found one 

of the  in t e r sec t ions  a t  x  = 1.3177227. Help t h e  kindly,  o ld  professor  

t o  f i n d  h i s  sum without r e so r t ing  t o  a computer. 

S o l u t i o n  by H w i y  S .  L i e b m a n ,  Waban, k . b b ~ C d u A f & t b .  

The.eminent numerologist should sub t rac t  t h e  de r iva t ive  of f ( x )  

from f ( x )  and take  t h e  negative of t h e  coe f f i c i en t  of  x a s  the  1: - 
required sum. Since t h e  de r iva t ive  of  f ( x )  is 

8 t h e  coe f f i c i en t  o f  x i n  f f x )  - f r ( x )  i s  -10. Thus t h e  sum of  the  

abscissas  of  the  seven points  o f  i n t e r sec t ion  i s  10.  

AÂ£& reived b y  JAMES E. CAMPBELL, Un-t-uw-cty 06 WAOUA-I, , 
C o h b h ,  RUSSELL EULER, N o n t f w i U t  U o d  We. U n k u w - U y ,  

M a y u U e . ,  GEORGE P. EVANOVICH, Eduwid WU-Uams C o a - F & & h  

P i c k w o n  Un-lveAA-Uy, H a c k e n ~ a c k ,  NJ, ROBERT C. GEBHARDT, Hopatcong, 

NJ, RICHARD I. HESS, Rancho PO^OA V e ~ d u ,  CA, GLEN E. MILLS,  C o L o d  

St&& H i g h ,  O'Uando, FL, LAURA L .  KELLEHER and FRANK P. BATTLES, 
MoA~orduAeAtA MiVi-itune. Academy, BuzzoAdA Bay, RALPH KING,. St. 

8onave.wtuAe. U n - t - v W y ,  NY, JOHN H. SCOTT, M a d u t e ~ .  CoUegfc ,  S& 

Pout, MM, HARRY SEDINGER, St. Bonaue.n-tuAe. U n i v W i i t y ,  NY, KENNETH M .  
WILKE, Topeka, KS, and the.  PROPOSER. GebhaAdt n o t a d  that x - 2 u> a 

6 a c - t o ~ ~  06 t h e  expia&A.&HI f (XI - f  ( X I .  

616. [ S p r i n g  19861 P h o p o ~ a d  b y  Vlll-UAy P. Hcaito, MOACOW, 

U.S.S.R. 
Prove t h a t  i n  any t r i a n g l e  

A B C 
2 

A B C 2  tan - + tan -g + tan -g < L + - tan -) 
A B - 2 7  2 2 

c o t  - + c o t  -g + cot - 2 2 

with equa l i ty  i f  and only i f  t h e  t r i a n g l e  is equ i l a t e ra l .  

S o l u t i o n  by J a c k  Gah.6unk.eJL, FÂ£o&h-Lng New Yolk.. 

Let R, r, and s denote t h e  t r i a n g l e ' s  circumradius, inradius ,  

and semiperimeter. We use t h e  known i d e n t i t i e s  

A S  A 4R + ' and 1 c o t  g- = - . ?tan2=- 

Then we have t o  show t h a t  

which s impl i f i e s  t o  2 s  > 2 7 B ,  a known inequal i ty :  s e e  0. Bottema, 



Geometric  I n e q u a l i t i e s ,  page 52, item 5.12. The proof given t h e r e  

u t i l i z e s  t h e  inequal i ty  (a + b + a )  27aba. which i n  t u r n  is 

read i ly  proved by t h e  ar i thmet ic  mean-geometric mean inequal i ty ,  

showing t h a t  equa l i ty  holds i f  and only i f  a = b = a ,  t h a t  is, i f  and 

only i f  t h e  t r i a n g l e  is equ i l a t e ra l .  

AZ4o ~ o t v e d  by BARRY BRUNSON, Wu,tm Kentucky U v u . v m i t y ,  

Bowting Giteen, HENRY S. LIEBERMAN, Waban, MA, BOB PRIELIPP, 

U n i u m - L t y  0 6  W&coni^.n-Obhkobh, JOHN H .  SCOTT, Macuf!.u,te~ CoUege., 

Saint PawJL, MN, and the. PROPOSER. 

617. [Spring 19861 P m p b e d  by T-t-tUA Canby, A d j u t a b i e  W m c h  

Company, Bu.(S<saia, New Yotk.  

It i s  known (The Two-Year C o l l e g e  Mathematics Jownal ,  problem 

226, September 1982, page 277) t h a t  a 7 x 7 x 7 box can be packed 

with a maximum of  f o r t y  1 x 2 x 4 br icks ,  requir ing 23 cubic u n i t s  of 

unoccupied space. How many such b r i cks  can be packed i n t o  a 

5 x 5 x 5 cubic box? 

I. P W  botu-Uon by V-Liitat G. FebeA, U h m i t y  of, Uafw, 

RLAmmck, No* Vako-ta.. 
The volume of t h e  box is 125 cubic un i t s ;  of  t h e  br ick ,  8. 

Therefore t h e  absolute  maximum is 15 br icks .  It is easy t o  g e t  14; 

t h e  br icks  r ead i ly  s tand on edge o r  on end t o  f i l l  a l l  but one corner 

cube i n  each of t h e  f i r s t  fou r  layers .  Then two b r i cks  can be l a i d  

f l a t  i n  the  top  l a y e r  leaving another 9 u n f i l l e d  u n i t  cubes. Can one 

get  IS? It seems so ,  s ince  otherwise t h e  problem would be a b i t  

ant ic l imact ic .  

11. S o t u H o n  by the. p i o p o b e ~ .  

It is easy t o  pack 14 br icks  i n t o  t h e  box and, i f  we a r e  allowed 

t o  c u t  j u s t  two br icks  i n t o  two 1 x 1 x 4 subbricks,  t h e  1 5 t h  br ick 

i s  r ead i ly  in se r t ed ,  along with another  subbrick, f o r  15 1 / 2  bricks.  

To bes t  follow the  proof t h a t  it is impossible t o  pack 15 br icks  i n t o  

t h e  box, it is suggested t h a t  you obta in  o r  make a s e t  of  1 x 2 x 4 

blocks and a 5 x 5 x 5 cardboard box. ( I  used an ordinary board and 

cu t  16 blocks 11/16  x 1 1 / 8  x 11/4  inches,  an easy s i z e  t o  work with.) 

P Q R S T  P Q R S T  P Q R S T  P Q R S T  

Levels 1, 5 Level 2 Level 3 Level 4 

Number each u n i t  cube i n  each l a y e r  a s  shown above. Then any 
br ick  with faces  p a r a l l e l  t o  t h e  s i d e s  of  t he  box f i l l s  exact ly  one 

cube of each number. Now the re  a r e  18 cubes numbered 1 ,  17 numbered 

3, and 1 5  each numbered 2, 4, 5 ,  6, 7 ,  and 8 .  To be ab le  t o  pack I 5  

br icks  i n t o  t h e  box, every space numbered 2,  4, 5, 6, 7 ,  and 8 must 

be occupied. In any l e v e l ,  only a 1 or  a 3 can be uncovered. Since 

each br ick  covers an even number of cubes i n  each l eve l ,  one cube 

must be uncovered. Since t h i s  l a s t  statement must be t r u e  no matter 

which f ace  of t h e  box is taken a s  t h e  base, it follows t h a t  t he re  

must be exact ly  one empty cube i n  each l e v e l ,  one i n  each row, and 

one i n  each column. That i s ,  t h e  same row o r  column cannot contain 

an empty cube i n  each of two d i f f e r e n t  l eve l s .  We wr i t e  2AR t o  

denote the  u n i t  cube i n  t h e  l e v e l  2 t h a t  occupies row A and column R. 

In  l e v e l  1 ,  s ince  a 1- o r  a 3-cube must be uncovered, then the  

empty cube must be i n  row A, C, o r  E and column P, R, o r  T .  Without 

l o s s  of gene ra l i t y  we need consider only the  th ree  cases t h a t  1AP, 

IAR, o r  1CR is empty. A t  l e a s t  one br ick  must l i e  f l a t  i n  l e v e l  1 i n  

order t h a t  t he  empty cube i n  l e v e l  2 be d i f f e ren t  from t h a t  i n  l e v e l  

1 .  Clearly no more than two b r i cks  can l i e  f l a t  i n  any level .  

Case 1. Suppose 1AP is empty. I f  br icks  on edge cover 1AQ-1AT 

and 1BP-lEP, then 2AP must be empty, a contradic t ion s ince  2AP is 

numbered 7 and not 1 o r  3 .  Clearly one brick on edge o r  on end must 

cover a cube abut t ing 1AP and we may t ake  b r i cks  on edge covering 

1BP-1EP and 1EQ-1ET. F l a t  br icks  cover the  r e s t  of  l e v e l  1 .  Now 

a t  l e a s t  one br ick  on end o r  on edge must cover 2AP and the re  is room 

f o r  only one br ick  f l a t  i n  l e v e l  2. In any case,  no matter which of  

2BQ, 2BS, 2DQ, o r  2DS is empty a t  l e a s t  one addi t ional -br ick  on end 

must s tand next t o  the  empty cube, forc ing a f l a t  br ick  o r  one on 



edge above t h a t  empty cube and ly ing i n  l e v e l  3 .  Then the re  is a 

block of  cubes i n  l e v e l  3 t h a t  must be covered and a r e  l e s s  than 4 

u n i t s  long. Hence they can be covered only by br icks  on end, which 

then protrude out  of t h e  top  of t h e  box. "Having j u s t  one f l a t  b r i ck  

i n  l e v e l  1 only compounds t h e  di f f icul ty . '  Hence case  1 cannot occur 

with 1 5  br icks  i n  t h e  box. 

Case 2. I f  ICR is empty, then a t  l e a s t  two br icks  on end must 

abut t h a t  empty cube, We may suppose t h a t  a f l a t  br ick  l i e s  i n  l e v e l  

1 covering 1BP-1EQ. Then one o r  two br icks  on end cover 1DR-1ER. 

Also 1AR-1BR a re  s imi l a r ly  covered. I f  ZBQ o r  2DQ is empty, then a 

f l a t  br ick  cannot cover t h e  r e s t  of t h e  region from 2BP-2ER, s o  we 

a r e  forced t o  use br icks  on end o r  on edge. Thus cube 3BQ o r  3DQ 

must be empty, a lso .  But then we cannot have IS br icks  i n  the  box. 

A s imi l a r  s i t u a t i o n  occurs i f  2BS o r  2DS i s  l e f t  empty. 

Case 3. Final ly ,  take 1AR empty. I f  br icks  on end cover 1AP- 

1AQ and 1AS-1AT and br icks  on end o r  on edge cover 1BR-IER, then both 

l e v e l s  1 and 2 have cube AS empty. 

I f  br icks  on end cover 1AP-1AQ and 1AS-1AT and a b r i ck  on edge 

covers 1BT-lET, then a br ick  on end o r  on edge covers 2AR-2BR. Then 

2 o r  2DQ o r  2DS empty necess i t a t e s  the  corresponding cube empty i n  

l e v e l  3 .  I f  ZBS is empty, a f l a t  br ick  can be placed t o  cover 2CP- 

2DS, but 2EP-2ES must be covered by a br ick  on edge o r  br icks  on end. 

Then it is impossible t o  cover cube 3BS. 

If br icks  on end cover 1AP-1AQ and 1ES-1ET and br icks  on end o r  

a br ick  on edge covers 1BR-IER, then a br ick  on end must cover 2.45- 

SAT and a br ick  on edge o r  2 br icks  on end cover SAT-2DT. I f  2BQ o r  

ZDQ is empty, then t h e  same cube i n  l e v e l  3 must be empty. I f  2BS o r  

SDS is empty, then t h e  o the r  cube and SCS must be covered by a b r i ck  

on end. A f l a t  br ick  can cover 9EP-2EQ and a b r i ck  on edge can cover 

3DP-3DS o r  SBP-sBS, but t h e  remaining cubes i n  l e v e l  3 cannot be 

covered. 

Let br icks  on end cover 1AP-1AQ and 1ES-1ET and a br ick  on edge 

o r  two br icks  on end cover 1BP-1EP. I f  2BQ is t o  be empty, then a 

b r i ck  t h a t  is f l a t  o r  on edge must cover 3BQ-3BT o r  3BQ-3EQ. In  the  

former s i t u a t i o n  the re  is no way t o  cover t h e  th ree  cubes ZBR-2BT and 

i n  the  l a t t e r  we have the  same d i f f i c u l t y  with 2BQ-2EQ. I f  ZDQ is t o  

be empty, a s i m i l a r  s i t u a t i o n  occurs. Now a f l a t  br ick  can cover 

ZBQ-ZER. Then, whichever of  2BS o r  2DS is l e f t  empty, t h e  same cube 

i n  l e v e l  3 must be uncovered. 

Our proof is complete. We have shown t h a t  no matter which 

allowable cube is  empty i n  l e v e l  1 ,  then it is impossible t o  leave an - 
allowable cube empty i n  l e v e l  2 and a l s o  i n  l e v e l  3 and t o  f i l l  a l l  

--.- 

other  cubes i n  those levels .  It appears t h a t  t h e  same s i t u a t i o n  

occurs i f  we use 1 x 2 x 2 br icks ,  but  I have not  pursued t h a t  case. 

111. Commwt b y  t i i z a b u t h  Andy, Nw UmUtiic.k, Mahe. 
When a problem is  an t i c l imac t i c ,  

With a proof t h a t  is antidramactic,  

Then t h e  b e t t e r  d isposal  

Of such a proposal 

I s  t o  r e l ega te  it t o  an a c t t i c .  

Pacfccngt 06 14 b̂ -tcfeA w e  d o  g-WW. b y  RICHARD I. HESS, Rancho 
Patot Vmde.4, CA, and JOHN H. SCOTT, H a n a i u t e ~  College. ,  St. P d ,  
MN. ScoZt ciiigued that one cube m u t t  be empty ' in each Lev&, no 
matter, which tide. the. box A U ~ &  on, bivt <UA cuigument giiaAantee6 o d y  
6 b e  empty  cub^, a .they a/ie {on. can  b e ]  p h o p w t y  p laced .  

618. [Spring 19861 P ~ o p o ~ e d  b y  John M. Wou~eJu., LLWS.er,ock, 
Cal&jo~IMfl .  

( i )  Find when t h e  sum of  the  squares of fou r  consecutive 

in tegers  is d i v i s i b l e  by 3 .  

( i i )  Repeat p a r t  ( i )  f o r  t h e  sum of  t h e  squares o f  fou r  

consecutive odd o r  fou r  consecutive even in tegers .  

S o l u t i o n  b y  Vaind E .  P m y ,  The. Univ&u^ty 06 G e o ~ g i a ,  A f f c ~ ~ t t , ,  

Gw~eAtt. 
We general ize  by f inding when t h e  sum of t h e  squares of  p + 1 

i n t ege r s  i n  ar i thmet ic  progression is d i v i s i b l e  by t h e  prime p.  

Forp  = 2 o r  p = 3 it is when t h e  f i r s t  term and common 

dif ference  a r e  both d i v i s i b l e  by p o r  ne i the r  is d i v i s i b l e  by p.  For 

p > 3 ,  it is  when p divides  t h e  f i r s t  term i n  t h e  progression. 

Proof. Suppose p is a prime, n and d a r e  in t ege r s ,  and d > 0. 

The ar i thmet ic  progression with f i r s t  term n,  d i f ference  d ,  and 

containing p + 1 terms has t h e  sum o f  squares 



= n2 + ( + l ) ( 2 p  + l ) d 2  (mod p ) .  

I f  p > 3, then 6 is a divisor of ( p  + l ) ( 2 p  + l ) ,  so S s n
2 

(mod p ) .  

Consequently p will be a divisor of S exactly when p divides n .  If 

p = 2 or p = 3, then S s n - d2 (mod p ) .  Hence p divides S if and 

only if p divides both n and d or neither n nor d .  

In particular, the sum of the squares of four consecutive 

integers, or of four consecutive odd or even integers, is divisible 

by 3 if and only if the first of the four integers is not divisible 

by 3 .  

A&Ao 4ot.ve.d by P H I L L I P  ABBOTT, M a c d e b t e ~  CoUege, StU.yvt Paut, 

MN, CHARLES ASHBACHER, Mouwt Mvicy C o w  Cedm Rap.Â£& IA,  FRANK 

P. BATTLES, Mub~dcfatAfctti MaActone Academy, Buzz.cUixi& &y, JAMES E. 

CAMPBELL, U n i v W i U y  06 M^iou^t. ,  CoturnbÂ¥un RUSSELL EULER, NohthulUt 

W^&Ou^t. S-tete Univuu>Â¥fcty Mayv'iU.e, MARK EVANS, Lou.ibv'iU.e, KY, 

VICTOR G. FESER, U n i u m i t y  o< Vaiuf, BAAmafic.k, NU, ROBERT C. 
GEBHARDT, Hopotcong, NJ, RICHARD A. GIBBS. Tout L e d b  CoUege, 

W n g o ,  CO, RICHARD I. HESS, Kanaka P&b V U ,  CA, FRANCIS C. 

LEARY, Sa in t  B o n w w t u ~ e  un^uuu>ay, NY. HENRY S. LIEBERMAN, Wabm, 

MA, GLEN E. MILLS,  VatuiCMi JumOh CoUege. OnSJwda, FL, OXFORD 

RUNNING CLUB, UnivwJUty 06 M^dÂ¥UbÂ¥ipp U n i v m i U y ,  BOB P R I E L I P P ,  

U n i ~ W i U y  0 6  W^conH.n-Obhkobh, JOHN H. SCOTT, Ma~aJiutOA CoUege, 

sa~wt P&, MN, HARRY SEDINGER, st. 8 0 ~ w t u n . e  u n - w ~ i i t y ,  NY, 

KENNETH M. WILKE, Topefea, KS, and the. PROPOSER. 

619. [ S p r i n g  19861 Pmpobed by V&oh G. Fa-,  Maty CoUege, 
S ^ & m c ~ k ,  No l th  Dakota.. 

Find the largest value of x such that x = s i n  x = tan x, 

correct to 3, 4, 5, 6, 7 ,  and 8 decimal places. 

Compobite 06 botwUonb bubmWLe.d by Hank EVOMA, Lou.ib~iLU.e, 

Kevztucky, and ROAbeJUL Eutel, Nowthiwut M^bou^t. W e  Uduuu>& 

h h l j V a e ,  Ubou^ t . .  
For small positive x we have that 

and 

so that 

2x5 tan x = a  +Ã + ... 3 + -  

tan x - x > x - s i n  x > 0 .  

3 Thus we need only check tan x - x * x / 3  to ensure the correct 

3 accuracy. So for n - d i g i t  accuracy we set .5 x 1 0  = x / 3  and solve 

for x. We obtain the following table. , 
DechaZ Lawent  permissibZe x 

2 0.24 

3 0.114 

4 0.0531 

5 0.02466 

6 0.011446 

7 0.0053132 

8 0.00246621 

So-Eo-ttonb weAe &O bubm-t-tted by RICHARD I. HESS, Rancho P&b 

V d e b ,  CA, RALPH KING, S-t. BonuventuAe UÃˆK.vuu>^Â£ NY, JOHN H. 

SCOTT, M u d &  CoUege, SaAMt Pout, MN, and t h e  PROPOSER. Mob< 06 

t h e  iotuvUonti wuwd coniiide~a.bLy <mm -that p/uJVte.d above. 

621. [ S p r i n g  19861 Pmpobed by R. S. Lu,thcui, U n h e / ~ ~ Â ¥ y  o< 

W & x w & n  Ceyvtvi o-t JonebvLtYe, W-tAconb.tn. 

(i) Characterize all triangles whose angles and whose sides are 

both in arithmetic progression. 

(ii) Characterize all triangles whose angles are in arithmetic 

progression and whose sides are in geometric progression. 

I. Sotu-Uon by Bob Plu.eJU.pp, U n i v ~ i i t y  o< W-liconb-oi-Obhfeobh, 

Oihkosh, ItftAwnb-uZ. 

Let ABC, with A 5 B 5 C, be a triangle having its angles in 

arithmetic progression. Then a 5 b 5 c. Because the angles are in 

arithmetic progression, then A + C = 2B. Hence B = 60' since 

A + B + C = 180'. 

(i) If the sides are in arithmetic progression, then b = 

(a + o ) / 2 .  Thus, by the law of cosines, 



2 2 
a + + = a2 + c2 - Sac cos 60Â° 4 

making a = c .  It follows t h a t  t r i ang le  ABC is equilateral.  

( i i )  I f  the s ides are  i n  geometric progression, then b
2 

= ac. 

Aeain by the law of cosines we have 

a c  = a2 + c2 - 2ac cos 60' 

again making a = c. Again t r iangle ABC must be equi lateral .  

I I. CommeJvt by John H .  S c o t t ,  Ua.oatuÂ¥tw CoUe.ge., Saint  P a d ,  

M-cnnuoAx. 
I suspect t h a t  the proposer is a humorist wondering how 

surprised people would be. In both cases the  answer i s  a l l  

equi lateral  t r iangles  with an arithmetic difference of zero f o r  the  

angles and an arithmetic difference of zero and a r a t i o  of one 

respectively fo r  the sides. 

AÂ£A i o t v e d  by FRANK P. BATTLES and LAURA KELLEHERs 
Moiiaduii&tti HtVû Ume. Academy, BuzztUuU, Bay, JAMES E. CAMPBELL, 

UnLvw>ity of, fttAiouAA, Co imb ia ,  RICHARD I .  HESS, Rancho P A  
U a d u ,  CA, JOHN M. HOWELL, LtAtZe~ock,  CA, OXFORD RUNNING CLUB, 
Un-tvucb-cty of, (UAi-l i i ippL, Untvw>i ty ,  JOHN H. SCOTT, HaCJOJLe.6~w. 

CoUe.ge, Sinxt Paut, MN, KENNETH M .  WILKE, ( 2  io^uttOn4 1,  Topeka, KS, 

and the. PROPOSER. 
622. [ S p r i n g  19861 Pmpoied by W a l t e ~  B h b u g ,  C o d  S&"f l~ ,  

FtoIULda.. 
Let point P be the center of an equi la te ra l  t r i ang le  ABC and 

l e t  c be any c i r c l e  centered a t  P and lying en t i re ly  within the 

t r iangle.  Let BR and CS be tangents t o  the c i r c l e  such tha t  

point R is closer  t o  C than t o  A and S is closer  t o  A than t o  B. 

Prove tha t  l i n e  RS bisects  s ide  BC. 

Solut ion by WUUam E .  Hou,  PIULnce-ton, W X  V & W .  
The theorem is t rue  more generally f o r  point P the circumcenter 

of any given t r iangle ABC, so tha t  is what we assume here. Let $J be 

the circumcircle of t r iangle ABC. Let 9 be the  angle such t h a t  the 

rotat ion about P through angle 9 maps B t o  B' and C t o  C' so t h a t  B' 

l i e s  on PR. Then C f  l i e s  on PS. Let X and X '  be the midpoints of BC 

and B'C'. Then angle XPXf equals 8. Now the central  d i la t ion  

mapping B'C' t o  RS a l so  maps Q t o  M, the point where RS meets f l f i .  We 

have 

Thus X =M, so RS bisects  BC. 

At60 i o t v id .  by RICHARD A. GIBBS, Foivt LewnA C o t t q e ,  Uu~ongo, CO.,- 
RICHARD I. HESS, Runcfco Patoh V v i d u ,  CA, LAURA L. KELLEHER and 

FRANK P. BATTLES. MuAiaefoue-t.tA MoActone Academy, Buzzard* Boy, RALPH 
KING, St. B o w w t w i e  U n t u w U y ,  NY, JOHN H. SCOTT, U a . C a t ~ t ~ .  
Cot tege ,  Scuwt P a d ,  MN, LASZLO SZUECS. Foivt Lewili Cottage., VuAango, 
CO, and the. PROPOSER. 

623. [ S p r i n g  19861 Pwpoied by John M. H o w ,  U t t t ~ c k ,  
CaJU.f,oluu.a.. 

A 30-foot ladder and a longer ladder a r e  crossed i n  an al ley.  

The longer one breaks just  20 f e e t  from its foot  and the  top f a l l s  

back t o  the  other side of the a l l ey  and just  touches the top of 

the 30-foot ladder. I f  the ladders cross just  10 f e e t  above the  

ground, f ind the or iginal  length of the longer ladder. (This 

variation of the old "crossed ladders" problem cost an a i r c r a f t  

company thousands of dol lars  i n  l o s t  time during World War I1 by 

engineers and other technical people t rying t o  solve it. I f ina l ly  

circulated a solution t h a t  probably saved the 

but a las ,  I received no c red i t  f o r  i t . )  

company thousands more, 

I. Solut ion by Kinnvth M. (U-Lefee., Topeka, Kantdi. 

Label the  vert ices  of the  figure as  shown and l e t  AD and BE 

divide each other i n  the r a t i o  p/q,  where p + q = 1, so t h a t  FD = 



20p, FA = 20q, FE = 30p, and FB = 30q. From t h e  Pythagorean theorem 

and t h e  s i m i l a r i t y  o f  t r i a n g l e s  ABD and FCD we f i n d  t h a t  

which reduces t o  

( 1 )  
2 2 2 5 p q  = $ - a  = ( p + q ) ( p - q )  = p - q  

s ince  p + q = 1 .  We l e t  P = p  - q and 8 = p q ,  s o  t h a t  

Now equation ( 1 )  becomes 5 s  = r which when inse r t ed  i n t o  equation 

( 2 )  y i e lds  
4 258 + 4s  = 1 .  

The only pos i t ive  roo t ,  found by Newton's method, is 8 = 0.2310189, 

whence r 0.2689319, p = 0.634466, and q = 0.365534. Now from the  

Pythagorean theorem we g e t  BC = 4.5003994 and CD = 7.8114558, s o  BD = 

12.311855. Then ED = 27.357233 and AB = 15.761289. Final ly  we have 

2 2 2 
AE = (ED - A B )  + BD , s o  AE = 16.912945 

and t h e  o r i g i n a l  ladder  length  was 36.912945 ft = 36 ft 11 i n .  

11. S o l u t i o n  by Katph King,  St. BonavewtiUie U n - i v m i - t y ,  S t .  

Bonaven-tuAe, New Yokk. 

In the  f i g u r e  above l e t  a = BC, b = BD, a = DE, and d = AB. 

Then 

d 10 
= and a 10 1 Od 

d - 1 0 -  b = T 3  c = -  

2 2 2 2  2 Also b2 + a = 30 and b + d = 20 , so  then a - d = 500. 

Eliminate a t o  ge t  

d4 - wf + 500d2 - lOOOOd + 50000 = 0, 

which has r e a l  roo t s  dl = 7..008982 and d2 = 15.761287. Since d > 10, 

then d = 15.761287, s o  a = 27.357233, b = 12.311857, and x = 

16.912947. Thus t h e  o r i g i n a l  ladder  l eng th  was 36.912947 feet. 

AÂ£i  botundi by GREG DUKEMAN, Tubcota,  1L,  MARK EVANS, 

LoinAv-ctte, KY,  RICHARD I. HESS, ~un.ah.0 PO^OA v e ~ d e ~ ,  CA, JOHN H .  
SCOTT, Macate i t@ CoUe.ge., S a i w t  P a d ,  MN, WADE H .  SHERARD, F m a n  

U n i v m - i t y ,  GM.e&nu-iU.e., NC, and. t h e  PROPOSER. 

624. [Spr ing  19861 P m p o ~ e d  by Rob& C. Gebhiui.dt, Hopivtc.ong, 

New J&uw. 
It is known and easy t o  prove t h a t  

Find a closed expression f o r  S(n )  and prove t h a t  f o r  n > 1, S(n)  

is d i v i s i b l e  by 3 where 

S o l u t i o n  by F w k  P. Vtttttu and L c u i ~ a  L. K i t i e h v i ,  

M a b ~ a c b e - t f c s  MoA-c-tune Academy, BuzzaAdi Bay, Miu~acfeaAfctt i .  
That S(n)  is  d i v i s i b l e  by 3 f o r  n > 1 follows r ead i ly  s ince  

I!  + 2! = 3 and each succeeding term is d i v i s i b l e  by 3. 

A "closed form" expression can be obtained from t h e  i n t e g r a l  - i - x  def in i t i on  of 9, i .e .  t he  gamma function i !  = f x e &. Thus 
0 

Ph006b 0 4  t h e  vU.v^ib.UUty by 3 WAS. &O bubmit ted by VICTOR G. 

FESER, U n i v m i t y  06 May, &Limcmck. HO, RICHARD I. HESS, Rancho 

Paiob VeAdcb, CA, JOHN M. HOWELL, L U X t u i o c k ,  CA, BOB PRIELIPP, 

U n - i v m i t y  of U^con&w-Obhkobh, and the. PROPOSER. 

625. [Spr ing  19861 Pmpobed by Sam P&OAAm, Loyota. MW~flount  
U n h W d t y ,  Lob A n g e l a ,  C ~ o h n h .  

Let G be a group i n  which t h e r e  is a unique element 2 such t h a t  

generates a cyc l i c  subgroup of order  2 .  Show t h a t  x commutes with 

every element of  G. 

I. S o U n  by S tephan ie  Pumoihi,  Occ-tduVtai CoU.ege, Lob 

Angela, Cafct60hn.h. 

Consider any 9 e G. We know t h a t  t h e  order  of g l x g  equals t h a t  

o f  x s ince  conjugates have t h e  same order.  Thus g l x g  = x s ince  

x # e (where e is  t h e  group i d e n t i t y  element) and x is  unique. Hence 

xg = gx, s o  x commutes with every element of  G. 

11. S o l u t i o n  by H a y  S e d i n g ~ i ,  St. BonavewtiUie UvuMeA&-Lty, St. 



Bonavera.tuAe, N w  Yolk. 
1 

Let a be in  G and consider b = a x a  . Then 

2 -1 -1 2 -1 = a-l b = coca axa = ax a = e, 

so either b = e or b = x. If b = e, then a x a  = e, which implies 

-1 
that x = a - a  = e, a contradiction. Thus b = x, so a; = axa or 

ax = xa. Since a was arbitrary, a; commutes with every element of Gi 

At&o bolued by CHARLES ASHBACHER, Mount Mehcy CoUege, C e h  

Rap<.&, IA,  RICHARD A. GIBBS, Fout LeWiLt, CoUege, PUAflngo, CO, 

FRANCIS C.LEARY,S(U.n^: BonaveWtULUe UniuWiU.y ,  NY,  HENRY S. 

LIEBERMAN, Wabun, MA, MASSACHUSETTS GAMMA, Bti.dgwia.tm S ta te  Coita^e, 

OXFORD RUNNING CLUB, U n i v ~ i L t y  0 6  iHtik.LAbAppi, U r ~ L u ~ i L t y ,  BOB 

P R I E L I P P ,  UHUfm,ufy 06 WLbconbin-Obhkobh, ARTHUR H. SIMONSON, EabX 

T e r n  S t a t e  U h ~ i U y  at Texc~t.ka.na, P H I L L I P  J .  SLOAN, Pembroke S t a t e  

U ~ L u W i ^ t y ,  S ta tebvLUe,  NC, and t h e  PROPOSER. One Ancornect 

AO&.U!~O~ wail le.ceA.ued. 

LETTERS TO THE EDITOR 

[ f lme l  .LA a b&eh k o t u t i o n  t o  f i z z l e  # 1 An t h e  
Spa& 1986 Abue .  

, llIllhad: .LA t h e  f t o b e b t  u d u e  to 2217 that you can 
ob ta in  by u/iing t h e  uuat (Vi iLthmdc bgmboSL& and 
the. dig& 1, 2, 3, 4 and 5 i n  that oldeh both 
6kom &(it to @kt and. &om fUgkt t o  te6t?'" 

 AM^^ [ [ 5 :  T 44) + 3 : l  t 21 = 66/21 = ZW, and 

N o t u :  (3x2)  + 1 can be kep&ced by 31 + 2 - I ;  0[41 
can be teptac.ed by 44 [and u & e - u ~ i a ) .  

Re: A New Pmo6 06 a FamÂ¥mel Rebn&t, PA Mu Ep~^Â£o 
J o u ~ n o t ,  Vot. 8, No. 3 (19851, 164-168. 

The pa006 hinge6 upon coniJuttAati.on 06 the. h a t i o  . 
--. -- 

n. = W S C .  Now, t<HA bimpty Lb AB/AC b&ce "Each angts. 
b^Aec-tok dJLvJuieb t h e  oppob-ite h i d e  Anto begmew2 pto- 
po/ubionot t o  t h e  ad jacent  . ~ J u t u . ' ~  The pmbiem 06 bhow- 
ing AC > AB imp&t.eb SC s BS Lb theheby k v t t t e d .  

Mokeoveh, the. n.e.adeh uUJU. no& that t h e  6unubion 
k l x )  = BSISC, whehe x := AS, .LA jut t h e  Jutent i ty 6unc^Uon 
k [ x )  = x h cabe AC = 1 a& h t h e  te.3ct. 

The ue6u.t pmpo&WJon above [w&ch can be uugmentedl 
Lb piwved, 6 0 1  example, An Coxukeh and Gke^tzm, Geom&tMf 
Reu'Ui-Usd, MAA, NML, Vol. 19, page 9, u h g  t h e  &mÃ o 

: SC/i-ut [A12 1 = AC/bAnCSA, BS/4in [A12 1 = AB~binAss, 
bo, k h c e  t h e  onflteA at S one. kuppiemwtan.y, hewing e~uai 
bineb, SCIAC = BSIAB oh BSISC = AB/AC. 

FOIL a pm06 that avoids, bin<Lh dkaw BVIISA. Then 
SC/AC = BS/PA and 4BVA = ~ B A C  - ~ A B O  = 2&AS - h B P  
= 4  ABP bo that PA = AS. Hence BS/SC = ABIAC. 

Ox., M y ,  we may took at t h e  cma w t L o  
A[ABS)/A(ASC). It aquafli t h e  h a t i o  06 t h e  b o ~ u  BSISC 
kAnce t h e  he igh t  6kom A -64 t h e  Arne. Now -ttyin o v m  
VUJOHQU ABS, t h a t  Lb, make E buch that EA = BS, ES = 
Aâ‚¬ Then ESIIAC bince4ASE =*SAC. So tĥ  t i m e  the. 
a.J@a d o  ES/AC = AB/AC. Uhwce t h e  AebufA, 

YOW b inceh i t y ,  

J. Suck 
Rahm6.fia4be 140 
04300 ESSEN 12 



GLEANINGS FROM CHAPTER REPORTS 

ARKANSAS BETA (Hendrix College). The chapter ' s  t en th  year  (1985-86) 
was an a c t i v e  one. In Apri l  s eve ra l  s tudents  attended t h e  Arkansas- 
Oklahoma MAA Meeting a t  Arkansas College, where m e n  S-i&bingi, J h  
HaAt, Stuce H&<w and Tta.U'i& W&%nt4 presented papers on t h e i r  work 
i n  t h e  Undergraduate Research Program. In  May, Kaen and J h  again 
presented t h e i r s  a t  t h e  annual Hendrix-Rhodes-Sewanee Undergraduate 
Mathematics Symposium. I n  Apri l ,  Stuce and Th.~u'i& discussed t h e i r  
papers a t  t h e  9th Conference on Undergraduate Mathematics a t  SUNY a t  
Purchase. A t  t h e  AR-OK MAA Section Meeting, t h e  team of  Ga&i ThockeA, 
Pau&ine 8e-fcÂ£ and J.h H f U d  received an honorable mention i n  t h e  Mathe- 
matical Competition i n  Modelling. A t  t h e  Honors Convocation i n  May, t h e  
McHenry-Lane Freshman Mathematics Award was shared by Him Eh&tdt and 
Randy P&. The Hogan Senior Mathematics Award was given t o  J h  H d .  
The P h i l l i p  Parker Undergraduate Research Award went t o  T& W w .  
Speakers during t h e  school year  included U k e  !fufnag& w e n  ( ~ e n d r i x )  
on "The Cantor Set," John MswuJUL (CCX Corporation) on "A Potpourri  
of  Real-Life Job Topics," Paul FjeJUt0.d (St.  Olaf College) on "Invent- 
ing t h e  Calculus," Dl.  Joe (Kent S t a t e )  on "Sets of  Discontinu- 
i t i e s , "  Vh. Joel ~a.a.ck (Oklahoma S t a t e )  on "Aspects of Escher Pr in ts ,"  
Vh. W p h  Scott on "Applications o f  Calculus i n  Economics," Oh. Rob& 
SeAven (University of Central  Arkansas) on "Self Mappings of Polyno- 
mials," and VJL. WiVLiam T. Ingliam (University o f  Houston) on "Approxi- 
mations of  Functions." 

CALIFORNIA LAMBDA (University o f  California - Davis). Guest l e c t u r e r  
a t  t h e  f a l l  i n i t i a t i o n  was Pho6a~o-l He* & f e A  who spoke on "How t o  
Discover and Prove Theorems: A Demonstration with Par t i t ions ."  A t  t h e  
winter i n i t i a t i o n ,  PUS < ~ A A O I ~  Kenni-th Joy (Division of  Cofliputer Science ) 
spoke on "Geometric Continuity ." In May, Him b b h  (Department of C iv i l  
Engineering) spoke on "Earthquakes and Linear Algebra." 

GEORGIA BETA (Georgia Ins t i tu te  o f  Technology). In  June, t he  chapter  
presented a book award t o  (Corn& Haddad. The award is given t o  s tudents  
receiving t h e  degree B.S. i n  Applied Mathematics with a grade point  
average of  a t  l e a s t  3 .7 in  a l lmathemat ics  courses taken. 

KANSAS GAMMA (The Wichita State University). Act iv i t i e s  during t h e  
1985-86 school year  included t a l k s  by S. Eb2yd-L on "Notions of Stabi l-  
i t y  and Dichotomy i n  Ordinary Di f f e ren t i a l  Equations," P. 6 .  Wahibeck 
on "Connecting Mathematical Models with Experiments," and 0 .  V .  Chow 
on "Some Aspects of  Mathematics." In  December, a panel consis t ing of 
Vh. L. /wtSAga, Vk. 8 .  Ftiidmc~n. and oh. P a ~ a n i a ~ ~ u m ,  with Vh. W .  PeAfcfc 
a s  moderator, discussed mathematics i n  India,  Spain and t h e  Soviet  Union. 

MINNESOTA GAMMA (Macalester Col lege) . Chapter a c t i v i t i e s  during 1985-86 
included t h e  showing of seve ra l  f i lms  produced by t h e  College Geometry 

Project  and t h e  following guest l ec tu re r s :  SeptouA. SduiA-tel on 
"Mathematics and Painting,"  Je66 PoAfeeA on "Enumerating Binary Trees," 
Tom Mye&h on "What's Lef t  o f  Computer Science i f  Automatic Program 
Generation Ever Works," Hung Ein ZOu on "Greatest Common Subgraphs," 
and Ch& Shahi-ban on "Fracta l  Geometry." Lohen L m o n  (St.  Olaf 
College) was inv i t ed  speaker f o r  t h e  annual i n i t i a t i o n .  He spoke on - 
' A  Discrete Look a t  1 + 2 + . . . + n." Socia l  a c t i v i t i e s  included -* - -  
f a l l  and spr ing p icn ic s  and a game night .  

MINNESOTA ZETA (Saint Mary's Col lege) . The chapter formulated t h e  
following resolut ion which has been forwarded t o  t h e  na t iona l  o f f i c e r s  
of P i  Mu Epsilon: 

WHEREAS women as we22 as  men are  members of Pi Mu EpsiZon 

BE IT RESOLVED THAT the Minnesota Zeta Chapter o f  Pi Mu Epsildn 
proposes tha t  the name of the  corporation be changed from the 
P I  MU EPSILON FRATERNITY t o  the P I  MU EPSILON MATHEMTICS HONOR 
SOCIETY or  t o  the  P I  MU EPSILON HONOR SOCIETY. 

In  March, Faculty Advisor L0U.h G L ~ ~ u  spoke on " Integer Programming." 
A t  t h e  i n i t i a t i o n  ceremony i n  April ,  Jay FkkhWt.~ presented h i s  honors 
p ro jec t  "Riemann-Stielt j e s  In t eg ra l s .  " Also, i n  April ,  T h  Mate-cha 
repor ted  on h i s  honors p ro jec t  "Noetherian Rings." 

MISSOURI GAMMA (Maryvil l e  College and St. Louis University). The 1986 
James E. Case Memorial Lecture was presented by Vt .  w.&%tn E. PwiauU 
a t  t h e  49th annual i n i t i a t i o n  banquet. Vh. P&UUU& spoke on "The 
Missouri Lottery - Applications of Mathematics." The James W. Garneau 
Mathematics Award, f o r  t h e  outstanding sen io r  i n  mathematics a t  SLU, 
went t o  W m  C o w .  The Francis Regan Scholarship, f o r  a graduating 
senior  a c t i v e  i n  Missouri Gamma a c t i v i t i e s ,  went t o  G a ~ f  M i d .  The 
Missouri Gamma Undergraduate Award, f o r  graduating sen io r s  a t  Fontbonne, 
Lindenwood or  Maryville Colleges, went t o  Bitten VV-iU. and Penny Haufic. 
The Missouri Gamma Graduate Award, f o r  a f i r s t - y e a r  graduate student a t  
SLU, went t o  T m a  Huvthe~. The John J .  Andrews Graduate Service Award, 
f o r  a graduate s tudent  a t  SLU who took an a c t i v e  p a r t  i n  departmental 
a f f a i r s ,  went t o  Mohmad Az&n. The Beradino Family Fra terni tyship  
Award, f o r  a c t i v e  pa r t i c ipa t ion  i n  a f f a i r s  of t h e  f r a t e r n i t y ,  f r i e n d l i -  
ness,  and concern f o r  i ts  members, went t o  W.i..&hn Copfin. 

NEBRASKA ALPHA (University o f  Nebraska - Lincoln). A freshman scholar-  
ship  program has been created. Awards cons i s t  of  cash p r i zes  and/or 
g i f t  c e r t i f i c a t e s  from the  Nebraska Bookstore. Recipients i n  1985-86 
were T w q  Ctonen.tA, WLe-n Gwige, Lcwiy McConvWLe and Moez Mhaoki. 
Awards were given according t o  t h e  r e s u l t s  o f  a 25-question multiple-  
choice examination covering concepts up t o  those  i n  second-year calcu- 
l u s .  To help  f inance t h e  scholarship  t h e  chapter s e l l s  copies of  o ld  
mathematics f ina l s .  A t  t h e  annual new members i n i t i a t i o n ,  t h e  f i lm  
FLY LORENZ was shown. Vh. Stiue Vunbo~ provided ins igh t  and explanation 

NEW JERSEY DELTA (Seton Hal 1 University) . Weekly problem-solving 
sess ions  were l e d  by Vh. John MoA-teAion. Other a c t i v i t i e s  during t h e  . 
1985-86 year included a t a l k  on "Actuarial  Mathematics" by Gafiy Stfuwk, 



A.S.A., a t a l k  on " A r t i f i c i a l  In te l l igence"  by Vll. Dav-td H .  Copp, and 
t h e  showing of  t h e  fi lm "Pi ts ,  Peaks and Passes." A t  t h e  19th Annual 
Induction ceremony, Dl. John 3. Saccoman spoke on "The History of P i  
Mu Epsilon. I' 

NEW YORK ALPHA BETA (LeMoyne College). P m , j w o f i  Noun0.n J .  PmUman 
(Queen's University) spoke on "Scheduling a Golf Tournament: An Appli- 
ca t ion  of  F i n i t e  Geometry." The spr ing address "Cryptology: From Caesar 
Ciphers t o  Public-Key Cryptosystems" was given by Pllo((eAb0ll Den& M .  
h c h n 0  of Western New England College. 

NEW YORK PHI (State University College o f  New York a t  Potsdam). A t  t h e  
F a l l  Induction, 0-1. Chafd i .~  MobieA (Clarkson University) spoke on "The 
Group Technology Clustering Problem." The speaker a t  t h e  Spring 
Induction was Dh. Guy Johnbon, J t .  (Syracuse University) who spoke on 
"How t o  be a Halley Watcher." Chapter s tudent  members V h g i d  F m  
and ( U r n a m  W n  gave t a l k s  a t  t he  Seaway Section Spring Meeting of 
t h e  MAA a t  I thaca  College. In April ,  C h d  BtunneA and Career Services 
cosponsored t h e  Second Annual Career Nights Event, which featured s i x  
speakers represent ing careers  i n  Operations Research ( M a y  ChaAJiU, 
IBM) , Software Engineering (T&t~&a K o h t h e n n a ,  GE) , Insurance ( G a y  
&tA40ne^te), Public School Teaching (Anthony ~ /UCC~AO) ,  Banking (sL4.4~~ 
Abbo-fct) and Graduate Study i n  Mathematics ( D c ~ i f l  W C d h d i f  and Tom 
J0ne.b). The P i  Mu Epsilon Senior Award was given t o  Suban L. Do^tAfcc, 
a BA/MA candidate and t h e  ranking graduating mathematics major. 

NORTH CAROLINA LAMBDA (Wake Forest University). An excel lent  mix o f  
s tudent ,  f acu l ty  and v i s i t o r  t a l k s  during the  1985-86 academic year  
included Dh. Rtck Heatiey,  Office of Educational Planning and Placement, 
on "Employment Opportunities i n  Mathematics and Computer Science," PA. 
EdneA K .  Hayo&k on "The I n s t i t u t e  f o r  Retraining i n  Computer Science," 
student MaAk Robe~ ion  on "The Fract ional  Calculus," PA.. Faed t f o l ~ ~ ~ d  on 
" St i r l i ng  Numbers," student Satwan AzhaA. on "Generalizing Fernat 's  
L i t t l e  Theorem," D l .  W&eA R u d h  on "Sets of Distances," student 
M L &  McLean on "Decimal Fract ions  t h a t  can be Represented i n  Terms of 
Fibonacci and Lucas Numbers," s tudent  C U t A t i e  8aucom on "Formal Lan- 
guage Theory," PA. John Fhanke on "The Funhouse Mirror," and student 
Hfcten RogaAi on "The Ongoing Study of Continued Fractions." 

OHIO DELTA (Miami University). In  August, 1984, s i x  s tudents  and Dh. 
HiUon C O X ,  na t iona l  pres ident  of  P i  Mu Epsilon, attended t h e  na t iona l  
meetings a t  t h e  University o f  Oregon a t  Eugene. Two s tudents  presented 

p a p e r :  
L U U e  Youngdaht spoke on "Complements - Mathematically Speak- 

ing, and Sagum Pappu on "Samuelson's In t e rac t ion  Between t h e  Accel- 
e r a t o r  and t h e  Multiplier."  The 11th Annual Student Conference i n  Sep- 
tember included a record 29 student speakers,  e igh t  from Miami. S ~ ~ U M  
and Les l i e  repeated t h e i r  t a l k s ,  N k k  Sh0-t-t spoke on " A r t i f i c i a l  In t e l-  
ligence," Vmtd CameAon on "A Twenty-Five Point Geometry Revisited," 
C # d  R-U-feoAd on "Spiromania! ,I1 W m k d  He((fin on "Fun With Sound," 
MaAk h b & Â £  on "Manufacturing Ref lec tor  Lamps i n  t h e  Age of Micros," 
and Je6(( ZiegteA "On F i t t i n g  a Hyperbolic Decline Curve Using SAS." A t  
t h e  f i r s t  regular  chapter meeting i n  October, Dl.. D d e > i  PlUti.fLhI lec-  
tured on "Pseudo-Mathematical Recreations." In November, alumna 
V i c k  StoveA-HVttzb~ig (now a b i o- s t a t i s t i c i a n  a t  t h e  University of 

Cincinnat i )  spoke on "Yes, Virginia ,  There is  Life  Aftermath." In  Feb- 
ruary ,  Doug& WtVid l ec tu red  on "Operations Research, Life  and 
Mathematics i n  Canada." In March, JWIU McAtLi&teA of  Union Centra l  
Life  Insurance Company gave a t a l k  e n t i t l e d  "That's .Incredible." 
Sophomores Rob& J .  W u U h g  and D d n  R. GticneA were prize-winners i n  
t h e  P i  Mu Epsilon Examination which was prepared and graded by the  
juniors and seniors. Trips t o  t h e  MAA Ohio Section meeting a t  t h e  Uni-' - 
ver s i fy  o f  Akron and t h e  Undergraduate Conference a t  Rose-Hulman I n s t i -  . 

t u t e  i n  Terre Haute rounded ou t  t h e  year. A t  Akron,  id CameAon s ~ o k e  
on "Create Your Own Geometry," Hike G'wtkemey~l  on "Modeling: Vented 
Loud Speaker Design," and KflA.en TJi'ageAeA on "Polygonal Residue Patterns." 
A t  Terre Haute papers presented included Nick Shoit 'h "Expert Systems 
and Their Role i n  A S 1  and David Camekon'b "Create Your Own G e ~ m e t r y . ~ ~  

OHIO ZETA (The University o f  Dayton). Act iv i t i e s  i n  1985-86 featured 
student and f acu l ty  member t a lks .  Dll. Jobeph tta&hbuhn lec tured on 
"Proving t h e  Intermediate Value Theorem: An Introduction t o  Topology." 
Senior G m y  J o h o n  gave a t a l k  on "Some Surpr is ing Differences Between 
t h e  Calculusof RealNumbers and t h e  Calculus of Complex Numbers." Ken 
&ck spoke on "The Probabi l i ty  of Elect ion Reversal." LCWAO. Augub-ttwe. 
explained "Runge-Kutta Runs." Rade Donahue pointed out  "Geometrical 
Fa l l ac i e s  and o the r  th ings  t h a t  go wrong with Mathematics." hhk LuLtti 
inves t igated "The Weighing of  t h e  Coins," and solved t h e  problem with 
one l e s s  weighing than t h e  standard solut ion.  John F&eA explained 
"A Unique Method t o  Solve Large-Order Determinants on a Microcomputer." 
Dave Aub& presented and solved Question A-6 of t h e  1985 Putnam Compe- 
t i t i o n ,  lkw? Ge^A spoke on "Numerical In terpola t ion,"  and hht/ B d h  
A n d w o n  gave a presenta t ion.  LOU Eohn displayed a proof of t h e  Duality 
Law from Logic and Loittf l  Konman  demonstrated how any 2" by checker- 
board with one square removed can be t i l e d  with trominos. The highl ight  
of t h e  year  w a s  t he  12th  Annual P i  Mu Epsilon Student Conference a t  Miami 
University. G u g  w h o p  spoke on "A P r a c t i c a l  Estimate o f  Standard Devi- 
at ion,"  Ken W o c h  discussed "Orthogonality i n  Quantum Mechanics," K&y 
Ann ChambaAi presented "Two Fundamental Results from La t t i ce  Theory," 
Ck+i  J o h o n  discussed "Basic Results from Group Theory," John Sengwsatt. 
explained how t o  "Escape t h e  Markov Chains of  Monte Carlo Ja i l s ."  A t  t h e  
chapter ' s  annual banquet, Jifsd IX.tXeA was presented t h e  Sophomore Class 
Award of Excellence. In April ,  AfclAk Liatti presented "The Weighing of 
t h e  Coins" a t  t h e  MAA meeting a t  John Car ro l l  University. He was awarded 
a one yea r ' s  membership i n  t h e  MAA. 

OHIO NU (University of Akron). Sam Selby Scholarship Awards i n  t h e  
amount $125 were given t o  John K e b t u h  and t o  Wmha& QuLnn. Evan 
winner of t h e  Mathematics Category i n  t h e  Akron Public Schools Science 
Fa i r  (Junior  High) was awarded a check f o r  $50 by t h e  chapter.  H i c k &  
@inn, Ron Bakt6o-t. and John K~btuh. received one-year memberships i n  t h e  
American Mathematical Society. R ~ I U  Fd6t . i  was awarded a one-year mem- 
bership i n  t h e  American S t a t i s t i c a l  Association. 

OHIO XI (Young~t~wn State University) . Six chapter members attended t h e  
1985 summer meetings i n  Laramie, Wyoming, where Raymond F h n e A y ,  Tony 
&ko, T M  Uiencek and l - h J ~ t j  C d v e A  gave papers. A t  t h e  F a l l  Quar ter  
I n i t i a t i o n ,  V i t i t i n g  P m f i ~ t ~ t  A n h z e j  Szymaraafcc was guest  speaker. A t  
t h e  Spring Quar ter  I n i t i a t i o n ,  graduate s tudent  Gene. Sa&0b and Dh. 



U n g L a  were guest speakers. A t  t he  Annual Spring Banquet, guest speak- 
e r  was uk. Job 3.  B U O ~  During t h e  1985-86 school year  seve ra l  s tu-  
dents attended MAA Meetings a t  M i a m i  University and a t  John Car ro l l  
University. 

OHIO OMICRON (Mount Union College). In  September, 1985, t h e  chapter 
sponsored a t r i p  t o  t h e  Twelfth Annual P i  Mu Epsilon Conference a t  
Miami University. In April ,  Joe S d ,  a graduate of  Mount Uniony dis-  
cussed t h e  a c t u a r i a l  profession and the  mathematics necessary f o r  it. 
Alsoy i n  April ,  Chapter Pres ident ,  M # L ~  H # L ~ U L ,  summarized h i s  mathe- 
matics independent study project .  

PENNSYLVANIA NU (Edinboro University). ~t t h e  F a l l  I n i t i a t i o n Â  Uk. 
P&UL W&dna spoke on mathematical paradoxes. A t  t h e  Spring I n i t i a -  
t i o n Â  Pm6tuhok Jmtu WU&obI spoke on di f ference  equations. I n  Apri l ,  
a group of e igh t  s tudents  a t tended t h e  Annual Meeting of t h e  Allegheny 
Mountain Section of t h e  MAA a t  Clarion University. 

PENNSYLVANIA OMICRON (Moravian College). The chapter sponsored a 
presenta t ion on t h e  a c t u a r i a l  profess ion by %yne L ~ v o ~ c ?  and J d y  
W U V ~  of  Mutual Benefit  Life.  P M ~ Q A A O ~  JohnU oa, who r e t i r e d  
a t  t h e  end of t h e  school year ,  gave a t a l k  r e f l e c t i n g  on he r  years  a t  
Moravian College. Permanent Faculty Correspondent and Chapter Advisor, 
Robh G.Lngh.Lch, presented a t a l k  on ltSome Geometrical Algebra," the  
h i s t o r i c a l  use of  c l a s s i c a l  geometry t o  produce o r  prove a lgebraic  
r e su l t s .  

IMPORTANT ANNOUNCEMENT 

Pi Mu Epsilon's main source of steady income i s  the 
National In i t i a t ion  Fee f o r  new members. 

The fee  covers the cost of a membership c e r t i f i c a t e  
and a one-year subscription t o  the Pi Mu Epsilon 
Journal. 
For the past fourteen years the fee  has been s e t  a t  
$4.00. Effective January l y  1987, the National 

In i t i a t ion  Fee wil l  be $10.00. After January 1 Â 1987, 

any order f o r  membership ce r t i f i ca tes  should be 
accompanied by the new fee. 

PI MU EPSILON JOURHAL PRICES 

PAID IN ADVANCE ORDERS: 


