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FRACTALS: MATHEMATICAL MONSTERS 

by JennLde~  Zob.fc.tz 
CoU-ege. 06 St. B e n t d i d  

Which gwm&t/iy i.6 tfw.e? This general  question has stumped mathe- 

maticians f o r  centuries;  t h e  quest  t o  f i n d  t h e  geometric theory t h a t  

a c t u a l l y  describes a l l  of  t h e  physical  world ( i f  such a theory e x i s t s )  

has a s  its newest contender, fractal geometry. Original ly an attempt t o  

explain "pathological" (not  well-behaved) funct ions,  f r a c t a l  geometry 

seems t o  describe common proper t ies  of  most physical  phenomena. This 

paper i s  intended a s  an introduct ion t o  t h e  basic  concepts of f r a c t a l  

geometry and several  of i ts appl icat ions.  Although f r a c t a l  geometry may 

not be %geometric theory y it c e r t a i n l y  appears t o  be t h e  most effec-  

t i v e  means of taming t h e  ul t imate monster -- t h e  universe. 

' 5 c g  who& have. W e  who& 

which deed on <hMA vilLocJULy 

And W e .  who& have UVL who&, 

and 40 on <o u-cAcob^ty." 

The above quote by Richardson i n  S teenfs  a r t i c l e  [4, 1231 sounds 

l i k e  a science f i c t i o n  creat ion.  It does describe a monster -- but of 

t h e  mathematical var iety.  Self- similar i ty ,  which describes t h e  concept 

of b i g  whorls having l i t t l e  whorls having l e s s e r  whorls, is t h e  b a s i s  

f o r  a r e l a t i v e l y  new geometry -- f r a c t a l  geometry. In  1975, Benoit 

Mandelbrot coined t h e  word " fractal"  t o  describe t h e  i n f i n i t e  i r regu la r-  

i t i e s  and fragmentation i n  nature; hence, f r a c t a l s  were dubbed "a new 

geometry of nature w [2, 1111. For instance,  using s t r i c t l y  Euclidean 

geometry, one experiences d i f f i c u l t y  when measuring t h e  surface a rea  of 

a charcoal br iquet te .  Upon i n i t i a l  inspection t h e  charcoal appears 

smooth; magnification revea l s  t h a t  t h e  surface is ac tua l ly  covered with . 
a s e r i e s  of  small depressions. A t  f u r t h e r  magnification each depression 

y i e l d s  more depressions. The g r e a t e r  t h e  magnification, t h e  g rea te r  t h e  

r e s u l t i n g  surface area. In  o ther  words, d i f fe ren t  s c a l e s  f o r  Euclidean 



measure y i e l d  varying r e s u l t s .  Hence inadequate Euclidean measurements 

cannot account f o r  new d e t a i l  revealed under increasing magnification. 

Frac ta l  measurements and f r a c t a l  geometry can. A s  Mandelbrot descr ibes 

t h e  phenomenon, "The importance of f r a c t a l s  l i e s  i n  t h e i r  a b i l i t y  t o  

capture t h e  e s s e n t i a l  f e a t u r e s  of  very complicated and i r r e g u l a r  ob jec t s  

and processes i n  a way t h a t  is suscept ible  t o  mathematical analysis"  

[3,  421. Thus, f r a c t a l s  a r e  t h e  language of discourse f o r  describing 

Richardson's whorls, mathematical "monsters," and more concrete problems 

such a s  t h e  surface of  a charcoal b r ique t te  o r  t h e  curve of a coast l ine.  

In essence, f r a c t a l s  describe t h e  s t r u c t u r a l  complexities of nature. 

What, spec i f ica l ly ,  i s  a " f rac ta l"  and is  f r a c t a l  geometry consis tent  

with t h e  realm of mathematics? More importantly, how does f r a c t a l  

geometry apply t o  p r a c t i c a l  problems i n  diverse f i e l d s  such a s  geology, 

business, a r t ,  and meteorology, a s  well a s  t o  computer science and 

mathematics? 

Underlying f r a c t a l  geometry is  a notion t h a t  most people a r e  

fami l ia r  with but a t  t h e  same time cannot define -- dimension. Given 

any function, one can determine t h e  dimensions needed t o  graph t h e  

funct ion by analyzing t h e  variables .  We e x i s t  i n  a three-dimensional 

world; t h e  words on t h i s  paper a r e  two-dimensional. But what is 

"dimension"? In responding t o  t h e  question, many col lege mathematics 

s tudents  think of Euclidean n-space; i n  t h i s  sense, "dimension" is  t h e  

number of  coordinate axes i n  t h e  system o r  t h e  number of  components 

necessary t o  dis t inguish a point  i n  space. Henceforth, we w i l l  use t h e  

notion of  Euclidean space a s  a reference. "Dimension," however, is more 

complex. According t o  Mandelbrot, dimension -- t h e  degree of  complexity 

of an object  has two components: 

1. topological  dimension 

2. Hausdorff-Besicovitch (Frac ta l )  dimension. 

Furthermore, when t h e  two coincide (as  they do i n  Euclidean geometry) we 

say t h a t  t h e  s e t  involved i s  dimensionally concordant. When t h e  measures 

d i f f e r  t h e  s e t  is dimensionally discordant [ I ,  151; f r a c t a l  geometry 

bas ica l ly  deals  with dimensionally discordant s e t s .  

Topological dimension (of ten denoted by DT) is always an in teger  

and can be a t  most t h e  Euclidean dimension [I ,  151. In  1912 ~ o i n c a d  

i n t u i t i v e l y  described topological  dimension by t h e  proper t i es  of po in t s  

and l i n e s  which he generalized i n t o  higher dimensions. A condensed 

explanation is  a s  follows: when given a continuum of po in t s  i f  a f i n i t e  

number of continuum elements (points)  can separate  the  continuum, then 

one is i t s  dimension. If points  w i l l  not separate  a d i f f e r e n t  continuum - 
while one o r  more one-dimensional continua can, then t h e  new continuum. 

is  two-dimensional [ I ,  290-2911. For example, t h e  r e a l  number continuum 

can be separated by po in t s  ( t h a t  is, r e a l  numbers); hence, t h e  r e a l  l i n e  

i s  one-dimensional. A coordinate plane, however, cannot be separated by 

f i n i t e l y  many points ,  but can be by a one-dimensional continuum ( a  l i n e ) ;  

therefore,  t h e  plane has dimension two. In o ther  words, topological  

dimension moves away from dependence upon coordinate axes and instead 

u t i l i z e s  t h e  not ion of separat ing s e t s  of elements (continua). 

The second component of dimension -- t h e  Hausdorff-Besicovitch 

dimension -- e s s e n t i a l l y  & f r a c t a l  geometry. Often re fe r red  t o  a s  

f r a c t a l  dimension, t h i s  component, according t o  Weisburd, i s  " the degree 

t o  which t h e  t r a c e  f i l l s  a space and adds complexity t o  a s t r a i g h t  l i n e ,"  

o r  t h e  degree t o  which a surface i s  convoluted [5, 2791. Rather than 

pursuing t h e  complex mathematical formulas involved i n  t h e  o r i g i n a l  cal-  

cu la t ions  of  t h e  Hausdorff-Besicovitch dimension we w i l l  examine t h e  

problem from a geometric/algebraic perspective. Two examples -- a 

s t r a i g h t  l i n e  and a curve -- lend r e s u l t s  which can be generalized i n t o  

higher dimensions. Consider a l i n e  segment whose length we wish t o  f ind.  

In a Euclidean sense, we can j u s t  measure t h e  length. Suppose, however, 

t h a t  our r u l e r  is not long enough; t o  circumvent t h i s ,  we divide t h e  l i n e  

segment i n t o  Ii equal p a r t s  and l e t  the  t o t a l  length equal 1 a s  a r e l a t i v e  

measure. Each of  t h e  iV p a r t s ,  therefore,  i s  reduced i n  length from t h e  

o r i g i n a l  by some sca le  f a c t o r  -- and has a new r e l a t i v e  length -- c a l l  it 

r. It follows t h a t  t h e  t o t a l  length of our segment can be ca lcu la ted  a s  

follows: Length = 1 = (number of  sub-segments) x ( r e l a t i v e  length of  

each sub-segment) = H x r. Hence, Ii = 1/r. 
2 

Now consider t h e  a rea  of a square i n  E . Instead of  working with a 

formula f o r  t h e  e n t i r e  square l e t  us  determine i t s  a rea  by dividing t h e  

square i n t o  par t s .  P a r t i t i o n  t h e  square i n t o  N p a r t s  -- each s ide  of 

which is  reduced by a s c a l e  f a c t o r  of  r. Note t h a t  t h e  area f a c t o r  of 
2 

each of  t h e  N squares is  r . Again, Ii i s  t h e  rec iproca l  of t h e  area 
2 

f a c t o r  -- N = 1/r . Therefore, Total  Area = 1 = (number of  sub-squaresb 
2 2 

x (area of  each) = Ii x r . Hence, H = 1/r . 
We can general ize t h e  r e s u l t s  from above. Recall t h e  two equations: 

2 
iV = 1/r and N = 1/r . The f i r s t  equation deals  with a l i n e  segment i n  E'; 



2 the second deals with a square in E . If d equals the dimension, we can 
d rewrite the equations S = 1/r . Again, S is the number of parts; r is 

the scaling factor. Solving the equation for the dimension, we obtain 

the formula: 

Contrary to our intuitive notion of dimension, d may be non-integral, 
depending on N and r [4, 1231. This number, d, is called the fractal 
(Hausdorff-Besicovitch) dimension. Structures for which d is non- 
integral command unusual properties; they "fill the gaps" between 

dimensions, thus rendering usual Euclidean measuring devices virtually 

ineffective. 

After defining fractal and topological dimension, one can rigorously 

define "fractal." The following definition, taken from Mandelbrot, 

explicitly distinguishes a fractal set from any other set: a "fractal" 

is "a set for which the Hausdorff-Besicovitch dimension strictly exceeds 

the topological dimension" [I, 151. This definition seems remote from 

the intuitive concepts of a fractal mentioned earlier; let us examine 

the Koch curve to clarify notions of dimensionality and fractionality 

(Figure 1). 

Dimension, contrary to what the preceding paragraphs seemed to say, 

is not the only important aspect of fractals. Self-similarity determines 

not only the type of fractal structure but gives us a means for describ- 

ing the endless fragmentation of a structure. Self-similarity, according 

to Steen, occurs when exact or random patterns are exhibited at different 

measuring scales. In other words, changing the gauge has no effect upon 

the basic pattern. As a result, for a fractal curve of dimension between 

one and two, length is an insufficient measure of size. In essence, the 

parts are the same as the whole [4, 122-1231. The frequency of the 

repeat or the extent of self-similarity helps determine the fractal 

dimension. The self-similarity characteristics of a structure differen- 

tiate fractals into two categories, says McDermott. Geometric fractals 

exhibit an identical pattern repeated on different scales while random 

fractals introduce an elements of chance (which is most often the case 

in nature) [2,  1121. An example of a geometrical fractal is given in 

Figure 2. A computer-generated random fractal -- a three-dimensional 
"fractal dragon" -- appeared on the cover of the December, 1983, 

Consider the covering of the length. 
We have 4 sub-segments, each of which 
is 1/3 the length. 

Suppose we focus on one sub-segment. 2 3 
We can also cover this sub-segment 
with 4 "balls" each of length equal 1 

to 1/3 the length of the original 
sub-segment. 

Thus, the number of parts we keep 
breaking our segment into isN= 4; 
the scaling factor is R = 1/3. 

We expect the dimension to be 

d = (Zraff)/(Zn(l/r)) = 

(ln4)/(ln3) 1.2618. 

Figure 1 
From THE FRACTAL GEOMETRY OF NATURE 
by Benolt B. Mandelbrot. 
Copyright 1977, 1982, 1983. 
Reprinted with the permission of 
W. H. Freeman and Company. 



Figure 2 

From THE FRACTAL GEOMETRY OF NATURE 
by Benolt B. Mandelbrot. 
Copyright 1977, 1982, 1983. 
Reprinted with the  permission of 
W. H. Freeman and Company. 

In order to truly appreciate the applicability of fractal geometry 

one must examine its origins. For two thousand years, Euclidean geome- 

try was %geometry; composed of relatively well-behaved shapes, 

Euclidean geometry appeared to model nature's designs. Steen Suggests 

that generalizations of Euclidean geometry and other mathematical 

theories were applied to spaces with dimensions greater than three; 

however, even in infinitely-dimensional cases, increments between 

dimensions were always integral [4, 1221. Thus integral dimensions 

were a "given"; to conjecture otherwise was absurd. How could one talk 

about structures having a dimension between that of a line and a plane? 

Some mathematicians did just that. Peano, Cantor, Weierstrass, 

Lebesgue, Hausdorff, Koch, Sierpinski, and Besicovitch were among the 

mathematicians whose work pre-empted the mathematical crisis of 1875. 

Part of this work was a forerunner of fractal geometry. From 1875 to 

1922 a mathematical crisis arose due to the discovery of functions which 

were nowhere differentiable but everywhere continuous. This foreshadowed 

the development of fractal sets in the sense that one cannot fix a 

tangent on a fractal curve due to the constantly evolving detail under 

magnification. At the same time, though, fractal sets are continuous 

[I, 2 and 131. In other words, examples were discovered which tested the 

extremes of geometry and analysis. Eventually, leading to fractal 

geometry, these "pathological" functions were monsters -- existing in 
spite of then hazy mathematical support. 

Guiseppe Peano shocked the mathematical world in 1890 with the 

introduction of his plane-filling curve [4, 1231. This phenomenon 

mirrors the non-integral fractal dimensions. Peano's curve "fills the 

gap" between lines and planes -- between one dimension and two. Peano 

created a curve which meandered sufficiently enough to contact every 

point in the unit square. Figure 3 illustrates the development of two 

different Peano curves from their basic compositional patterns. Contin- 

ued development of the basic pattern yields a curve so contorted that it 

essentially "covers" the original closed figure. Hence, a curve seemed 

to cover an area of the unit square. Obviously, the curve was not in the 

same class as a straight line segment; yet the Peano curve is not two- . 
dimensional. Euclidean geometry offers no solution to Peano's problem. 



Figure 3 

Figure 3 From THE FRACTAL GEOMETRY OF NATURE 
by Benolt 0. Mandelbrot. 
Copyright 1977, 1982, 1983. 
Reprinted with the permission of 
W. H. Freeman and Company. 

The t r i a d i c  Koch curve is the most common example of f r a c t a l  analy- 

sis. Figwe 4 demonstrates the  development of t h i s  snowflake curve in  

closed form. Let us attempt t o  analyze the notion of self- similari ty 

inherent i n  i ts construction from an equilateral  t r iangle.  During the  

second stage each s ide  is  t r i sec ted  and a new equilateral  t r iangle  is 

constructed on the  middle th i rd  segment of each side. Each consecutive 

stage t r i s e c t s  sides of equilateral  t r iangles and constructs a new tri- 

angle on the middle sector. I f  t h i s  process is continued a limiting 

structure resul t s ;  due t o  continued self- similari ty,  there ex i s t s  a 

sharp corner a t  v i r tua l ly  every point [I, 361. One can eas i ly  observe 

the  self- similari ty of the t r i a d i c  curve. This curve is  t ru ly  a f r a c t a l  

fo r  each magnification yields even greater  de ta i l .  

Recall our definit ion of dimension. We said tha t  



Figure 4 

From THE FRACTAL GEOMETRY OF NATURE 
by Benoit B. Mandelbrot. 
Copyright 1977, 1982, 1983. 
Reprinted with the permission of 
W. H. Freeman and Company. 

where N represented t h e  number of p a r t s  and r represented t h e  sca l ing  

fac tor .  Consider one s i d e  of an e q u i l a t e r a l  t r i a n g l e  on t h e  t r i ad ic*  

curve (Figure 5.1-5.2). Let t h i s  length -- c a l l  it k -- be t h e  frame of 

reference. Imagine s p l i t t i n g  t h e  length i n t o  t h i r d s  (Figure 5.3) and 

construct ing another e q u i l a t e r a l  t r i a n g l e  i n  t h e  middle one-third 

(Figure 5.4). Notice t h a t  t h e r e  a r e  now four  s ides  each with length 

one- third the  o r i g i n a l  length i. Hence, our t o t a l  length is now equal 

t o :  

(4 segments) x l / ( t h e  number of segments). 

The dimension of t h i s  s t r u c t u r e  f o r  If = 4 and P = 1/3  is: 

Since t h e  decimal equivalent of t h e  expression i s  about 1.2618 we have 

a f r a c t i o n a l  dimension. Figure 5.5 shrinks the  segment t o  t h e  o r i g i n a l  

s c a l e  and places it back where we o r i g i n a l l y  removed t h e  segment. 

Figure 5.6 demonstrates t h e  completed curve i f  t h e  preceding process is  

used on t h e  o ther  segments a, b, and e of t h e  o r i g i n a l  f igure.  

Figure 5.2 

\ 
enlarge 

Figure 5.3 I I 
I I 



If one were t o  measure t h e  length o f  p a r t  of t h e  snowflake curve 

t h e r e  would be some d i f f i c u l t y  -- t h e r e  is no f i n i t e  length! Self- 
s i m i l a r i t y  c h a r a c t e r i s t i c s  d i c t a t e  t h a t  t h e  smaller t h e  u n i t  of  measure 

t h e  more d e t a i l  released. Therefore, we cannot a c t u a l l y  measure t h e  

length because we cannot possibly see a l l  t h e  d e t a i l .  

Another almost "classic" problem i n  f r a c t a l  geometry asks t h e  

question "How long is t h e  coas t  of  Britain?" Mandelbrot answered, "It 
depends. A s  t h e  crow f l i e s  t h e  coast  is one length. A s  t h e  person 
walks, it s t r e t c h e s  even longer. A s  t h e  spider  crawls, it s t r e t c h e s  

s t i l l  longer. In  essence, a coas t l ine  with a l l  i ts microscopic po in t s  

and i n l e t s  i s  i n f i n i t e l y  longn [2, 1141. A s  a r e s u l t ,  coas t l ines  

cannot be measured i n  a Euclidean sense. However, by t r e a t i n g  t h e  

coas t l ine  a s  a random f r a c t a l  we can mathematically analyze i ts 

propert ies .  

In addi t ion t o  t h e  so-called nc lass ica l"  problems, f r a c t a l s  a r e  

now being in tegra ted  i n t o  v i r t u a l l y  a l l  of t h e  sciences. Frac ta l  geom- 

e t r y  appropriately describes perceptions of  t h e  a c t u a l  physical  world 

whereas Euclidean geometry, deal ing with absolute ,  i d e a l  shapes, cannot 

account f o r  t h e  s t r u c t u r a l  i n t r i c a c i e s  of a f r a c t a l  form. Weisbur!: 

c i t e s  an example of f r a c t a l s  used i n  t h e  geosciences. Researchers . 

studying t h e  San Andreas f a u l t  hope t h a t  t h e  f r a c t a l  dimension o f  t h e  

jaggedness of t h e  f a u l t  w i l l  be useful  t o  seismologists f o r  predict ing 

occurrence and magnitude of earthquakes along t h e  f a u l t .  Different  

f r a c t a l  dimensions a r e  c h a r a c t e r i s t i c  of  d i f fe ren t  sect ions of  t h e  f a u l t .  

After  various o ther  s tud ies  t h e  researchers  concluded t h a t  t h e  f r a c t a l  

dimension governs t h e  manner i n  which f a u l t  blocks move over themselves 

during an earthquake, t h a t  is, whether blocks jerk suddenly o r  move 

evenly amongst themselves [5, 2791. The signif icance of  t h i s  r e s u l t  is 

t h a t  s c i e n t i s t s  can study each type of  earthquake ( t h e  ravages of which 

a r e  extremely d i f f e r e n t ) ,  p red ic t  and perhaps eventually a l l e v i a t e  some 

of  t h e  destruction. 

Frac ta l s  a r e  a l s o  invaluable i n  metallurgy. In Peterson's a r t i c l e ,  

Mandelbrot suggests f r a c t a l  dimensions be used t o  character ize t h e  rough- 

ness of a surface. It seems t h a t  " ... roughness is  very ~ys te rna t ic . '~  

Along with t h i s  observation is research on t h e  s t rength of  various metals. 

F rac ta l  dimension remained consis tent  f o r  d i f f e r e n t  samples of t h e  same 

metal. Furthermore, f r a c t a l  dimension changes along with meta l l i c  

s t rength when varying heat  t reatments  a r e  appl ied t o  samples 13, 421. 

Does t h i s  mean t h a t  f r a c t a l s  could be used t o  redefine physical proper- 

t i e s  such a s  hardness, s t rength and e l a s t i c i t y  of a given product? 

The most not iceable appl icat ion of  f r a c t a l  geometry and t h e  appl i-  

ca t ion  which has brought f r a c t a l s  i n t o  t h e  l imel igh t  of mathematical dis-  

cussion i s  computer science. Frac ta l s  seem t o  explain how a computer 

r e t r i e v e s  data from deep within i t s  memory banks. Moreover, McDermott 

repor t s  on t h e  r e a l i s t i c  graphics made possible  v i a  f r a c t a l  dimensions. 

The new graphics a r e  so  n a t u r a l  looking t h a t  they a r e  being used i n  t h e  

movie industry t o  enhance spec ia l  e f fec t s .  Lucasfilm, t h e  makers of t h e  

Star Ware saga, is t h e  first company t o  s p e c i f i c a l l y  employ a computer 

graphics uni t .  Loren Carpenter and h i s  crew coax out of  t h e  computer not 

t h e  awkward, synthetic- looking shapes of  e a r l i e r  endeavors, but rather;- 

they c r e a t e  majestic landscapes indis t inguishable from a c t u a l  nature 

[2, 1111. In  t h i s  sense, f r a c t a l s  l i n k  mathematics and a r t  v i a  t h e  



computer. Diversi ty  of  graphic images seems unbounded a s  f r a c t a l  

geometry is paired with computer technology. 

The f i n a l  examples of  f r a c t a l s  we w i l l  present a r e  e a s i e r  t o  com- 

prehend, f o r  they incorporate f a m i l i a r  aspects  of  everyday l i f e .  The 

first such example is  t h e  human c i rcu la tory  system. In  r e l a t i o n  t o  t h e  

three-dimensional human body, t h e  mil l ions of blood vesse l s  seem one- 

dimensional. For a l l  p r a c t i c a l  purposes, each vesse l  appears t o  be a 

l i n e .  Yet, s ince t h e  e n t i r e  body needs nourishment v i a  blood vesse l s  

i n  order  t o  survive, t h e  blood vesse l  " lines" must somehow reach every 

c e l l  i n  t h e  body. Hence, we have a system of " lines" intertwined with 

every point  i n  a three-dimensional space. The "space f i l l i n g"  concept 

suggests t h a t  t h e  c i rcu la tory  system is based on f r a c t a l s .  

River drainage and o i l  prospecting a r e  f r a c t a l  appl icat ions s imi la r  

t o  t h e  c i rcu la tory  system. A r i v e r  draining an area must necessar i ly  

have "fingers" of water which seep i n t o  t h e  f a r  reaches of t h e  drainage 

basin. The f a r t h e r  away from t h e  r i v e r ,  t h e  smaller these  "'fingers" 

become; ye t  they must e x i s t  i n  order  f o r  t h e  r i v e r  t o  drain t h e  basin. 

O i l  prospecting v i a  f r a c t a l s  is a r e l a t i v e l y  new area. Formerly, 

geologists  calculated t h e  amount of o i l  i n  a loca t ion  by t h e  general 

measurements of t h e  "dome." However, i n  doing so, they f a r  under- 

estimated t h e  a c t u a l  amount of o i l ;  f r a c t a l l y ,  o i l  seeps i n t o  rocks, 

crevices ,  and s o i l  surrounding t h e  main dome. A s  our o i l  resources 

deplete  themselves, we w i l l  begin t o  r e l y  on these  untouched s t o r e s  of 

o i l .  Having an understanding of  f r a c t a l  geometry, one can see t h a t  t h e  

amount of o i l  outs ide t h e  main dome is qu i te  s ign i f ican t .  

The f i n a l  example appears t o  be a random f r a c t a l  but is  not  a 

f r a c t a l  a t  a l l  -- a t r e e .  From a dis tance one can see t h e  bare, craggy 

s i lhoue t te  of  t h e  t runk and t h e  primary branches. Come c loser  and 

examine one of  t h e  p r inc ipa l  branches. Upon inspection t h i s  branch 

appears a s  t h e  whole t r e e  did from t h e  dis tance,  f o r  one can now see new 

secondary branches shooting from t h e  primary branches. Continual exam- 

ina t ion  of each new p a r t  reveals  g rea te r  branching. Trees seem t o  

exhibi t  p a r t i a l  se l f- s imi la r i ty ;  however, due t o  countless  b io log ica l  

and environmental influences, t r e e s  a r e  not f r a c t a l  forms. Ongoing 

research is attempting t o  discover a re la t ionsh ip  between f r a c t a l  geom- 

e t r y  and i n t r i c a t e  b io log ica l  processes. 

Biology, geology, computer science, t h e  movie industry,  physics, 

a r t ,  ... . F r a c t a l  geometry, a branch of  mathematics, i s  appl icable  t o  

each f i e l d  i n  t h i s  ever-growing list. By examining t h e  i n t r i c a c i e s  of 

nature,  f r a c t a l s  provide a language i n  which t o  discuss  t h e  extent  of 

s t r u c t u r a l  complexities. Eucl id 's  s o l i d  shapes a r e  i d e a l  s i t u a t i o n s ;  

h i s  devices a r e  inadequate f o r  measuring curves t h a t  seem t o  f a l l  

between dimensions. Frac ta l s  help unravel chaos ; before ~ a n d e l b r o t  ' s 

exposition t h e  only useful  shapes were "... Euclidean shapes, l i n e s ,  

planes, and spheres; a l l  e l s e  was chaos. There was order  and disorder. 

Now t h e r e  is order  (simple shapes), manageable chaos ( f r a c t a l s ) ,  and 

unmanageable chaos" [2, 1151. A s  research esca la tes  on t h i s  s t i l l  

r e l a t i v e l y  unproved theory and more varied appl ica t ions  a r e  discovered, 

mathematicians, by observing nature from a f r a c t a l  perspect ive,  may 

conquer t h e  most int imidat ing mathematical "monster" o f  a l l  -- the  

universe. 
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THE SEVEN CIRCLES THEOREM 
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Sta r t  with a circle.  Any c i rc le .  Draw s i x  more c i r c l e s  inside it, 

each internally tangent t o  the  or ig ina l  c i r c l e  and tangent t o  each, other 

in  pairs. Let A ,  B ,  C, D, E, and F be the consecutive points of tangency 

of the  small c i rc les  with t he  outer  c i rc le .  We wind up with a s e t  of 

seven c i r c l e s  a s  shown in  Figure 1. The Seven Cinsles Theorem says t ha t  

no matter what s i ze s  we pick f o r  the  seven c i r c l e s  (subject only t o  cer- 

ta in  order and tangency constraints) ,  it w i l l  turn out t ha t  the  l i ne s  AD, 

BE, and CF w i l l  meet in a point. 

D Figure 1 D 

This remarkable theorem is l e s s  than f i f t een  years old. I t  shows 

tha t  there a re  many beautiful relat ionships involving only l i n e s  and c i r-  

c l e s  still waiting t o  be discovered. Evelyn, Money-Coutts, and Tyrrel l  

[6] f i r s t  published t h i s  theorem in  1974. Since then, other proofs have 

appeared (see [5]). The purpose of t h i s  a r t i c l e  is t o  give a simple 

proof of t h i s  theorem using only elementary geometry. 

Since we wish t o  prove tha t  three l i n e s  concur (meet in  a point) ,  we 

s t a r t  by reviewing what is known about three concurrent l ines.  Various A 

f ac t s  about three concurrent l i n e s  i n  a t r iangle  were known t o  ear ly  

geometers ( l ike  Heron of Alexandria and Archimedes). They knew tha t  the 



medians concur and t h a t  t h e  a l t i t u d e s  concur ([2], pp. 297-298). However, 

it was not  u n t i l  1678 t h a t  Giovanni-Ceva [I ]  gave a d e f i n i t i v e  treatment 

of  such l ines .  For t h a t  reason, a l i n e  from a vertex of  a t r i a n g l e  t o  a 

point on t h e  opposite s ide  is ca l led  a oevian. Here is  a s implif ied 

version of  Cevals Theorem. 

Ceua'h Theohem. Let D, E, and F be points  on s ides  BC, CA, and AS,  

respect ively,  of  t r i a n g l e  ABC. Then cevians AD, BE, CF concur i f  and only 

if AF-BD-CE = FB-DC-EA. 

A 

Figure 2 Figure 3 

Proof. ( i )  Suppose AD, BE, CF meet a t  a point  P. Extend BE and CF 

u n t i l  they meet t h e  l i n e  through A t h a t  is p a r a l l e l  t o  BC a t  points  G and 

H, respect ively (see Figure 2) .  From s imi la r  t r i a n g l e s ,  we ge t  t h e  

proportions: 

DC/hM = PD/AP 

AG/BD = AP/PD 

AE/EC = AG/BC 

and BF/FA = BC/E4. 

Multiplying these  together gives us  t h e  desired r e s u l t .  

( i i )  Conversely, suppose 

A P  BD- CE = FB- DC- EA. 

Let BE meet CF a t  P and l e t  A P  meet BC a t  X. Then, by p a r t  ( i ) ,  we have 

AF- BE CE = FB- XC- EA. 

Dividing these two r e s u l t s  gives 

If X does no t  coincide with D, then without l o s s  of  genera l i ty ,  assume 

X l i e s  on segment DC (see Figure 3 ) .  Then BD < EX and DC > XC. Conse- 

quently, BD/DC < BX/XC, a contradiction. Thus X coincides with D. 

Remark. If we a r e  a l i t t l e  more care fu l  about s igns  and use direc-  

t e d  l i n e  segments, Ceva's Theorem can be generalized t o  work f o r  any 

po in t s  D, E, F on t h e  s ides  of  t h e  t r i a n g l e  or on t h e  extensions of-' - 

these s i d e s  (see [2]). However, we w i l l  no t  need t h i s  extended r e s u l t  

here. 

Before we can prove t h e  Seven Circles  Theorem, we must know some- 

thing about when th ree  chords of  a c i r c l e  concur. Coxeter [3] gives a 

c r i t e r i o n  t h a t  we w i l l  c a l l  Ceva's Theorem for  Chords. Both t h e  s t a t e-  

ment and proof a r e  remarkably analogous t o  Ceva's Theorem. 

Ceua'h Theohem ~ O A  ChohdA. Let A ,  B, C, D, E, and F be s i x  con- 

secut ive points  around t h e  circumference of  a c i r c l e .  Then chords AD, 

BE, CF concur i f  and only if AB-CD-EF = BC-DE-FA. 

Figure 4 Figure 5 

Proof, ( i )  Suppose AD, BE, CF meet a t  a point  P (see Figure 4). 

From s imi la r  t r i a n g l e s ,  we g e t  t h e  proportions: 

AB/DE = PA/PE 

EF/BC = PF/PB 

CD/FA = PC/PA 

and PC/PE = PB/PF. 

Multiplying these  together  gives us t h e  desired r e s u l t .  

( i i )  Conversely, suppose 

(1 AB-CD-EF = BC-DE-FA. -. n P 

Of t h e  t h r e e  a rcs ,  ABC, CDE, E F A ,  a t  l e a s t  one must be smaller than a i - 
semicircle. Without l o s s  of general i ty .  assume a r c  CUE is smaller than 

a semicircle. Let BE meet CF a t  point P and l e t  AP meet t h e  c i r c l e  again 
c 

a t  point X (which must l i e  on a r c  CUE). By p a r t  ( i ) ,  we  have 



AB-CX-EF = BC-XEmFA. 

This combined with (1) gives 

If X does no t  coincide with D, then without l o s s  of  genera l i ty ,  assume X - 
l i e s  on a r c  US (see Figure 5 ) .  Then CD < CX and HE > XE. Consequently, 

CD/DE < CX/XE, a contradiction. Thus X must coincide with D. 

Before proceeding t o  t h e  Seven CimZes Theorem, we need one pre- 

liminary r e s u l t .  

Lennna. Let two ex te rna l ly  tangent c i r c l e s ,  P and Q, be in te rna l ly  

tangent t o  c i r c l e  (7 a t  points  A and B respectively. If t h e  r a d i i  o f  c i r-  

c l e s  C, P, and Q a r e  R, p,  and q ,  respect ively,  then 

LEDA (since both measure ha l f  of  a r c  Ed). We thus  have t h r e e  p a i r s  of  

similar t r i ang les  : AACE' - A m ,  A f l ~  -&At', and AAMP -A AE. Then 

AB/DE = MA/ME = MB/MD. 

Since HE = 2R, we have --  - 

ABAB M A M B  M A M B  PAQB -.- = -.- = -.- = -.- =L.-- 1 .  
2R2R M f M D  MDME CPCQ R - p R - q  

We a r e  now ready t o  prove our  main r e s u l t .  

The Seven C W u  Theohem. Let Ao, A ,  A ,  A ,  A ,  A be s i x  con- 5 
secut ive points  around t h e  circumference of a c i r c l e  0. Suppose c i r c l e s  

can be drawn i n t e r n a l l y  tangent t o  c i r c l e  0 a t  these s i x  po in t s  so  t h a t  

they a r e  a l s o  ex te rna l ly  tangent t o  each o ther  i n  p a i r s  ( t h a t  is, t h e  

c i r c l e  a t  A. is tangent t o  t h e  c i r c l e  a t  A i l  and t h e  c i r c l e  a t  A,. 
9 

where subscr ip t s  a r e  reduced modulo 6). (See Figure 7.) Then segments 

AJl, A,A4, and A A  concur. 

Figure 6 

Proof. Let c i r c l e s  P and Q be tangent a t  point M. Extend AM and 

EM t o  meet c i r c l e  C again a t  points  D and E respectively. Ident i fy t h e  

names of  c i r c l e s  with t h e i r  centers. Draw CD and CE. (See Figure 6.) 

Draw PQ which must pass  through M. 

CA = CD implies L CAD = LCDA. PA = PM implies LPAM = L PMA. There- 

foreLPMA = LCDA and CD 11 PM. Similar ly,  CE \\ QM. But PMQ is a s t r a i g h t  

l i n e ,  so  there fore  DCE is a s t r a i g h t  l i n e  also. Note a l s o  thatLEBA = 

Figure 7 

Proof. Let t h e  radius of  c i r c l e  0 be R and l e t  t h e  rad ius  o f  t h e  

c i r c l e  a t  A .  be ri. Let us  express A A i n  terms of  r .  and a? z i it1 -L itl. JW 
t h e  lemma, we have 

I* 

= 2 ^ ) f f ~ ~ + ~ )  

. where f f r )  = &/(R - r) and t h e  subscr ip t s  are reduced modulo 6. Thus 



So by Ceva's Theorem f o r  Chords, A A 3 ,  AIA,,, and A A must concur. 
2 5 

The Seven Ci rc les  Theorem is t r u e  f o r  more general  configurations 

than t h e  one described above. For example, Figure 8 shows the  case where 

the  s i x  c i r c l e s  a r e  ex te rna l ly  tangent t o  t h e  o r i g i n a l  c i r c l e  r a t h e r  than 

i n t e r n a l l y  tangent. 

Figure 8 

This case can be proved i n  a manner s imi la r  t o  t h e  previous proof. 

Using Figure 9, we can derive t h e  formula 

whose proof is  analogous t o  t h e  proof of  t h e  preceding lemma. Here, 

c i r c l e s  P and Q a r e  ex te rna l ly  tangent t o  c i r c l e  C. R,  p ,  and q denote 

t h e  r a d i i  of  c i r c l e s  C, P a  and Q, respectively. It then becomes c l e a r  t h a t  

where q( r )  = &/(R + r )  . 

Figure 9 

In f a c t ,  t h e  Seven Circles  Theorem is even more general. The s i x  " 

poin t s  of tangency need not occur successively along t h e  circumference of 

t h e  o r i g i n a l  c i r c l e .  Two such cases a r e  shown i n  Figure 10. A proof f o r  

t h e  general  configuration can be found i n  [6]. - 
* -  - 

A. 

Figure 10 

An i n t e r e s t i n g  s u b t l e t y  occurs when t ry ing  t o  formulate t h e  theorem 

f o r  t h e  most general  configuration. After  s t a r t i n g  with an i n i t i a l  c i r c l e ,  

C, and drawing f i v e  c i r c l e s  Al,  A2, A3, A4, and A 5  tangent  t o  C and tan-  

gent t o  themselves i n  succession, it becomes necessary t o  draw a s i x t h  

c i r c l e  tangent t o  C, A5 ,  and A,. However, i n  general,  t h i s  can be done 

i n  two ways (see Figure 11). O f  t h e  two choices, one s a t i s f i e s  the  con- 

clusion of  t h e  Seven Circles  Theorem and t h e  o ther  does not.  In t h i s  

sense, t h e  Seven Cwoies Theorem may be thought t o  hold only 50% of  t h e  

time. 

Figure 11 



Exercises 

We conclude with a few exerc i ses  t o  allow t h e  readers  t o  t r y  t h e i r  

hands on some r e l a t e d  problems. 

1. A c i r c l e  is inscr ibed in t r i a n g l e  ABC. The po in t s  o f  contact  with 

s i d e s  BC, CAY and AB a r e  D, E, and F, respect ively (see Figure 12). 

Prove t h a t  AD, BE, and CF concur. (The po in t  of  concurrence is known 

a s  t h e  Gergonne po in t  of t h e  t r i a n g l e ;  see [2], page 160.) Show 

f u r t h e r  t h a t  t h e  conclusion s t i l l  holds if t h e  c i r c l e  is replaced by 

an e l l i p s e .  

Figure 12 Figure 13  

2. Let ABCDEFGHIJKL be a regu la r  dodecagon (see Figure 13). Prove t h a t  

diagonals AE, CF, and DH concur. (For a proof see [lo]. ) 

3. Three c i r c l e s  a r e  s i t u a t e d  a s  shown i n  Figure 14 so t h a t  each meets 

t h e  o thers  i n  two points. Prove t h a t  AD, BE, CF concur and t h a t  

AF-ED-CE = FB-DC-EA. (This r e s u l t  is due t o  Haruki, see [9]. ) 

4. Let ABCDEF be a hexagon circumscribed about a c i r c l e ,  a s  i n  Figure 15. 

Prove t h a t  AD, BE, CF concur. (This is a spec ia l  case of  Brianchon's 

Theorem, see  [4], p. 77. ) - 
5. Let P be a point ins ide  pentagon ABODE such t h a t  t h e  l i n e s  AP, B P ; C P ,  

DP, EP meet t h e  opposi te  s i d e s  a t  points  F, G,  H, I, and J, a s  shown i n  

Figure 16. Prove t h a t  AI- BJ- CF-DG-EH = BI-CJ'DF-EG-AH. (See [8], 

Figure 16 
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THE ISOMORPHISM OF THE 
LATTICE OF CONGRUENCE RELATIONS ON A GROUP 

AND THE LATTICE OF NORMAL SUBGROUPS OF A GROUP 

by Ke l l y  Ann Chambm 
UyuMvul-Ltq 06 V a g t o n  

A l a t t i c e  is  a nonempty s e t  L ,  together  with a p a r t i a l  order such 

t h a t  t h e  infimum of [ a ,  b } ,  denoted by a A b ,  and t h e  supremum of  { a ,  b} ,  

denoted by a V  b ,  e x i s t  f o r  a l l  a ,  b e L  [ I ] .  

Two l a t t i c e s  (L, A ,  V )  and ( L ' ,  A ' ,  V 1 )  a r e  isomorphic if there  

is  a map f :  L  + L '  which is one-to-one and onto such t h a t  f ( a  A  b )  = 

f i a t  A' f i b )  and f ( a  V  b )  = f ( a )  V 1  f ( b )  f o r  any a ,  b e L  [ I ] .  

Note t h a t  t h e  composition of  two binary r e l a t i o n s ,  R and S, on a 

s e t  A  i s  the  binary r e l a t i o n  

R  0 S = { ( x , z ) :  t h e r e  e x i s t s  y E A  such t h a t  x R y  and ySs} 121. 

Also, r e c a l l  t h a t  a congruence r e l a t i o n ,  C ,  on a group ( G ,  -1  is an 

equivalence r e l a t i o n  (binary r e l a t i o n  t h a t  is re f lex ive ,  symmetric, and 

t r a n s i t i v e )  which s a t i s f i e s  t h e  following condition f o r  a l l  a, a ' ,  b, 

b t  E G: I f  a C a t  and bCb ', then ( a b ) C ( a t b t ) ,  where ab denotes a b. 

The f a c t  t h a t  there  is  a one-to-one correspondence between normal 

subgroups and congruence r e l a t i o n s  is a r e s u l t  from group theory. I f  

G  is a group and C  is  a congruence r e l a t i o n  on G ,  then t h e  equivalence 

c l a s s  containing t h e  i d e n t i t y  of  G is a normal subgroup of G. Likewise, 

i f  N  is a normal subgroup of  G ,  then t h e  binary r e l a t i o n  C ,  given by 

aCb i f  and only i f  Na = Sb, f o r  a l l  a ,  b e. G ,  is a congruence r e l a t i o n  

on G. In t h i s  note, we show t h i s  b i jec t ion  forms t h e  bas i s  f o r  t h e  

isomorphism between the  l a t t i c e  of congruence r e l a t i o n s  on a group, 

C o n ( G ) ,  and t h e  l a t t i c e  of normal subgroups of a group, N o r ( G ) ,  shown 

here. 

C o n ( G )  and N o r ( G )  a r e  both l a t t i c e s  with se t- theore t ic  

in te r sec t ion  a s  t h e  infimum. In  order f o r  C o n ( G )  and N o d G )  t o  be 

isomorphic, t h e  map must a l s o  preserve supremums. 

The supremum of  two normal subgroups i n  N o r ( G )  is  t h e  normal 

subgroup generated by them. It is  known from group theory t h a t  t h i s  is 

equal t o  NlN2 = { n l n 2 :  nl E N ,  n e N } .  

Let E q ( A )  be the  s e t  of a l l  equivalence r e l a t i o n s  on a s e t  A .  

E q ( A )  i s  a l a t t i c e  with se t- theore t ic  in te r sec t ion  a s  t h e  infimum and 

t h e  smallest  equivalence r e l a t i o n  containing 0  and 0  a s  t h e  supremum 
- - 

of { e l ,  On? f o r  a l l  0 ,  E E q ( A ) .  This is not usual ly t h e  

se t- theore t ic  union of 0 ,  and e n .  Rather, 0  V O 2  = el U  ( 9  o 0 )  U 

( 0 .  o o 0 )  U  ( 0 ,  o O n  o 0  o e n )  U ... . Since congruence r e l a t i o n s  

on a group a r e  a l s o  equivalence r e l a t i o n s  on a s e t ,  Cl V C2 = C  U 

(Cl o C 2 )  U ( C  o C2 o C l )  U ( G I  o C2 o Cl o C 2 )  U ... , f o r  a l l  Clv C2 

E C o n ( G ) .  

It is not r e a d i l y  apparent t h a t  t h e  congruence r e l a t i o n  

corresponding t o  N 1 N  i s  C  U ( C  o C 2 )  U ( C  o C  o C )  U (Cl  o C2 o Cl 

o C 2 )  U ... f o r  S l y  N2 E N o v ( G )  and C ,  C  E C o n ( G ) .  However, t h e  

group s t r u c t u r e  helps t o  s implify t h e  supremum f o r  C o n ( G ) .  For a r b i t r a r y  

s e t s  C  and C 2 ,  Cl o C  is not necessar i ly  a congruence r e l a t i o n .  In 
1 2  

par t icu la r ,  it is  not symmetric o r  t r a n s i t i v e .  However, t h e  group 

s t r u c t u r e  provides inverses ,  and t h e  inverses  a r e  c r u c i a l  i n  t h e  proofs 

t h a t  Cl o C2 is symmetric and t r a n s i t i v e .  Thus, i f  Cl and C2 a r e  

congruences on a -, t h e  supremum is Cl o C2. It is more apparent 

t h a t  t h e  congruence r e l a t i o n  corresponding t o  NlN2 is  C  o C  r a t h e r  
1 

than Cl V C 2  = Cl U (Cl  o C 2 )  U (Cl o C2 o C l )  U (GI  o C2 o Cl o C 2 )  U .... 
Thus, supremum a r e  indeed preserved, and C o n ( G )  and N o r ( G )  a r e  

isomorphic. 

C o n ( G )  denotes t h e  s e t  of a l l  congruence r e l a t i o n s  on a group G. 

For a l l  C l ,  C2 E C o n ( G ) ,  define Cl g C2 i f  Cl c C2.  Also, def ine 

C  1 2 1  A C  = C  f) C  and C  V C  = C  o C .  

Lemma 1 .  The s e t  of a l l  congruence r e l a t i o n s  on a group G ,  with 

t h e  p a r t i a l  order of s e t  inclusion,  is  a l a t t i c e .  

Proof. Since { ( a , a ) :  a E G I  is a congruence r e l a t i o n  on G ,  C o n ( G )  

is not empty. Since c is re f lex ive ,  antisymmetric, and t r a n s i t i v e ,  < 
is a p a r t i a l  order. Clearly, Cl 0 C2 is  an equivalence r e l a t i o n  t h a t  is 



contained i n  both C1 and C2. 

Assume a(Cl fl C2)a1 and b(Cl fl C2)b1. Then, aC1al and aC2a1 and 

bC1bl and bC2b1. Since C and C a r e  congruences, (ab)C1(aW) and 1 2 

(ab)C2(a'b1 1. Thus, (ab)(Cl fl C2)(a1b1),  and C1 fl C 2 is a congruence 

re la t ion .  

Let J a l s o  be a congruence r e l a t i o n  t h a t  is contained i n  both Cl 

and C2. So, J c Cl and J c C .  (a ,b)  e J + (a ,b )  e C, and (a,fc) e C2 

Thus, Cl n C is t h e  l a r g e s t  such congruence, and C 0 C is t h e  infimum 
1 2  

Now, consider Cl o C2. Assume a(C1 o C2)d and d(Cl o C2)g. 

There e x i s t  b ,  f e G such t h a t  aClb and bC2d and dClf and f C g .  So, 

aC1b and b d " ~  e and eC1d"f and fC2g, where e is t h e  i d e n t i t y  of G. 2 

Since Cl and C2 a r e  congruences, a ~ ~ ( b d - ~ f )  and (bd"f)C2g. Thus, 

a(C o C )g, and Cl o C2 is t r a n s i t i v e .  1 2  

The proofs t h a t  C o C2 is re f lex ive ,  symmetric, and a congruence 1 

r e l a t i o n  follow s imi la r ly  and eas i ly .  

Final ly,  we ver i fy  t h a t  C1 o C2 is t h e  supremum of {CIS C2}. Let 

aClb. Since C is re f lex ive ,  bC2b. Thus, a(Cl o C2)b, and 

Cl C C1 o C2. Similar ly,  C2 C Cl o C2. Let K a l s o  be a congruence 

r e l a t i o n  t h a t  contains both Cl and C .  Thus, Cl C K and C2 c K. 

x(C1 o C )a + the re  e x i s t s  y E G such t h a t  xCly and yC2z 2 

+ xKy and yKz + xKz. 

Thus, C1 o C2 c K, Cl o C is t h e  smallest  such congruence, and Cl o C 
2 2 

is t h e  supremum of {CIS C2} i n  Con(G). Thus, Con(G) is a l a t t i c e .  

Nor(G) denotes the  s e t  of  a l l  normal subgroups of a group G. For 

a l l  N., N E Nor(G), def ine N s N if Nl c N2. Also, define N A N = 
2 1 2  

Nl fl ti2 and All V 5 = = {nln2: n, E Nl, n2 E N,) . 

Lemma. 2. The s e t  of a l l  normal subgroups of a group G ,  with t h e  

p a r t i a l  order  of s e t  inclusion,  is a l a t t i c e .  

The proof of  Lemma 2 follows t h a t  of Lemma 1, and uses standard 

group theore t ic  r e s u l t s .  - 
Define f :  Nor(G) + C d G )  by f(N) = C where aC# i f  and only if 

. 

Na = Nb f o r  a l l  a ,  b e G. 

Themem. The mapping f: Nor(G) + Con(G) given by f(S) = C is a 

l a t t i c e  isomorphism. 

Proof. Assume f(Nl) = f(N2). Then, C = C x E N * Nlx = 
1 

and f is  one-to-one. 

Let C be a congruence r e l a t i o n  on G. Let [el denote t h e  

equivalence c l a s s  of e i n  C. The f a c t  t h a t  [elc is  a normal subgroup 

of G is known from group theory. Let N denote [el and l e t  f(N) = C'. 

aC1b <-*Â Na = Nb ++ ab-I E N * d c e  * (u.b"b)C(eb) * a&. Thus, 

C1 = C, and f is onto. 

For a l l  a, b e G: 

( a & )  e f(Nl A N2) * (a,b) e f(Nl fl N2) 

* ab-I e 1, and ab-I e N2 

* %a = S b  and N a  = Ng 
++ aC b and aC b 

"2 

+ + ( a , & )  e f (%)  n ;r(u2) 

(.a,b) E f(S^) A '  f ( 5 ) .  

Therefore, f ( N  A N )  = f(Nl) A '  f ( N ) ,  and f preserves infimums. 

For a l l  a, b E G: 



(a,b) E f(Nl V N2) - (a ,b )  E f(S1N2 *-+ aCN b 
1 2  

N I N a  = N1Nb - 
W 2  - a b  = %n2 f o r  some nl e ill, n2 E iV2 - a = nln2b. 

Let d = n2b. Then N (a )  = N (n d )  = S d  and N d  = N2(n2b) = N b .  1 1 1  

So, aC d a n d d C  b, a n d a ( C  o C ) b .  Thus, (a ,b)  e f(Nl) V t  f(N21. 
N1 "2 1 

On t h e  o ther  hand, l e t  ( a & )  e f(Nl) V q  f(.N_). So, a(CN o CN2)b, and 
1 

there  e x i s t s  g E G such t h a t  aC g and gC b. Thus, N a = Nlg and 
1̂ ^ 1 

-1 
N2ff = N2b. So, ag  e N and g b l  e Nn . Thus, ( a g -  )(gb-l ) e NlN2, 

and ab-I E N1N.  Therefore, (a ,b )  e f ( N  V N ) .  So, f(Nl V N )  = 

f ( N )  V f ( N  1, and f preserves supremums. Thus, Con(G) sf Nor(G). 

Note. A l a t t i c e ,  L,  is d i s t r i b u t i v e  i f  f o r  any x, y ,  z e L,  - 
x V (y A z )  = (x V y )  A (x V z) .  L is modular i f  x 5 z implies - 
x V (y A a )  = (x V y ) A z [2]. Clearly, d i s t r i b u t i v i t y  implies 

modularity, but not conversely. It can be shown t h a t  Nor(G) and Con(G) 

a r e  modular, but not  d i s t r i b u t i v e .  
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THE GENERALIZED PRISMATOIDAL VOLUME FORMULA - - 
by Scuiah UhLLg 

U n b m i i t q  0 6  U^&con^in- P H A ~ A - ~ . ~ E  

In t h i s  paper w i l l  der ive an ancient  formula f o r  t h e  volume of  

c e r t a i n  three-dimensional s o l i d s  and w i l l  g ive severa l  examples of 

s o l i d s  whose volumes we can determine by using t h e  formula. 

We begin by noting t h a t  t h e  volume of a s o l i d  can be determined by 

t h e  cross- sect ional  a rea  method (see,  f o r  example, Calculus and 

Analytic Geometry, 6th ed i t ion ,  by Thomas and Finney, page 325). Thus, 

i f  an x-axis is introduced a s  i n  Figure 1, we l e t  A(x) be t h e  

cross- sect ional  a rea  determined by s l i c i n g  t h e  s o l i d  with a plane 

perpendicular t o  t h e  x-axis and passing through t h e  a x i s  a t  x. Then t h e  

volume of t h e  s o l i d  is  fA(x)dx. 

A s o l i d  whose cross- sect ional  a rea  funct ion A(x) i s  a constant is  

c a l l e d  a prism. I f  A(x) i s  a polynomial of degree one, then t h e  s o l i d  

is  usual ly ca l led  a pyramid ( o r  frustum of a pyramid) o r  cone (or  

frustum of  a cone). I f  A(x) is  a quadrat ic  polynomial, then t h e  s o l i d  

is ca l led  a prismatoid. I f  A(x) is a polynomial of degree t h r e e  o r  

l e s s ,  then the  s o l i d  is ca l led  a generalized prismatoid. 

We a r e  concerned here with a volume formula f o r  a generalized 

prismatoid. 

Our main theorem is t h i s :  

Theohem. Suppose A(x) is a polynomial of  degree t h r e e  o r  l e s s ,  

Then, we have t h e  immediate coro l la ry :  

Coh0.&hy.  I f  t h e  cross- section a r e a  funct ion Afx) of a s o l i d  is  

a polynomial of  degree t h r e e  o r  l e s s ,  then t h e  volume is 

Note: The formula i n  t h e  coro l la ry  i s  of ten s t a t e d  with t h e  hypothesis 

t h a t  A(x) is  of degree two o r  l e s s .  Then general  form of t h e  corol lary 

may be found i n  some references (e.g., CRC Mathematical Tables, 16th 



of x. Also, b - a = 2r. Thus, t h e  volume of a sphere of radius r is 
ed i t ion ,  p. 43). Here we w i l l  present  a somewhat unusual proof, 

deriving t h e  formula from Simpson's Rule which is usual ly used f o r  

approximating i n t e g r a l s  and not  f o r  der iving exact formulas. Our proof 

a l s o  suggests why t h e  formula cannot be extended t o  t h e  s i t u a t i o n  i n  

which A(x) is a polynomial of degree l a r g e r  than three.  

2 3 V = ( 2 ~ / 6 ) ( 0  + 4nr + 0)  = (4/3)(irr ) 

since t h e  cross- sectional area of each end of t h e  sphere is 0 and i n  t h e  

2 * .- 
middle is  m . 

Example. 5 .  Let R be a region i n  t h e  plane with f i n i t e  a rea  B. Let 

P be a point not i n  t h e  plane of R. Then P and R determine a 

generalized pyramid o r  cone consis t ing of a l l  po in t s  on t h e  l i n e  segments 

joining P t o  the  po in t s  of R (see Figure 2). I f  we place our x-axis so  

t h a t  it is perpendicular t o  t h e  plane of R it is  easy t o  show t h a t  

Before proving t h e  theorem, we w i l l  give several  examples of how 

t h e  formula works. 

Example. 1 .  I f  we place our  x-axis so  that it is perpendicular t o  

t h e  base of a rectangular  box (Figure 1) then t h e  cross- sect ional  area 

is a rectangle and A(x) = -&i>. If we take h = b - a, we have 

V = (h/6)(Â£ + 4to + to) = (h/6)(6to)  = &*. 
A(x) = ( z / h ) ~ ,  where h is t h e  height of t h e  cone and the  o r i g i n  on t h e  

x-axis is placed a s  i n  f igure  2. Thus, t h e  volume is 

V = (h/6)(0 + 4(1/4)B t B) = hB/3. 

In  par t i cu la r ,  a r i g h t  c i r c u l a r  cone of rad ius  r and height h has 

nrLh volume - 3 -  

Figure 1 

More general ly  we have: 

Example. 2. The cross- sect ional  a r e a  of any s o l i d  with A(x) = 

constant = B has volume 

V = (h/6)(B + 4B + B) = (h/6)(6B) = Bh. 

Now we w i l l  g ive t h e  proof of  t h e  theorem using Simpson's Rule (see, 

f o r  example, Thomas and Finney , pp. 308-309). 

Proof. Simpson's Rule, a standard method f o r  approximating d e f i n i t e  

i n t e g r a l s ,  may be used t o  approximate 

ff(x)dx where f ( x )  = A(x). 

The approximation is obtained by subdividing [a,b] i n t o  n 

subintervals  each of  l eng th  h (n is even). The e r r o r  i n  t h e  approximation 
A 

is v h 4 f 4 ( c ) ,  where is a constant ,  c is i n  t h e  i n t e r v a l  (a,b) and 

Thus, we have t h e  following: 

EW&C 3' The cross- sect ional  a rea  of a r i g h t  c i r c u l a r  cyl inder  

2 is A(x) = try , s o  t h e  volume is 

2 2 2 2 
V = (h /6) (w2 + 4nr + n r  ) = (h/6)(6nr ) = TO h. 

E ~ p h  4 .  If we place our x-axis along t h e  diameter of a sphere 

o f  rad ius  r,it can be e a s i l y  shown t h a t  A(x) is a quadrat ic  funct ion 
f (4)  is t h e  fourth der iva t ive  of f (see  Thomas and Finney, p. 309). 



I f  f (x )  = A(x) is a polynomial of  degree th ree  o r  l e s s ,  then f(4)(a;) = 0. 

Hence, t h e  e r r o r  i n  Simpsonis Rule is 0, and we may pick n t o  be a s  

small a s  possible ,  namely we may choose n = 2. Since h = (b-a)/2, we 

obtain t h e  following (exact)  approximation 
I 

f'A(x)dx = (h/3)(A(a) + 4A((a+b)/2) + A(&)) = 

((b-a)/6)(A(a) + 4A( (a+b)/2) + A(&)). 
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LIES, SPIES, AIDS, AND DRUGS 

With increasing frequency, t h e r e  a r e  c a l l s  f o r  mandatory t e s t i n g  

of l a r g e  numbers of people f o r  t h e  a f f l i c t i o n s  mentioned i n  t h e  t i t l e .  

Some o f  those making such c a l l s  have good in ten t ions ,  but t h e  e f f e c t s  

of such t e s t i n g  would by and l a r g e  be both unexpected and very 
' 

unfortunate, 

The problem is with t h e  r e l i a b i l i t y  of t h e  t e s t s :  no t e s t  gives 

t h e  cor rec t  diagnosis 100% of t h e  time, and more t o  t h e  point ,  t h e  

r e l i a b i l i t y  of the  bes t  ava i lab le  t e s t  is general ly  a smaller f r a c t i o n  

than t h a t  representing t h e  p a r t  of t h e  population not a f f l i c t e d .  

Whenever t h i s  occurs, fewer than ha l f  of  those I ' testing posi t ivet '  w i l l  

i n  f a c t  have t h e  condition. This is an easy consequence of  Bayes' 

Theorem; most p robabi l i ty  t e x t s  have a t  l e a s t  one example o r  exercise  

along these  l i n e s ,  and Problem 627 ( F a l l  '86)  of t h i s  Journal provides 

another. 

We o f f e r  a general form of  t h i s  problem, and point  out an aspect 

of symmetry which makes t h e  f o l l y  of such mass t e s t i n g  dramatically 

obvious. 

E l .  A t e s t  f o r  a h o r r i b l e  condition is  95% r e l i a b l e ;  

t h a t  is, i f  a person has [resp., does not have] t h e  

condition, then t h e  t e s t  w i l l  be pos i t ive  [resp., negative] 

with probabi l i ty  .95. Suppose t h a t  t h e  condition a f f e c t s  1% 

of t h e  population. Find t h e  probabi l i ty  t h a t  a randomly 

selected person has t h e  condition, given t h a t  t h e  t e s t  i s  

posi t ive.  

General problem. Replace t h e  95% r e l i a b i l i t y  of t h e  t e s t  by some 

o ther  loop% [with p c lose  t o  I ] ,  and replace t h e  1% 

incidence o f  t h e  condition by some o ther  1000% [with 1-0 

even c loser  t o  I]. 

Let C denote t h e  event t h a t  a randomly se lec ted  person has t h e  A 

condition and l e t  T denote t h e  event t h a t  a randomly se lec ted  person 

t e s t s  posi t ive.  We seek P(C\T). By Bayes' Theorem, 



Note t h a t  P ( C  IT) < $ i f  and only i f  qp < (I-q)(l-q)-^->- p+q C 

Ne.gotUJitAJOvu me i n  p h o g h u ~  u i t h  the. AmeJwmn Hcuthema-fct.cat S o c i e t y  
h e g m d i n g  bumma mee-fctng~ h PmvAdence., RI abou t  t he .  time. of the. 
S o d e - t y ' ~  C e J L e W o n .  Look <(oh dVbuJLt, An t h e  S w n g  19Si 
d u e  of the. Jowcnd .  

1-p < I-q, which j u s t i f i e s  t h e  asse r t ion  made i n  t h e  second paragraph 

above. 

For t h e  example, t h e  answer is about 16%. But note  t h e  symmetry 

i n p  and Q.  Few would even contemplate mass t e s t i n g  under t h e  

following circumstances: 

A t e s t  f o r  a condition is 1% r e l i a b l e ;  t h e  condition 

a f f e c t s  95% of t h e  population. 

But t h e  proportion of f a l s e  pos i t ives  is  t h e  same! 

Histor icaz remarks- For l i e- de tec tor  t e s t s  i n  p a r t i c u l a r ,  a 

r e l i a b i l i t y  l e v e l  of 80% o r  b e t t e r  is general ly  acknowledged t o  be e. 

YOWL C f t a p t a  can  make. ube. o f ,  the. PA Mu Epbiton Aumd CutLf , .LCO-tu  aumJL- 
a b l e  t o  k e l p  you he.c.ognize. tn~31enat i .d  actu.e.vmeWtA of YOWL &tu.de.ntli. 
Contact. P h o f u o h  Rob& liJood&Ade., Sec~iVtaÃˆ .y-Theai iu~a 

Matching PA-tze. Fund. 

I f  YOWL C h a p t m  phuen-ti omo~dA f o t  OutAÂ¥tandin Hathema-fcccd P a p m  o h  
<oh %dent Achis.veme.nt h Mo-thema-fct.cb, you may appLy t o  -the t Ja t i ona l  
O f f i c e .  d o t  an amount q u a f .  t o  that qwn.t b y  YOWL C h a p t m  up t o  a maVAXurn 
of f i f t y  doUs/tii. Contact. P h o f u b o h  R o b a t  (Oood&Ade, S w ~ e A L t y - T ~ ~ ~ ~ w L c A . .  

USING AREAS TO OBTAIN THE AM-GM INEQUALITY 

Consider any n pos i t ive  r e a l  numbers xl < _ x  <_... <_xk 5 G 5 

<_ ... <_ xn, where G ^Â¥/x1x2.. xn and A = (x, + x + ... + x ) / n .  2 

From Figure 1, it follows t h a t  

with equa l i ty  i f  and only i f  xi = G. Put t ing i = 1, 2, ... , k 

successively i n  (1)  and adding t h e  inequa l i t i es  gives 

Again, using Figure 1, we have 

with equa l i ty  i f  and only i f  x = G. Let t ing j = k + 1, k + 2, ... , n 
3 

i n  (3) and adding, we ge t  

Changing s igns i n  ( 4 )  and combining with (2) gives 

Hence, 1 - A/G < 0, so  t h a t  G 5 A. Furthermore, t h e r e  is e q u a l i t y i  - 
i n  G A i f  and only i f  each o f  t h e  subs t i tu ted  values f o r  xi and x .  is a 
G; t h a t  is, i f  and only i f  x = x = ... = x . n 



PUZZLE SECTION 

Edited by 

Jobeph V .  E. Konhaube~ 

The PUZZLE SECTION i s  for the  enjoyment of those readers who 
are addicted to wrk ing  doublecrostics or who find an occasional 
mathematical puzzle at tract ive.  We consider mathematical pussies t o  
be problems whose solutions consist  of answers immediately recognisable 
as  correct by simple observation and requiring l i t t l e  formal proof. 
Material submitted and not used here will be sent  t o  the Problem Editor 
i f  Seemed appropriate for the PROBLEM DEPARTMENT. 

Address a l l  proposed pussies and puzsle solutions t o  Professor 
Joseph D. E. Kenhauser, Mathematics and Convputer Science Department, 
Macalester College, S t .  Paul, Minnesota 55105. Deadlines for puzzles 
appearing i n  the Fall Issue will be the nex t  February 15, and for the 
puzzles appearing i n  the Spring Issue w i l l  be the next  September 15. 

PUZZLES FOR SOLUTION 

1. Pmpobed by John M. How&, Box 669,  L i . t t i w c k ,  CA. 

P a r t i t i o n  a  regular  hexagon i n t o  four  congruent six-sided 
f igures  . 

2. Phopohed by t h e  Edt-toh. 

A ce r ta in  card shuff l ing device always rearranges t h e  cards i n  
the  same way ( t h a t  is, the  card in the  i t h  posi t ion always goes i n t o  the  
j t h  posi t ion,  and so  on). The Ace through King of  Clubs a r e  placed i n t o  
t h e  shuf f le r  i n  order  with t h e  Ace on the  top and t h e  King on the bottom. 
Af te r  two shuf f les  the order  of  the  cards - from top t o  bottom - is 

3. Phopobed by t h e  EdLLtoh. 
Bored i n  a  calculus c l a s s ,  a  student s t a r t e d  t o  play with h i s  

hand-held calculator .  He entered a four- digi t  number and then pressed 
t h e  "square" key. To h i s  surprise  (and de l igh t )  the  four  terminal 
d i g i t s  of the  r e s u l t  were t h e  same d i g i t s  i n  the same order  a s  those i n  
t h e  number which had been squared. What was t h a t  number? - - 

4. Phopo~ed by t h e  EcLitoh. 

The side lengths of a  convex quadrangle a r e  pos i t ive  in tegers  
such t h a t  each divides the  sum of the  o ther  three. Can the f o u r  s ide  
lengths be d i f fe ren t  numbers? 

5. Phopobed by t h e  E&tOh. 

I f  the  four  t r i angula r  faces  of a  tetrahedron have equal  a reas  
must the  faces be congruent? 

6. Phopohed by a vatchiebb w e n d .  

Nine matchsticks a r e  l a i d  end-to-end t o  enclose a  t r i a n g u l a r  
region. 

Place two more matchsticks of t h e  same length end-to-end inside the  
t r i ang le  t o  b i sec t  the t r i angula r  region. 

In the  t r i a n g u l a r  a r ray  

each number not  i n  the  top row is equal t o  t h e  difference of the  two 
numbers above it. Are you able  t o  arrange t h e  in tegers  1 through 10 
i n  a  four-rowed t r i angula r  a r ray  with the  same property? One through 
15  in  a  five-rowed array? One through 21? 

GRAFFITO 

Mo one. -LA born knowing the. ,technique^ doh b 0 l ~ i n g  phobiesni and otheh 
d X e m .  1.t -LA a ieahned b w  and g h o u  &om b u c c ~ b b 6 d  expUiience. 
Solving puzzle^ -LA one way t o  g& tfcc& expmience.. 

Jo~epfcuie and R i c h d  V .  Andhee 
Logic uncocki What was t h e  order  of  t h e  cards a f t e r  the  f i r s t  shuff le? 



COMMENTS ON PUZZLES 1 - 5, SPRING 1987 

Most respondents t o  Puszle # 1 pointed out t h a t  t h e r e  a r e  
i n f i n i t e l y  many in teger  p a i r s  (p,q) d i f f e r e n t  from (1,2) such t h a t  

generates t h e  sequence 1, 2, 4 ,  8, 16, ... . Any in teger  p a i r  (p,q) 
sa t i s fy ing  2p t q = 4 is  a solut ion and t h e r e  a r e  no o ther  in teger  
so lu t ions  t o  t h e  puzzle. Robert Pr iel ipp and Victor Feser pointed out  
t h a t  (1,2) is t h e  only solut ion in which both p and q a r e  pos i t ive  
integers .  Several readers  remarked t h a t  non- integer so lu t ions  a l s o  e x i s t .  
Seven readers  submitted the  following solut ion t o  Puzzle # 2: subdivide 
the  L-shaped region i n t o  two rectangles  i n  two d i f fe ren t  ways and i n  each 
case draw the  l i n e  segment joining the  cen te rs  of  t h e  rectangles. The 
point  of  in te r sec t ion  of t h e  l i n e  segments is t h e  centroid of the  L- 
shaped region. A l l  l i n e  segments needed can be drawn using a s t ra igh t-  
edge alone. 

Eighteen responses were received f o r  Puzzle # 3. A l l  contained the  
(unique ) solut ion 

n = 0, 1, 2, 3, with common sums 8, 68, 748, 9248, respectively. Robert 
Priel ipp found t h e  following general izat ion in Joe Roberts' Elementary 
Sumber Theory: A Problem Opiented Approach, The MIT Press ,  1977: 

where a is 0 i f  the  base 2 representat ion of  n has an even d i g i t  sum 
and is 1 otherwise. For t h e  imprecisely worded Puzzle # 4 eleven 
responses were received. Not a l l  were i n  agreement. I f  t h e  v e r t i c e s  of  
t h e  rectangle a r e  confined t o  t h e  square and its i n t e r i o r  then no move- 
ment of  t h e  rectangle is possible. I f  t h e  word move is  in te rpre ted  t o  
permit l i f t i n g  and replacing then a non-square inscr ibed rectangle can 
be f i t t e d  inside a un i t  square only i f  t h e  length o f  t h e  longer s ide  of  

t h e  rectangle is  between /2/2 and unity. If t h e  rectangle is a square 
with edge length /2/2, then t h e  square can be ro ta ted  about its cen te r  
and i ts v e r t i c e s  w i l l  not  f a l l  outs ide t h e  un i t  square. Ten cor rec t  
answers, a l l  without de ta i led  explanations, were received f o r  Puzzle # 5. 
Michael J. Taylor did wri te  "by counting ... the  missing arrangement 
would contain an odd number of each color." Most respondents provided- 
e i t h e r  the  a r ray  below o r  its transpose 

W B R R W  

B W R B R  

W W B R B  

R R W R B  

R B W R R  

and pointed out t h a t  the  missing 5-tuple was R R W R B. 

L i s t  of  respondents: Steve Ascher (1,3), Charles Ashbacher (3,4), J u l i a  
Bednar (3). William Boulaer (1.3.4). Russell Euler (1.3). Mark Evans - - - - .  - - -  
(1,3,4), v i c t o r  G. ~eser"(1,3,4,5), John M. Howell (l,2,3,4,5), Edm~nd 
F. Marks, Jr. (1,3,4,5), Glen E. Mills (1,2,3,4,5), John 0. Moores (1.2, 
3,4,5), Stephen Morais (1,2,3,5), Robert Pr iel ipp (1,3), John H. Sco t t  
(1,2,3,4,5), Sahib Singh (1,3,4), E m i l  Slowinski (1,2,3,4,5), Michael J. 
Taylor (5) and Marc Whinston (1,3,4). One unsigned response contained 
solut ions t o  a l l  f ive  puzzles. Receipt was acknowledged by p o s t a l  card 
before t h e  envelope was discarded. Sorry. Ed. 

Sof-utLOn t o  Mo-thacno~tic No. 24.  (See Spring 1987 Issue). 

Words : - 
A. deferent  
B. a l p e s t r i n e  
C. vara 
D. impress 
E. stereotomy 
F. a l e a t o r i c  
G. Norwegian taco  
H. diehard 
I. hartshorn 

J. eyeholes 
K. rounded 
L. showboated 
M. hef ty 
N. Di r ich le t  c e l l  
0. edgeways 
P. s ieve 
Q. c o n s t r u c t i v i s t  
R. a sa fe t ida  

S. ramose 
T. Trojan horse 
U. episode 
V. swallowtail 
W. doubly e l l i p t i c  
X. r ep le te  
Y. equably 
2. a e s t i v a l  
a. monohe d r a l  

Quotation: 1.6 pmbafw^ty heat OIL -tA -i-t j u t  a COWL-up dot Lgnomnce? 
The q u u t i a n  o< what -c6 heat ~eLdom m y .  Ib  the  Vev.2 a iwiJL a6pe.c.t 
06 t h e  (heat} would7 I n  c e n W u  gone by, the. an&weA. ML& d e a n t y  ye^. 
Todan, Ln t h e  developed m M d  cut $ e a t ,  t h e  0e.v.Z hsati n.e.ceded t o  a mohe 
mod& and meto.photu.caÂ£ m t e .  

Solved by: Jeanet te  Bickley, Webster Groves High School, MO; Betsy Curtis, 
Saegertown, PA; Robert Forsberg , Lexington, MA; Joan Jordan, Indianapolis,  
I N ;  Dr. Theodor Kaufman, Winthrop-University Hospital, Mineola, NY; Henry 
S. Liebennan, John Hancock Mutual Life  Insurance Co., Boston, MA; Charlotte 
Maines, Caldwell, N J ;  Robert Pr ie l ipp ,  University of Wisconsin -Oshkosh, 
W I ;  Stephanie Sloyan, Georgian Court College, Lakewood, NJ ; and Michael J. 
Taylor, Indianapolis Power and Light Co., I N .  



W h a c n o h t i c  No. 2 5  

The 302 letters to be entered in the numbered spaces in the grid will be 
identical to those in the 31 keyed Woh& at the matching numbers. The key numbers 
have been entered in the diagram to assist in constructing the solution. When 
completed, the initial letters of the hfohdd will give the name(s) of the authorcs) 
and the title of a book; the completed grid will be a quotation from that book. 

The solution to U a - t h ~ ~ ~ ~ t 0 6 t v r  No. 24 is given elsewhere in the PUZZLE 
SECTION. 

A. a p r i nc ipa l  way of specifying an i n f i n i t e  
formal language by f i n i t e  means 249 285 94 273 132 117 254 

B. t he  only knot w i th  fou r  a l t e rna t i ng  over 
and under crossings (2 wds.) 211 151 46 66 276 108 205 35 231 199 24 

C. r igorously  j u s t  ------------- 
20 178 113 267 88 280 235 216 293 150 58 190 31 

0. the study o f  i n f l e c t i o n  and word order --------- 
as grammatical devices 212 15 83 159 148 41 262 298 174 

E. one who i s  admitted t o  cour t  t o  sue as 
the representative of a minor o r  o ther  89 206 72 295 169 155 189 102 61 263 
person under legal  d i s a b i l i t y  (2 wds.) 

F. "Master of Space! Hero o f  Science!", ------------ 
June 27, 1949 (2 wds.) 245 Ill 98 286 284 22 137 4 229 232 156 38 

G. condi t ion for  maximum t ransfer  o f  enerqy -------------- 
from source t o  load (2 wds.) 135 37 53 71 21 49 118 227 3 167 269 145 240 204 

H. the centra l  l i n e  i n  the Greek l e t t e r  
eps i lon 255 133 191 29 195 101 75 

I. XU(XflY) = X and i t s  dual (2 wds.) -------------- 
279 223 302 210 251 73 146 247 109 265 290 192 149 23 

J. an instrument f o r  descr ib ing e l l i pses  
68 183 218 119 32 153 11 

K. a system o f  w r i t i n g  pecul iar  t o  an ea r l y  
I r i s h  alphabet 136 114 299 120 97 

L. a mock m a n  ---------- 
112 19 242 82 208 261 187 202 160 296 

M. a product -------- - 
62 129 239 221 27 54 170 110 266 

N. blank spaces ------- 
99 77 48 36 141 10 197 

0. narrow (comp.) ------- - 
80 248 179 162 252 275 9 188 

P. considered by many t o  have been Sam 
Loyd's greatest puzzle, 1896 (4 wds.) 161 3 Q D F  6939103E294-6- 277288139228196 

Q. a continuous mapping from one space t o  a --------- 
higher dimensional space 91 291 30 164 107 274 47 253 60 

R.  sometime synonym f o r  "set" ------- 
116 241 64 40 74 126 52 

S. engaged i n  dispute (2 wds.) ------------- 
297 134 193 18 171 93 115 28 2 250 140 214 165 

T. d e f t  (sometimes hyphenated) ----------- 
152 283 270 25 1 163 175 92 258 168 213 

U. model o r  pat tern -------- 
87 259 301 43 220 79 105 143 

V. sponge weaves, sat inet te ,  duck d o t h ,  --------------- 
figured t w i l l  (2 wds.) 8 142 238 21 9 100 260 182 237 278 292 17 271 215 84 57 

W. t he  sequence {(2n)!/n!(n+l)!), n = 1, 2, . . . bears the name of t h i s  Belgian 122 207 234 186 289 14 257 
mathematician 

X. " i s n ' t  what i t  used t o  be." --------- 
Arthur C. Clarke (2  wds.) 185 125 33 70 172 7 106 131 244 

Y. absolute ----------- 
222 76 86 268 176 281 44 157 203 26 34 

Z. what the gumball machine was an ea r l y  ------- 
example o f  (2 wds. ) 173 45 12 85 158 6 209 246 63 144 201 127 230 217 

a. the annual Commemoration o f  founders and 
benefactors a t  Oxford Un ive rs i t y  55 67 95 226 147 128 236 272 

b. a s t i c k  o r  cudgel --------- 
180 166 56 138 104 81 256 42 287 A 

c. a cactus- l ike t ree  of Mexico and the  
southwestern U.S. having c lus te rs  of 59 154 96 224 264 13 194 181 
sca r le t  tubular  flowers 

d. transcendental ------------ 
65 177 123 51 225 198 130 243 50 184 232 90 

e. i t or ig inated i n  China (about 1200 B.C.) 
as a m i l i t a r y  s ignal ing device 16 200 124 233 



PROBLEM DEPARTMENT 

EdUed by Clayton IS. Dodge 

UVbLvm'Lty of, Maine 

T b  d e w &  we^.comu phoblemb b&Lieved t o  be n w  and at a 

& w e t  apphoWAJOte <oh thx. h e a d m  of, t b  j o m n d .  Old pmblemb 
di&pia.y-Lng novel and elegant m&thod& of, 60LuLti.on OAC 0^40 -tnu-L.t&d. 
Phopob& ~hou- fd  be accompaizce.d by boLwLLonh .if, avOA ĴH.bLe mid by any 
^.n<oAmz-t-t.on that wiSUL cL6bht t h e  nditoh. An ~ t V u J t , k  [ * I  phectcLwg a 
p m b h  numbvi Â¥wd^.cat that t h e  p m p o ~ e ~ .  <Lid not  hubmil a 6oiuti.on. 

AU. commuVbLca.ti.onh bhodd  be addhubed t o  C .  IS .  Dodge, Math. 
Dept., UVbLvm'Lty o< Maine, Ohono, M E  04469-01 22. P L m e  ~ubiPiA< each 
phopobat and bo.fuAi.on pn.ef,VJwbLy typed oh ClwULy wiuM-en on a 

befWUJLte h e 2  (one bide oiiÂ£y phope^y ^dewti.f,-ted w i t h  name and 

ad&z&&. Sotivtionh t o  phoblem~ -in th& ^44ue bhodd  be madled by 

July 1 ,  1988. 

Problems f o r  Solution 

652. Phopoud by John M .  HawcLt, u t t e v i o c k ,  QoJULf,ohnia. 
Most people g e t  t h e i r  news from rad io  and te lev i s ion .  Hence, 

solve t h i s  base 8 addi t ion alphametric f o r  t h e  g r e a t e s t  NEWS: 

ABC 

NBC 

CBS - 
NEWS 

*653. Pmpobed .indipe.ndefvU.y by Rob& C. G e b h ~ ~ d t ,  County 

Co-e-Cege 06 N o d ,  RandoLph, Nwi J m e y ,  and C & $ j o h d  14. Sing% 
&not Neck, N w i  Yohk. 

A small square is constructed ins ide  a square of a rea  1 by 

marking of f  segments of length 1/n along each s ide  a s  shown i n  t h e  

f igure  a t  t h e  top of t h e  next page. For n = 4 t h e  s i d e  s of t h e  

small square is 1/5. For what o ther  pos i t ive  i n t e g r a l  n is s t h e  

rec iproca l  of  an integer? (This proposal is  based on a 1985 AIME 

problem. ) 

654. Pmpobed by Kic.W 1. Hub, Rancho Pdob V e ~ d a s ,  

catif,oim-ia.. 
In  t h e  game of  Rouge e t  Noir, cards a r e  d e a l t  one a t  a time from 

a l a r g e  number of  well-shuffled decks u n t i l  t h e  t o t a l  pip count is i n  

t h e  range 31 t o  40. (Face cards each count 10.) Eoyle C w e t e  (by 

Foster,  1916) gives t h e  r e l a t i v e  p r o b a b i l i t i e s  of  a r r i v i n g  a t  t h e  

sums 31, 32, 33, ... , 40 a s  13, 1 2 ,  11, ... , 4, respect ively.  Find a 

more accura.$,e s e t  of p robabi l i t i es .  

655. Pwpoied by R .  S. LuJthaM., UiwJ2~4-Lty of, W^Uicon^Ln Cen- te~ ,  

Janasv^Â£Â£ W-cAcoii~^n. 
In  t r i a n g l e  ABD, aB = 120'. Furthermore, there  is a point  C on 

3 
s ide  AD such t h a t  4ABC = go0, AC = fi, and BD = 2/AC. Find t h e  lengths 

of AB and CD. 

656. pmp0~e.d by Jack GcLUfunkeJi, FLuhing, New Yohk. 

Let ABC be any t r i a n g l e  and extend s i d e  AB t o  A ' ,  s i d e  BC t o  B', 

and s i d e  CA t o  C' so  t h a t  B l i e s  between A and A ' ,  e t c . ,  and BA' = 
bAB, AC' = X'CA, and CB' = XmBC* Find t h e  value of X so  t h a t  t h e  

area of  t r i a n g l e  A'BrCr is  four  times t h e  a rea  of  t r i a n g l e  ABC. See 

t h e  f i g u r e  below. 



657. P m p o ~ e d  b y  R .  S .  L tLtha~~,  Univ2~&AJLq 06 W-LAcon6in C ~ n t e ~ ,  
J a n u v i U e ,  W h c o m i n .  

Evaluate the  trigonometric sum 

sin' L + s<n6 2~ + s<n6 Z t s<n6 2 . 
8 8 8 8 

658. P ~ o p o ~ e d  b y  M. S .  f i t a d i n ,  Un-t.um.tAy 0 6  Mbvita.,  
Edmonton, Atbvita.,  Canada. 

7 Factor (x + z j  t z17 - x - zj7 - z7 i n t o  a product of r e a l  

polynomials, each having degree not t o  exceed four. 

659. P~opo- ied  b y  H m q  S e d o i g m  and M b w t  Wh t̂e, S t .  

Bonaveittuhe Un-t.vm.tfq, S-t. Sonaventuhe,  New Yohk. 
If 0 < x < 1, p >1, and q = p/(p - 11, then prove t h a t  

(̂aP + 1 )  - < (xq + 1)p-l. 

660. Phopobed b y  Sta.nX.nq Rab&ow.tAz, WUis.n-t C o m p a t e ~ .  S y b t e m  
Cohp., IMM.(Lton, Mubbacdu-Ae -̂tA. 

Recently the  e lder ly  numerologist E. P. B. Umbugio read t h e  l i f e  

of Leonardo Fibonacci and became in te res ted  i n  the  Fibonacci numbers 

1, 1, 2, 3, 5, 8, 13, ..., where each number a f t e r  t h e  second one is 

t h e  sum of t h e  two preceding numbers. He is t ry ing  t o  f i n d  a 3 x 3 

magic square of d i s t i n c t  Fibonacci numbers (but Fl = 1 and F = 1 can 
2 

both be used), but has not y e t  been successful.  Help the  professor 

by f inding such a magic square o r  by proving t h a t  none e x i s t s .  

661. Phopobed b y  John Id. How&, IMM.ehock, C a L L 6 o ~ n . k ~ .  

a )  How close t o  a cubical  box can you get  i f  the  s ides  and the  

diagonal of a rectangular parallelepiped a r e  a l l  in tegra l?  

*b) How close can you g e t  t o  a cube i f  a l l  t h e  face  diagonals 

must be in tegra l ,  too? 

662. Phopo&e.d b y  R. S. LVLthm, UiM.ue~6-6.tq 06 W-LAco~sin Cen-tm, 

J a n & ~ v W L e ,  Whcom-ui .  
Solve t h e  equation 

~ o ~ Y - ~  - 2.10Z/-2 - + 20 = 0 .  

663. Phopo&vi b y  M. S. Kfoinfe-tn, U n i M ~ ~ n i t q  06 Mbvi^n, 
Edmonton, A i b m t a ,  Canada. 

Find a s e r i e s  expansion f o r  the  i n t e g r a l  

x & I, SET- 

664. Pkopobed b y  W^ZUam M .  Snydeh, JA. ,  UM-Cueh4.tAy 06 ! . f ine,  
Omno,  Maine. 

In t h i s  sentence t h e  number of occurrences of t h e  d i g i t  0 is - 
of 1 is - 2 i s -  3 i s -  4 i s -  , 5 is -y 

- - 
- 
6 is  - 7 i s -  8 i s -  , and of the  d i g i t  9 is -. 

a )  F i l l  i n  t h e  blanks t o  make t h e  sentence t rue.  

*b) How many so lu t ions  a r e  there?  

(T(Lc4 pfiobiem a p p e o ~ . e d  o n  -the bu,U.&tw b o d  0 6  a communLty 

co.U.ege in Wimqiand. 1 

Solutions 

595. [Spring 1985, Spring 1986, Fall 19861 Phopobed b y  H m y  
NÂ£-Â£&o L c v m o h e ,  C a J L H o h h .  

If t h e  in tegers  from 1 t o  5000 a r e  l i s t e d  i n  equivalence c lasses  

according t o  t h e  number of wr i t t en  characters  (including blanks and 

hyphens) needed t o  wr i te  them out i n  f u l l  i n  cor rec t  English, there  

a r e  exact ly f o r t y  such non-empty classes .  For example, c l a s s  "4" 

contains 4, 5, and 9 ,  s ince FOUR, FIVE, and SINE a r e  the  only such 

numbers t h a t  can be wri t ten out with exact ly four  characters .  

Similar ly,  c l a s s  "42" contains 3373, 3377, 3378, 3773, 3777, 3778, 

3873, 3877, and 3878. Find t h e  unique c l a s s  "n" t h a t  contains j u s t  

one number. 

I V .  Come.wt b y  L m o g  F. A k q m ,  The. Okus S M e .  U n i v m ^ t g ,  
Coiumbitli, Ohio .  

On February 13, 1977, The New York Tines i n  a book review 

pr in ted  t h i s  i n t e r e s t i n g  misinterpretat ion:  " A l l  of Apple's bes t  

characters  a r e  f a n a t i c s ,  each with one eye open a 30-second of an 

inch too fa r ."  I a l s o  object  t o  The T i n e s '  use of "three-thousandths 

of an inch" f o r  0.003 inch, s ince I consider "twenty three- 

thousandths" t o  be 20/3000, r a t h e r  than 23/1000. Of course, t h e  

e d i t o r s  of The Times might object  t h a t  nobody would use 20/3000, 

s ince t h e  f rac t ion  is e a s i l y  reducible  t o  2/300. But would I wr i te  

t h i s  a s  "two three-hundredths" o r  "two th ree  hundredths?" I think 

t h e  former. What about 200/23000 versus 223/1000 versus 220/3000? * 
Incidental ly ,  Fowler advises  The Times' way. 

615. [Spring 1986, Spring 19871 Pmpobed  b y  WUtiam S .  C d e n i ,  

LoiwJLn County Community C o U e g e ,  EtqlUJO., Ohio .  



Although several years into retirement, Professor Euclide 

Pasquale Bombasto Umbugio still practices mathematics with his 

usual prowess and efficiency. His native country, Guayazuala, 

still cannot afford a computer, but they do have a pocket four- 

function calculator to which he has occasional access. His latest 

project is to find the sum of the abscissas of the points of 

intersection of the seventh-degree polynomial 

3 2 f(~) = x7 - - 1te5 + 5te4 - 3 & ~  - 52s + 48a: 
with its derivative polynomial. So far he has laboriously found 

one of the intersections at as = 1.3177227. Help the kindly, old 

professor to find his sum without resorting to a computer. 

I I. Comment by Ati.cha&t W .  E C ~ Q J L ,  Pe.nnbytvawis. S t a t e  U n i v ~ i - U y ,  

W - t Â £ k u - W  Campui, Lehmdn, Puw&ytv(uua.. 
The solution is unsatisfactory. True, the answer of 10 is 

correct; the solution, which incorporates the all-important 

reasoning, however, is incomplete or defective. The sum of the zeros 

of a monic polynomial is indeed the coefficient of the second term, 

counting by descending powers. However, this counts all the complex 

zeros and this problem seeks only the sum of the real zeros. Thus 

one must show that there are no imaginary zeros or one must prove 

that the sum of all the imaginary zeros of the polynomial is zero. 

In this case a Newton's method program verified the former situation 

by showing that the seven roots are approximately -3.582, -0.726, 

0.326, 1.318, 2, 2.694, and 7.971. 

626. [ F a l l  19861 P w p h e d  by C h d u  W .  T G g ,  Sun Viego, 

CaJU.60fwAJO.. 
Reconstruct this doubly true German alphametric where, of course, 

DREI and SECBS are divisible by 3. They also have the same digit SUB. 

EINS + ZWEI + DREI = SECTS. 
Composite 06 ho-Cottonb hubm^tted hdependent ty  by Glen E .  W, 

Onange County Rib& SchooJLli, Oxiando, FtoIULda, and John V.  MOOACA, 

Cambridge, A4aihacbe-Cti. 
From the units column we have I = 0 or 5. From the thousands 

column we have that S = 1. Also we have 

D + R + E + J =  2 + E + C + B = 0  (mod3). 

By trial and success we substitute for each pair N, E, which 

determines H. Then C is chosen subject to the displayed congruence. 

Next, from the remaining digits, take Z and D so that Z + 0 is 8, 9, 

or 10. Juggle the remaining digits to obtain compatible W, R, and 

Finally, apply the displayed congruence. We arrive at the unique 

restoration 

3591 + 2835-+ 7035 = 13461. 
AÂ£A bo tv id  by CHARLES ASHBACHER, Mount Mmcy CoUege, CeAiA 

Rap^fA, I d ,  MARK EVANS, LolUAv-t^e, KY,  VICTOR G. FESER, U n i u s ~ ~ > i , t y  

06 Mmy, 8&mmck, W ,  RICHARD I .  HESS, Rancho PaX-oh V ~ U ,  Cd, JOHN 

M. HOWELL, L U t t m o c k ,  CA, and the. PROPOSER. 

627. [ F a l l  19861 Phopohed by R o b a t  C. G e b h d ,  Hopatcong, 

New J u y ,  
T U i  piobton no6 -ui-Ce~e~-tuig appÂ£<.ca<-ton 60h anyone who ^A a b e d  

t o  t a k e  a f i e -de tec toh  tut, a dhug-u^e. tut, an AIDS tut, oh. any 

h i w i t - a ~  tut w h a e  t h e  p m c e n t a g u  ans. 06 t h e  o/idm h h o m  Jw. t h e  

queb-t-tOn. It is known, let us say, that 0.1% of the general 

population are liars. When people known to be liars take lie-detector 

tests, the test results are correct 95% of the time. When people 

known to be truthful take lie-detector tests, the test results are 

correct 99% of the time. To get a certain job, you are asked to take 

a lie-detector test. Its results indicate you are a liar. What is 

the probability that you actually are a liar? 

I .  So lu t ion  by Rubb&Â£ U r n ,  Nowthwut M^AhoUJU. S t a t e  
um.vsJU>.ity, MOAyvJUULe, VLmouJu^ 

Let A be the event that you actually are a liar and let B be the 

event that the lie-detector test indicates that you are a liar. Then 

11. Sofut-usn. by the. Pwpohw.. 

Consider a population of 100,000 people. Then 100 of them will 

be liars and the other 99,900 will be truthful. When the 100 liars 

are given lie-detector tests, they will indicate that 95 of them are 

liars and 5 are not. If the 99,900 truthful people are tested, the 

test will wrongly show 999 of them to be liars. Thus a test result 

indicating that a person is a liar is correct only 95/(999 + 95) = 
* 

0.086837... of the time, less than 9%! 



t by 8m.q & l u ~ ~ & o n ,  W u i t w i  Kentmcky Un i - vm- i t y ,  

BowLing Gheen, Kentucky. 

The answer t o  t h e  question a s  posed is e i t h e r  0 o r  1, depending 

on whether o r  not  you a r e ,  i n  f a c t ,  a l i a r ;  presumably "you" know 

which. 

The other answer i s  95/1094, o r  l e s s  than 9%. The question t o  

which t h i s  is  t h e  answer is: Given t h e  assumptions of t h e  first t h r e e  

sentences of t h e  problem, suppose a person is chosen a t  random from 

t h e  general  population and tes ted .  I f  t h e  t e s t  should be pos i t ive ,  

what is the  probabi l i ty  t h a t  the  person is  a l i a r ?  

IV.  Comment by Pfc-ttx Ge-c ie~~ ,  S t .  Cloud S t a t e  UnLuuuiLty,  
S t .  Cloud, WLnnebota.. 

The more i n t e r e s t i n g  r e s u l t  is  t h a t  t h e  probabi l i ty  a person is 

a t r u t h - t e l l e r  given t h a t  the  machine has labeled him a l i a r  is 

1 - 0.0868 = 0.9132. That is, the  probabi l i ty  t h a t  a person is 

ac tua l ly  a t r u t h- t e l l e r  given t h a t  t h e  machine has labeled him a l i a r  

is  g r e a t e r  than 0.90: 

At20  b o h e d  by CHARLES ASHBACHER, Mount Memy CoUege., Cedm 

Rap-cdA, IA,  JAMES E .  CAMPBELL, U&&y of, W^&ou~d, C o h b h ,  MARK 

EVANS, Lou^VWLe, KY, RICHARD I .  HESS, Rancho P d o b  V&, CA, 

H E N R Y  S. LIEBERMAN, Wa.ban, MA, JOHN D .  MOORES, CumblMlge., MA, HARRY 

SEDINGER, St. Bonauewtune Un iv iusL ty ,  NY, TIMOTHY SIPKA, Alma. Co l lege,  

A i m ,  M I ,  and WADE H.  SHERARD, F m n  U&m-tA/, G&e.enuWLe, SC. A U  

thebe  b o t v u u  uhed B a y e ~ '  the.ote.m, t h e  m h o d  of ,  S o l u t i o n  7. GEORGE P. 

EVANOVICH, E h d  t0JUUUia.m~ CoUege, Hacken~ack, NJ, VICTOR G. FESER, 

U ~ M . U ~ A A . ~ A /  06 MoAy, 8-Lima~ck, NV, and THOMAS F. SWEENEY, R u ^ e ^  Sage 

CoUege, Thoy, NY, oJUL i u b m i t t e d  ~ o l u - t t o n ~  that had minoh ~ i o u  of one 

b o d  oh a n o t h e ~ .  

628. [Fall 19861 Phopobed by AÂ Ttxego, W d e n ,  Ma^~acfoue^tA. 

a )  How many 4 x 6 cards can a paper wholesaler cu t  from a 

standard 17 x 22-inch sheet  of card stock? 

b)  Can the  waste be eliminated if one is  allowed t o  cut  both 

3 x 5 and 4 x 6 cards from t h e  same sheet? 

I .  S o l u t i o n  by W-LVUam P. McIn-to~h, C e W  Me^iodcAt CoUe-ge., 

Fayv i te ,  M-LAi0UA-L. 

a )  Since both dimensions of t h e  cards a r e  even, t h e  number of 

cards t h a t  can be cu t  from a 17 x 22-inch sheet  is t h e  same a s  the  

number t h a t  can be cu t  from a 16 x 22 sheet.  Since t h e  l a t t e r  

sheet  contains 352 square inches and 15 cards would require  360 

square inches, it i s  c l e a r  t h a t  a t  most 14 cards can be cu t  from one 

sheet.  The l e f t  diagram below shows one way t o  cu t  fourteen 4 x 6 -*: - 
cards from a 17 x 22 sheet.  

(b)  The waste cannot be eliminated, but can be g r e a t l y  reduced. 

Since t h e  areas  of  t h e  cards a r e  15 and 24 square inches 

respect ively,  both of which a r e  mult iples  of 3, then t h e  t o t a l  a rea  

of t h e  cards must be a mult iple  of 3. Since t h e  area of  the  sheet  is  

374 square inches, there  must be a t  l e a s t  2 square inches of waste. 

The right-hand f i g u r e  shows a way t o  cu t  e igh t  4 x 6 cards and twelve 

3 x 5 cards from a 17 x 22-inch sheet ,  with exact ly 2 square inches 

of waste. 

11. The. f,Â¥igw~ (below l e . f , t ]  <o& pcuit [a1 WOL& hubm^kte.d 

independent ty  by VLc-to~. G. F u a ,  U w M i u L t y  o f ,  M o ~ y ,  B.ibma~ck, NoAth 

Dakota., Robert  C. GebhaMlt, Hopiitcong, New J m e y ,  John V.  M o o t u ,  

Camb'u.dge, M a ~ ~ a c f a u e X t A ,  and Wade H. S h i ~ i d ,  F m a n  U n i u m ' c t y ,  

Gn.eenu-LU.e, South. CcmoLLna.. 



111. The f , igwtt  (preceding page, /Light1 <oh pa&t (b l  (UOA 

iubmLtted indepmdent iy  by V i c . 2 0 ~  G. FUVL, U n i v i ~ . i t y  of, &my, 
Bcimafick, NoVth Vakota, R i c h a d  I .  H u t ,  Rancho P d o i  V m d u ,  

C a & j o w U a ,  John M. Howell ,  U i t t t m c k ,  C a & j o m i a ,  and John H. 
Sco t t ,  Madutek CoLikge, S a i d  P a d ,  Atuznuota. 

I V .  C o m w t  by the. Phopobe~. 
A commercial paper kn i fe  makes only s t r a i g h t  c u t s  across  t h e  

e n t i r e  shee t  of  paper. Hence solut ion I ( b )  cannot be done with such 

a knife. Each of  t h e  o ther  th ree  f igures  can be so  cu t ,  those of 

so lu t ions  I11 and I V  being perhaps e a s i e r  f o r  t h e  operator  of t h e  

knife. The question remains whether there  is  a commercial kn i fe  

solut ion t o  (b )  t h a t  wastes only 2 square inches. The answer is  

'no"; so lu t ion  I V  is indeed the  bes t  one can do. 

To f i n d  t h e  minimum waste f o r  p a r t  (b), we form a waste table .  

Recall t h a t  t h e  17 x 22 sheet  must be cu t  i n t o  two smaller pieces, 

then each piece must be c u t  again, repeat ing t h e  process u n t i l  only 

3 x 5 cards, 4 x 6 cards, and scrap pieces remain. We form the  waste 

t a b l e  by "rebuilding" t h e  o r i g i n a l  sheet ,  using a l l  possible  

combinations. Clearly any 1 x n and 2 x n sheets  a r e  a l l  waste. A 

3 x n sheet  has waste 3, 6, 9, 12, 0, 3, 6,... square inches f o r  n = 
1, 2, 3,... . A 4 x n sheet  has 4, 8, 12, 16, 5, 0, 4, 8, 12, 10, 5, 

0, ... square inches of waste by c u t t i n g  3 x 5 o r  4 x 6 cards a s  

appropriate. Continue i n  t h i s  fashion through n = 6. Note t h a t  an 

m x n sheet  has t h e  same waste a s  an n x m sheet .  Then, whenm and n 

a r e  both l a r g e r  than 6, we f i n d  t h e  waste by taking t h e  minimum of 

the  sums of t h e  wastes of two smaller shee t s  t h a t  combine t o  form t h e  

m x n sheet.  Thus consider k x n and (m - k )  x n shee t s  f o r  k = 1 t o  

m -  1 and a l s o m x j  andm x ( n - j )  shee t s  f o r j  = 1 t o n  - 1. For 

example, a 9 x 11 sheet has waste 0 because the  wastes f o r  9 x 5 and 

9 x 6 shee t s  a r e  both 0, even though no combination of k x 11 and 

(9 - k) x 11 w i l l  g ive t h e  zero sum. This tedious process, which can 

be programmed i n t o  a computer, eventual ly shows t h a t  a 17 x 22 sheet 

must have waste 5. 

AUo ~ o l v e d  by MARK EVANS (who f ,uiuAhed t h e  Arne ( ( igme  ah .the 

i e f , t  one of, So lu t ion  11, LotU^uUf-e, KY, and sJUL t h o ~ e  U t e d  above. 
AU ~ o t v w i  an~wtvicd c o m e c t t y  t h e  q u u t t o n  .in paAt l b l ,  ba t  only  

t h o u  t i t , ted  in AoluAionb I and 111 pfiovided f , i g u ~ i u  <oh that  p d .  

629. [Fall 19861 P h o p m d  by Jack GoAf,unkeÂ£ Ftu6fu.n 

Yo&. 
If A ,  B, C a r e  t h e  angles  of  a t r i a n g l e ,  prove t h a t  

I .  So lu t ion  by G e o g e  P. Evanovich, E M  UWtJiam& CotLege, 

Hackenback, New Juu i i y .  
In  any t r i ang le ,  t h e  dis tance between t h e  incenter  I and t h e  

or thocenter  fl, according t o  Hobson, A Trea t i se  on P h e  and Advanced 

Trigonometry, page 200, is  given by 

IS = 4 ~ 1 ( 1  - a08 A)( l  - co8 B)(1 - co8 C) - 008 A 008 B 008 

where R is t h e  circumradius of t h e  t r i ang le .  Hence t h e  displayed 

quant i ty  is nonnegative and t h e  theorem follows. Furthermore, 

equa l i ty  occurs i f  and only i f  B = I, t h a t  is, if and only i f  

t r i a n g l e  ABC is equi la te ra l .  

I I .  Comment by R.Lchafi.d I .  HUA, Rancho P d o ~  V e d a ,  
CatLf,oluUJO.. 

This problem has appeared i n  Crux Mathematicopurn a s  problem 836 

[l983, 1131 and [1984, 2281 . A very s imi la r  problem, proposed by 

Jack Garfunkel, appeared there  a s  problem 974 [1984, 2621 and [1985, 

3281 . 
A U o  io tved  by MARK EVANS, LovLUvJUULe, KY, RICHARD I .  HESS, 

Rancho Patoi V e d a ,  CA, BOB PRIELIPP, U n h m - i t y  of, W^scon~in- 
O i h k o ~ h ,  and the. PROPOSER. PL&pp &o pointed o u t  t h e  Crux 
Mathematicorum phoblem numbvi. S36. 

630. [Fall 19861 Phopa~ed by Ku&^eJU. E u ^ e ~ ,  Nonthwut  AUAAOLULL 

S t a t e  U n i u i ~ L t y ,  MoAyUf-e, Mt6iouAt. 
Evaluate 

a 
II s i n  L- 

m=l G + 1 

So lu t ion  by Kewivth M. WiÂ£.ke Topeka, Kanbah. 
Recal l  t h a t  exp(xi) = cis a = cog x + i s i n  x, expf2ni) = 1, 

expfa)*exp(b) = m p ( a  + b) and t h a t  t h e  r o o t s  of  xr - 1 = 0 a r e  

expf 2nmi/r) f o r  m = 1, 2, . . . , r f o r  pos i t ive  i n t e g r a l  r. Then 
a 

Now s e t  a = 1 i n  t h i s  equation t o  g e t  



By standard trigonometric double-angle formulas we g e t  t h a t  

1 - exp(2ti) = 1 - cos 2t - i sin 2t 
2 = 1 - (1 - 2 sin t )  - 2i sin t cos t 

= (.-2i sin t)(cos t t i sin t )  

= (-21. sin t) exp(ti). 

Now s u b s t i t u t e  t h i s  r e s u l t  i n t o  Equation (1) t o  g e t  

Since 

and s ince  sin ( m / r )  = sin (n(r - m)/r), then we take r = 2j t 1 i n  

Equation (2) t o  ge t  t h a t  

Now take square roo ts ,  noting t h a t  each f a c t o r  i n  t h e  product i s  

pos i t ive ,  t o  g e t  

At20 soived by SEUNG JIN BANG, Seouf., Koma, BARRY BRUNSON, 

Wutuw. Kentucky U n i v m i t y ,  Bowting Gmen, BOB PRIELIPP, U n i v n u ^ y  

of,  W h w i u h - O i h k o b h ,  JOHN H .  SCOTT, M a c d u t u n .  CoUege, SILLnt P d ,  
MN, and t h e  PROPOSER. P'u.eJU.pp loca ted  tĥ  pkobtun i n  S h h i ( ~ b ~ , k y ,  

Chentzov, and Yaglom, The USSR Olympiad Problem Book ( h e v h e d  and 

e&ed by T lv ing  SitAbman and z3.afUstate.d by John Maykovitchl ,  Fn.e.eman 

1962, pkobtem 232(a ) .  B^uizAon noted that the. becond equcLUty i n  

Equation ( 3 )  h f,ound Jw. The American Mathematical Monthly, uo t .  69 

(79621, pp. 217-278. 

631. [ F a l l  19861 P~opoked by Saw Pl iauaU., Pomona, C d & $ o / t i w i .  

Let 

f o r  n = 0, 1, 2, ... and k a given constant.  If the  i n i t i a l  value y 
0 

has an absolute e r r o r  E = yo - y, where y is t h e  t r u e  value, show 

t h a t  t h e  formula i s  unstable f o r  lk[ > 1 and s tab le  f o r  \k\ < 1. 

S o l u t i o n  by Ri.cUc.haM.d 1. Hu, Rancho Pdok V m d u ,  CaLLf,o&nk~. - 
Let t h e  e r r o r  i n  y be en. Then n 

so t h a t  e l  = (-k)eO. Hence t h e  formula i s  unstable ( the  e r r o r  grows 

without bound) f o r  \kl > 1 and i s  s t a b l e  ( the  e r r o r  shrinks t o  zero)  

f o r  [kl < 1. 

AÂ£i ~ o t v e d  by FRANK P .  BATTLES, M a ~ ~ a c h u e - t t A  MaJbitune Academy, 

BuzzmdA Bay, MARK EVANS, Lou-c6v^Â£Â£ KY, JOHN H .  SCOTT, M a c a ^ t m  

CoUege, Sa-int P a d ,  MN, and t h e  PROPOSER. 

632. [ F a l l  19861 & p o d  by R. S. Lathm., U n i v v u i U y  of,  

WhcoizAin Centm, Januv^Â£Â£ Whcoiu-Ln. 

Show t h a t  

Sotn-fccon by K M i h d  I .  H u b ,  Rancho Pdok V u t d u ,  C 4 o ~ n . i ~ .  

Let 
x In x u = (x - l)xx = (x - 1)e 3 

so t h a t  

du = xx [a; t (a; - I)  In X I  da 
and 

l i m i t  x In x = l i m i t  ln - l i m i t =  = l i m i t  (-x) = 0 
x +  0 x +  0- x +  0_l/x2 x +  0 

by LfHospi tal ' s  ru le .  Thenu(1) = 0 and lht+o u(t) = u(0) = -1, so 

1 x  0 f x [x + (x - 1)ln XI da = ;Â du = 1. 
0 -1 

A^io ~ o i v u i  by FRANK P .  BATTLES, MoAbachiue^-tA Mo^fcune Academy, 

BuzzoJuiSi Bay, BARRY BRUNSON, Wutem Kewlucky U n i v m U y ,  Bomfcng 

Gaeen, GEORGE P .  EVANOVICH, SILL& Pitm CoUege, J m e y  C a y ,  NJ, 

MARK EVANS, LouJilivUJLe, KY, JACK GARFUNKEL, Fliufccng, W ,  ROBERT C. 

GEBHARDT, Hopdcong, NJ, PETER GIESER, Sauk Rap^dA, MN, RALPH KING, 

St. Bonaventu~.i U n i v m i t y ,  NY, HENRY S. LIEBERMAN, Waban, MA, PETER 

A. LINDSTROM, Novth Lake CoUege, I t t v k g ,  TX, JOHN D. MOORES, 



Camb&fge, MA, BOB PRIELIPP, Uniurn-cty  0 6  W h c o n ~ h - O ~ h k o ~ d ,  JOHN 

PUTZ, h a  Coitege, M I ,  WADE H.  SHERARD, F m n  U n b u u > ^ y .  

Gheenui-&te, SC, TIMOTHY SIPKA, A&na College, M I ,  and t h e  PROPOSER. 

633. [ F a l l  19861 Pwpobed by Vm^y P. Mavto, MOACOW, U.S.S.R. 

Leta. b. c > 0 .  a + b + c = l , a n d n ~ N .  P r o v e t h a t  

with equa l i ty  i f  and only i f  a  = b = c  = 1 / 3 .  

SotUitLon by S a n g  J h  Bang, S&, Kohea. 
We use t h e  method of Lagrange mul t ip l ie r s .  Thus l e t  

F(a,b,o) = (a"" - l)(b-" - i)(c-* - 1 )  - \(a + b  + c  - 1 ) .  

Then we have 

z = (b-" - l ) ( C - "  - 1 )  - \ 3a 

and s imi la r  expressions f o r  t h e  o ther  two p a r t i a l  der ivat ives.  

Se t t ing  t h e  th ree  p a r t i a l s  equal t o  zero, we ge t  t h a t  

"+I a d  a  + b  + c  = 1. ( 1 )  a - a n + l = b - b n + l = c - c  

Since the  graph of / ( X I  = x  - xn+' is 0 a t x  = 0 and a t  x  = 1,  

concave downward i n  t h i s  i n t e r v a l ,  and has a maximum a t  x = 

l / ( n  + 1)"" 2 112, then a t  t h e  equa l i ty  above, some two of a ,  b ,  and 

c  must be equal. Hence we assume a  = c .  Then we have 

a  - a''+' = b  - bn+l and 2 a + b = 1  ( O < a c T ) .  1 

Now t h e  graph of g{x)  = ( 1  - 2x1 - ( 1  - ?a;)"" is 0 a t  x = 0 and a t  

x = 1/2,  concave downward i n  t h i s  i n t e r v a l ,  and has a maximum a t  x = 

1 / 2  - l /2 (n  + 1 )'In 2 1 / 4 .  Furthermore t h e  maximum values of f ( x )  

and g(x)  a r e  both equal t o  l / ( n  + 1 )+"". Hence t h e  only pos i t ive  

in te rsec t ion  of f ( x )  and g(x)  is  a t  x  = 1 / 3 .  

Therefore t h e  only so lu t ion  t o  ( 1 )  is  a t  a  = b  = c  = 1/3. Since 

F(a,b,c) tends t o  i n f i n i t y  a s  a ,  b ,  o r  c  tends t o  zero, then 

I l l  
F(3-, 3-3 3-1 = on - 1 )  

3 

is  t h e  minimum value of (a"" - 1)~b"" - I ~ o - "  - 11, with equa l i ty  if 

a n d o n l y  if a  = b  = c  = 1 / 3 .  

AZio soived by RICHARD I .  HESS, Rancho Paten V u i d u ,  CA, and t h e  

PROPOSER (.two ~ o t w U o n . 4 ) .  

634. [ F a l l  19861 P~opobed by Stanley Rabhouktz, V-"}JUtaJL 

EqU@t?tent Cokp., N~Uhua., New Hompbfc-tAe. 
*--  - - 

Find t h e  condition f o r  one r o o t  of t h e  cubic equation 

3 2 x  - p s  + q x - r = o  

t o  be equal t o  t h e  sum of  t h e  o ther  two roots .  

I .  SotuLtiffn by C W u  R. Vh.in&, St. BonauWtuJLe UnLvmiXy ,  

St. BonavenAne, New Yohk. 
A necessary and s u f f i c i e n t  condit ion is t h a t  p/2 be p r o o t  of 

t h e  equation, s ince  p is  t h e  SUB of  t h e  th ree  roots .  

11. S o l u t i o n  by Ox6ohd Runn-ing Uub, U n i u w U y  06 AtiAÂ A4.@N, 

U s w i m i t y ,  ULt^iLm.pfiiL, 
Since t h e  sum of t h e  r o o t s  of t h i s  cubic is p, then one of  t h e  

r o o t s  must be p / 2 .  Subs t i tu t ing  x = p/2 i n t o  t h e  equation y i e l d s  

111. SotuuUon by t h e  P w p o b ~ . .  
The condition is ( a  + b  - c ) ( b  + c  - a ) ( c  + a  - b )  = 0,  where a ,  

b ,  and c  a r e  t h e  roo ts  of t h e  equation. Expanding out  t h i s  equation 

i n t o  a symmetric polynomial and then expressing it i n  terms of 

2 
elementary symmetric polynomials gives us  t h e  r e s u l t  p(4q - p = 8r,  

although t h e  computation is  a b i t  messy. 

Akbo i o t v e d  by BARRY BRUNSON, W u t w i  Kentucky Uniuuu>.Lty, 

Bowtwg Gheen, JAMES E. CAMPBELL, Uw-tum-f-ty 0 6  ftcibouAt, Co&imb*a, 

RUSSELL EULER, NoWthmut I t t A ~ o d  S t a t e  Uniwuui.6*y, MOAyui-&te, MARK 

EVANS, LotUAui-&te, KY, VICTOR G. FESER, U n L u m U y  06 M a y ,  ZLkmafic.k, 

NO, JACK GARFUNKEL, F&king, NY, ROBERT C.  GEBHARDT, Hopatcong, NJ, 

RICHARD I .  HESS, Rancho PoJtJSt, V u i d u ,  CA, JOHN M. HOWELL, UJttS.uuock, 

CA, XIAN SHAN H U I ,  Jamu W o n  High Schoot, S^ooktyn, NY, GLEN E. 
MILLS, Ou~nge County Public. Schoob, Ofdia.fido, FL, JOHN D. MOORES, 

Camb^Ltdge, MA, NORTHWEST MISSOURI STATE UNIVERSITY MATHEMATICS CLUB, 

Wywi-&te, BOB PRIELIPP, U W U y  06 Wdcon~&-O~hkmh,  JOHN PUTZ. 

A&itt Co-fceege, M I ,  JOHN H .  SCOTT, Wac.aX.ut&t CoUege, S& P d ,  MN, 

WADE H .  SHERARD, Fatonan Um.vULiUy, Gite.enu^JU.e, SC, ARTHUR H. 



SIMONSON, Ean,! T e r n  State UnivmJULy wt Texuhfzuna, KENNETH M .  WILKE, 

Topeka, KS, and the. PROPOSER [becond boiu.tcon I .  P L e L i p p  hound th^s, 

phobien an, E x a c h e  39 on page. 446 06 Clmjstal ' s  Textbook of Algebra, 

v o i .  1 ,  7 t h  e.d; CheJLi,ea, 1964. 

635. [ F a l l  19861 Phopohnd by John M. How&, W w s c k ,  

C&<ohL&Z. 

Our old f r i end  Professor Euclide Pasquali Bombasto Umbugio has 

been amusing himself i n  h i s  ret i rement  with problems about i n f i n i t e  

s e r i e s ,  continued f r a c t i o n s ,  and o ther  nonterminating expressions. 

He says t h a t  now he has t h e  time t o  follow through with such 

computations. So f a r  he has found t h a t  y  = and y = 1  + x  do not 

i n t e r s e c t ,  and he i s  working on f inding t h e  in te rsec t ions  of t h e  

- 1/2 
curves y = (x + Vx) and y  = 1  + x / ( l  + a ) .  Proceed t o  the  l i m i t  

and help the  good Professor by f inding a l l  in te r sec t ions  of t h e  

curves defined by t h e  continued expressions 

y  = ( x +  (x + ( x +  ... )1/2)  1 / 2 )  1/2 

and 

f o r  x > 0. 

SotmLtLon by John V .  Moohu, Cambtidge., Ma~bachu~e-fctA. 

Clearly x  > 0  implies y  > 0  f o r  each continued expression. The 

f i r s t  expression is equivalent t o  

The continued f r a c t i o n  is 

y = l + %  o r  y2 = y + x .  
Y' 

Hence both expressions represent  t h e  same parabola: 

2  
x = y  - y ,  x, y  > 0.  

S-uluAiA bo.eu-t-t.on4 itfme. .~uamJWLe.d by JAMES E. CAMPBELL, 

U n L u m L t q  of,  McMouAt., Columb-ta., RUSSELL EULER, Nowthwut  ULiibouAt. 

State. U&nu^ty ,  MmwUe., GEORGE P .  EVANOVICH, So-wt P e A m  

CoUige., J m e y  W y ,  NJ, ROBERT C. GEBHARDT, Hopcutaong, NJ, RICHARD 

I .  HESS, Rancho P d o b  VeAdu, CA, PETER A. LINDSTROM, Novth Lake. 

CoUe-ge., Uu-uig, TX, BOB PRIELIPP, Un&uUi^y of^ W^c.onb.Ln-Obhkobh, 

JOHN H. SCOTT, M a c a t u t w .  CoUege., S&wt Pa&,  MN, KENNETH M .  WILKE, 

Topeka, KS, and t h e  PROPOSER. 

636. [Fall 19861 Phopohed by W&w.  Btumbe~g, C o h d  ~pfu.ng 

F l o L d a .  

a )  Prove t h a t  i f  p  is an odd prime, then 1  + p  + p2 cannot be a 

per fec t  square o r  a per fec t  cube. 

*b) Is p a r t  ( a )  t r u e  when p is not prime? 

I .  So-tu-LLon 6 0 1  'the. ~quate. c a e  by Rob& C. G e - b h d ,  

Hopatcong, New J m e y .  
2  Assume t h a t  1  + p  + p2 is  a square, say k . Then 

2  p 2 + p + ( l - k ) = 0 ,  SO p  = - 1 + h k 2 - 3 .  2 - 2  

The only square t h a t  is  th ree  l e s s  than another square is 1 ,  which 

occurs under the  r a d i c a l  here when k = 1 o r  -1, i n  which case p  = 0  

o r  -1. Thus p2 + p  + 1  is  never a square f o r  prime p  and is  a square 

f o r  i n t e g r a l  p  only when p  = -1 or  0. 

11. SoÂ¥ttvLLo doh the. cube m e  by KenneZh M. M-t^ke, Topeka, 

kZflAaA. 
2  

Clearly p + p + 1  = s3 has i n t e g r a l  solut ions f o r  p  = -1 and 

f o r  p  = 0. Let us  assume t h e  equation holds f o r  any o ther  in tegers  p 

and s .  Then s > 1 and odd, and l p l  > 8 .  Thus t = s - 1  i s  a 

pos i t ive  in teger  and, subs t i tu t ing  t + 1  f o r  s ,  we g e t  t h a t  

(1 
2  

p(p + 1 )  = t( t  + 3t + 3 ) .  

Since ]p 1 > s > t , then t divides p  o r  p  + 1 .  I f  t \ p,  then we 

wr i te  tj = p  f o r  some in teger  j. Then Equation (1 )  reduces t o  

and applying t h e  quadrat ic  formula, we f i n d  t h a t  

2 2  
We l e t  F  = (3 - j ) - 4(3 - j ) .  

I f ,  on t h e  o ther  hand, t \ p  + 1 ,  we take t k  = p  + 1 ,  so  t h a t  

p  = tk  - 1 .  Again s u b s t i t u t e  i n t o  Equation ( 1 )  and s implify t o  g e t  . 
2  2  tk - k = t  + 3 t + 3 ,  

whose so lu t ion  is  



The two cases y ie ld  equivalent expressions f o r  Fl and F ,  a s  is 

seen by replacing j by -k. Thus we look a t  F = F2, without l o s s  of 

general i ty .  We r e a d i l y  check t h a t  F = (3 - k2I2 - 4(3 + k)  is not  a 

square f o r  any in teger  k f r o m  -2 through 4. For k > 4, 

(k2 - 312 > F > (k2 - 412. 

Since f l i e s  s t r i c t l y  between two adjacent  squares, F cannot be a 

square. For k < -3, 
2 

(k2 - 312 < F < (k2 - 3 )  , 
and again F cannot be a square. If k = -3, then t = 0 o r  6, and we 

have t h e  so lu t ions  (p, 8 )  = (-1, 1 )  o r  (-19, 7). Similar ly taking 

3 = 3, again t = 0 o r  6 and (p, 8 )  = (0,  1 )  o r  (18, 7).  We see t h a t  

2 p + p + 1 = 8  3 

has j u s t  four  i n t e g r a l  so lu t ions ,  no solut ion where p is  a pos i t ive  

prime, although some t e x t s  do allow -19 t o  be ca l led  prime. 

I I I. So tu t ion  by David E. Penney, The UnLvei6Lty of, G w ~ f l h ,  
A them,  Geohgh .  

The f i r s t  of these a s s e r t i o n s  is easy t o  establ ish.  Use t h e  

inequal i ty  

x 2 < x 2 + x + l <  ( = + I )  2 

f o r  x > 0, together  with t h e  observation t h a t  no square l i e s  properly 

between t h e  squares of two consecutive integers .  Similar ly t h e  

inequal i ty  

( ~ - l ) ~ < X ~ - x + l ~  x 2 

f o r  x < 0 shows t h a t  there  a r e  no so lu t ions  o ther  than x = 0 and -1. 

Now we t u r n  our a t t e n t i o n  t o  t h e  equation 

2 3 
1 + x + x  = y .  

Suppose t h a t  it holds f o r  some in tegers  x and y. Then 

and 

3 This equation is o f  t h e  form u2 + 48 = v and is discussed a t  length 

on pages 246 - 247 of  L. J. Mordell's D i o p h t i n e  Equations (New 

York: Academic Press, 1969). He s t a t e s  t h a t  t h i s  equation has "only 

t h e  so lu t ions  (u, v )  = (Â±4 41, (Â±148 28) and is of p a r t i c u l a r  

in te res t ."  Mordell r e f e r s  us t o  W. Ljunggren, "Einige Gleichungen - 
von der  Form aY2 + by + c = dc3," Vid. Akad. S k r i f t e r  Oslo, M r .  7 

(1930). The solut ions Mordell lists give r i s e  t o  t h e  complete l ist  

of so lu t ions  we obtained above. 

IV. Comment by H .  Abbott  and M. S .  Ktamlun, UiM.va~4i. t~ of, 

A t b w t a ,  Edmonton, Atbwta. ,  Canada.. 
In tt#ote aw Z'equation i.nde&wti&e (xn - l ) / ( x  - 1 )  = y2,vtt  

Norsk Matematisk T i d s s c r i f t  2 (1920) 75-76, Trygve Nagel has shown 

2 t h a t  t h e  equation (xn - l ) / ( x  - 1 )  = y has no i n t e g r a l  so lu t ions  f o r  

n = 7, 9, 11, and 25; t h a t  t h e r e  a r e  so lu t ions  f o r  n = 4 (e.g. x = 7 )  

and n = 5 (e.g. x = 3). He has a l s o  shown t h a t  t h e r e  a r e  no 

so lu t ions  t o  x
2  + x + 1 = 3yq f o r  l y  1 > 1 and q > 3. In "A Note on 

t h e  equation n2 + n + 1 = pry t t  Math. Mag. 37 (1964) 339-340, J. P. 

Hurling and V. H. Keiser consider so lu t ions  where p is prime. They 

determine various conditions on n, p, and r f o r  so lu t ions  t o  ex i s t .  

By means of a computer, they have shown t h a t  f o r  r > 1, t h e r e  is  only 

one solut ion f o r  n < 180,000, namely n = 18, p = 7, and r = 3 

(corresponding t o  t h e  one given above). 

V. Comment by  Bob Ptt.&e.tpp, U n w H u L t y  06  W^iconiLn-Obhfeobh, 
Obhkoih, W h w ~ i - i n .  

2 
It may be of i n t e r e s t  t o  note  t h a t  1 + 3 + 32 + 3 + 34 = 11 . 
At&o d v e d  by  H. ABBOTT and M. S. KLAMKIN, UnJLvem-Lty of, 

A tbv i t a ,  Canada., MARK EVANS (bo-Eu-tton <on. b q u m ~ ,  1 ,  Lou-tiu-t^e, KY, 

VICTOR G .  FESER (~oÂ¥fatAt:o {on. ~ M J L U ) ,  UnivmJULy o f ,  M a y ,  RLinio~ck, 
W ,  ROBERT C. GEBHARDT ( o n ~ i v e ~  604 c u b u  I, Hopcutcong, W ,  RICHARD I. 

HESS ( t o t u t i o n  don. ~ q u a ~ u ,  amum. t o t   cube^), Rancho P d o b  V v i d u ,  
CA, BOB PRIELIPP, ULLuem-Lty o f ,  W^c.o--Oihko~h, KENNETH M. WILKE, 

Topeka, KS, and the. PROPOSER ( ~ 0 f u t i a n  t o  paAt (a1 1 .  
637. [Fall 19861 Pmpobed by  R .  S .  Lutheui, U&emJuty o f ,  

W-LAconi-ui Centvi, J a n u v L U e ,  W-c&con4-in. 
Let ABC be a t r i a n g l e  with ^ABC = UCB = 40'. Let BD be t h e  A 

bisec tor  of  ^ABC and produce it t o  E s o  t h a t  DE = AD. Find t h e  

measure of *BEG. See t h e  f igure  on t h e  next page. 



So&t-tton by H m y  Sed ingm and ChffAZe~ R. VXmi iLe ,  S t .  

Bonauen-tuAe UyU.uu~.-ity, St. BonauentuAe, New Yoik. 

Choose point P on BC such t h a t  4BDP = 3BDA. Then, by ASA, 

t r i a n g l e s  ABD and PBD a r e  congruent. Therefore DF = AD = DE. We see 

t h a t  4ADB = ^CDE = 60'. Then ^CDF = 60Â° too. Thus, by SAS, 

t r i a n g l e s  CDP and CDE a r e  congruent and we ge t  t h a t  

4BEC = W E C  = 120' - W E  = 120' - W F  = 120' - 4 A C B =  80'. 

A h 0  tiotved by RUSSELL EULER, NoAthtuut HtcAhouA  ̂ S t a t e  

UiM.ue~&Xy, MmyvJUULe, JACK GARFUNKEL, F&tAh&g, NY,  ROBERT C. 

GEBHARDT, Hopatcong, NJ, RICHARD A. GIBBS, Po& Lcitf-ci Co-fcZege, VuAango, 

CO,  PETER GEISER, S t .  Ctoud State Uni.uu~.-c-ty, M N ,  RICHARD I. HESS, 

Rancho Paloh V v i d u ,  CA, RALPH KING, S t .  BonaventuAe Un-CumJULy, NY,  

JOHN D. MOORES, Cambtu.dge, MA, NORTHWEST MISSOURI STATE UNIVERSITY 

MATHEMATICS CLUB, MmyvWLe, JOHN H. SCOTT, MueoJLutm CoU.ege, S h t  

P a d ,  M N ,  WADE H. SHERARD, F m a n  UH-tvmJut.y, GieenuJUULe, SC, ARTHUR 

H. SIMONSON, E u t  Texm State. UVIA.uvu.-ity a t  Texo~kana,  KENNETH M. 

WILKE, Topeka, KS, and t h e  PROPOSER. Some of t h e  t i o t u u ~ .  u ~ e d  t h e  

taw of, h h u .  GLEN E. MILLS,  Uiange County Public Sehoot&, OnJLando, 

F L ,  i i i h g  decimal u d u e ~ ,  found the. angLe t o  withiin 0.05'. One 0 t h ~ ~  

bubm-cibion uhumed t h a t  D -LA the. midpoint of AC and a 6 L n d  p a p a  

w a d  i n  appiying the. ims of thu, each obtaining a Wiong anhum. 

638. [ F a l l  19861 Piopotied by R. S. Lu thaM. ,  UnLuWs^ty of 

Whcoiui.n Cintm, JanuuWLe,  Whco&n. 

In t h e  f i g u r e  on t h e  next page, the  c i r c l e  with cen te r  0 is an 

exc i rc le  of t r i a n g l e  ABC. Then BK is drawn so t h a t  ^KBA = bloc, and 

OA is produced t o  meet BK i n  D. Prove t h a t  OCBD is  a cyc l ic  

quadr i la te ra l .  

SotiLtLon by Jack Gcui.6unkel, Ftiiihing, New Yo&. 

Since AE and AC a r e  tangent t o  t h e  c i r c l e ,  then OA bisec t s  ^CAE. 

Similar ly OC bisec t s  3ACF. Hence 

1 1 
+OAC = -^CAE = -(180Â 2 - ~ B A C )  = 90' - ~ B A C  2 

and s imi la r ly  
1 wo = go0 - $BCA. 

Hence 
1 1 

~ A O C  = 1800 - ( W A C  + ~ A C O )  = ~ B A C  + ~ B C A  = 9 0  - +AN. 

Now we have t h a t  

W C  t W C  = W A  + W C  + 3AOC = 4ABC + 23AOC 

= 3ABC + 180' - 4ABC = 180Â° 

so  quadr i la te ra l  DBCO is cyc l ic ,  s ince  a p a i r  of opposite angles a r e  

supplementary. 

SAWJULLVL bo.euAc.ow4 w ~ubm-c.fcted by RICHARD A. GIBBS, FoA-t Leuici 
CoUege, V m g o ,  CO, RALPH KING, S t .  BonuventuA.e Ufu.vmJULy, NY,  

HENRY S. LIEBERMAN, Waban, MA, JOHN D.  MOORES, Camblu.dge, MA, 

NORTHWEST MISSOURI STATE UNIVERSITY MATHEMATICS CLUB, MoA~WLC, JOHN 

H. SCOTT, M a c u h t m  CoUege, Sa in t  P a d ,  M N ,  MADE H. SHERARD, F m a n  

Ufu .uuu ,m,  GieenvWLe, SC, ARTHUR H. SIMONSON, E u t  T e x a  S-tote 

UyU.vi~^l tq  at TexaAkana, and t h e  PROPOSER. 

I n  Memoriam 

L& ~ a u v e  taught a backbreaking load of trigonometry and algebra 

a t  Algonquin College i n  Ottawa, Ontario, Canada. Nevertheless, t o  

keep from becoming mathematically s t a l e ,  i n  1975 he founded a small 

problem journal ca l led  E u r e k a ,  l a t e r  renamed C r u x  M a t h e m a t i c o m ,  "a 



puzzle or problem for mathematicians." Singlehandedly he was soon 

editing 10 issues a year, each 30 pages in length, a monumental task 

for any person. Rarely could you find an error on its pages, so 

careful was its editor. He personally verified every mathematical 

statement that appeared on its 300 pages each year. His wit and 

fluency in both French and English made the journal lively and 

exciting, as well as informative. Early in 1986 L ~ O  retired because 

of ill health, after having built Crux into a journal with 

subscribers and contributors throughout the world. He died in June, 

1987. Therefore it is our privilege to dedicate this issue of the 

Problem Department to the memory of ~ 6 o  ~auv6, a true scholar and 

friend, and to express our hope that we will always be guided by his 

spirit in our editing of these pages. 

THE RICHARD V.  ANDREE AWARDS 

R i c h a r d  V.  Andree,  P r o f e s s o r  E m e r i t u s  o f  t h e  U n i v e r s i t y  
o f  Oklahoma, d i e d  on  May 8, 1987,  a t  t h e  age  o f  67. 

P r o f e s s o r  A n d r e e  was a  P a s t - P r e s i d e n t  o f  P i  Mu E p s i l o n .  
He a l s o  s e r v e d  t h e  f r a t e r n i t y  a s  S e c r e t a r y - T r e a s u r e r  G e n e r a l  
and  as  E d i t o r  o f  t h e  P i  Mu E p s i l o n  J o u r n a l .  

A t  t h e  summer m e e t i n g s  i n  S a l t  L a k e  C i t y  t h e  f r a t e r n i t y  
C o u n c i l  v o t e d  t o  d e s i g n a t e  t h e  p r i z e s  i n  t h e  n a t i o n a l  s t u d e n t  
p a p e r  c o m p e t i t i o n  a s  R i c h a r d  V. A n d r e e  Awards. 

F i r s t  p r i z e  w i n n e r  f o r  1986- 1987  i s  Wah Keung Chan, 
McGi11 U n i v e r s i t y ,  f o r  h i s  p a p e r  "On t h e  L a r g e s t  R A T- f r e e  
S u b s e t  o f  a  F i n i t e  S e t  o f  P o i n t s . "  Wah's p a p e r  a p p e a r e d  i n  
t h e  S p r i n g  1987  i s s u e .  Wah w i l l  r e c e i v e  $ 2 0 0 .  

Second p r i z e  w i n n e r  i s  J e n n i f e r  Z o b i t z ,  C o l l e g e  o f  St .  
B e n e d i c t ,  f o r  h e r  p a p e r  " F r a c t a l s :  M a t h e m a t i c a l  Mons te rs . ' '  
J e n n i f e r ' s  p a p e r  i s  t h e  l e a d  a r t i c l e  i n  t h i s  i s s u e  o f  t h e  
J o u r n a l .  J e n n i f e r  w i l l  r e c e i v e  $ 100.  

T h i r d  p r i z e  w i n n e r  i s  K e l l y  Ann Chambers, U n i v e r s i t y  o f  
Day ton ,  f o r  h e r  p a p e r  "The  I s o m o r p h i s m  o f  t h e  L a t t i c e  o f  
Congruence  R e l a t i o n s  o n  a  Group and  t h e  L a t t i c e  o f  Normal  
Subgroups  o f  a  Group."  K e l l y  A n n ' s  p a p e r  a l s o  a p p e a r s  i n  
t h i s  i s s u e  o f  t h e  J o u r n a l .  K e l l y  Ann w i l l  r e c e i v e  $ 5 0 .  

C o n g r a t u l a t i o n s  Wah, J e n n i f e r  a n d  K e l l y  Ann. 

1987 NATIONAL P I  MU EPSILON MEETING 

The National Meeting o f  t h e  P i  Mu Epsi lon F r a t e r n i t y  was held 

a t  the Un ive rs i t y  o f  Utah i n  S a l t  Lake C i t y  on August 5 through August 8. 

H igh l igh ts  included a  recept ion f o r  students, f a c u l t y  advisors, and alum- 

n i ,  a  Council Luncheon and business meeting, the Annual Banquet, and i n -  

formal student par t ies .  The J. Sutherland Frame Lecturer  was Professor 

Clayton W. Dodge, e d i t o r  o f  the  Journal 's  Problem Department. He enter-  

ta ined h i s  l i s t e n e r s  w i t h  "Ref lect ions o f  a  Problem Editor."  

The program o f  student papers included: 

Deterministic and Probab i l i~ t i c  W e n  E .  &totAde^Â 
Fire Models M d ~ b ~ c b e - f c t A  Af-pha 

Kto~ce^-te/i. Po$gtech& Irea-fct̂ tute 

The Epidemiology o f  the AIDS Virus Amon Kiebano66 
CaJLHofww. Lambda. 
U f i t u m i t y  06 Co^i.60Ai'Lta, %viA 

The Strangely Attracted Bouncing Stephafite Ruth Land 
Ball T e x u  Lambda 

U n - L u m U y  06 T e x u  

Applications of Signal P r o c e s s i n g V e b ~  Shale 
Mai&achtJb&itti VeJLta 
u f i t v m i t y  06 Low& 

Self-calibration o f  CmpZex Visi-  AÂ£ Sa6a.d-vuJLi. 
b i l i t y  Data from a Very Large Array Iowa AQfea 
of Antennas Iowa Sta te .  I v u . u m i t y  

Representations and Characters of  Ken Chick 
Groups Ohm Vet.& 

M-tflnn u f i t v m i t y  

An Algebraic Construction of a 9kphaM-t.e. Uumo~lu. 
Projective Geometry Cat i { lo~wUn T h i t a  

Ocu .dwta i  CoUege 

The RSA Public Key Cpyptosystem: Stephen Fie-te 
An Application for Modem Algebra W U  V-tAfliVu.0. Af -pk  

W u t  V-tAfliWASH U f i t v m i t g  

16/64 = 1/4 and Other ii-digit David A. Me^bheo 
Canoe flations C0nnec-tLCu-t B&fa 

uvu.vm.ity 06 HaAt^oid 



Mo/ur â‚¬hi 
W-Liroiu-Ln VeJUa 
St. No-tbULt College 

Theology, Mathematics and Meaning An Algebraist's View of 
Competitive Games 

W a n  whec^m I I  
VitAg-LruA Be-ta 
V-uigLnia Po&&echnic Im-tc&rfe 

Games of Timing with Two or 
Three Players 

Timothy P.  Ronan + 

PenlUyivania. Omichon 
Momvim CoUe-ge 

Perpendicular Least Square 
Estimators 

B^mn Andition 
KeHitucky Bi-ta. 
W u t m  Kentucky UnivWnity 

A Glimpse a t  the Theory of 
Res&cted Choice 

Sco-fct Kn.O*4ch 
Indiana Gamma 
Rob e-HuAnan Inb-fcetute 06 Technolog y 

The Isoperimetric Inequality Je66 V̂ JULm 
Ohio Z e A l  
UnivitiJuty of, Vayton 

Inverting a Pin i n  R 2 U e ^  Godwin 
Alkanbu Alpha 
Univitiilty of, A n k a n ~ ~ ,  

The following papers were presented by students in the Mathematical 
Association of America Student Paper Session, held jointly with thpe P i  
Mu Epsilon Paper Session. 

Fourier Series and the "Bestu 

Mean Square Approxht ion 

Dynamic Programming Applied t o  
Computer Voice Recognition 

M0~gtuii-t M. Linebe~gea 
Novkh Cmofina VeJUa 
E a t  Ctuiofina U n ^ v ~ i Z y  

W e s  Length Minimizing Modulo v Jef,f, Abmhambon 

i n  fi" Md~bacftu- iett i  lyi~-tctu/te 06 Te.cAnoLog y 

Thomu Eugene Gibboni, 
M-innuota VeJUa 
St. Jodnlb UnAMe/i&.Lty 

Hp-Completeness and the Traveling M e l a n i e  K .  &eakm 
Salesman Problem Novkheo~-t M-Lihoiyn. S W e  Univiti-fcty 

A Formal Sum Method Approach t o  
the Traveling Salesman Problem 

Je66-te.y Horn 
W.hconi,Ln Alpha 
Mmque-tte UnivmJuty 

The Classical 'Problems of Rob& CuvLU 
Antiquity i n  the Hyperbolic P l a n e U n w ~ i - f c t y  06 CoJLLf,o~Viia., Sa& OLUZ 

summm Qtumby 
Whconbin VeJUa. 
St. NohbULt CoUege 

A B i t  of Checking and Correcting 
A Physical Derivation of the Well Timothy Koponen 
Tempered Musical Scale Aquina CoUege 

A Graphical I l lustration of the 
Covergence of Karmarkar's Linear 
Programming Algorithm 

The Existence of Eulericm and 
H d t o n i a n  Circuits i n  Graphs and 
Their Line Graphs 

Circuit Spaces and Cut-Spaces of  
a Connected Graph 

Jo~e f ,  S .  C-tepeau 
Montana Atpha 
Univitiii-ty of, Uonta.na 

EcLi.tohlb Note 

The P i  Mu EpA-t^on Jowcno-E um founded i n  7949 and .LA dedicated t o  undm- 
g/iaduLdte and beginning ghadua . t t  btULdenL.4 JLwtmute.d .in mu the ma ti.(^^. 
Submitted aii.ti.atu, announcementil and contu.bution.li t o  the  Puzzle Section 
and P-tobtem Vepcuttment of, t h e  J o m a t  bhouX.d be d-dec-ted toward t U A  g-toup. 

Undmgmduate and beginning gmduate. ~Aidentli aws. aged t o  bubmit papuui 
t o  the  J o m d  don. coni,idma.HJOn and pobb-iMe publLca-Uon. Student 
p a p m  m e  given top' p&iuity. 

Yet Another Discussion of Graceful 
Graphs 

Andhw P. FeAte-iAo. 
MubachuAa.t-t4 Mpha 
Wo-tc.utm Poiytechnic Ini,tJULivt-e 

E x p o b ~ o ~ y  0 A f C t . d ~  by piwf,u~bnaJU .in a-U. m m  04 mathemati~i m e  
upe.uaXJi.y welcome. P U P  Beymm 

O-tegon Atpha 
Univiti-cty 06 Ohegon 

Sub-families of Venn Diagrams 

Thi& &&u.e cont(U.ni thhee 4Aident papm.  Each gem, A e  National Papm ; 
CompeAtitcon au& piusu 06 $200, $100 and $50, p-tovided that  at twist 
dive btudent p a p m  have. b u n  ~ubnviJtt.ed t o  the. EAc-toh. Â C 6-tude.ntA who 
have not yvt le.cu.ved a  mute^'^ Veg-tee, o-t highm, awi. eLigibie 6o-t t h u e  
W H O A ~ .  AnttAd6 6o-t 7986-1987 m e  announced on page 488 06 thih Abue. 

Soap F i h s  as Minimal Surfaces Gw%e Madm 
tiinnuota. V&a 
St. John'b Univm.Lty 



GLEANINGS FROM CHAPTER REPORTS 

CONNECTICUT GAMMA ( F a i r f i e l d  U n i v e r s i t y ) .  Bavu. Schoch, a char te r  mem- 
ber ,  represented t h e  chapter a t  t h e  National P i  Mu Epsilon Meeting held 
during t h e  In te rna t iona l  Congress of  Mathematicians i n  Berkeley, CA. 
She presented t h e  paper "The Mathematical World of Cryptology." 

During t h e  F a l l  semester t h e  chapter sponsored two lec tures .  Rob& 
Bo.Â£ge/l F a i r f i e l d  University, spoke onnThe  Influence of t h e  Mathematishe 
I n s t i t u t  of t h e  Georg-August Universi ta t  ( i n  ~ o t t i n ~ e n ,  West Germany) on 
t h e  20th Century Mathematics and Physics: An Incredible  S ~ e n a r i o . ~ ~  
Vauid TSuViq, Perkin-Elmer, described h i s  "Experiences a s  a Software 
Engineer." 

In the  Spring, a s  p a r t  of  t h e  annual i n i t i a t i o n  ceremony, StuaAt J. S i d -  
ne.y. University of Connecticut, spoke on "The Pigeon Hole Pr inc ip le  and 
Geometry. " 

During t h e  Annual A r t s  and Sciences Awards Ceremony, t h r e e  members, 
ToAfflna Ton-oud, Sandw. Jacopian and Po-t/K.& Jmzabeh  received recogni- 
t i o n  f o r  t h e i r  outstanding performance i n  mathematics. Each was given 
a P i  Mu Epsilon c e r t i f i c a t e  of achievement, a copy of HofstadterTs 
Godel, Escher, Bach: An Eternal Golden Braid, and a one-year membership 
i n  t h e  Mathematical Association of America. 

GEORGIA BETA (Georgia I n s t i t u t e  o f  Technology). A t  t h e  1987 Honors 
Program T'/uacey Redding received a mathematics book of her  choice. Each 
year book awards a r e  presented t o  s tudents  receiving t h e  B.S. degree i n  
Applied Mathematics with a grade point  average of a t  l e a s t  3.7 (A = 4.0) 
i n  a l l  mathematics courses taken. 

KANSAS GAMMA (The W i c h i t a  S t a t e  U n i v e r s i t y )  . From mid-August through 
t h e  end of June, 1986-1987, s ixteen l e c t u r e s / t a l k s  were sponsored. The 
t a l k s  ranged from magic squares t o  wind tunnel  computations, f r o m  math 
humor nn a Sunday afternoon t o  t h e  r e a l  p ro jec t ive  plane, from RubikTs 
cube t o  superstr ings,  from Fibonacci numbers t o  unsolved problems i n  
f l u i d  dynamics. A t  t h e  119th annual meeting of t h e  Kansas Academy of 
Sciences, held a t  Wichita S ta te  University i n  Apri l  1987, G.B. ROAA, 
P.S. Mangat and S .  S h h  contributed papers. The chapter dedicated i ts 
a c t i v i t i e s  i n  1987 t o  thememory of t h e  Indianmathematician S. Kamanujan 
i n  honor of h i s  100th birthday. PA. J . S .  Rao spoke on "Renaissance of 
Science i n  India i n  t h e  Early 20th Century and Contributions by Ramanu- 
Jan." In November 1986 s i x t y  s tudents  par t i c ipa ted  i n  a bi- level  
competition i n  col lege algebra. 

Eiii t~ft . 'b Note. 

Addiit^onai. gieawUng^i &torn c h p t v i .  ke.poA.t4 wiM. be. pubLLlihed in the .  Sp>u.ng 
T 9 S S  h ~ u e  06 .the. Pi Mu Ep~^Con Jou~.naJL. 
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