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FRACTALS:  MATHEMATICAL MONSTERS

by Jennifer Zobifz
Coflege of St. Benedict

Which geometry is true? This general question has stumped mathe-
maticians for centuries; the quest to find the one geometric theory that
actually describes al | of the physical world (if such a theory exists)
has as its newest contender, fractal geometry. Originally an attempt to
explain "pathological™ (not well-behaved) functions, fractal geometry
seems to describe acommon properties of most physical phenomena This
paper is intended as an introduction to the basic concepts of fractal
geometry and several of its applications. Although fractal geometry may
not be the geometric theoryy it certainly appears to be the most effec-

tive means of taming the ultimate monster -- the universe.

"Big whonls have. Little whonts
which deed on their velocity

And Little whonfs have Lessen whonts,
and 40 on to viscosity."

The above quote by Richardson in Steen's article [4, 123] sounds
like a science fiction creation. It does describe a monster -- but of
the mathematical variety. Self-similarity, which describes the concept
of big whorls having littl e whorls having lesser whorls, is the basis
for a relatively new geometry -- fractal geometry. In 1975, Benoit
Mandelbrot coined the word " fractal™ to describe the infinite irregular-
ities and fragmentation in nature; hence, fractals were dubbed "a new
geometry of natureV [2, 111]. For instance, using strictly Euclidean
geometry, one experiences difficulty when measuring the surface area of
a charcoal briquette. Upon initial inspection the charcoal appears
smooth; magnification reveals that the surface is actually covered with
a series of small depressions. At further magnification each depression
yields more depressions. The greater the magnification, the greater the
resulting surface area. In other words, different scales for Euclidean



426

measure yield varying results. Hence inadequate Euclidean measurements
cannot account for new detail revealed under increasing magnification.
Fractal measurements and fractal geometry can. As Mandelbrot describes
the phenomenon, "The importance of fractals lies in their ability to
capture the essential features of very complicated and irregular objects
and processes in a way that is susceptible to mathematical analysis"

[3, #2]. Thus, fractals are the language of discourse for describing
Richardson's whorls, mathematical " monsters,” and more concrete problems
such as the surface of a charcoal briquette or the curve of a coastline.
In essence, fractals describe the structural complexities of nature.
What, specifically, isa "fractal" and is fractal geometry consistent
with the realm of mathematics? More importantly, how does fractal
geometry apply to practical problems in diverse fields such as geology,
business, art, and meteorology, as well as to computer science and
mathematics?

Underlying fractal geometry is a notion that most people are
familiar with but at the same time cannot define -- dimension. Given
any function, one can determine the dimensions needed to graph the
function by analyzing the variables. W exist in a three-dimensional
world; the words on this paper are two-dimensional. But what is
"dimension”? In responding to the question, many college mathematics
students think of Euclidean n-space; in this sense, "dimension" is the
number of coordinate axes in the system or the number of components
necessary to distinguish a point in space. Henceforth, we will use the
notion of Euclidean space as a reference. 'Dimension,” however, is more
complex. According to Mandelbrot, dimension -- the degree of complexity
of an object has two components:

1. topological dimension
2. Hausdorff-Besicovitch (Fractal) dimension.

Furthermore, when the two coincide (as they do in Euclidean geometry) we
say that the set involved is dimensionally concordant. \When the measures
differ the set is dimensionally discordant [1, 15]; fractal geometry
basically deals with dimensionally discordant sets.

Topological dimension (often denoted by DT) is always an integer
and can be at most the Euclidean dimension [1, 151. In 1912 Poincare
intuitively described topological dimension by the properties of points

and lines which he generalized into higher dimensions. A condensed

427

explanation is as follows: when given a continuum of pointsif afinite
number of continuum elements (points) can separate the continuum, then
one is its dimension. If points will not separate a different continuum
while one or more one-dimensional continua can, then the new continuum.
is two-dimensional [1, 290-2911. For example, the real number continuum
can be separated by points (that is, real numbers); hence, the real line
i s one-dimensional. A coordinate plane, however, cannot be separated by
finitely many points, but can be by a one-dimensional continuum (a line);
therefore, the plane has dimension two. In other words, topological
dimension moves away from dependence upon coordinate axes and instead
utilizes the notion of separating sets of elements (continua).

The second component of dimension -- the Hausdorff-Besicovitch
dimension -- essentially is fractal geometry. Often referred to as
fractal dimension, this component, according to Weisburd, is "the degree
to which the trace fills a space and adds complexity to a straight line,"
or the degree to which a surface is convoluted [5, 279]. Rather than
pursuing the complex mathematical formulas involved in the original cal-
culations of the Hausdorff-Besicovitch dimension we will examine the
problem from a geometric/algebraic perspective. TWwo examples -- a
straight line and a curve -- lend results which can be generalized into
higher dimensions. Consider a line segment whose length we wish to find.
In a Euclidean sense, we can just measure the length. Suppose, however,
that our ruler is not long enough; to circumvent this, we divide the line
segment into ¥ equal parts and |l et the total length equal 1 as a relative
measure. Each of the ¥ parts, therefore, is reduced in length from the
original by some scale factor -- and has a new relative length -- call it
r, It follows that thetotal length of our segment can be calculated as
follows: Length = 1 = (number of sub-segments) x (relative length of
each sub-segment) = ¥ x », Hence, ¥ = 1/r.

Nw consider the area of a square in E2. Instead of working with a
formula for the entire square |l et us determine its area by dividing the
square into parts. Partition the square into N parts -- each side of
which is reduced by a scale factor of », Note that the area factor of
each of the ¥ squares is r2_ Again, ¥ is the reciprocal of the area
factor -- N = 1/z=2. Therefore, Total Area = 1 = (number of sub-squares).
x (area of each) = N x r2. Hence, ¥ = 1/r2.

V¢ can generalize the results from above. Recall the two equations:
N =1/r and N = 1/p2. The first equation deals with a line segment in E'l;
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the second deals with a square in . 1fd equal s the di nensi on, we can
rewite the equations ¥ = 1/pd. Again, ¥ is the nunber of parts; »is
the scaling factor. Solving the equation for the di nension, we obtain
the formil a

d = [logNl/[log (1/7)].

Contrary to our intuitive notion of dinension, d may be non-integral,
depending on ¥ and » [4, 123). This nunber, d, is called the fractal
(Hausdor ff-Besi covitch) dinension. Structures for which 4 is non-
integral command unusual properties; they "fill the gaps" between

di nensi ons, thus rendering usual Euclidean measuring devices virtually
i nef f ecti ve.

Ater defining fractal and topol ogi cal di mension, one can rigorously
define "fractal." The foll owing definition, taken from Mandel brot,
explicitly distinguishes a fractal set fromany other set: a "fractal"
is"a set for which the Hausdorff-Besicovitch dimension strictly exceeds
the topol ogi cal dimension" [1, 15]. This definition seens remote from
the intuitive concepts of a fractal nentioned earlier; let us exam ne
the Koch curve to clarify notions of dinensionality and fractionality
(Figure 1).

D nensi on, contrary to what the precedi ng paragraphs seened t o say,
is not the only inportant aspect of fractals. Self-sinilarity determnes
not only the type of fractal structure but gives us a neans for describ-
ing the endl ess fragnentati on of a structure. Self-simlarity, according
to Steen, occurs when exact or randompatterns are exhibited at different
measuring scal es. In other words, changing the gauge has no effect upon
the basic pattern. As aresult, for a fractal curve of dimension between
one and two, length is an insufficient measure of size. In essence, the
parts are the same as the whol e [u, 122-1231. The frequency of the
repeat or the extent of self-simlarity helps determine the fractal
dimension. The self-sinilaritycharacteristics of a structure differen-
tiate fractals into two categories, says McDermott. Geonetric fractals
exhibit an identical patternrepeated on different scal es while random
fractal s introduce an el enents of chance(which is nmost often the case
innature) [2, 112]. Ay exanple of a geonetrical fractal is givenin

Figure 2 A conputer-generatedrandomfractal -- a three-dinensional
"fractal dragon" -- appeared on the cover of the Decenber, 1983,

429

Consi der the covering of the |ength.
V¢ have 4 sub-segments, each of which
is 1/3 the length.

Suppose we focus on one sub- segnent . 2 3

\¢ can al so cover this sub-segnent 1

with 4 "balls" each of |ength equal o T
to 1/3 the I ength of the original s Pt
sub- segrent . walt . sk,

Thus, the nunber of parts we keep
breaki ng our segnent into is¥ = 4;
the scaling factor is R = 1/3.

\¢ expect the dinensionto be
d = (InN)/(In(1/r)) =
(In4)/(In3) ~ 1.2618.

From THE FRACTAL GEOMETRY OF NATURE
by Benolt B. Mandelbrot.
Copyright 1977, 1982, 1983
Reprinted with the permission of
W. H, Freenan and Conpany.

Figure 1
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Figure 2

From THE FRACTAL GEOMETRY G- NATURE
ly Benolit B. Mandelbrot.

Copyright 1977, 1982, 1983.
Reprinted with the pernission of

W H Freenan and onpany.
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Inorder totruly appreciate the applicability of fractal geometry
one nust exanine its origins. For two thousand years, Euclidean geore-
try was the geometry; conposed of relatively well-behaved shapes,

Eucl i dean geonetry appeared to nodel nature's designs. Steen suggests
that generalizations of Euclidean geometry and ot her nat henati cal
theories were appliedto spaces wth dinensions greater than three;
however, even in infinitely-di mensional cases, increments between

di mensi ons were always integral (4, 122]. Thus integral dinensions
were a "given"; to conjecture otherw se was absurd. How coul d one tal k
about structures having a di nensi on between that of a line and a pl ane?

Sore mat hematicians did just that. Peano, Cantor, Véierstrass,
Lebesgue, Hausdorff, Koch, Sierpinski, and Besicovitch were anong the
mat henat i ci ans whose work pre-enpted the mat hematical crisis of 1875.
Part of this work was a forerunner of fractal geonetry. From1875to
1922 a mathenatical crisis arose due to the discovery of functions which
wer e nowhere differentiabl e but everywhere continuous. This foreshadowed
the devel opnent of fractal sets in the sense that one cannot fix a
tangent on a fractal curve due to the constantly evol ving detail under
magni fication. A the same time, though, fractal sets are continuous
[1, 2 and 13]. In other words, exanpl es were di scovered which tested the
extrenes of geometry and analysis. Eventually, leading to fractal
geonetry, these "pathol ogi cal " functions were monsters -- existingin
spite of then hazy mathematical support.

QUi seppe Peano shocked t he mat hematical world in 1890 with the
introduction of his plane-filling curve (4, 123]l. This phenonenon
mrrors the non-integral fractal dinensions. Peano's curve "fills the
gap" between |ines and pl anes -- between one di mensi on and two. Peano
created a curve whi ch neandered sufficiently enough to contact every
point inthe unit square. Figure 3 illustrates the devel opnent of two
different Peano curves fromtheir basic conpositional patterns. Contin-
ued devel opnent of the basic patternyields a curve so contorted that it
essential ly "covers" the original closed figure. Hence, a curve seened
to cover an area of the unit square. Cbviously, the curve was not in the
same cl ass as a straight |ine segnent; yet the Peano curve i s not two-
dinensional . Euclidean geonetry of fers no sol ution to Peano's probl em ;
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Figure 3 Fam THE ARACIAL GEOMETRY OF NATURE
by Benoit B. Mandelbrot.
Copyright 1977, 1982, 1983.
Reprinted with the permission of
W. H. Freeman and Compery.

The triadic Kaoh curve is the most commmn example of fractal analy-
sis. Figure 4 demonstrates the development of this snowflake curve in
closed form. Let us attempt to analyze the notion of self-similarity

ay
S

vaREaR
aw

inherent in its construction from an equilateral triangle. During the

second stage each side is trisected and a new equilateral triangle is

constructed on the middle third segment of each side. Each consecutive

stage trisects sides of equilateral triangles and constructs a naw tri-
angle on the middle sector. |f this process is continued a limiting

structure results; due to continued self-similarity, there exists a

sharp corner at virtually every point [1, 36]. O can easily observe

s . the self-similarity of the triadic curve. This curve is truly a fractal
Figure 3

[ae

for each magnification yields even greater detail.
Recall our definition of dimension. V¢ said that
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d = [loghl/[log(1/r)]

where N represented the number of parts and r represented the scaling

‘ factor. Consider one side of an equilateral triangle on the triadic*
curve (Figure 5.1-5.2). Let this length -- call it £ -- be the frame of
reference. Imagine splitting the length into thirds (Figure 5.3) and
constructing another equilateral triangle in the middle one-third
(Figure 5.4). Notice that there are nowv four sides each with length
one-third the original length £, Hence, our total length is now equal
to:

(4 segments) x£/(the number of segments).

The dimension of this structurefor If = 4and » = 1/3 is:
d = [LogN)/1lag(1/r)] = [Logh]/Ilog3].

Since the decimal equivalent of the expression is about 1.2618 we have
a fractional dimension. Figure 5.5 shrinks the segment to the original
scale and places it back where we originally removed the segment.

Figure 5.6 demonstrates the completed curve if the preceding process is

used on the other segments a, b, and ¢ of the original figure.

Figure 5.1
~
enlarge
t /

Figure 5.2
Fom THE FRACTAL GEOMETRY OF NATURE
by Benoit B. Mandelbrot.

Figure 4 Copyright 1977, 1982, 1983. pt

Reprinted with the permission of Figure 5.3 ) .

W. H. Freeman and Compary. 1 |
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Figure 5.4

shrink and replace

Figure 5.5

Figure 5.6 —

If one were to measure the length of part of the snowflake curve
there would be some difficulty -- there is no finite length! geje-
similarity characteristics dictate that the smaller the unit of measure
the more detail released. Therefore, we cannot actually measure the
length because we cannot possibly see all the detail.

Another almost " classic'" problem in fractal geometry asks the
question "How long is the coast of Britain?" Mandelbrot answered, "It
depends. As the crow flies the coast is one length. As the person
walks, it stretches even longer. Asthe spider crawls, it stretches
still longer. In essence, a coastline with all its microscopic points
and inlets is infinitely long" [2, 114]. As a result, coastlines
cannot be measured in a Euclidean sense. However, by treating the
coastline as a random fractal we can mathematically analyze its
properties.

In addition to the so-called "classical™ problems, fractals are
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now being integrated into virtually all of the sciences. Fractal geom-
etry appropriately describes perceptions of the actual physical world
whereas Euclidean geometry, dealing with absolute, ideal shapes, cannot
account for the structural intricacies of a fractal form. Weisburd.>
cites an example of fractals used in the geosciences. Researchers
studying the San Andreas fault hope that the fractal dimension of the
jaggedness of the fault will be useful to seismologists for predicting
occurrence and magnitude of earthquakes along the fault. Different
fractal dimensions are characteristic of different sections of the fault.
After various other studies the researchers concluded that the fractal
dimension governs the manner in which fault blocks move over themselves
during an earthquake, that is, whether blocks jerk suddenly or move
evenly amongst themselves [5, 279]. The significance of this result is
that scientists can study each type of earthquake (the ravages of which
are extremely different), predict and perhaps eventually alleviate some
of the destruction.

Fractals are also invaluable in metallurgy. In Peterson's article,
Mandelbrot suggests fractal dimensions be used to characterize the rough-
ness of a surface. |t seemsthat " ... roughness is very systematic."
Along with this observation is research on the strength of various metals.
Fractal dimension remained consistent for different samples of the same
metal. Furthermore, fractal dimension changes along with metallic
strength when varying heat treatments are applied to samples [3, 42].
Does this mean that fractals could be used t o redefine physical proper-
ties such as hardness, strength and elasticity of a given product?

The most noticeable application of fractal geometry and the appli-
cation which has brought fractals into the limelight of mathematical dis-
cussion is computer science. Fractals seem to explain hov a computer
retrieves data from deep within its memory banks. Moreover, McDermott
reports on the realistic graphics made possible via fractal dimensions.
The new graphics are so natural looking that they are being used in the
movie industry to enhance special effects. Lucasfilm, the makers of the
Star Wre saga, isthe first company to specifically employ a computer
graphics unit. Loren Carpenter and his crew coax out of the computer not
the awkward, synthetic-looking shapes of earlier endeavors, but rather,s
they create majestic landscapes indistinguishable from actual nature
[2, 1211}. |In this sense, fractals link mathematics and art via the
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computer. Diversity of graphic images seems unbounded as fractal
geometry is paired with computer technology.

The final examples of fractals we will present are easier to com-
prehend, for they incorporate familiar aspects of everyday life. The
first such example is the human circulatory system. In relation to the
three-dimensional human body, the millions of blood vessels seem one-
dimensional. For all practical purposes, each vessel appears to be a
line. Yet, since the entire body needs nourishment via blood vessels
in order to survive, the blood vessel "lines" must somehow reach every
cell in the body. Hence, we have a system of "lines" intertwined with
every point in a three-dimensional space. The "space filling" concept
suggests that the circulatory system is based on fractals.

River drainage and oil prospecting are fractal applications similar
to the circulatory system. A river draining an area must necessarily
have "fingers" of water which seep into the far reaches of the drainage

basin. The farther away from the river, the smaller these "'fingers"
become; yet they must exist in order for the river to drain the basin.

0il prospecting via fractals is a relatively new area. Formerly,
geologists calculated the amount of oil in a location by the general
measurements of the "dome"™ However, in doing so, they far under-
estimated the actual amount of oil; fractally, oil seeps into rocks,
crevices, and soil surrounding the main dome. As our oil resources
deplete themselves, we will begin to rely on these untouched stores of
oil. Having an understanding of fractal geometry, one can see that the
amount of oil outside the main dome is quite significant.

The final example appears to be a random fractal but is not a
fractal at all -~ a tree. From a distance one can see the bare, craggy
silhouette of the trunk and the primary branches. Come closer and
examine one of the principal branches. Upon inspection this branch
appears as the whole tree did from the distance, for one can now see new
secondary branches shooting from the primary branches. Continual exam-
ination of each new part reveals greater branching. Trees seem to
exhibit partial self-similarity; however, due t o countless biological
and environmental influences, trees are not fractal forms. Ongoing
research is attempting to discover a relationship between fractal geom-
etry and intricate biological processes.

Biology, geology, computer science, the movie industry, physics,
art, «»a « Fractal geometry, a branch of mathematics, is applicable to
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each field in this ever-growing list. By examining the intricacies of
nature, fractals provide a language in which to discuss the extent of
structural complexities. Euelid's solid shapes are ideal situations;

his devices are inadequate for measuring curves that seemto fall .

. . ot!
between dimensions. Fractals help unravel chaos; before Mandelbrot!g

exposition the only useful shapes were ",.. Euclidean shapes, lines,
planes, and spheres; all else was chaos. There was order and disorder.

Nw there is order (simple shapes), manageable chaos (fractals), and
unmanageable chaos” [2, 115]. As research escalates on this still

relatively unproved theory and more varied applications are discovered,
mathematicians, by observing nature from a fractal perspective, may
conquer the most intimidating mathematical "monster” of all -- the

universe.
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THE &S/AN ARAES THERM

by Stanfey Rabinowilz
ALLiant Computer Systems Conporation
Littleton, MA 01460

Start with a circle. Ay circle. Drav six more circles inside it,
each internally tangent to the original circle and tangent to each, other
in pairs. Let A, B, C, D, E, and F be the consecutive points of tangency
of the small circles with the outer circle. V¢ wind up with a set of
seven circles as shown in Figure 1. The Seven Cireles Theorem says that
no matter what sizes we pick for the seven circles (subject only to cer-
tain order and tangency constraints), it will turn out that the lines AD,
BE, and CF will meet in a point.

D Figure 1 D

This remarkable theorem is less than fifteen years old. |t shows
that there are may beautiful relationships involving only lines and cir-
cles still waiting to be discovered. Evelyn, Money-Coutts, and Tyrrell
[6] first published this theorem in 1974. Since then, other proofs have
appeared (see [6]). The purpose of this article is to give a simple
proof of this theorem using only elementary geometry.

Since we wish to prove that three lines concur (meet in a point), we
start by reviewing what is known about three concurrent lines. Various .
facts about three concurrent lines in a triangle were known to early
geometers (like Heon of Alexandria and Archimedes). They knew that the
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medians concur and that the altitudes concur ([2], pp. 297-298). However,

it was not until 1678 that Giovanni—-

Ceva [1] gave a definitive treatment

of such lines. For that reason, a line from a vertex of a triangle to a

point on the opposite side is called a cevian. Here is a simplified

version of Ceva's Theorem.

Ceva's Theorem. Let D, E, and

F be points on sides BC, CA and 4B,

respectively, of triangle ABC Then cevians AD, BE, ¢F concur if and only

if AF-BD-CE = FB*DC*FA.

Figure 2

Proof. (i) Suppose AD, BE, CF

A
F
E
B D X (o
Figure 3

meet at a point P. Extend BE and CF

until they meet the line through A that is parallel to BC at points G and
H, respectively (see Figure 2). Fom similar triangles, we get the

proportions:

DC/HA

AG/BD

AE/EC

and BF/FA

Multiplying these together gives us
(ii) Conversely, suppose

AF+BD-(E
Let BE meet CF at P and | et AP meet
AF+ BX- CE

Dividing these two results gives
BD
e

If X does not coincide with D, then
X lies on segment OC (see Figure 3).

= PD/AP
= AP/PD
= AG/BC
= BC/HA.
the desired result.

= FB-DC-EA
BC at X Then, by part (i), we have
= FB-XC-EA.

= BX,

xc
without loss of generality, assume
Then BD < BX and OC > XC Conse-~
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quently, BD/DC < BX/XC, a contradiction. Thus X coincides with D.

Remark. If we are a little more careful about signs and use direc-
ted line segments, Ceva's Theorem can be generalized to work for any
points D, E, F on the sides of the triangle or on the extensions of:~
these sides (see [2]). However, we will not need this extended result
here.

Before we can prove the Seven Cireles Theorem, we must know some-
thing about when three chords of a circle concur. Coxeter (3] gives a
criterion that we will call Ceva’s Theorem for Chords. Both the state-
ment and proof are remarkably analogous to Ceva's Theorem.

Ceva's Theorem fon Chonds, Let A, B, C D, E, and F be six con-
secutive points around the circumference of a circle. Then chords AD,
BE, CF concur if and only if AB«CD«EF = BC-DE.FA.

A

D D

Figure 4 Figure 5

Proof, (i) Suppose AD, BE, CF meet at a point P (see Figure 4).
From similar triangles, we get the proportions:
AB/DE = PA/PE

EF/BC = PF/PB
CD/FA = PC/PA
and PC/PE = PB/FF.

Multiplying these together gives us the desired result.
(ii) Conversely, suppose
(1) AB-CD-EF = BC-DE-FA.
- ~~ —
O the three arcs, ABC, CDE, EFA, at |least one must be smaller than a -,
semicircle. Without loss of generality. assume arc CDE is smaller than
a semicircle. Let BE meet ¢F at point P and | et AP meet the circle again
—
at point X (which must lie on arc CDE). By part (i), we have
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AB-CX-EF = BC-XE-FA.
This combined with (1) gives

DE XE

If X does not coincide with D, then without loss of generality, assume X
lieson arc ﬁ (see Figure 5). Then M@ < €X and 08 > XE Consequently,
CD/DE < CX/XE, a contradiction. Thus X must coincide with D.

Before proceeding to the Seven Cireles Theorem, we need one pre-
liminary result.

lemma, Let two externally tangent circles, P and Q, be internally
tangent to circle ¢ at points A and B respectively. If the radii of cir-
clesC, P, and Q are R, p, and q, respectively, then

4B%/4R% = (p/(R - p))-(q/(R - q)).

Figure 6

Proof. Let circles P and Q be tangent at point ¥, Extend AM and
BM to meet circle ¢ again at points D and E respectively. Identify the
names of circles with their centers. Drav M and CE (See Figure 6.)
Draw PQ which must pass through ¥,

@ = @ impliesL D =LCDA. R = M implies LPAM = L PMA. There-
fore LPMA =LCDA and @© || M. Similarly, CE | g4 But MVQ is a straight
line, so therefore DCE is a straight line also. Note also that LEBA =
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LA (since both measure half of arc E4). V¢ thus have three pairs of
similar triangles: AMDE ~AMB4, ABMG ~ABEC, and A4MP ~AApc. Then
AB/DE = MA/ME = MB/MD.
Since HE = 2R, we have
ABAB _ MA MAMB _PAQB_ _p 4

°2R2R MEMD MDME CPCQ R- pR- q
/¢ are now ready to prove our main result.

The Seven Circfes Theorem. Let Ajy A, A, A, A, A besix con-
secutive points around the circumference of a circle 0. Suppose circles
can be drawn internally tangent to circle O at these six points so that
they are also externally tangent to each other in pairs (that is, the
circle at A, istangent to the circle at 4, , and the circle at 4.

A -1 itl,
where subscripts are reduced modulo 6). (See Figure 7.) Then segments

AOAS’ AiAu, and A A concur.

A,

Figure 7

Proof. Let the radius of circle O be R and | et the radius of the
circle at A*L be r.. Let us express AiA1:+1 in terms of r, and 2rqe BY
the lemma, we have

Az = Bf(r)f(r,, )

where f(r) = vr/(R = ») and the subscripts are reduced modulo 6. Thus
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3
AOAi- .112113-;4,):1-15 = B8R f(ro)f(ri)f(r2)f(ra)j‘(ru)f'(rs) = .41.42.,43.4“..45.40.

3° AiAu’ and A2A5 must concur.

The Seven Circles Theorem is true for more general configurations
than the one described above. For example, Figure 8 shows the case where
the six circles are externally tangent to the original circle rather than

So by Ceva's Theorem for Chords, AOA

internally tangent.

Figure 8

This case can be proved in a manner similar to the previous proof.
Using Figure 9, we can derive the formula

AB%/4R = (p/(R + p)) (q/(R + q))

whose proof is analogous to the proof of the preceding lemma  Here,
circles P and @ are externally tangent to circle C R, p, and ¢ denote

the radii of circles C, P, and Q, respectively. It then becomes clear that
= apd -
AoAi'AQAa'AuAS = 8R g(r'o)g(rl)g(rz)g(ra)g(ru)g{rs) = A1A2'A3A4'A5Ao
where g(r) = Y2/(RT 7).

Figure ¢
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In fact, the Seven Circles Theorem is even more general. The six
points of tangency need not occur successively along the circumference of
the original circle. Two such cases are shown in Figure 10. A proof for
the general configuration can be found in [6].

A,

Figure 10

An interesting subtlety occurs when trying to formulate the theorem
for the most general configuration. After starting with an initial circle,
C, and drawing five circles Ai’ AQ, 43, Au’ and A5 tangent to C and tan-
gent to themselves in succession, it becomes necessary to draw a sixth
circle tangent to €, As, and A, However, in general, this can be done
in two ways (see Figure 11). O0f the two choices, one satisfies the con-
clusion of the Seven Circles Theorem and the other does not. In this
sense, the Seven Cireles Theorem may be thought to hold only 50%o0f the

time.

A,

Ag

Figure 11
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Exercises

V¢ conclude with a few exercises to allow the readers to try their

hands on some related problems.

1 Acircle isinscribed in triangle ABC The points of contact with
sides BC, CA, and AB are D, E, and F, respectively (see Figure 12},
Prove that AD, BE, and ¢F concur. (The point of concurrence is known

as the Gergonne point of the triangle; see [2], page 160.} Show

further that the conclusion still holds if the circle is replaced by
an ellipse.
A D
E C
F B
E
F G A
H L
B D (] ] J K
Figure 12 Figure 13

2. Let ABCDEFGHIJKL be a regular dodecagon (see Figure 13). Prove that
diagonals 48, ¢F, and [H concur. (For a proof see [10].)

3. Three circles are situated as shown in Figure 14 so that each meets
the others in two points. Prove that AD, BE, ¢F concur and that
AF+BD+CE = FB-DC:EA. (Thisresult is due to Haruki, see [9].)

A

[+ D
Figure 14 Figure 15
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4. Let ABCDEF be a hexagon circumscribed about a circle, as in Figure 15.
Prove that AD, BE, CF concur. (This is a special case of Brianchon's

Theorem, see [4], p. 77.)

5 Let P be a point inside pentagon ABOLE such that the lines 4P, BPA, CcP,
DP, EP meet the opposite sides at points F, ¢, #, 1, and J, as shown in
Figure 16. Prove that AI-BJ-CF-DG-EH = BI-CJ-DF-EG-AH. (See [8],

p. 67.)

Figure 16
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THE ISOMORPHISM OF THE
LATTICE OF CONGRUENCE RELATIONS ON A GROUP
AND THE LATTICE OF NORMAL SUBGROUPS OF A GROUP

by Kelly Ann Chambess
Univensity of Dayton

A lattice is a nonempty set L, together with a partial order such
that the infimum of {a, b}, denoted by a A b, and the supremum of {a, b},
denoted by a V b, exist for all a, b e L [1].

Two lattices (L, A, V) and (L', A', V') are isomorphic if there
isamgp f: L = L' which is one-to-one and onto such that f(a Ab) =
fla) A fib) and fla V b) = fla) V' £(b) for any a, b e L [1].

Note that the composition of two binary relations, R and 5, on a
set A is the binary relation

R ©° 8§ = {(x,2): there exists Yy € A such that xRy and ySa} [2].
Also, recall that a congruence relation, C, on a group (&, <) is an

equivalence relation (binary relation that is reflexive, symmetric, and
transitive) which satisfies the following condition for all a, a', b,
b ¢ G If ata’ and bCh', then (ab)C(a’d’), where ab denotes a - h.

The fact that there is a one-to-one correspondence between normal
subgroups and congruence relations is a result from group theory. |f
G is a group and ¢ is a congruence relation on G, then the equivalence
class containing the identity of G is a normal subgroup of G. Likewise,
if Nis a normal subgroup of G, then the binary relation ¢, given by
ath if and only if Na = Npb, for all @, b ¢ G, is a congruence relation
on G. In this note, we show this bijection forms the basis for the
isomorphism between the lattice of congruence relations on a group,
Con(@), and the lattice of normal subgroups of a group, Nor(G), shown
here.

Con(G) and Nor(G) are both lattices with set-theoretic
intersection as the infimum. In order for Con(G) and Nor(G) to be
isomorphic, the mgp must also preserve supremums.

The supremum of two normal subgroups in Nor(G) is the normal
subgroup generated by them. It is known from group theory that this is

equal to NN, = {nlnz: ngelN,n, e« N2}.
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Let Eq(4) be the set of all equivalence relations on a set A.
Eq(A) is a lattice with set-theoretic intersection as the infimum and
the smallest equivalence relation containing 91 and 02 as the supremum

of {8;, 8,} foralle e Egq(4). This is not usually the

1> %2
set-theoretic union of 8, and 8,. Rather, 8, \ 8, = 8, u (91 o] 92) U
(8, 08,0 el) Ufe, o 8, 08, 08,) U... . Since congruence relations
on a group are also equivalence relations on a set, 6'1 \% 6‘2 = 5'1 U

(6'1 06'2) U(C'1 0C, OCi) U (6'1 002 o 6'1 06'2) Uuae , forall 0y, &)

e Con(G).
It is not readily apparent that the congruence relation
corresponding to ¥, ¥, is c, U ¢, o C2) U (6‘1 0C, 0 6'1) U (Cl 0C, 00

0 02) Uwwa for b, ¥,c¢ Nor(G) and Cl’ C, e Con(G). However, the

2 2
group structure helps to simplify the supremum for Con(G¢). For arbitrary

sets €, and 02, 6‘1 0 €, is not necessarily a congruence relation. In

1 2
particular, it is not symmetric or transitive. However, the group
structure provides inverses, and the inverses are crucial in the proofs
that C'1 o 6'2 is symmetric and transitive. Thus, if 6'1 and 6‘2 are

congruences on a group, the supremum is 01 (o] 6'2. It is more apparent
that the congruence relation corresponding to IV1N2 is Cl (o] 02 rather
than ¢, Vv C, = C; U (C‘1 002) u (e, 0C,0¢C) U (C‘1 0C, 00, 002) U'iees
Thus, supremums are indeed preserved, and Con(G) and Nor(G) are
isomorphic.

Con(G) denotes the set of all congruence relations on a group G.
For all 01’ 6'2 e Con(G), define 6‘1 g 6'2 if C'1 c 6'2. Also, define

0C,.

2

=C’1ﬂ02and6'1VC2=6'1

clL AC2
Lemma I, The set of all congruence relations on a group G, with

the partial order of set inclusion, is a lattice.

Proof. Since {(a,a): a € G} is a congruence relation on G, Con(G)

-

is not empty. Since C isreflexive, antisymmetric, and transitive, £

is a partial order. Clearly, ¢y n 6'2 is an equivalence relation that is
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contained in both C’1 and 02.

Assume a(C'1 n Cz)a' and b(C‘1 n Cz)b'. Then, acla' and aCZa' and
bclb' and bczb'. Since cq and €, are congruences, (ab)Cl(a'b') and
(ab)Cz(a'b'). Thus, (:117)(6'1 n 02)(a'b'), and €; N @ is a congruence

relation.
Let J also be a congruence relation that is contained in both cy

and Cpe So, Jc €y and J < Cye (asb) ¢ I » (a,b) ¢ cy and (a,b) ¢ Cy
+ (a,b) € C'1 n 6‘2 .

Thus, c,n 6'2 is the largest such congruence, and Cl n C‘2 is the infimum
of {Cl’ 02} in Con(G).

Now, consider ¢, o C,. Asume a(C’1 o} 6‘2)d and d(C'1 0 C,)g.
There exist b, f ¢ G such that acib and bczd and dcif and fczg. So,
ac,b and bd 'c.e and ec,d"'f and fC,g, where e is the identity of G
Since ¢, and ¢, are congruences, aCl(bd_lf) and (bd—lf)czg. Thus,
“(5'1 o Cz)g, and C'1 o] 6'2 is transitive.

The proofs that (‘1 o] 02 is reflexive, symmetric, and a congruence

relation follow similarly and easily.

Finally, we verify that c,0 02 is the supremum of {6’1, 02}. Let

aC'lb. Since 6'2 isreflexive, bC'2b. Thus, a(C’1 0 Cz)b, and

6'1 ¢ o 02. Similarly, ¢, < 01 o] 02. Let X also be a congruence

relation that contains both 01 and 02. Thus, C’1 < K and 6‘2 c X,
:z:((,'1 0 02)z > there existsy ¢ G such that xC,y and yC,2

~+ xKy and yKz -~ xKz.

Thus, Cl o] 02 c K, 01 o ¢, is the smallest such congruence, and 01 o C

2 2

is the supremum of {cC,, 02} in Con(G). Thus, Con(G) is a lattice.

Nor(G) denotes the set of all normal subgroups of a group G. For

i i i N AN_=
all N, N2 e Nor(G), define N1 < IV2 if IV1 c N2. Also, define 1 5
N I\I2 and &, Vv N, =N, = {"1"2: nyel,n,e IV2} .
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Lemma 2. The set of all normal subgroups of a group G, with the
partial order of set inclusion, is a lattice.

The proof of Lemmma 2 follows that of Lemma 1, and uses standard
group theoretic results. -

Define f: Nor(G) + Con(G) by f(N) = Cy Where aCNb if and only if
Na = No for alla, beG

Theonem, The mapping f: Nor(G) + Con(G) given by f(N) = C'N isa
lattice isomorphism.

Proof. Assume f(Nl) = f(IV2). Then, C'Nl = CN2. X e Ny~ Nz =

Nl = Nle g mcmle Rand xCNZe > IV23: = Nze = IV2 T e N2. So, Nl = Nz’

and f is one-to-one.
Let C be a congruence relation on G Let [e]c denote the

equivalence class of e in C. The fact that [e]c is a norma subgroup
of G is known from group theory. Let ¥ denote [e] , and let f(N) = C'.
aC'b <+ Na = No <+ ab™* ¢ N« ab"Ce — (ab 'b)C(eb) ~ aCh. Thus,

€' = ¢, and f is onto.
For all a, b e G
(a,b) ¢ ,f‘(IVl A IV2) + (asb) ¢ J“(Ill1 n 1v2)

> aC b

(N1 n Nz)
hnd (N1 n N2)a = (IV1 n Nz)b
—a™ e Wy Ny
> ab_l e Ny and ab_i € IV2
-~ Nla = Ivlb and N2a = Néb

++aC b and aC, b
”1 N2

«* (a,b) e f(H;) N f(NQ)
(a,b) ¢ f(lVl) A f(NQ).
Therefore, j’(lll:l A N2) = f(Nl) A f(IV,_), and f preserves infimums.

For all a, b £ G:



(a,b) e f(N; VN,) < (a,b) ¢ Fln,) < aCN]_sz

> IVllea = N1N2b

-1
~—ab " ¢ N1N2

-1 _
+~ ab = nym, for some 7, eNl,n2sIv2

> a = n1n2b.

Let d = n2b. Then Nl(a) = Nl(nld) = Nld and N2d = N2(n2b) = N2b.
So, aCNId and dCN2b’ and a(CN]_ o C'Nz)b. Thus, (a,b) € f(IVl) A f'(IVZ).

O the other hand, let (a,b) € f(Nl) A f(IVz). So, a(CN o CN )b, and
1 2

there exists g ¢ G such that aCNIg and gCNQb‘ Thus, Nja = N,g and

Ng =Npb. So, ag_l e ¥, and gb—1 e ¥,. Thus, (ag_l)(gb'l) e N, N,,

i 2

~
ya

and @b € W,W,. Therefore, (a,b) € f(N, V N,). So, f(i, VN)) =

fay f(ZV2), and f preserves supremums. Thus, Con(@) =~ Nor(G).

Note. A lattice, L, is distributive if for any =, y, 2 € L,
XV (y A z)
XV (yAz)=(Vy)pz [2]. Clearly, distributivity implies

(x Vy)A(@®Vaz), Lismodularif x <z implies

modularity, but not conversely. It can be shown that Nor(G) and Con(G)
are modular, but not distributive.
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THE GENERALIZED PRISMATOIDAL VOLUME FORMULA

by Sarah Uhtig
Univensity of Wisconsin-Parksdide

In this paper will derive an ancient formula for the volume of
certain three-dimensional solids and will give several examples of
solids whose volumes we can determine by using the formula.

\/¢ begin by noting that the volume of a solid can be detern;ined by
the cross-sectional area method (see, for example, Calculus and
Analytic Geometry, 6th edition, by Thomas and Finney, page 325). Thus,
if an x-axis is introduced as in Figure 1, we let A(x) be the
cross-sectional area determined by slicing the solid with a plane
perpendicular to the x-axis and passing through the axis at X. Then the
volume of the solid is fA(x)dz.

A solid whose cross-sectional area function 4(x) is a constant is
called a prism. If A(z) is a polynomial of degree one, then the solid
is usually called a pyramid (or frustum of a pyramid) or cone (or
frustum of a cone). |f A(x) is a quadratic polynomial, then the solid
is called a prismatoid. |If A(x) is a polynomial of degree three or
less, then the solid is called a generalized prismatoid.

\\¢ are concerned here with a volume formula for a generalized
prismatoid.

Our main theorem is this:

Theorem. Suppose A(xz) is a polynomial of degree three or less,

then
TA(z)dx = ((b-a)/6)(A(a) + 4A{(ath)/2) + A(D)).

Then, we have the immediate corollary:

Conollany. 1f the cross-section area function 4(x) of a solid is
a polynomial of degree three or less, then the volume is
V = ((b-a)/6)(A(a) + uA((a+th)/2) + A(b)).

Note: The formula in the corollary i s often stated with the hypothesis
that A(z) is of degree two or less. Then general form of the corollary

may be found in some references (e.g., GRC Mathematical Tables, 16th
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edition, p. 43). Here we will present a somewhat unusual proof,
deriving the formula from Simpson's Rule which is usually used for
approximating integrals and not for deriving exact formulas. Our proof
al so suggests why the formula cannot be extended to the situation in
which A(x) is a polynomial of degree larger than three.

Before proving the theorem, we will give several examples of how

the formula works.

Example 7. |If we place our x-axis so that it is perpendicular to
the base of a rectangular box (Figure 1) then the cross-sectional area
is arectangle and A(x) = 4w, If we take h= b = a, we have

V= (h/6)w + v + Lw) = (A/6)(8Lw) = Lwh.

/ i
a4 Figure 1

More generally we have:

Example. 2, The cross-sectional area of any solid with Afz) =
constant = B has volume
V = (n/6)(B + 8 t B) = (h/6)(6B) = Bh.

Thus, we have the following:

Example 3, The cross-sectional area of a right circular cylinder
isd(x) = mﬂz, so the volume is
V= (/6)(nr? + uur? + m2) = (h/6)(6mr2) = To’h.

Example 4. If we place our x-axis along the diameter of a sphere

of radius r,it can be easily shown that 4{(x) is a quadratic function
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of x. Also, b = a-= 2r. Thus, the volume of a sphere of radius r is

V= (20/6)(0 t tmr2 + 0) = (4/3)(n2O)
since the cross-sectional area of each end of the sphere is 0 and in the

middle is 12,

Example. 5. Let R be a region in the plane with finite area B. Let
P be a point not in the plane of R. Then P and R determine a
generalized pyramid or cone consisting of all points on the line segments
joining P to the points of R(see Figure 2). If we place our x-axis so
that it is perpendicular to the plane of R it is easy to show that

Alz) = (:::/h)QB, where % is the height of the cone and the origin on the
x-axis is placed as in figure 2. Thus, the volume is
V = (n/6)(0 + 4(1/4)B + B) = hB/3.

In particular, a right circular cone of radius r and height h has

we?h

volume .
3

Figure 2

! s > X

0 h

Nw we will give the proof of the theorem using Simpson's Rule (see,
for example, Thomas and Finney , pp. 308-309).

Proof. Simpson's Rule, a standard method for approximating definite
integrals, may be used to approximate
Jf(z)dr where f(x) = A(z).
The approximation is obtained by subdividing [a,b] into »n

subintervals each of length h (n is even). The error in the approximation

is uhuf(u)(c), where p is a constant, ¢ isin the interval (a,b) and

(4)

f is the fourth derivative of f (see Thomas and Finney, p. 309).
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If f(z) = A(x) is a polynomial of degree three or less, then f(u)(x) = 0.
Hence, the error in Simpsonis Rule is 0, and we may pick n to be as
small as possible, namely we may choose n = 2. Since h = (b-g)/2, we
obtain the following (exact) approximation
JA(x)dze = (B/3)(A(a) * uA((atb)/2) + A(D)) =
((b-a)/6)(A(a) + uA((atb)/2) + A(D)).
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LIES, SPIES, AIDS, AND DRUGS

by Banry W. Brunson
Western Kentucky University

With increasing frequency, there are calls for mandatory testing
of large numbers of people for the afflictions mentioned in the title.
Some of those making such calls have good intentions, but the effects
of such testing would by and large be both unexpected and very
unfortunate,

The problem is with the reliability of the tests: no test gives
the correct diagnosis 100%of the time, and more to the point, the
reliability of the best available test is generally a smaller fraction
than that representing the part of the population not afflicted.

Whenever this occurs, fewer than half of those "testing positive™ will
in fact have the condition. This is an easy consequence of Bayes

Theorem; most probability texts have at |east one example or exercise
along these lines, and Problem 627 (Fall '86) of this Journal provides
another.

¢ offer a general form of this problem, and point out an aspect
of symmetry which makes the folly of such mass testing dramatically

obvious.
Example. A test for a horrible condition is 95%reliable;

that is, if a person has [resp., does not have] the

condition, then the test will be positive [resp., negative]
with probability .95. Suppose that the condition affects 196

of the population. Find the probability that a randomly
selected person has the condition, given that the test is
positive.

General problem. Replace the 95% reliability of the test by some
other 100p% [with p close to 11, and replace the 1%
incidence of the condition by some other 1004% [with 1-¢
even closer to 1].

Let C denote the event that a randomly selected person has the

condition and | et T denote the event that a randomly selected person
tests positive. W seek P(C|T). By Bayes Theorem,
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_ P(cNT) P(C)P(T|C)

P(C|T
@I = “pcry P(C)P(T|C) + P(CIP(T|T)

S| A,
gp + (1-g)(1-p)
Note that P(C|T) < %— if and only if gp < (1-g)(1-g)+> p+q <

i+ p < 1-q, which justifies the assertion made in the second paragraph
above.

For the example, the answer is about 16%. But note the symmetry
in p and 0. Fen would even contemplate mass testing under the
following circumstances:

A test for a condition is 126eliable; the condition
affects 95%of the population.
But the proportion of false positives is the same!
Historical remarks. For |je-detector tests in particular, a

reliability level of 80%or better is generally acknowledged t o be rare.
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Awand Certificates

YowL CHapter can make use 0f,the. PA Mu Epsilon Awand Certificates avail-
able t 0 help you recognize mathematical achievements of your students.
Contact. Professon Robert Woodside, Secretary-Treasurer.

Matching Prize Fund.

If your Chapter presents awards for Outstanding Mathematical Papers Oh
for Student Achievement .in Mathematics, you may apply Lo ithe National
Off4ice fon an amount equal tothat spent by your Chapter Up to a maximum
of §ifty dollans, Contact. Professor Robert Woodside, Secretany-Treasuwrer.

1988 National Meeting

Negotiations are in progress with the. American Mathematical Society
neganding summer meetings in Providence, Rl about the. time of the
Society's Centennial Celebration. LoOk for details Anthe Spring 1988
issue of the, Jowwmal,
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USING AREAS TO OBTAIN THE AM-GM INEQUALITY

by Nonman Schaumbergen
Bronx Community Coflege

Consider any »n positive real numbers x, < =, < R G <

—_— 1 2 —="""
=N -
Lpyq S nn S X5 Where G = /:clxz... z, and A = (.'1:1 + X2t wuu t mn)/n.

)
y = 1/x
Figure 1
z
0 g, G %
From Figure 1, it follows that
(1) L -z,) <tng-tnx
G 7 = Z

with equality if and only if T, = G. Putting £ =1, 2, aus , k
successively in (1) and adding the inequalities gives

x, +2,. + ... t X
(2) k-—l 2G k

f_ktnG—lnxla:Q s T
Again, using Figure 1, we have
(3) é‘(:cj -G) 2 tnz; - &ng
with equality if and only if x3 = G Lettingd = kt1 k+2 .au 5,7

in (3) and adding, we get

x, .t teus t X
(%) kt1 k+2 n-(n=-k)>2enxy L. 500y

G

- (n - kMnG.

Changing signs in (4) and combining with (2) gives
x, tx,t e + X
1 2 n _
n - G 2 nlnG - tnz,2,) ... T, = 0.
Hence, 1 - A/G < O, so that G < A. Furthermore, there is equality“

inG< A if andonly if each of the substituted values for ; and .‘L'd is

G; that is, if and only if Xg 3%y = wen T X
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PUZZLE SECTION
Edited by
Jobeph V. E. Konhauser

The PUZAE FCTION i s for the enjoyment of those readers who
are addicted to working doublecrosties Or who find an occasional
mathematical puzzle attractive. We consider mathematical pussies to
be problems whose solutions consist of answers immediately recognizable
as correct by simple observation and requiring little formal proof.
Material submitted and not used here will be sent to the Problem Editor
<f Seemed appropriate for the FROBBV DEPARIMENT.

Address al| proposed puzzles and puzzle solutions to Professor
Joseph D. E. Konhauser, Mathematics and Computer Science Department,
Macalester College, St. Paul, Minnesota 55105. Deadlines for puzzles
appearing in the Fall Issue will be the next February 15, and for the
puzzles appearing i n the Spring Issue will be the next September 15.

PUZZLES FOR SOLUTION

1.  Proposed by John M. HowelE, Box 669, Littlerock, CA.

Partition a regular hexagon into four congruent six-sided
figures.

2. Proposed by the Editoxr.

A certain card shuffling device always rearranges the cards in
the same way (that is, the card in the ith position always goes into the
jth position, and so on). The Ace through King of Clubs are placed into

the shuffler in order with the Ace on the top and the King on the bottom.

After two shuffles the order of the cards - from top to bottom - is
10, 9, Q, 8, K, 3, 4, A, 5, J, 6, 2, 7.

Wha was the order of the cards after the first shuffle?

3. Phopobed by the Editon.

Bored in a calculus class, a student started to play with his
hand-held calculator. He entered a four-digit number and then pressed
the "square” key. To his surprise (and delight) the four terminal
digits of the result were the same digits in the same order as thosei n
the number which had been squared. Wha was that number?

4. Proposed by the Editonr.

The side lengths of a convex quadrangle are positive integers
such that each divides the am of the other three. Can the four side
lengths be different numbers?

5.  Phopobed by the Editoxr.

If the four triangular faces of a tetrahedron have equal areas
must the faces be congruent?

6. Phopohed by a matchless griend.

Nine matchsticks are laid end-to-end to enclose a triangular
region.

Place two more matchsticks of the same length end-to-end inside the
triangle to bisect the triangular region.

7. Contnibuted anonymously.
In the triangular array

each number not in the top row is equal to the difference of the two
numbers above it. Are you able to arrange the integers 1 through 10
in a four-rowed triangular array with the same property? Ore through
15 in a five-rowed array? Ore through 21?

&% &
GRAFFITO

Mo one. is boan knowing the. techniques for s0fving probLems and other
dilemmas. 1t 48 a Learned sRiEE and grows from successful experience.
Solving puzzles is one way to get this experdence.

Josephine and Richard V. Andhee
Logic Unlocks
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CMVENISON RUZZES 1 - 5, SPRING 1987

Mog respondents t o Puzzle # 1 pointed out that there are
infinitely many integer pairs (p,q) different from (1,2) such that

an+2 = pan+1 + qan, n=1,2, 3, ...

generates the sequence 1, 2, 4, 8, 16, «ss « Ary integer pair (p,q)
satisfying 2p + g = 4 is a solution and there are no other integer
solutions to the puzzle. Robert Prielipp and Victor Feser pointed out
that (1,2) is the only solution in which both p and q are positive

integers. Several readers remarked that non-integer solutions also exist.

Seven readers submitted the following solution to Puzzle # 2: subdivide
the L-shaped region into two rectangles in two different ways and in each
case draw the line segment joining the centers of the rectangles. The
point of intersection of the line segments is the centroid of the L-
shaped region. All line segments needed can be drawn using a straight-
edge alone.

L\
\

7

Eighteen responses were received for Puzzle # 3. All contained the
(unique) solution

W2+ W+ 6+ D+ )"+ A + 1) + (1) =
"+ @O+ )+ &+ (DO + 1) + () + (15)°,

n=20, 1, 2, 3, with common sums 8, 68, 748, 9248, respectively. Robert
Prielipp found the following generalization in Joe Roberts' Elementary
Mumber Theory: A Problem Oriented Approach, The MIT Press, 1977:

2k+1 2k+1

t t
g @A-a ,n = g a _m,lctzk,
n=1 n=1

where a, is O if the base 2 representation of n has an even digit am
and is 1 otherwise. For the imprecisely worded Puzzle # 4 eleven
responses were received. Not all were in agreement. |f the vertices of
the rectangle are confined to the square and its interior then no move-
ment of the rectangle is possible. If the word move is interpreted to
permit lifting and replacing then a non-square inscribed rectangle can
be fitted inside a unit square only if the length of the longer side of
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the rectangle is between v2/2 and unity. If the rectangle is a square
with edge length ¥2/2, then the square can be rotated about its center
and its vertices will not fall outside the unit square. Ten correct
answers, all without detailed explanations, were received for Puazle # 5.
Michael J. Taylor did write "by counting ... the missing arrangement
would contain an odd number of each color.” Mos respondents provided
either the array below or its transpose

W B R R W
B W R B R
W W B R B
R R W R B
R B W R R

and pointed out that the missing 5-tuple was RRW R B.

List of respondents: Steve Asther (1,3}, Charles Ashbacher (3,4), Julia
Bednar (3). William Boulger (1,3,4), Russal Euler (1,3), Mak Evans
(1,3,4), victor G. Feser (1,3,4,5), John M. Howel (1,2,3,4,5), Edmund
F. Marks, Jr. (1,3,4,5), Glen E. Mills (1,2,3,4,5), John 0. Moores (1,2,
3,4,5), Stephen Morais (1,2,3,5), Robert Prielipp (1,3), John H. Scott
(1,2,3,4,5), Sahib Singh (1,3,4), Emil Slowinski (1,2,3,4,5), Michael J.
Taylor (5) and Mac Whinston (1,3,4). Ore unsigned response contained
solutions to all five puzzles. Receipt was acknowledged by postal card
before the envelope was discarded. Sorry. Ed.

Sofution to Mathacnostic No. 24. (See Spring 1987 Issue).

Words:

A. deferent J. eyeholes S ramose

B. alpestrine K. rounded T. Trojan horse

C. vara L. showboated U. episode

D. impress M. hefty V. swallowtail

E. stereotomy N. Dirichlet cell W. doubly elliptic
F. aleatoric 0. edgeways X. replete

G. Norwegian taco P. sieve Y. equably

H. diehard Q constructivist Z. aestival

I. hartshorn R asafetida a. monohedral

%uotation: 1s probabilty neal on is &L just a cover-up dot .ignorance?

e question of what is neal 48 seldom easy. 1Is the Devil a real aspecit
of the (real) would7 In centuries gone by, the. answer was clearly yes.

Today, 4n the developed world cut Least, the Devil has neceded to a mone

modest and metaphorical role,

Sofved by: Jeanette Bickley, Webster Groves High School, MO; Betsy Curtis,

Saegertown, PA; Robert Forsberg, Lexington, MA; Joan Jordan, Indianapolis,
IN; Dr. Theodor Kaufman, Winthrop-University Hospital, Mineola, NY; Henry-,
S. Liebennan, John Hancock Mutual Life Insurance Co., Boston, MA; Charlotte
Maines, Caldwell, NJ; Robert Prielipp, University of Wisconsin - Oshkosh,
Wl; Stephanie Sloyan, Georgian Court College, Lakewood, NJ; and Michagl J.
Taylor, Indianapolis Power and Light Co., IN.
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Mathacrostie No. 25 Definitions Wonds
Proposed by Joseph D, E, Konhausen A a principal way of specifying an infinite
formal language by finite means 249 285 94 273 132 117 254
The 302 letters to be entered in the nunbered spaces in the grid will be B the only knot with four alternating over
identical to thosein the 31 keyed Words at the matching nunbers. The key nunbers g /
have been entered in the diagramto assist in constructingthe solution. Wen and under crossings (2 wds.) 211 151 46 66 276 108 205 35 231 199 24
conpleted, the initial letters of the Woads will givethe name(s) of the author(s) C. rigorously just
and the title of a book; the conpleted grid will be a quotation fromthat book. 20 178 113 267 88 280 235 216 293 150 58 190 31
The sol ution to Mathacrostic No. 24 is given el sewhere in the PUZZLE D. the study of inflection and word order —_————_——_——_——_——— e
SECTION. as grammatical devices 212 15 83 159 148 41 262 298 174
E one who i s admitted to court to sue as 55 766 57 39 Te5 155 189 108 BT 353
the representative of a minor or other 89 206 72 295 169 155 189 102 61 26
1 T|2 S3 @ 4 F{5 Pl6 Z|7 X|8 V[9 010 NIT J 12 7]13 ¢ person under legal disability (2 wds.)
F. "Master of Space! Hero of Science!", —_— Y — — —
14 W[5 p[16 e[17 VjiI8 Sf19 L[20 C|21 G 22 Fl23 1 24 B|25 Ti26 Y June 27, 1949 (2 wds.) 245 111 98 286 284 22 137 4 229 232 156 38
G condition for maxmum transfer of energy ———— — — — — — — — — — —
27 M[28 S|29 HPBO Q31 € 32 J{33 X|34 Y{35 BI36 N|37 G 38 F from source to load (2 wds.) 135 37 53 71 21 49 118 227 3 167 269 145 240 204
H the central line in the Greek letter
39 P 40 R{41 D42 bla3 UJ44 Y]45 Z)a6 Bl47 Q|48 N[49 G|S0 d 51 d epsilon 255 133 191 29 195 101 75
1. XU(XNY} = X and its dual (2 wds.) e e
279 223 302 210 251 73 146 247 109 265 290 192 149 23
62 R|53 6|54 M|[55 a|56 b|57 V|58 C|59 c|60 Q 61 E|62 M 63 2|64 R ) - )
J. an instrument for describing ellipses
183 218 119 32 153 11
65 d|66 B|67 a|68 J 69 P70 X 71 G|72 E{73 1|74 R[75 HJ76 Y|77 N K a system of writing peculiar to an early
Irish alphabet 136 114 299 120 97
78 pl79 ulso ofs1 b 82 L83 D84 v|85 Z|s6 Y|87 Ui88 C|83 E90 d|91 Q L. a mock moon e
112 19 242 82 208 261 187 202 160 296
92 T|93 S 94 A 95 af96 c|97 K|98 F|[99 N|100 V|101 H|102 E 103 P M. a product e e e e e e e
62 129 239 221 27 54 170 110 266
N blank spaces U ——
104 b|105 Uj106 X [107 Q (108 B 109 T[110 M 111 F 112 LM3 CP14 KNS S 99 77 48 36 141 10 197
0. narrow ({comp.) e
116 R|117 A[118 G 119 J 120 K[121 P[122 W[123 d 124 e 125 X |126 R 80 248 179 162 252 275 9 188
P considered by many to have been Sam e e
127 2[128 a {129 M[130 d {131 X[132 A|133 H|134 S|135 G[136 K|137 F 138 b[139 P|140 S Loyd's greatest puzzle, 1896 (4 wds.) 161 300 121 69 39 103 78 294 5 277 288 139 228 196
Q. a continuous mapping from one space to a —— —— —— — — — — — —
141 N[182 v[143 U[1a4 Z[145 6 [146 1[147 a[148 D 149 1[150 C[151 B[152 T[153 J higher dimensional space 91 291 30 164107 274 47 253 60
R, sometime synonym for "set" S
116 241 64 40 74 126 52
154 ¢ [155 E|156 F|157 Y|158 Z{159 D [160 L[161 P 162 01163 T[164 Q 165 S1166 b o
S engaged in dispute (2 wds.) e e e ——
297 134 193 18 171 93 115 28 2 250 140 214 165
167 G[168 T 169 E (170 M[171 S [172 X|173 Z[174 D 175 T|176 ¥ 177 d)178 C T. deft (sometimes hyphenated) S,
152 283 270 25 1 163 175 92 258 168 213
179 0 180 b[181 c 182 v[183 J 184 d 185 X {186 W|187 L|188 0{189 E|190 C{191 H U. model or pattern R
87 259 301 43 220 79 105 143
V. sponge weaves, satinette, duck cloth, _— - —_——— — — — — — —
192 11193 5[194 ¢ 19511136 F 137N 198:d{199 B 1200 €120) ZJ202 1 figured twill (2 wds.) 8 142 233 219 100 260 182 237 278 292 17 271 215 84 57
W the sequence {(2n)!/ni(n+1)!}, n =1, 2
203 Y |204 G|205 B 206 E |207 W [208 L]209 Z 210 11211 B 212 D[213 T|214 S ... bears the name of this Be’lgian 122 207 234 186 289 14 257
mathematician
215 V216 €217 Z 218 J 219 V220 U 221 M[222 Y223 1224 c|225 d |226 a |227 G X, ™ isn't what it used to be" —— e e
Arthur C Clarke (2 wds.) 185 125 33 70 172 7 106 131 244
228 P[229 F 230 2]231 B 232 F [233 e |234 W|235 C|236 a|237 V 238 V(239 M Y. absolute U,
222 76 86 268 176 281 44 157 203 26 34
Z what the gumball machine was an early _——————
240 G[24) R[242 L 243 d[244 X |245 F 246 7|247 11248 0249 A 250 S|251 1252 0263 Q example of (2 wds. ) 173 45 12 85 158 6 209 246 63 144 201 127 230 217
a the annual Commemoration of founders and
254 A [255 H 256 b [257 W[258 T 259 U260 V [261 L]262 D|[263 E |264 c |[265 I]266 M benefactors at Oxford University 55 67 95 226 147 128 236 272
b. a stick or cudgel —_—————————— —
267 C [268 Y [269 G [270 T [271 V {272 a |273 A {274 Q 275 0276 B 277 P 278 V 180 166 56 138 104 81 256 42 287 A
c. a cactus-like tree of Mexico and the
th t US.  havi lust f 59 154 224 264 13 194 181
279 1280 C [281 Y [282 d [283 T [284 F {285 A 286 F 287 b 288 P 289 W[290 1 e Iar flowaning clusters © %
d. transcendental U
291 Q292 v |293 C{294 P 295 E 1296 L |297 S}298 D [299 K|300 P301 U302 I 65 177 123 51 225 198 130 243 50 184 282 90
e, it originated in China (about 1200 BC)

as a military signaling device 16 200 124 233
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PROBLEM DEPARTMENT

Edited by Clayton 1S Dodge
University of, Maine

Thia department welcomes probfems believed t0 be new and at a
Level appropniate gon the neadens of, this fournal. Old probfems
displaying novel and elegant methods Of, solution ane also invited,
Proposals should be accompanied Dy solutions if availabfe mid by any
information that will assist the editor. M asternisk [*) preceding a
problem numbern indicates that the proposer did not submit a solution.

AL communications should be addressed to C. IS Dodge, Math.
Dept,, Univernsity of Maine, Onono, ME 04469-0122. PlRease submit each
proposal and solution prefenably typed oh clearfy written On a
sepanate sheet (oneside onlyl properly identified with name and
addrness., SoRutions tO problems in this issue should be mailed by
July 1, 1988,

Problems for Solution

652. Proposed by John M. Howelf, Littlerock, California.

Most people get their news from radio and television. Hence,
solve this base 8 addition alphametric for the greatest NBAS

ABC
NBC
CBS
NEWS

*653. Proposed independently by Robert C. Gebhardt, County
College of Nowrnis, Randolph, New Jersey, and CLifford H, Singer,
Great Neck, New York.

A small square is constructed inside a square of area 1 by
marking off segments of length 1/n along each side as shown in the
figure at the top of the next page. For # = 4 the side ¢ of the
small square is 1/5. For what other positive integral n is s the
reciprocal of an integer? (This proposal is based on a 1985 AME
problem. )
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1/n

i/n

1/n

1/n

654. Proposed by Richard 1. Hess, Rancho Palos Verdes,
California.

In the gane of Rouge et Noir, cards are dealt one at a time from
a large number of well-shuffled decks until the total pip count is in
the range 31 to 40. (Face cards each count 10.) Hoyle Complete (by
Foster, 1916) gives the relative probabilities of arriving at the
sums 31, 32, 33, «ax , 40 as 13, 12, 11, .as , 4, respectively. Find a
more accurage set of probabilities.

655. Proposed by R, S, Luthar, University of, Wisconsin Centen,
Janesville, Wisconsdn.

In triangle ABD, 2B = 120°. Furthermore, there is a point € on

side AD such that #4BC = 90°, AC = »375, and B = 2/4¢. Find the lengths
of AB and (D.

656. Puoposed by Jack Garfunkel, Ffushing, Nav Yohk.

Let ABC be any triangle and extend side AB to A', side BC to B',
and side CA to ¢' so that B lies between A and A4*, etc., and BA' =
A+AB, AC' = A+CA, and CB' = A+BC:. Find the value of A so that the

area of triangle A’B'C' is four times the area of triangle ABC. See

the figure below.
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657. Proposed by R. S. Luthar, University of Wisconsin Center,
Janesville, Wisconsin,
Evaluate the trigonometric saum

6 5w 6 7m

s£n6%+ sin %1"' sin5—8-+ sin’ o
658. Proposed by M. S. Klamkin, University of Alberta,
Edmonton, Afberta, Canada.

= y7 - 2" into a product of real

Factor (x Ty t 2) - X
polynomials, each having degree not to exceed four.

659. Proposed by Harry Sedingen and Albent White, St.
Bonaventure Univensity, St. Bonaventure, New Yohk.

If 0<x<1,p >1, and q = p/(p - 1), then prove that

PP +1) < @+ 1P

660. Proposed Dy Stanley Rabinowitz, ALLiant Computer Systems
Conp., Littleton, Massachusetis.

Recently the elderly numerologist E. P. B. Umbugio read thelife
of Leonardo Fibonacci and became interested in the Fibonacci numbers
1, 1, 2, 3, 5 8, 13, ..., where each number after the second one is
the aum of the two preceding numbers. He is trying to finda 3 x 3
magic square of distinct Fibonacci numbers (but F1 = 1 and F2 = 1 can

both be used), but has not yet been successful. Help the professor
by finding such a magic square or by proving that none exists.

661. Phopobed by John M. Howell, Littlerock, California.

a) Hw close to a cubical box can you get if the sides and the
diagonal of a rectangular parallelopiped are all integral?

*b) Hw close can you get to a cube if all the face diagonals
must be integral, too?

662. Proposed by R S. Luthar, Univernsity of Wisconsin Centen,
Janesville, Wisconsin,

Solve the equation

100%™ _ 0¥ ? - ¥+ p=o.

663. Proposed by M. S. Klamkin, University of Alberta,
Edmonton, Agbenta, Canada.

Find a series expansion for the integral

/2

| <SE.
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664. Proposed by William M. Snydeh, JA., University of Maine,
Onono, Maine.
In this sentence the number of occurrences of the digit 0 is

,of 1is , 2 is , 3 is , 4 is , 5is T,
61is , 7 is , 8 is , and of the digit 9 is )
a) Fill in the blanks to make the sentence true.

*h) Hw mawy solutions are there?
{This problem appeared on the bulletin board of a community
college in Maryland.)

Solutions

595. [Spring 1985, Spring 1986, Fall 1986] Phopobed by Hawry
Nelson, Livenmone, California.

If the integers from 1 to 5000 are listed in equivalence classes
according to the number of written characters (including blanks and
hyphens) needed to write them out in full in correct English, there
are exactly forty such non-empty classes. For example, class "4"
contains 4, 5, and 9, since FOUR HFVE, and SINE are the only such
numbers that can be written out with exactly four characters.
Similarly, class "42" contains 3373, 3377, 3378, 3773, 3777, 3778,
3873, 3877, and 3878. Find the unique class "»n" that contains just
one number.

V. Comment by Leroy F. Meyens, The Ohio State Univernsity,
Columbus, Ohio.

On February 13, 1977, The New York Tines in a book review
printed this interesting misinterpretation: " All of Apple's best
characters are fanatics, each with one eye open a 30-second of an
inch too far.” | also object to The Tines' use of "three-thousandths
of an inch™ for 0.003 inch, since | consider "twenty three-
thousandths” to be 20/3000, rather than 23/1000.  course, the
editors of The Times might object that nobody would use 20/3000,
since the fraction is easily reducible to 2/300. But would | write
this as "two three-hundredths" or "two three hundredths?" | think
the former. Wha about 200/23000 versus 223/1000 versus 220/3000?
Incidentally, Fowler advises The Times way.

615. [Spring 1986, Spring 1987] Proposed by William S. Cariens,
Lonadin County Community Coflege, Efyria, Ohio.
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Athough several years into retirenent, Professor Euiclide
Pasqual e Bombasto Umbugio Still practices mathenatics with his
usual prowess and efficiency. Hs native country, Qiayazual a,
still cannot afford a conputer, but they do have a pocket four-
function cal cul ator to which he has occasional access. Hs |atest
project is to find the sumof the abscissas of the points of
i ntersection of the seventh-degree pol ynom al

flx) = 2 - 3% - 132° + 55" - 362 - 522 + uax

wth its derivative polynomal. Sofar he has |aboriously found
one of the intersections at » = 1.3177227. Help the kindly, ol d
professor to find his sumw thout resorting to a conputer.

[1.  Comment by Michael W. Ecker, Pennsylvania State University,
Wilkes-Barne Campus, Lehman, Pennsylvania.

The solutionis unsatisfactory. True, the answer of 10 is
correct; the sol ution, which incorporatesthe all-inportant
reasoni ng, however, is inconplete or defective. The sumof the zeros
of a monic polynomial is indeed the coefficient of the second term
counting by descendi ng powers. However, this counts all the conpl ex
zeros and this probl emseeks only the sum of the real zeros. Thus
one nust showthat there are no imagi nary zeros or one nust prove
that the sumof all the inaginary zeros of the pol ynomal is zero.
Inthis case a Newton's nethod programverified the forner situation
by show ng that the seven roots are approxi matel y -3.582, -0.726,
0.326, 1318 2, 269, and 7.97L

626. [Fall 19861 Proposed by Charles W. Trnigg, San Diego,
California.

Reconstruct this doubly true Gernan al phanetric where, of course,
DREl and SECHS are divisible by 3 They al so have the sane digit B

EI NS+ zWEI t DREI = SECHS.

Composite of solutions submitted independently by Glen E. Mills,
Onange County Public Schools, Onlando, Flonida, and John V. Moores,
Cambridge, Massachusetts.

Fromthe units colum we havel : 0 or 5 Fomthe thousands
colum ve have that S= 1 A so we have

D+R+E+I=22+E+C+Hz=0 (mod 3).
By trial and success ve substitute for each pair N E, which
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determines H Then Cis chosen subj ect to the displayed congruence.
Next, fromthe remaining digits, take Zand Dso that Z+ pis 8, 9,
or 10. Juggle theremaining digits to obtain conpatible W R, and ¢._
Finally, apply the displayed congruence. Ve arrive at the uni que
restoration

3591 + 2835-+ 7035 = 13461.

Also solved by CHARLES ASHBACHER, Mount Merey College, Cedar
Rapids, TA, MARK EVANS, Lowisvifle, KY, VICTOR G. FESER, University
0§ Mary, Bismarck, ND, RICHARD |. HESS, Rancho Pafos Verdes, CA, JOHN
M. HOWELL, Littferock, CA, and the PROPOSER.

627. [Fall 19861 Proposed by Robert C. Gebhardt, Hopatcong,
New Jersey,

This probLem has interesting applications for anyone who 4is asked
to take a Lie-detector test, a drug-use test, an AIDS test, oh. any
similarn test where the percentages are of the order shown in the
question., It is known, let us say, that 0.1% of the general
popul ation are liars. Wen peopl e known to be liars take |ie-detector
tests, the test results are correct 95%of the tine. Wen peopl e
known to be truthful take |ie-detector tests, the test results are
correct 99%of the tine. To get a certain job, you are asked to take
alie-detector test. Itsresultsindicate you are aliar. Wat is
the probability that you actually are a liar?

I. Solution by Rusself Euler, Northwest Missouri State
Univensity, Marnyville, Missourndi.

Let A be the event that you actually are aliar and let 3 be the
event that the lie-detector test indicates that you are a liar. Then

_p(ANB) _ (0,001)(0.95)
p4|B) = p(B) - (0.001)(0.95) + (0.939)(0.01)

II. Sofution by the. Proposer.

(onsi der a popul ation of 100,000 peopl e. Then 100 of themw ||
be liars and the other 99,900 will be truthful. Wen the 100 liars
are given lie-detector tests, they will indicate that 95 of themare
liars and 5 are not. |f the 99,900 truthful people are tested, the
test will wongly show999 of themto be liars. Thus a test result
indicating that a personis aliar is correct only 95/(999 + 95) -
0.086837... of the tine, |ess than P%

= 0,0868372.

-
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III. Comment by Bawry Brunson, Western Kentucky University,
Bowling Green, Kentucky.

The answer to the question as posed is either 0 or 1, depending
on whether or not you are, in fact, a liar; presumably "you" know
which.

The other answer is 95/1094, or less than 9%. The question to
which this is the answer is: Given the assumptions of the first three
sentences of the problem, suppose a person is chosen at random from
the general population and tested. |If the test should be positive,
what is the probability that the person is a liar?

IV. Comment by Peter Geiser, St. Cloud State University,

St. Cloud, Minnesota,

The more interesting result is that the probability a person is
a truth-teller given that the machine has labeled him a liar is
1 - 0.0868 = 0.9132. That is, the probability that a person is
actually a truth-teller given that the machine has labeled him a liar
is greater than 0.90:

Also sofved by CHARLES ASHBACHER, Mount Mercy College, Cedar
Rapids, |A, JAMES E. CAMPBELL, University of, Missouni, Columbdia, MARK
EVANS, Louisvifle, KY, RICHARD |. HESS, Rancho Pafos Verdes, CA,

HENRY S. LIEBERMAN, Wabar, MA, JOHN D. MOORES, Cambridge, MA HARRY
SEDINGER, St. Bonaventwre University, NY, TIMOTHY SIPKA, Afma College,
Alma, MI, and WACE H. SHERARD, Fuwman University, Greenvifle, SC. ALL
these solverns used Bayes' theorem, the method of, SoLution 1. GEORGE P.
EVANOVICH, Edward Williams College, Hackensack, NJ, VICTOR G, FESER,
University of Mary, Bismanck, ND, and THOMAS F. SWEENEY, Russell Sage
College, Thoy, NY, alf submitted sofutions that had minor errors of one
sont on anothen.

628. [Fall 19861 Proposed by AL Terego, Malden, Massachusetts.

a) Hw may 4 X 6 cards can a paper wholesaler cut from a
standard 17 x 22-inch sheet of card stock?

b) Can the waste be eliminated if one is allowed to cut both
3 X 5 and 4 x 6 cards from the same sheet?

I. Solution by Witliam D, McIntosh, Central Methodist College,
Fayette, Missouri.

a) Since both dimensions of the cards are even, the number of

cards that can be cut from a 17 X 22-inch sheet is the same as the
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number that can be cut from a 16 X 22 sheet. Since the latter

sheet contains 352 square inches and 15 cards would require 360

square inches, it is clear that at most 14 cards can be cut from one
sheet. The left diagram below shows one way to cut fourteen 4 x 6 -
cards from a 17 X 22 sheet.

{(b) The waste cannot be eliminated, but can be greatly reduced.
Since the areas of the cards are 15 and 24 square inches
respectively, both of which are multiples of 3, then the total area
of the cards must be a multiple of 3. Since the area of the sheet is
374 square inches, there must be at least 2 square inches of waste.
The right-hand figure shows a way to cut eight 4 x 6 cards and twelve
3 X 5 cards from a 17 X 22-inch sheet, with exactly 2 square inches

of waste.
5
3 4 4 u 6 3
6 S
3 5 [
3 L
5 I——
6 2 6
: i’
A 6
O 5 '+
ST A s T e PN Ry 3 3 3 3 6

II. The. figure (below Legt) for part (a) was submitted
independently by Victor G. Feser, Univensity of, Mary, Bismanck, North
Dakota., Robert C. Gebhardt, Hopatcong, New Jersey, JohnV. Moones,
Cambridge, Massachusetts, and Wade H. Sherard, Furman Univensity,
Greenville, South. Carolina.
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III. The figure (preceding page, xight) for part (b) was
submitted independently by Victor G. Feser, University of, Mary,
Bismanch, Nonth Dakota, Richand |. Hut, Rancho Palos Verdes,
California, John M. Howell, Littlenoek, California, and John H.
Scott, Macalesten College, Saint Paul, Minnesota.

IV. Comment by the Proposen.

A commercial paper knife makes only straight cuts across the
entire sheet of paper. Hence solution I(b) cannot be done with such
a knife. Each of the other three figures can be so cut, those of
solutions III and |V being perhaps easier for the operator of the
knife. The question remains whether there is a commercial knife
solution to (b) that wastes only 2 square inches. The answer is
'no™; solution IV is indeed the best one can do.

To find the minimum waste for part (b), we form a waste table.
Recall that the 17 x 22 sheet must be cut into two smaller pieces,
then each piece must be cut again, repeating the process until only
3 x 5 cards, 4 x 6 cards, and scrap pieces remain. W% form the waste
table by "rebuilding" the original sheet, using all possible
combinations. Clearly any 1 x n and 2 x n sheets are all waste. A
3 X n sheet has waste 3, 6, 9, 12, 0, 3, 6, ... square inches for n =
1, 2, 3,%ee « A 4 x n sheet has 4, 8, 12, 16, 5, 0, 4, 8, 12, 10, 5,
0, ««» square inches of waste by cutting 3 x 5 or 4 x 6 cards as
appropriate. Continue in this fashion through » = 6. Note that an
m % N sheet has the same waste as an n x m sheet. Then, whenm and n
are both larger than 6, we find the waste by taking the minimum of
the sums of the wastes of two smaller sheets that combine to form the
m X n sheet. Thus consider k x n and (m - k) x n sheets for k = 1 to
Mm-1and alsom x j andm x (n - §) sheetsforj=21ton -1 For
example, a 9 x 11 sheet has waste 0 because the wastes for 9 x 5 and
9 X 6 sheets are both 0, even though no combination of k x 11 and
(9~ k) x11 will give the zero sum. This tedious process, which can
be programmed into a computer, eventually shows that a 17 x 22 sheet
must have waste 5.

Also sotved by MARK EVANS (who furnished the same figure ah the
Legt one of, Solution 1), Louisville, KY, and alf those Listed above.
AL sofverns answened comnectly the question in part (b), bat only
those Listed in sofutions | and 111 provided figures fon that part.
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629. [Fall 19861 Proposed by Jack Garfunkel, FLushing, New
Yonk.

If A, B, Carethe angles of atriangle, prove that

cog A cos B cos C < (1 - coe A)(1 - coe B)(1 - cos C).

I. Solution by George P Evanovich, Edward Williams Coflege,
Hackensack, New Jernsey.

In any triangle, the distance between the incenter | and the
orthocenter #, according to Hobson, A Treatise on Plane and Advanced
Trigonometry, page 200, is given by

IS = 4R*[(1 - cos A)(1 - cos B)(1 = cos C) = cos A cos B coe Cl,
where R is the circumradius of the triangle. Hence the displayed
quantity is nonnegative and the theorem follows. Furthermore,
equality occurs if and only if # =1, that is, if and only if
triangle ABC is equilateral.

1. Comment by Richard |. Hess, Rancho Palos Verdes,
California,

This problem has appeared in Crux Mathematicorum as problem 836
[1983, 113] and [1984, 228]. A very similar problem, proposed by
Jack Garfunkel, appeared there as problem 974 [1984, 262] and [1985,
328].

Also solved by MARK EVANS, Lowisv.ifle, KY, RICHARD I|. HESS,
Rancho Palos Vendes, CA, BOB PRIELIPP, University of, Wisconsin-
Oshkosh, and the. PROPOSER. Prielipp afso pointed out the Qrux
Mathematicorum probLem numbern S36.

630. [Fall 1986] Proposed by Russell Eulen, Nonthwest Missourni
State Univensity, Manyvitle, Missouri.

Evaluate

d
T sin g2,
m=1 2+ 1
Solution by Kenneth M. Wikke, Topeka, Kansas.
Recall that exp(xi) = eie a = cos x T i sin &, exp(2ri) = 1,

exp(a)+exp(b) = exp(a * b) and that the roots of @ -1 = 0 are
exp(2tmi/r) form = 1, 2, =ss , » for positive integral r« Then

r r-1 .
L =l P2 .tE+12 T (o —emp(-zlmz’-)).

m=1 r

Nw seta =1 in this equation to get



478

r-1
(1) r= 1

(1 - eap(ATLy),
m=1

By standard trigonometric double-angle formulas we get that
1 - exp(2ti) =1 -c0s 2t - < sin 2
1-@-2sin®¢)-20sint cost
(-2 sin t)(ecost + 2 sin t)
= (-2 sin t) exp(ti).
Nw substitute this result into Equation (1) to get

e mw r-d mui
(2) r= NI(2sin—)+ T (-1) exp(—7).
m=1 : m=1 -
Since
r-1 . r-1 .
= eacp(mm) = expli muy (w(r - 1)’L) - ir—l
r r 2
m=1 m=1

and since sin (mn/r) =sin (u(r - m)/r), then we taker = 27 + 1 in
Equation ( 2) to get that
(3) r=2+1= 2?12311n%”—= T zsinw—‘"zf)z.
m=1 m=1
Nw take square roots, noting that each factor in the product is
positive, to get

J 5T T
it sin2.m11='/2‘7f1-
m=1 J 2

Also so0lved by SEUNG JIN BANG, Seouf, Konrea, BARRY BRUNSON,
Westenn Kentucky University, Bowling Green, BOB PRIELIPP, University
of, Wisconsin-Oshkosh, JOHN H. SCOTT, Macalester College, Saint Paulf,
MN, and the PROPOSER Prielipp Located ihis problem i n Shklarsky,
Chentzov, and Yaglom, The ussr O ynpiad Probl em Book (revised and
edited by Inving Sussman and fransfated by John Maykovitch), Freeman
1962, problem 232(a). Brunson noted that the. second equality in
Equation (3) is found .in The American Mathematical Monthly, wvof. 69
(1962), pp. 217-218,

631. [Fall 1986] Proposed by Saw Pearsall, Pomona, California.

Let

Yo = KL -y,

forn=20, 1, 2, ... and k a given constant. If the initial value Yo
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has an absolute error e = Yy - Vs where y is the true value, show

that the formula is unstable for |k| > 1 and stable for [k| < 1.
Solution by Richard 1. Hess, Rancho Palos Verdes, Californdia.
Let the error in Y, be e, Then

€1 = k(1 - (yn te)) - k(1 -yn) = -ken,

so that e, ., = (—k)neo. Hence the formula is unstable (the error grows

without bound) for [k| > 1 and is stable (the error shrinks to zero)
for |k| < 1.

Also solved by FRANK P. BATTLES, Massachusetts Maritime Academy,
Buzzards Bay, MARK EVANS, Lowisv.ifle, KY, JOHN H. SCOTT, Macalester
College, Saint Paul, MN and the PROPOSER

632. [Fall 19861 Proposed by R. S. Lluthar, Univensity of,
Wisconsin Center, Janesville, Wisconsin,

Sow that

1
J25% @+ (x-1) Inz)de = 1.
0

Sofution by Richand 1. Hess, Rancho Palos Verdes, California.

Let
w=(@- 16" = @- &N,
so that
du=xX [z + (@-1)Inzl de
and
Timitz In X = limi¢e BE = 1imie T2 limit(z) = 0
X + x4+ 0 VT XV 0_q/p x4 0

by L'Hospital's rule. Then u(1) =0 and Zim, , u(¥) = u(0) = -1, so

1
IX e+ (- inx] & = jodu:l
0 -1

Also solved by FRANK P. BATTLES, Massachusetts Maritime Academy,
Buzzands Bay, BARRY BRUNSON, Western Kentucky University, Bowfing
Green, GEORGE P. EVANOVICH, Saint Peterns College, Jensey City, NI,
MARK EVANS, Loudisville, Ky, JACK GARFUNKEL, Ffushing, MY, ROBERT C.
GEBHARDT, Hopatcong, NJ, PETER GIESER, Sauk Rapids, MN, RALIPH KING,
St. Bonaventwre University, NY, HENRY S. LIEBERMAN, Waban, MA, PETER
A. LINDSTROM, Nowth Lake Coflege, Inving, TX, JOHN D. MOORES,
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Cambridge, MA, BB PRIELIPP, University of Wisconsin-Oshkosh, JOHN

PUTZ, Alma Coffege, M|, WAE H. SHERARD, Fumman University,

Greenville, SC, TMOTHY SIPKA, Afma Coflege, M|, and the PROPOSER
633. [Fall 19861 Proposed by Dmitry P. Mav€o, Moscow, USSR
leta, by ¢ >0, a+b +c =1, and n ¢ N. Provethat

(L-1)(L-1)(L-1) > (3% - 1)3,
n n 7 =
a b e

with equality if and only if a=b = e = 1/3,
Solution by Seung Jin Bang, Seoul, Korea.
V% use the method of Lagramge multipliers. Thus |let

Fla,bye) = (@ - DB - 1) -1) - aatbte-1).
Then we have

2 g™y - 1™ - 1) -

and similar expressions for the other two partial derivatives.
Setting the three partials equal to zero, we get that

(1) c'¢~-cznq"1=b-bn+1=c-cm+1 and a+b+ec=1.

n+l

Since the graph of f(x) = X - & isOatx =0and at x = 1,

concave downward in this interval, and has a maximum at X

1/(n * 1)1/" >1/2, then at the equality above, some two of a, b, and
e must be equal. Hence we assume a = e. Then we have

a-an+1=b-bn+1 and 2¢a+b=1 (0<a<-3-).

n+l

Nw the graph of g(x) = (1 - 22) - (1 - 2x) is0Oatx = 0and at

X = 1/2, concave downward in this interval, and has a maimum at X =

1/2 - 1/2(n t+ 1)1/'l < 1/4. Furthermore the maimum values of f(x)

and g(z) are both equal to 1/(n t l)1+1/". Hence the only positive

intersection of f(x) and g(xz) is at x = 1/3,
Therefore the only solution to (1) isata=b =e = 1/3. Since
F(a,b,e) tends to infinity as a, b, or e tends to zero, then

F(';’g 'y %‘) = (sn - 1)3

W=

i's the minimum value of (@™ = 1)®™ - 1)(e™ - 1), with equality if
and only if a=b=¢ = 1/3,
Also solved by RICHARD |I. HESS, Rancho Pafos Verdes, CA, and the

ug1

PROPOSER (two soLutions).

634. [Fall 19861 Proposed by Stanfey Rabinowitz, Digital
Equipment Conp., Nashua, New Hampshire.

Find the condition for one root of the cubic equation

X3-p;c2+q:c—r=0

to be equal to the am of the other two roots.

. Solution by Charles R Diminnie, St. Bonaventwre University,
St. Bonaventunre, New Yohk.

A necessary and sufficient condition is that p/2 be a root of
the equation, since p is the sum of the three roots.

II. Solution by Oxford Running CZub, University of Mississippdi,
University, Mississippi.

Since the aum of the roots of this cubic is p, then one of the
roots must be p/2. Substituting X = p/2 into the equation yields

3 3
e _ -p =
] PIT"%CL r=0,
or 3
8r = Upg -p .

II1. Sofution by the Proposenr.

The condition is (at b -eXbte -a)leta->b)=0, where a,
b, and ¢ are the roots of the equation. Expanding out this equation
into a symmetric polynomial and then expressing it in terms of

elementary symmetric polynomials gives us the result pl4g - pz) = 8p,
although the computation is a bit messy.

ALso solfved by BARRY BRUNSON, Westean Kentfucky University,
Bowbling Green, JAVES E. CAMPBELL, University of Missouri; Columbia,
RUSSELL EULER, Noathwest Missouri State University, Maryville, MARK
EVANS, Louisville, KY, VICTOR G. FESER, University of Mary, Bismarck,
NO, JACK GARFUNKEL, Ffushing, NY, ROBERT C. GEBHARDT, Hopatcong, NJ,
RICHARD |. HESS, Rancho Pafos Verdes, CA, JOHN M. HOWELL, Littlenrock,
CA, XIAN SHAN HUI, James Madison High Schoof, Brooklyn, NY, GLEN E
MILLS, Onange County Pubfic Schools, Onlando, FL, JOHN D. MOORES,
Cambridge, MA, NORTHAEST MISSOURI STATE UNIVERSITY MATHEMATICS CLUB,
Maryville, BB PRIELIPP, University of Wisconsin-0shkosh, JOHN PUTZ,
Alma College, MI, JOHN H. SCOTT, Macalester College, Saint Paul, MN,
WACE H. SHERARD, Fwuman Univers.ity, Greenvifle, SC, ARTHR H.



482

SIMONSON, East Texas State University at Texarkana, KENNETH M. WILKE,
Topeka, kS, and the. PROPOSER (second sofution), Prielipp found this
problem an, Exercise 39 on page. 446 of Chrystal's Textbook of Algebra,
vol, 1, 7th ed; Chelsea, 1964.

635. [Fall 1986] Proposed by John M. Howefl, Littlenock,
California.

Our old friend Professor Euclide Pasquali Bombasto Umbugio has
been amusing himself in his retirement with problems about infinite
series, continued fractions, and other nonterminating expressions.
He says that now he has the time to follow through with such
computations. So far he has found that y = vz andy = 1 * x do not

intersect, and he is working on finding the intersections of the
curvesy = (x t /.;)1/2 andy =1+ 2/(1 + x). Proceed to the limit

and help the good Professor by finding all intersections of the
curves defined by the continued expressions

Y@+ @t @+ .02 212
and
y =1+ &
1+ =
1+ —=
1+ ...
for X > 0.

Sofution by John V. Moones, Cambridge, Massachusetis.
Clearly x > 0 impliesy > O for each continued expression. The

first expression is equivalent to

y = (x+y)1/2, or y2=:c+y.
The continued fraction is
y=1+£, or y2:y+x.

Y
Hence both expressions represent the same parabola:

x=y2—y, X,y > 0.

Similar solutions wene suomitted by JAMES E. CAMPBELL,
University of, Missouri, Columbia, RUSSELL EULER, Noathwest Missourd
State. University, Maryville, GEORGE P. EVANOVICH, Saint Petens
College, Jersey City, NJ, ROBERT C. GEBHARDT, Hopatcong, NJ, RICHARD
I. HESS, Rancho Pafos Vendes, CA, PETER A. LINDSTROM, Nonth Lake.
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College, Inving, TX, BOB PRIELIPP, Univensity of Wisconsin-Oshkosh,
JOHN H. SCOTT, Macalester College, Saint Pauf, MN KBENNETH M. WILKE,
Topeka, KS, and the PROPOSER.

636. [Fall 1986] Proposed by Wakten Blumberg, Conal Springs;
Flonida.

a) Prove that if p is an odd prime, then 1 tpt p2 cannot be a
perfect square or a perfect cube.

*b) Is part (a) true when p is not prime?

I. Sofution for'the.square case by Robert C. Gebhardt,
Hopatcong, New Jmey.

Assume that 1 + p + p2 is a square, say k2. Then

p2+p+(1—ki)=0, so p:-!!-ié-/l-&kz—&
The only square that is three less than another square is 1, which
occurs under the radical here when k = 1 or -1, in which casep = 0

or -1. Thus p2 +p * 1isnever a square for prime p and is a square
for integral p only when p = -1 or O.

1I. Sofution fon the. cube case by Kenneth M. WiLke, Topeka,
Kansas.

Clearly p2 tpti1-= 8> has integral solutions for p = -1 and
for p = 0. Let us assume the equation holds for any other integers p
and 8. Thens > 1 and odd, and |p|] >s. Thust =8 - 1isa
positive integer and, substituting t + 1 for s, we get that

1) plp + 1) = se2 + 3t 4 3).
Since |p| > s >t, thent divides porp t1. Ift | p, then we
writetj = p for some integer §. Then Equation (1) reduces to

tj2+j=t2+3t+3,
and applying the quadratic formula, we find that
:-(3—j2)¢/(3-j2)2—u(3~;l .
2

t

Ve let F = (3 - 557 - u(s - 4,
1f, on the other hand, t | P + 1, we take tk = p + 1, so that
p = tk - 1. Again substitute into Equation (1) and simplify to get
tk2-k=t2+3t+3,

whose solution is
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2,2
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Here we let F2 = (3 - k2)2 - 4(3 + k).

The two cases yield equivalent expressions for F and F2, asis
seen by replacing § by -k. Thus we look at 7 = Fos without loss of

generality. W readily check that F = (3 - k2)2 - 4(3+ k) isnot a
square for any integer k from -2 through 4. For k > 4,

& - 3% > F> k2 - W
Since F lies strictly between two adjacent squares, F cannot be a
square. For k < -3,

a? - 32 <F < 2 - 3)2,
and again F cannot be a square. If k = -3, thent = 0 or 6, and we
have the solutions {p, &) = (-1, 1) or (-19, 7). Similarly taking
J =3, againt =0or 6 and (p, ) = (0, 1) or (18, 7). VW& see that

p2+p+1=83

has just four integral solutions, no solution where p is a positive
prime, although some texts do allow -19 to be called prime.
I11.  Solution by David E. Penney, The University of, Geongia,
Athens, Georgia.
The first of these assertions is easy to establish. Use the
inequality
<l ra+l< (x +1)2
for X > o, together with the observation that no square lies properly
between the squares of two consecutive integers. Similarly the
inequality
@ - 1)2 < 22
for X < 0 shows that there are no solutions other than X = 0 and -1

-z +1< X2

Nw we turn our attention to the equation

1+x+ :n2 = y3.
Suppose that it holds for some integers X and y. Then

Buz? + 64z + 64 = By

and
(8 + 4)2 + 48 = (uy)a.

This equation is of the form u? + 48 = »°

on pages 246 = 247 of L. J. Mordell's Diophantine Equations (New

and is discussed at length

York: Academic Press, 1969). He states that this equation has "only
the solutions (u, v) = (x4, &), (148, 28) and is of particular
interest."” Mordell refers us to W. Ljunggren, "Einige Gleichungen

von der Form ay? + by + ¢ = dz°," Vid. Akad. Skrifter Oslo, Nr, 7
(1930). The solutions Mordell lists give rise to the complete list
of solutions we obtained above.

IV. Comment by H. Abbott and M. S. Klamkin, University of,
Alberta, Edmonton, Afberta, Canada.

In "Note sur l'equation indetérminée (x" - 1)/(x - 1) = y2,"
Norsk Matematisk Tidsserift 2 (1920) 75-76, Trygve Nagel has shown

that the equation (2" = 1)/(z = 1) = y2 has no integral solutions for
n =17 9 11, and 25; that there are solutions for n = 4 (e.g. x = 7)
and n = 5 (e.g. x = 3). He has also shown that there are no

solutions tox? +Xx + 1 = 3y? for |y| >1andq > 3. In "A Note on

the equation nltnta= p5," Math. Mag 37 (1964) 339-340, J. P.
Hurling and V. H. Keiser consider solutions where p is prime. They
determine various conditions on n, P, and » for solutions to exist.
By means of a computer, they have shown that for » > 1, there is only
one solution for n < 180,000, namely n = 18, p = 7, and r = 3
(corresponding to the one given above).

V. Comment by Bob Prielipp, University of Wisconsin-0shkosh,
Oshkosh, Wisconsin,

It may be of interest to note that 1+ 3+ 32+ 3 + 3% = 112,

Also sofved by H. ABBOTT and M. S. KLAMKIN, Univers.ity of,
Alberta, Canada, MARK BVANS (sofution fon squanes), Lowisville, KY,
VICTOR G. FEER (solution for squares), University Of, Mary, Bismanck,
ND, ROBERT C. GEBHARDT (answer for cubes), Hopatcong, NJ, RICHARD I.
HESS (s0fution for squares, answer for cubes), Rancho Palos Vendes,
CA, BOB PRIELIPP, Univensity of ,Wisconsin-Oshkosh, KENNETH M. WILKE
Topeka, KS, and the. FROFOER (s0lution to part (a)).

637. [Fall 1986] Proposed by R. S. Luthar, University of,
Wisconsdin Centen, Janesville, Wisconsin.

Let ABC be a triangle with 34BC = JACB = u40°. Let BD be the
bisector of 34BC and produce it to E so that CE = AD. Find the
measure of IBEC. See the figure on the next page.
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Solution by Hanry Sedinger and Charles R Diminnie, St.
Bonaventure Univernsity, St. Bonaventure, New York,

Choose point F on BC such that 3BDF = 9BDA. Then, by ASA,
triangles ABD and PBD are congruent. Therefore DF = AD = DE. V¢ see
that 34DB = 3CDE = 60°, Then 3CDF = 60°, too. Thus, by S4S,
triangles CDP and CDE are congruent and we get that

3BEC = IDEC = 120° -~ W E = 120° - 3DCF = 120° - 3ACB= 80°.

Also sofved by RUSSELL EULER, Northwest Missouri State
University, Maryvifle, JACK GARFUNKEL, Flushing, NY, ROBERT C.
GEBHARDT, Hopatcong, NJ, RICHARD A. GIBBS, Fort Lewis College, Durango,
CO, PETER GEISER, St. Ctoud State University, MN, RICHARD I. HESS,
Rancho Pafos Vendes, CA, RALPH KING, St. Bonaventure University, NY,
JOHN D. MOORES, Cambridge, MA NORTHWEST MISSOURI STATE UNIVERSITY
MATHEMATICS CLUB, Maryvifle, JOHN H. SCOTT, Macafester College, Saint
Paul, MN, WADE H. SHERARD, Fumman Univensity, Greenville, SC, ARTHUR
H. SIMONSON, East Texas Sate. University at Texarkana, KENNETH M.
WILKE, Topeka, KS and the PROPOSER. Some of the sofvens used the
Law of s4ines. GLEN E. MILLS, Orange County PubLic Schoofs, Ontando,
FL, using decimal values, found the. angle t 0 within 0.05. One othen
submission assumed that D s the. midpoint of AC and a f§4inal paper
ented i N applying the. Law of sines, each obtaining a wrong answer.

638. [Fall 19861 Propesed by R S. Luthar, University of
Wisconsin Centen, Janesv.ille, Wisconsin.

In the figure on the next page, the circle with center O is an
excircle of triangle ABC. Then BK is drawn so that 9XB4 = 340C, and
OA is produced to meet BK in D. Prove that OCBD is a cyclic

quadrilateral.
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Sofution by Jack Ganfunkel, Flushing, Nav York.
Since AE and AC are tangent to the circle, then OA bisects JCAE.
Similarly CC bisects JACF. Hence

0AC = %aCAE = %180° - 3B4C) = 90° - B3mac

and similarly
3400 = 90° - Damca.
Hence
340¢ = 180° - (WAC + 34c0) = %aBAc + %%ECA = 90° - %aABc.

Nw we have that
IDBC + 9DOC = IDBA + IABC + JA0C = IABC + 2340C
34Bc + 180° - 34Bc = 180°,

so quadrilateral DBCO is cyclic, since a pair of opposite angles are

supplementary.

Similar solutions wenre submitted by RICHARD A. GIBBS, Font Lewis
College, Dunango, CO, RALPH KING, St. Bonaventwre University, NY,
HENRY S. LIEBERMAN, Waban, MA JOHN D. MOORES, Cambridge, MA
NORTHWEST MISSOURI STATE UNIVERSITY MATHEMATICS CLUB, Maryv.ife, JOHN
H. SCOTT, Macalester Coflege, Saint Pauf, MN, MADE H. SHERARD, Furman
Univensity, Greenvifle, SC, ARTHUR H. SIMONSON, East Texas State
Undivensity at Texarkana, and the PROPOSER.

I'n Menoriam

Léo Sauve taught a backbreaking load of trigonometry and algebra
at Algonquin College in Ottawa, Ontario, Canada. Nevertheless, to
keep from becoming mathematically stale, in 1975 he founded a small

problem journal called Bureka, |ater renamed Crux Mathematicorum, "a
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puzzl e or problemfor nathematicians.” Singlehandedly he was soon
editing 10 issues a year, each 30 pages in length, a monumental task
for any person. Rarely could you find an error onits pages, so
careful was its editor. He personally verified every nathemati cal
statement that appeared on its 300 pages each year. Hs wit and
fluency in both French and English nade the journal Iively and
exciting, as well as informative. Early in 1986 Léo retired because
of ill health, after having built Crux into a journal wth
subscribers and contributors throughout the world. He died in June,
1987. Therefore it is our privilege to dedicate this issue of the
Probl em Departnent to the menory of Léo sauvé, a true schol ar and
friend, and to express our hope that we will always be guided by his
spirit in our editing of these pages.
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THE RICHARD V. ANDREE AWARDS

Richard V. Andree, Professor Emeritus of the University
of Oklahoma, died on May 8, 1987, at the age of 67.

Professor Andree was a Past-President of Pi Mu Epsilon.
He also served the fraternity as Secretary-Treasurer General
and as Editor of the Pi Mu Epsilon Journal.

At the summer meetings in Salt Lake City the fraternity
Council voted to designate the prizes in the national student
paper competition as Richard V. Andree Awards.

First prize winner for 1986-1987 is Wah Keung Chan,
McGil1l University, for his paper "On the Largest RAT-free
Subset of a Finite Set of Points." Wah's paper appeared in
the Spring 1987 issue. Wah will receive $200.

Second prize winner is Jennifer Zobitz, College of St.
Benedict, for her paper "Fractals: Mathematical Monsters."
Jennifer's paper is the lead article in this issue of the
Journal. Jennifer will receive $100.

Third prize winner is Kelly Ann Chambers, University of
Dayton, for her paper "The Isomorphism of the Lattice of
Congruence Relations on a Group and the Lattice of Normal
Subgroups of a Group." Kelly Ann's paper also appears in
this issue of the Journal. Kelly Ann will receive $50.

Congratulations Wah, Jennifer and Kelly Ann.
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1987 NATIONAL PI MJ EPSILON MEETING

The National Meeting of the Pi Mu Epsilon Fraternity was held
at the University of Utah in Salt Lake City on August 5 through August 8.
Highlights included a reception for students, faculty advisors, and alum-
ni, a Council Luncheon and business meeting, the Annual Banquet, and in-
formal student parties. The J. Sutherland Frame Lecturer was Professor
Clayton W. Dodge, editor of the Journal's Problem Department. He enter-
tained his listeners with "Reflections of a Problem Editor."

The program of student papers included:

Deterministic and Probabilistic
Fire Modds

The Epidemiology of the AIDS Virus
The Strangely Attracted Bouncing
Ball

Applications of Signal Processing

Self-Calibration Of Complex Viei-
bility Data from a Very Large Array
of Antennas

Representations and Characters of
Groups

A Algebraic Construction of a
Projective Geometry

The RA Public Key Cryptosystem:
An Application for Modem Algebra

16/ 64 = 1/ 4 and Other ii-digit
Canoellations

Warren E. Blaisdell
Massachusetts Alpha
Worcester Polytechnic Institute

Aaron Klebanoff
California Lambda.
University of California, Davis

Stephanie Ruth Land
Texas Lambda
Univers.ity of Texas

Debna Shale
Massachusetts Delta
University of Lowell

ALL Safaei-nili
lowa Alpha
lowa State. University

Ken Chick
Ohm Delta

Miami University

Stephanie Dumoski
California Theta
Ocedidental College

Stephen Fiete
West Vmgfﬁa Alpha

West Vinginia University
David A. Messineo

Connecticut Beta
University of Hartfond
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An Algebraist's View of
Competitive Gares

Perpendicular Least Square
Estimators

The Isoperimetric Inequality
Inverting a Pinin R

Fourier Series and the " BestY
Meen Square Approximation

Dynamic Programming Applied to
Computer Voice Recognition

A Formal Sm Mehod Approach to
the Traveling Salesman Problem

A Bit of Checking and Correcting

A Graphical Illustration of the
Covergence Of Karmarkar's Linear
Programming Algorithm

The Existence of Eulerian and
Hamiltonian Circuits i n Graphs and
Their Line Graphs

Circuit Spaces and Cut-Spaces of
a Connected Graph

Yet Another Discussion of Graceful
Graphs

Sub-families of Venn Diagrams

Soap FLims as Minimal Surfaces

Enlan Wheelen 11
Vinginia Beta
Virnginia Polytechnic Institute

Brian Anderson
Kentucky Beta
Westenn Kentucky University

Jedf Diller
Ohio Zeta
University of, Dayton

Russell Godwin
Arkansas Alpha
Univensity of, Ankansas

Margaret M. Linebergen
Nonth Carnolina Delta
East Canolina University

Thomas Eugene G.ibbons
Minnesota Delin
St. John's University

Jeffrey Horn
Wisconsin Alpha
Marguette Univensity

Summer Quimby
Wisconsin Delta
S. Honrbert College

Josed S. Crepeau
Montana Atpha
University of Montana

Carol Parkenr
Arkansas Beta
Hendnix Coflege

Michael Tacketit
Ohio Delta
Miami University

Andrew P. Ferrelinra
Massachusetts Alpha
Woncesten Polytechnic Institute

Philip Beymenr
O-tegon Apha
University of Oregon

Geonge Mader
Minnesota Delta
S. John's University

Theology, Mathematics and Meaning

Gares of Timing with Two or
Three Players

A Glimpse at the Theory of
Restrieted Choice

ug1

Mary Ehle
Wisconsin Delta
St. Norbert College

Timothy P. Ronan .
Pennsylvania Omichon
Moravian College

Scott Knwutsch
Indiana Gama
Rose-Hulman Insiitute of Technology

The fol | owing papers were presented by students in the Mathematical
Association of America Student Paper Session, held jointly with the Pi

M1 Epsilon Paper Session.

curves Length Minimiziing Modulo v
ing

NP-Completeness and the Traveling
Salesman Problem

The Classical 'Problems of
Antiquity i n the Hyperbolic Plane

A Physical Derivation of the Well
Tempered Musical Scale

Jefd Abrahamson
Massachusetts Tmatitute of Technology

Mefanie K. Breaker
Noatheast Missouni State Univensity

Robert Cuntis
Univensity of California, Santa Cruz

Timothy Koponen
Aquinas College
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Editor's Note

The Pi Mi Epsiton Journal was founded .n 7949 and s dedicated to under-
graduate and beginning graduate students interested {n mathematics.
Submitted anticles, announcements and contributions to the Puzzle Section
and P-tobtem Department of, the Jounnal should be dinected towarnd this ghoup.

Undergraduate and beginning graduate students are wiged to submit papesrs
to the Jowwal forn considenation and possible publication. Student

papers me given top' priornity.

Expository arnticles by professionals in all areas of mathematics are

especially welcome.

This issue contains three stfudent pap

ens. Each year, the National Paper -,

Competition awands prizes of $200, $100 and $50, p-tovided that at Least
4ive student papers have bun submitted to the Editon. ALL students wp
have not yet received a Master's Degnree, on higher, are eligible fon these
awands, Awards fon 1986-1987 arne announced on page 488 of this issue.
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GLEANINGS FROM CHAPTER REPORTS

CONNECTICUT GAMMA (Fairfield University). Barri Schoch, a charter mam-
ber, represented the chapter at the National Pi M1 Epsilon Meeting held
during the International Congress of Mathematicians in Berkeley, CA.
She presented the paper "The Mathematical World of Cryptology."

During the Fall semester the chapter sponsored two lectures. Robent
Bofgen, Fairfield University, spoke on "The Influence of the Mathematishe
Institut of the Georg-August Universitat (in Gottingen, West Germany) on
the 20th Century Mathematics and Physics: An Incredible Scenario."

David Burry, Perkin-Elmer, described his " Experiences as a Software
Engineer."

In the Spring, as part of the annual initiation ceremony, Sfuart J. Sid-
ney, University of Connecticut, spoke on "The Pigeon Hole Principle and
Geometry. "

During the Annual Arts and Sciences Awards Ceremony, three members,
Tatiana Foroud, Sandra Jacopian and Patrnicia Jarzabek received recogni-
tion for their outstanding performance in mathematics. Each was given
a Pi Mu Epsilon certificate of achievement, a copy of Hofstadter's
Godel, Eseher, Bach: An Eternal Golden Braid, and a one-year membership
in the Mathematical Association of America

GEORGIA BETA (Georgia Institute of Technology). At the 1987 Honors
Program Tracey Redding received a mathematics book of her choice. Each
year book awards are presented to students receiving the BS degree in
Applied Mathematics with a grade point average of at least 37 (A = 4.0)
in all mathematics courses taken.

KANSAS GAMMA (The Wichita State University) . From mid-August through
the end of June, 1986-1987, sixteen lectures/talks were sponsored. The
talks ranged from magic squares to wind tunnel computations, from math
humor Bn a Sunday afternoon to the real projective plane, from Rubik's
cube to superstrings, from Fibonacci numbers to unsolved problems in
fluid dynamics. At the 119th annual meeting of the Kansas Academy of
Sciences, held at Wichita State University in April 1987, G.B. Ross,
P.S. Mangat and S. Shah contributed papers. The chapter dedicated its
activities in 1987 to thememory of the Indianmathematician S, Ramanujan
in honor of his 100th birthday. Dx, J.S. Rao spoke on " Renaissance of
Science in India in the Early 20th Century and Contributions by Ramanu-
jan." In November 1986 sixty students participated in a bi-level
competition in college algebra.

Editon's Note.

Additional gleanings from chapter neponts will be. published in the. Spring
1988 issue of the PL Mi Epsilon Journal.
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