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THE RICHARD V. ANDREE AWARDS

Richard V. Andree, Professor Emeritus of the University of Oklahoma, died on
May 8, 1987, at the age of 67.

Professor Andree was a Past-President of Pi Mu Epsilon. He had also served the
society as Secretary-TreasurerGeneral and as Editor of the Pi Mu Epsilon Journal.

The Society Council has designated the prizes in the National Student Paper
Competition as Richard V. Andree Awards.

First prize winners for 1987-1988 are James E. Georges, California
Polytechnic State University, and Annette M. Matthews, Portland State University, for
their paper "Maximal Polygons for Equitransitive Periodic Tilings," which appeared in
the Fall, 1988, issue of the Journal. The paper was done while the authors were
participants in the Research Experiences for Undergraduates program at Oregon State
University. James and Annette will share the $200 prize.

Second prize winner is Melanie L. Butt, Middle Tennessee State University, for
her paper "Automorphism Groups of Hasse Subgroup Diagrams for Groups of Low
Order," which appears in this issue of the Journal. Melanie, who is currently a senior,
wrote the paper while she was a junior at Middle Tennessee State University. Melanie
presented her paper at the National Meeting of Pi Mu Epsilon at Boulder in August,
1989. Melanie will receive $100.

Third prize winner is Robert A. Coury, University of Washington, for his paper
'A Continued Fraction Approach for Factoring Large Numbers," which appears in this
issue of the Journal. Robert is a senior at the University of Washington. Robert's paper
is a result of research for a talk given at the national meeting in Providence in 1988.
Robert will receive $50.

Congratulations James, Annette, Melanie, and Robert.

Two other student-written papers appear in this issue. One is "Energy-Conscious
Behavior in Rural Areas: How to Approach a Traffic Light" by Craig Osborn, written
while Craig was a senior at Carleton College. The paper is based on a problem presented
by Richard Poss of St. Norbert College at the 1987 Annual Pi Mu Epsilon Conference.

The other is Mark Ontkush's "A Closed Formula for Linear Indeterminate
Equations in Two Variables." Mark wrote the paper while a senior at the State University
of New York at Buffalo. He encountered the formula in a course in discrete mathematics.



AUTOMORPHISM GROUPS OF HASSE SUBGROUP DIAGRAMS
FOR GROUPS OF LOW ORDER

By Melanie L. Butt
Middle Tennessee State University

We begin by reviewing basic group definitions and propositions. A group is a set
with a binary operator which is associative, has an identity, and each element has an
inverse. An abelian, or commutative, group is one whose operation is also commutative.
A subset of a group which also forms a group is called a subgroup.

Proposition 1. if G is a finite group with operation +, and H is a nonempty
subset of G, then (H, ¢} is a subgroup of (G, ) whenever the closure property holds.

More specifically we are interested in Hasse subgroup diagrams. First recall that
a poset is a nonempty set P with a relation < on P which is reflexive, antisymmetric, and
transitive. A lattice (L, <) is a poset with the property that ¥ x,y € P, {x,y} has a least
upper bound and a greatest lower bound.

Proposition 2. Let G be a group. Then ({L{G), €) is a lattice where
L(G) = {H | His a subgroup of G)

and ¢ is subset inclusion. The greatest lower bound of subgroupsH and K is H M K. The
least upper bound of subgroups H and K Is the smallest subgroup of G containing H and K.

We represent lattices of subgroups with subset inclusion by diagrams called
Hasse subgroup diagrams. Each subgroup Is depicted with a point. Lines are drawn to
connect these subgroups according to the following rule: Suppose A and B are subgroups
with property A€ B. Then we connect the points with a line and we position B above A
The identity subgroup wili be at the bottom of the diagram. We define this subgroup to
have height or rank of 0. For subgroups H and K,

rank(H) = rank(K) + 1

whenever H is directly above K.

Now we are interested in automorphisms of these diagrams. An automorphism of a
Hasse subgroup diagram, H, is a bijection from H to H that preserves or reverses order.
Order preserving automorphisms are those with the property that given two elements, x
andy, if x <y, then f(x) < f(y). An automorphism is order reversing when x <y
implies f(x) 2 f(y). The identity automorphism Is the bijectioni: H — H defined by
i(x) = x. The reverse automorphism, if it exists, is the automorphism that turns the
Hasse subgroup diagram upside down.

Proposition 3. The set of automorphisms of the Hasse subgroup diagram H
forms a group under function composition.

Our goal is to caiculate the automorphism groups of the Hasse subgroup diagrams
for the groups of low order which are listed in the first column of Table 1.

TABLE1
Group Automorphism Group of
Hasse Subgroup Diagram
2
Ca Cz
5 2
Cs C2xCp
C; 82
Cg 2
D4 D4
S3 84x 83
Cg X Cg S3 X 02
C4 X Cz D4
Q S3

First we discuss the cyclic groups. The cyclic group with | elements. Cs Is the set
of the first i whole numbers with addition modulo i. Clearly, the automorphism group of
the Hasse subgroup diagram of Cy is C1 since the only subgroup of Cq is Cq Itself.

Theorem 1. The automorphism group of the Hasse subgroup diagram of C; where
ie {234,578} is Cy.

Proof. First consider the subgroups we obtain by examining the group tables.
Then we find the Hasse subgroup diagrams which are

Co {0,1} o {0,1,2} Ca {0,1,2,3}
{op . {0} ' {0,2}
{0} .
Cs I(o,1,2,3,4} C; I{o,1.2,3,4.5,e}
{o} ' {0} .

Cg {0,1,2,3,4,5,6,7}
{0,2,4,6}
{0,4}
{0}
Because each Hasse subgroup diagram contains only one subgroupat each rank -,
and € is transitive, it follows that the only automorphisms are the identity and the

reverse automorphisms. Therefore Ca is the automorphism group since it is the only
group of order two.



Theorem 2. The automorphism group of the Hasse subgroup diagram of Cg Is
Cg X Cz.
Proof. The Hasse subgroup diagram of Cg is

4 {0,1,2,3,4,5}

{0.2,4}

1 {o}

Note that the subgroups are labeled by numbers which will be used to refer to the
subgroups. By looking at the diagram it is clear that the identity and reverse
automorphisms are automorphisms of the Hasse subgroup diagram of Cg. Switching
subgroups 2 and 3 should also be an automorphism and the function switching subgroups
2 and 3 is order preserving. Let us verify the function switching 2 and 3 is an order
preserving automorphism.

i if i 3
Define : H— Hby f(iy= {2 if i
3 if i

mn #
NDwWwN

If i < ], then (i) < f(j} v i,j Is verified by checking

1< 2and f(l

) f(2),
1< 3 and f(l)

)

)

f(3),
f(4),
f(4).

2 < 4 and f(2
3 < 4 and f(3
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Now we obtain a fourth automorphism by turning this one upside down. Thus the

automorphism groups contain four elements. There are two groups of order four. Since

no automorphism has order four, we conclude the automorphism groups is C2 x Ca.
Another groups of low order is Dy, the dihedral group with eight elements. The

elements of D4 can be thought of as the symmetries of a square. More precisely,
Da=(xylx*=1,y2=1,(y2=1);

that is, the group generated by two elements, x and y, with one element, %, of order 4 and

the other, y, of order 2 which produce the identity when the two elements are multiplied

and squared.

Theorem 3. The automorphism group of the Hasse subgroup diagram of D4 is
Dg.

Proof. First compute the subgroups by inspecting the group table of Dg. We
obtain the Hasse subgroup diagram

A9

{1 ,x2,x3y,xy‘<

{1,x3y) -2/3 1%\

\

8 ¢ {1,x,x2,x3} 9 {1.x2.y,x2y}

{1.y {1.x2y}

- {1}

Clearly, the identity will be an automorphism and there will be no reverse
automorphism. Automorphisms are obtained by switching the pairs (2,3) or (5,6) or
both of them together. Automorphisms are obtained also by switching 7 and 9 along with
the pairs (2,3) and (5,6). All of the automorphisms are shown below and will be

referred to by their labels.

10 10

9 9




We provide the details for checking one of the above. The others are similar. Define
TL:H - Hby

1 fi=1, 4, 8, 10
i+2 ifi=3,7
TL() = i-3 ifi=5,6
6 ifi=2
7 ifi=9
Then we calculate the following:
l<2andf(l)=1< 6 = f(2),
l<3andf(l) =1<5=1@3),
l<5andf(l) =1< 2 = 1(5),
l<6andf(l) =1< 3 = f(6),
2<7and f{2) =6< 9 = {(7),
3<7and f(3) =5< 9 = 7),
5<9andf(5) = 2< 7 = {(9),
6< 9 andf(6) =3< 7 =1K9),
7 < 10 and f(7) = 9< 10 = f(10),
9 < 10 and f(9) =7 < 10 = f(10)

To prove the automorphism group is D4 we must prove {xy)2 = 1 where x is an
element of order 4 and y is an element of order 2.

Let x= TL andy = R. Then ({TL}{R))}2 = (TRL)2 = 1. Therefore the
automorphism group is Dj.

The next group is S3 where Sy, is the symmetric group on n objects. S3 may be
represented as the six symmetries of an equilateral triangle.

Theorem 4. The automorphism group of the Hasse subgroup diagram of Sz is
S4 X Cz.

Proof. We compute the subgroups and the Hasse subgroup diagram of S3.

{AA,A LAAA)
120240

(A A, A}
120’ 240

Using the same steps as in the previous proofs, we find there are 24 order preserving
automorphisms. There are also 24 order reversing automorphisms. The order
preserving automorphisms form the group S4 since the four rank 1 subgroups can ali be

permuted. The reverse automorphism generates the group Ca. When the reverse

automorphism is included with the order preserving automorphisms, 24 new
automorphisms are obtained, all order reversing. These also form the group S4. Thus the

combined automorphism group is 84 x Ca.

Theorem 5. The automorphism group of the Hasse subgroup diagram of
02 X Cz is SS X Cz.

Proof. Consider the subgroups of Ca x Ca; then construct the Hasse subgroup
diagram as shown.

{(0,0),(0,1).(1,0).,(1,1)}

{(0.,0).(1.1)}

{(0,0).(0,1)} {(0,0).(1,0)}

T {(0,0)}
By using the same reasoning as in the proof for 83, we find the automorphism group is
SS X CQ.

Theorem 6. The automorphism group of the Hasse subgroup diagram of C4 x Ca
is D4.

Proof. Find the subgroups and form the Hasse subgroup diagram for C4 x Cz as
shown.
8 C4xCo

{(0,0),(1,0).,(2,0),(3,0)} {(0,0),(1,1).(2,0),(3,1)}
5 \6 7
{(0,0),(0,1).(2,0),(2,1)}

2 \1/3 > {(0,0),(0,1)}

{(0,0),(2,0)}

{(0,0),(2,1)}

1 {(0,0})}

We find there are 8 automorphisms. By using the definition
Dy= (xy|x¥=1,y2=1, (xy)2=1)

we check the automorphisms using

8 8



Then

Therefore the automorphism group is Dy.

There are two other groups of order less than or equal to eight. One Is the group
Cs x Co x Ca. The other is the quaternion group, Q, which contains the elements

{1, #i, £j, £k}
and where

i2=j2=k2=-1,
ij = k=-ji, jk =i = -kj, and ki = j=-ik.

Theorem 7. The automorphism group of the Hasse subgroup diagram of Q is Sg.

Proof. After finding the subgroups of Q and the Hasse subgroup diagram

Q

{1,-1,i,-i} > {1.-1,k,~k}

{11"'1 }
{1}

we find there are 6 order preserving automorphisms and clearly no order reversing
automorphisms. The only groups of order 6 are Cg and Ss. Checking group tables, we find
the automorphism group of the Hasse subgroup diagram of Q is Sg. This result can also be
obtained by observing that the automorphisms permute the 3 rank 2 subgroups in all
possible ways.

My work with automorphism groups was done by inspection of the Hasse
subgroup diagrams. Even though some generalizations are easy to state, 1 do not yet know
the theory needed to prove generalizations because | have not yet taken a course in
abstract algebra. This also presents a problem when working with Co x Co x Ca since its

Hasse subgroup diagram is more complex.

REFERENCES

Gilbert, William J, Modern Algebra with Applications, John Wiley and Sons, New York,
1976.
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A CONTINUED FRACTION APPROACH
FOR FACTORING LARGE NUMBERS

By Robert A. Coury
University of Washington

Introduction. The factoring algorithm described is based on a congruence of

Legendre and uses the methods of continued fractions. Legendre's congruence x2 = y2
(mod N) is an important tool for factoring very large numbers. The equation

2 2

n
ooy~ NK_; = (=1)'s )

also plays an important role.

Legendre's congruence is used in several important factoring methods, among
them Fermat's, Euler's, Gauss', and Shanks'. These methods differ only in the way in
which the solution to x2 = y2 (mod N) is found.

Background. We begin with some background material on continued fractions.
Let by, by, by, ... be positive integers. Set [bg, by] =bg +1/by; [bg, by, bo] =
bg + 1/[by, bs]; and so on. {[bg, by, ..., by] is called a simple continued fraction.

Now let N be a positive integer that is not a perfect square. Let ag be the greatest
integer in YN . We compute the series r, and s, inductively as follows: if ap =

- 2
(VN + ro)/sq then aq = [agl, fae1 = 8nSn - T, and spet = (N = 17, )/Sp-

Wirite the rational number [ag, a4, ag] in lowest terms as hp/k, (the nth
convergent of VN ). In a certain sense, these convergents represent the best rational
approximation of VN (see [1], Chapter 7). The series hy, and k, can also be defined
inductively.

The expression [ag, a1, as, ...] is called the infinite simple continued fraction

expansion of VN . For each positive value of n, the positive integers hy, k,, and $  satisfy

) o2 2
the following relation: LI Nk _q = (~1)"s.

Finally, if N is not a perfect square, VN has a continued fraction expansion that
repeats. The length of the repeating part is called the period.

We now outline how continued fraction expansions are used to factor large
numbers.

The method. Suppose N is composite; we assume that N = pg, where p and g are
distinct primes. Then Legendre's congruence x2 = a2 (mod N) has a pair of nontrivial
solutions x = £z (mod N) in addition to the trivial pair x = A+ (mod N). This fact can be
used to factor N.

First, find a nontrivial solution z to x2 = a2 (mod N). Since 22 - a2 =
(z-a){z+a) =0 (mod N), neither z + anor z - a can be divisible by both p and g tor
example, if z + a were divisible by both p and g, then it would be divisible by N. This
would mean that z = -a (mod N), which yields the trivial factorization of N.
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Thus, one of z + a and z - a must be divisible by p and the other by g. The factor p
(or g) can be determined by using the Euclidean algorithm to find the greatest common
divisor of z+ aand N (or z - a and N). This method also works if N has more than two
prime factors; one simply reapplies the method to the composite factor.

In trying to determine a nontrlvial solution to Legendre's congruence, we first
find the infinite simple continued fraction expansion of YN . With the sequences hp, kg,
and sy, defined as usual for this continued fraction expansion, we have equation (1) which

is valid for all n. This reduces to the congruence h§_1 = {-1)"s, (mod N).

Thus to find a solution to Legendre's congruence, we simply expand VYN until a
perfect square s, = A2 is found such that n is even. Then Legendre's congruence has the
solution X = h,_1, Yy =A (mod N).

If this is not one of the trivial solutions, the prime factors of N can be found be

applying the Euclidean algorithm to determine the greatest common divisor of N and
hp—q — Aandof N and hy,_q +A.

Example. Let N = 7104007; then VYN has a period of length 2206. Computing
the sp's we find that the first square occurs at sg = 2209 = 472. The subscriptis even so
there is a possibility that we can get a factorization. We have hy = 7103960 =
-47 (mod N). Thus hy + 47 =0 (mod N), which means that N divides hy + 47, and so we
end up with a trivial factorization of N.

The next square is 815 = 841 = 292. Once again, the subscript is even, so we
check to see if our method produces a nontrivial factorization. We have hyg =23772920

Ezmmmgmmdm;mmhé_m6=fs-sm;(ms-2wmﬁ+zma

2460870-2460928 (mod N). We now use the Euclidean algorithm to find the greatest
common divisor of N and 2460870, which is 739, and the greatest common divisor of N

and 2460928, which is 9613. In fact, it is easy to check that N = 739-9613.

The program. The program listed at the end of this paper, written in
Microsoft's QuickBasic 4.0, will factor numbers up to sixteen digits long. The program
runs fairly quickly and factors most numbers in less than a second.

It is difficult to predict the time needed to factor a given integer. However, the
following table gives some idea of factorization times required for a variety of numbers.
The results were obtained by running the compiled program on an IBM AT compatible
with an operating speed of 12 MHz and equipped with a math co-processor. The time is in
seconds; n is the subscript for s that produces a nontrivial factorization; and Square # is
the number of squares the program checks until it finds a square that yields nontrivial
factors. The last two columns give the factorization of the number.

The program also includes a routine for 'doping' the number. Doping is a process
that multiplies the number to be factored by another number in order to gain a longer
period. The reason this is done is that a larger number need not have a long period. For
example, a number that is of the form n2+ 1 has a period of length one. It may happen
that a number will have a period that is too short to find a square that yields a nontrivial
factorization. When this happens, the program multiplies the number to be factored by
five and then reapplies the algorithm (remembering at the end to remove the doping
constant from the factors obtained). The doping factor does not have to be five; it may be
some other suitable number.

11

Number Time n Square # Eactor 1 Eactor 2
30973 11 42 3 47 659
37913 .06 20 2 31 1223
96571 .11 30 1 269 359
303181 .01 6 1 137 2213
826471 A1 28 2 28499 29-
917387 .05 28 1 409 2243
1000009 .05 18 2 293 3413
1597537 .22 82 2 2339 683
2282237 .94 342 11 2753 829
2633383 .50 174 5 7589 347
3237301 .05 4 1 16433 197
3579517 .22 84 3 8543 419
7104007 .05 16 2 739 9613
7322371 .72 260 4 1046053 7
12634801 .01 12 1 45613 277
13237301 .01 6 1 539 24559
14722741 .05 14 1 139 105919
17322371 .01 10 1 1018963 17
739128463 .05 12 1 1373 538331
5231211683 1.32 470 1 15581 335743
9156487871 .11 34 1 85574653 107
12345678971 1.48 522 1 15260419 809
12603664039 .16 68 1 36961 340999
16042282237 16 46 1 4733633 3389
56789876543 1.21 446 2 35207611 1613

Concluding remarks. The technique of using continued fractions to produce a
factorization is actually an old idea. However, it was not really practical before the
advent of fast computers, because of the many steps generally required to produce a
square that works.

In 1982 the method was implemented on a 'reasonably fast computer that could
be used almost exclusively for factorization' (Riesel [3]). It factored a 35-digit number
in about one hour, a 45-digit number in one day, and a 50-digit number in one week.
The most difficult number reported was a 56-digit number which was factored after 35
days and resulted in a 23-digit factor and a 33-digit factor.

REFERENCES

1. I. Niven and H. Zuckerman, The Theory of Numbers, 4th ed,, John Wiley and Sons,
New York, 1980.

2. C. D. Olds, Continued Fractions, Random House, New York, 1963.

3. H. Riesel, Prime Numbers and Computer Methods for Factorization, Birkhauser,
Boston, 1985.
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15

20

25
30

35

45

50
55

DIM A#(-2 TO 7999), F#{2), H¥(-2 TO 7999), R#(-2 TO 79399), SH(-2 TO 799%9)
CLs

PRINT : PRINT : INPUT 1D#
D¥ = IDH#: DP = 0
IF D# = 0 THEN END

IF SOR(D#) = INT(SQR(D#)) THEN
PRI NT "NUMBER |'S A PERFECT SQUARE"
GOTO 30

END | F

RDA = INT{(SQR(D#))
Fi#(1l) = 0: F#(2) = 0: HH(-2) = 0. HH(-1) = 1. R#(0) = 0: RE=0: RELl = 0
SH(0) = 1: N=0
AH(N) = INT((RD# + RE(N)) / SH(N)): HHU(N} = AH(N) * H¥(N - 1) + HK(N - 2)
IF H#(N) > p# THEN

M= INT(H#(N) / D¥): HE(N) = HA(N) - M ® Dil

END I F
RE(N + 1) = AR(N) ® SB(N) - RUIN): SHIN + 1) = (Db = RUN + 1) ~ 2) / SHIN)
IF SQR(SH(N + 1)) = INT(SQR{(SH(N + 1))) AND (N / 2) <> INT(N s/ 2) THEN 35
IF AB(N) = 2 ® AK(O) THEN
P=N
GOTO 60
ELSE
N=N+1
IF N = 7950 THEN
P = 7950
GOTO 25
END I F
GOTO 15
END I F

PRINT "PERIOD IS "; P
PRI NT " NOW DOPI NG WTl;j A FACTOR OF 5"
DP = DP + 1: D¥ = D# 5

|F SQR(D#) = INT{(SQR(D#)) THEN
PRI NT "NUMBER | S A PERFECT SQUARE"
GOTO 30
END I F
GOTO 10
I =N+1 -
M# = SQR(SH(I)): FH(1l) = H¥(I - 1) - MAf F#(2) = HI(I - 1) + M}

IF FH(1) 7 DN = INT(F#(1) 7 D#) OR F#{(2) / Dh = INT(FH(2) / D¥) THEN 20
RELN = Fi#(2)
IF F#(2) > D#¥ THEN
AR = FH(2): PH = D¥
ELSE
A¥ = Dl: BY# = Fi(2)
END | F B
QA = INT(A# / B#): RE4 = Al - QA ® B#
I'F RE¥ = 0 THEN
F#(2) = REl#
GoTO 50

RE11 = RED: A# = B#: B# = RE#
END I F

Fi(l) = D¥ / F#(2)
IF F#(1l) = 1 OR Fi#(2) = 1 THEN

IF DPR = 1 THEN
DPR = 0: DP = DP + 1
END I F
GOTO 20
END | F
IF DP <> 0 THEN
IF F#(1) / 5 = INT(F#(1) / 5) THEN
FH(l) = F#(1)
ELSEIF F#(2) / 5 = INT(F#(2) / 5) THEN
F#(2) = F#(2)
END | F
DP = DP -1 DPR=1
GOTO 55
END | F
PRI NT 1p#: "FACTORS INTO'; FH#{1); "AND"; F#(2)
GOTO 5

60 PRINT "PERIOD OF'; P; "FIN SHED W THOUT SUCCESS"

GoTo 30
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ENERGY-CONSCIOUS BEHAVIOR IN RURAL AREAS:
HOW TO APPROACH A TRAFFIC LIGHT -

By Craig Osborn
Carleton College

The Problem.

A motoristis driving along a lazy country road when she comes over a hill and
sees a red traffic light ahead. She is well acquainted with this road, so she knows how far
it is to the intersection. Her car is the new improved friction-free Chevy Slipster, so
she can coast at constant speed, that is, without being slowed by friction. Because she is
low on gas, however, she is not willing to accelerate before passing the intersection. She
wishes to find a strategy that will allow her the highest speed through the intersection,
subject to the constraint that she must come to a full stop if the light is red when she
arrives.

Possible Conditions.

a She rounds the top of the hill near the light (close enough to pass it some time
during the upcoming green cycle) and she knows how long she has until it turns green.

b. She is near the light, but doesn't know how long is left in the red cycle.

c. She is far away, so that there may well be several red/green cycles left before
she reaches the intersection (in which case it might make little difference what color the
light is when she first sees it).

Question. What is the best strategy under each of these conditions?

Case a. of this problem was presented by Dr. Richard Poss of St. Norbert College
at the 1987 Annual Pi Mu Epsilon Student Conference. Dr. Mark Krusemeyer of Carleton
College suggested cases b. and c. for further investigation. In this paper I will present
solutions to cases a and b, case c. is apparently still unsolved.

In the following I assume that the driver will watch the light and discontinue any
braking (that is, begin to coast) as soon as the light turns green. In effect, then, our
problem is to maximize the "green-light speed,” which is defined to be the car's speed at
the moment the light changes to green.

v
0
2
- :
2 A '
)
0]
time 1y
Figure 1
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Case a. | will propose a strategy and then show that It Is the best possible one.
Suppose our driver divides the (known) distance remaining by the time she knows she
has before the light changes. This will give a velocity vy, and she could brake
immediately to this velocity (we've assumed she's not far from the light, so we can take
the calculated speed to be slower that normal driving speed) and then coast to the light,
as shown in Figure 1.

Here vg denotes the car's original velocity and t4 is the duration of the red light
(from the time it is first seen). Note that the shaded area, given by

t4

A= | v(t) dt,
1=JO

is the distance to the intersection. In other words, we were already given A and the
duration t; of the light. Now let G4 be the curve shown in Figure 1, and assume that C4

falls as nearly vertically as possible before leveling off. If we take any other curve Co
with the same area A underneath it, then Co must be above C4 somewhere and below Cq
somewhere. Since Cq is (almostl) everywhere horizontal and only nonincreasing
functions are allowed, C» must be above Cq before it is below C4. However, there is then
no way for Co to rise to v4 at the moment the light turns green. Thus C4 shows the best
strategy, since it allows the highest green-light velocity.

Case b. Now let ty be the maximum possible time for the light to remaln red. We
know that the time tg at which the light actually turns green will be somewhere at
random between 0 and t;. We seek a (velocity) function which:

1) is continuous and nonincreasing from 0 to 14;
2) has no more than area A below it between 0 to tgi AND

3) maximizes the average terminal velocity, where the average is taken over all
possible values of tg between 0 and t;.

Figure 2
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Because of restriction 2) and the fact that tg ranges all the way up to t4, the area
below the function between 0 and ty must not be more than A. Figure 2 shows the graphs
of some candidate functions.

Once again, we want to maximize the average green-light speed, averaged over all
possible durations tg of the red light between 0 and t4. If the car reaches the intersection
before the light turns, the green-light speed is obviously zero by the assumption of
legality. o

Let us proceed as Newton would. To find the average intersection velocity of a
given candidate function, divide the interval [0, t;] into several, say ten, equal
subintervals. This gives eleven distinct times at which we will allow the light to turn.
We can now average the intersection velocities by adding up the eleven velocities and
dividing by 11. The function with the highest average "wins" because it allows the driver
to pass the intersection with the highest expected velocity for an arbitrary t,.

To increase our accuracy, we could divide the interval into 100 subintervals and
average the 101 velocities. This looks familiar -- it's integration. In effect, we want the
velocity function which has the most area below it on the interval [0, t1]. Since the
candidate functions all have the same area A below them, they are all optimall

One caveat: If at any time her velocity is such that she can coast constantly and
reach the intersection at time ty, the driver must not slow down any more. If she did, it

would cause the area below the function to become less than A. The driver is therefore
constrained as follows:

0
The distance already covered at any time tg is Iv(t) dt. The remaining distance
0
to the intersectionis then A - Iv(t) dt. The time left before the light's "deadline" is
0

(t1 - tp). The minimum velocity is the remaining distance divided by the remaining time

A- JQv(t) dt
to deadline: 110_—10. Thus at any time tg, we must have
lo
A- [y at
V(tg) 2 Vpin = t~|°— to
In summary,

1. She must not slow down so much as to prohibit her from reaching the
intersection by ty.

2. She must watch the light so that she can begin to coast as soon as it turns
green, in case it does so before she arrives.

3. Within these limitations, we can now choose any nonincreasing velocity
function — that is, any combination of coasting and braking, subject to rule 1
above. A rather surprising result!
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A CLOSED FORMULA FOR LINEAR INDETERMINATE
EQUATIONS IN TWO VARIABLES

By Mark Ontkush
State University of New York at Buffalo

This formula requires the necessary following conditions: two integers X and Y,
X>1landY>1, and (X, Y)=1 (X and Y are mutually prime). Given these three
conditions, then there exists a number M such that all integers greater than M can be
expressed as a sum AX + BY = C, C > M, where A and B are positive integers. The integer
M equals X(Y - 1)-Y.

Proof. Take X as the smaller number without any loss of generality. Then, if one
divides any number C by X the result is some Integer plus a remalinder that Is less than
X Thus, there are exactly X - 1 remalnders that are possible. However, using a linear
combination of X's and Y's, it will be possible to form all of these remainders.

Let the first remainder be represented as such:

Ry=Y-0QX (1)
where Q = [Y/X]. Q is commonly known as the greatest integer function. For example,
[3.01}] =3, [4.9] = 4, and [6.00] =5. Then, given equation (1), the rest of the
remainders can be computedas follows:

Rp =2Y - 2QX - [2R4/X]X
or, in general, as

Ry, = NY = NQX - [NRy/X]X

Example. Let X=5 and Y=7. Then there are X - 1, or 4, remainders, Ry
through R4. They can be computed as follows:

Ry=7-5=2
Ro= 2(7) - 2(5)- [2(2)/5](5) = 4
Rz = 3(7) - 3(5) - [3(2)/5](5) = 1
Ry = 4(7)- 4(5)- [4(2)/5)(5) = 3.

Note that all of the integers from 0 to X-1 are expressedhere. This is no accident.

It has been proven that, for any X and Y, if X4 0 (mod Y), then the sequence of the
remainders modula Y is a rearrangement of the sequence 1, 2, 3, ..., X-1.

We wish to find the remainder that requires the largest number of X's so that we
can find a lower bound for the number M. By inspecting the remainders, it is clear that
Ry.4 will always have the largest number of X's.

Rx-1=X-DY - {X-NHQ+[(X- NRX)X. @
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The number of X's in this equation is (note that square brackets denote greatest
integer function):
(X - DQ + [((X - Ry)/X]
= QX -Q+ [(X - 1Y - QX))/X] o
= QX -Q+[(XY - QX2 - Y + QX)/X]
= QX-Q+[Y-QX-(Y/X)+ Q]
= QX-Q+Y-QX+[Q-(Y/X)],
since Y and QX are both integersand [Y} = Y and [QX] = QX.
But Q =[Y/X], and since X and Y are mutually prime,
[YIX] +1 < (Y/X) <[Y/X],
S0 [Q - (Y/IX)] =[1}=1,
and the number of X's in (2) is given by
Y-Q-1. )

By using (3) in (2), we can solve for Ry_1.

Ry-y = X-NDY-(vr-Q-hHX
= XY-Y-(XY-QX-X)
= QX+X-Y
- @+1X-Y.

If we can discover the number of X's required for Rx_o and then add Ry_1, we will

have M, the largest number that cannot be expressed as AX * BY, where A and B are
positive integers. The number of X's required for Rx_s is easy: looking at (2) and (3},

and remembering Y > X, at most (Y - Q - 2) X's will be needed to find this remalnder.

M

(Y - Q= 2)X + Ry_q
Y-Q=-2X+@Q+1HX-Y
XY-QX-2X+QX+X-Y
XYy-X-Y

XY -1)-Y

n

[}

[

Example.Find M for X = 62, Y = 79, and show that M cannot be expressed as
AX +BY =M, but M+ 1 can be.

M

62(79 - 1) - 79
4757 -



If we divide 4757 by 62, we get 76 with remainder 45. However, 61(79) -
(77)(62) = 45, so 45 is the worst possible remainder. There is no way M can be
expressed without using a negative A or B, as

4757

76(62) + 61(79) - (77)(62)
61(79) - 62

M+ 1, however, can be expressed as a sum AX + BY. Dividing 4758 by 62, we get 76
with remainder 46. A little experimentation shows that 46 = 10(79) — 12(62). So

4758 = 76(62) + 10(79) - 12(62)

10(79) + 64(62) .
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SOME SHORTCUTS FOR FINDING ABSOLUTE EXTREMA

By Subhash C. Saxena
University of South Carolina — Coastal

In the discussion of absolute extrema, most elementary calculus books correctly
suggest the following procedure for finding absolute maximum and absolute minimum of
a continuous function f on a closed interval [y, v].

"Find all the critical points of f on [, U. Then find the values of f at each of these
points and also at u and v. The largest of these values gives the absolute maximum and the
smallest of these is absolute minimum."

However, in several cases, short cuts may be made to find absolute extrema in
various situations. The purpose of this note is to explore some of these short cuts.

In the case of a quadratic function ax2 + bx * ¢, it is a well-known fact that:
atx =- Zb_a the quadratic has an absolute minimum if a > 0 and an absolute maximum if

a< 0. Assuming - % is in the interior of [y, v}, the other absolute extremum occurs

at the end-point which is farther from - -2%.
For a cubic polynomial p(x) = ax3 + bx2 + cx + g, it is an easily verifiable fact
that it has a relative maximum and a relative minimum if and only if p'(x) has two

distinct real roots a and B (which happens when b2 - 3ac > 0). Otherwise it has neither
a relative maximum nor a relative minimum.

Graphs of y = ax3+ bx2 + cx + d, b2 - 3ac > 0 are shown here:

y=ax3+bx2+cx+d y=ax3+bx2+cx+d
a>o0 a<o0

Assuming p'(x) has two distinct real roots, say a and B with a < 8, then
p'(x) = a(x - a}{x - B); where a, a, and p are all real.

It is obvious that for a > 0, a has a relative maximum and B has a relative
minimum. (For a < 0, a has a relative minimum and B has a relative maximum.).

The main result of this note consists of constructing the largest interval
containing a and B such that at these critical points the cubic has an absolute maximum
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It should also be remembered that the function Is monotonic on (-0, a) and

(B, o).

As an example, consider

P(x)
p'(x)
The critical points are x =2 and x = 6 and they produce a relative maximum and a

relative minimum, respectively.
Using our theorem, p(x) also has an absolute maximum and an absolute

minimum, respectively, on any subinterval of [0, 8] containing them. (0 = LZ_E-
g = 3o

I? we zre to find an absolute maximum and an absolute minimum on [1, 9], we
know that an absolute maximum would occur at x = 9, and an absolute minimum at x = 6

(since 1 > _322;Q ).

;—xa— 4x2+ 12x - 5
x2 - 8x +12.

For a fourth degree polynomial p(x), we may have one of the following two
situations:

Case I. p(x) has exactly one relative extremum. (This happens when either p'(x)
has only one simple real root, the other two roots being complex or coincident; or where
all the three roots of p'(x) are coincident.)

Case II. p(x) has exactly three relative extrema (two relative maxima and one
relative minimum or two relative minima and one relative maximum).

In Case |, the relative extremum is also absolute extremum of the same type,

(i.e. relative maximum is absolute maximum, or the relative minimum is absolute
minimum).

In Case 1l we consider a special and easy situation when three real and distinct
roots of p'(x), say a B, and y with a < B < 7, are such that

B-a=y-B=k k>0.

It is then an easy matter to show that the relative extrema at x = a and y are the
absolute extrema since the function is monotonic on (-ee, @) and (y, ss).

B~k| p B+k B-k| B p+k
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and an absolute minimum (not necessarily in that order) in that interval.
If a and B are critical points of p(x), then
p'(x) = a(x - a)(x - B) = a[x2 - x(a + B) + af], a = 0.

Therefore,

plx) = a[;—x3 -2+ ) + an] +k.
Thus, using elementary algebra,

1 1
P - pla) = afg 68 = 0% "3 (@ - 0o + B) + olx ~ o) |
- Fax-o? (x - 112‘—“) (1)

Hence, for a > 0 when a produces a relative maximum for p{x),

p(x) - p(a) > 0 if and only if x >_3%—_g_

Interchanging a and B it follows that
1 3a -
P - p(B) - gratx- B2 (x - 285E. (@
Thus, for a > 0 when B produces a relative minimum for p(x),

p(x) - p(B) < 0 if and only if x <ﬂ2—_-‘8-.

For a <0 when p(a) is a relative minimum and p(B) is a relative maximum, it can be
easily shown that

p(x) < p(a) if and only if x >£%.

and
pix) > p(B) if and only if x <23~
using (1) and (2).
Thus, we have the following result:

Theorem 1 Leta and B be two distinct critical points of a cubic curve.
Assuming a < B, the largest closed interval containing them and having absolute extrema

at a andpis:
[ 3a2— B , 3@2— o ]

It is interesting to note that the length of this interval Is 2(B — a) and that each
end-point is %(B - a) from the nearest critical point.



We have to figure out the largest Interval containing a, 8, and 7 such that the
relative extremum at each of these points Is also an absolute extremum.

We have a=B -k, y=ptk and B as distinct roots of p'(x}.

Thus,
P(x) =a(x =B+ k)x = B}(x = B ~ K).
Hence,
P = 2(x- B4 - 2K (x-p)2+A
= Fx-pRAx-p+VZ K(x-p-V2K A
Therefore,

P(X) - P(B) =7 (x - B)2[x - (B~ V2 K)l[(x - (B + V2 K)].

Thus, p(x) — p(B) will have the same sign as a for x < - V2 k or for x> Bt Y2 k. It
will have sign opposite to a for g - V2k < x< ptv2k.

For the sake of convenience, replacing f—by a we have the following result:

Theorem 2 For a fourth degree function y = a(x - p)4 - 2ak2(x - )2 + 4,
k >0, the absolute maximum (minimum) occurs if a <0 (a> 0) at x=8 £ k, on any
interval containing any of these points; and the absolute minlmum (maximum) occurs at

x =P on any interval containing B which is a subinterval of [ - V2 k, B+ V2 k].
The interval [B - Y2k, B+ ‘/Ek] is the largest interval containing a, B, and 7,
such that at each of these points the relative extremum Is also an absolute extremum.
I wish to thank Joseph Cicero for his valuable suggestion.
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A QUICK INTRODUCTION TO QUATERNIONS

By Byron L McAllister
Montana State University

Viewed strictly as tools, quaternionsbecame nearly obsolete when Gibbs and
Heaviside took them apart into the more easily managed vectors and scalars. (For a
detailed history, see [1].} On the other hand, there is a certain charm about quaternlons
that makes them keep coming up. This note concerns some interesting properties of
guaternions themselves that are quite elementary, given the experience most of us have
today with dot and cross products.

Notation. We may think of a quaternionq as a formal sum a+ V of a number a
plus a vector V. The number a is called the scalarpart of q and V is called the vector part
of g. The sum of two quaternlons is defined to be the quaternion whose scalar part Is the
sum of the scalar parts of the two quaternions and whose vector part is the sum of their
vector parts. That is

(a+ V) +(b+ W) = (a+b)+ (V+ W)

The product of g3 = a+ W by g2 =b + W may be defined in terms of vector dot and cross

products. The scalar part of the product g4qy is ab- V-W, and the vector part is
aW + bV + VxW. That is,

(a+ V)b+ W) = (ab - V-W) + (aW + bV + VxW).

Note that the presence of the cross product In the vector part implies that the product is
not commutative unless VxW Is 0.

We shall denote a quaternion generically by q, its scalar part by a, and its vector
part by V. Also, we shall use r to denote the radius of g, that is, the length of the vector V.
If uis a vector of unit length pointing In the direction of V, then we may also denote V by
ru. Thus the notation a + ru is another general notation for g.

Since a vector has three components, we may regard a quaternionas having four,
the fourth being the scalar part. This point of view suggests the notation

q=a+ xi+yj+ zk.

The square root of the sum of the squares of a, x, y, and z will be called the
modulus of the quaternion q, and will be denoted by m.

Pythagorean quintuples. Suppose that a, x, y and z are integers and consider
the quaternion g2 = qq. Itis easy to show that the modulus of the product of two
guaternions is equal to the product of their moduli. Since the squares of the four
components of g2 add to form the square m* of the modulus m? of g2, and since m2 is
clearly also a positive integer, we generate in thls way a sort of "Pythagorean
quintuple,” that is a set of five positive integers the squares of four of which add to the.
square of the fifth. This is an analogue of the fact that, in a similar manner, the square f
a complex number with integer real and imaginary parts gives us a Pythagorean triple.
(The reader will easily find a modification that generates "Pythagorean quadruples.")
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An Isomorphism. That there are analogies between gquaternions and complex
numbers is not surprising since Hamilton invented quaternions as generalized complex
numbers. It is quite well-known that the set of quaternions of the form a+ xi is
isomorphic to the field of complex numbers, and the same is true if i is replaced by j or
by k. Perhaps more surprising is the following: Let u be any unit vector and let a and b
be two real numbers. Let fbe a mapping from the complex plane into the quaternions
defined by the rule

Ka+ bi)=a+ bu.

Clearly fis one-to-one onto its range, and easy calculations show that f "preserves"
addition, multiplication, and multiplication by a real number (scalar). Thus, for any
fixed unit vector u, the set of all a+ bu is isomorphic to the complex numbers. (An
interesting further inquiry is as to when, for a given set of three perpendicular unit
vectors, u, v, and w, it happens that g(a+ xi+yj+ zk) =a+ xu+ v + zw is an
isomorphism of the quaternions onto themselves.)

Inverses. Unlike vectors, the system of quaternions includes multiplicative
inverses, and hence supports a concept of division. For any quaternionq, except 0 +0, of
course, the inverse g1 of q is obtainable by subtracting the vector part of g from the
scalar part and then dividing the result by the square of the modulus of g. Analogously to
complex numbers, the result of subtracting the vector part of g from the scalar part Is
called the conjugate of g. Thus, denoting the conjugate of q by C(q), we may write

g1 = C(a)

m2
That g-1q=qq! = 1 follows directly from qC(q) = C(q)g = m2. The vector part of g1 is
seen to be directed oppositely to the vector part of g. Since multiplication is not
commutative, quaternion division of gq¢ by ga takes two forms, depending on whether
go"1 is multiplied on the left or on the right of qy. It is amusing to note that this
provides "inverses" and hence "division" (two kindsl) for vectors. For, if V is a vector,
we may identify V with the quaternion 0 * V, so that V-1 is seen to be

But although V-1 is a vector, i.e., a quaternion with scalar part equal to 0, the
(quaternionic) product of a vector with its inverse is not a vector. (It's the scalar 1, of
course.) The inverse of V is directed oppositely to V, and the inverse of a unit vector
(i.e., of a quaternion with scalar part 0 and with radius 1) is its negative. If V and W are
two vectors, we may "divide" V by W on the left to produce {(VxW)/{(W-W) or on the
right to produce (WxV)/(W-W). Since cross product is anticommutative, the two
quotients are negatives of each other.

Square roots. Now let's consider the square roots of a quaternion. Since

i2=j2= k2 = -1,
and since the square of the negative of i, j, or k is therefore also -1, it is sometimes said
that in the system of quaternions, there are six square roots of -1. Unfortunately, this is
somewhat misleading. The truth is that most quaternions have exactly two square roots,
given by the formula
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a+m+ V )

san {Q) =« (2a + 2m)1/2
where m is the modulus of g = a+ V. This formula is valid where it makes sense.
Because m 2 a, the formula fails to make sense only if a+ m= 0, and this can only
happen if V=0 and aa 0. That is, the formula works unless the vector part of q is zero
and the scalar part is non-positive. To see what happens in that case, consider the
following proof of the formula: Think of the vector V as being given In the form bu,
where u is a unit vector. That is, g = a+ bu. If V=0, the unit vector u may be chosen
arbitrarily, and b is 0. (But then be~sure to remember the arbitrariness of u) We've
seen that the set of all such a+ bu forms a system isomorphic to the complex numbers.
and standard methods (algebraic or geometric) then give us the formula (1) unless
b= 0. Indeed, when b =0, if a> 0 the formulais still valid. In this case the two roots of
g are symmetrically placed on the real axis — i.e., on the axis of scalars. As a approaches
0, so do both roots, and when a reaches 0, the roots coalesce to 0. As a continues its
decrease into negative values, we know from our experience with complex numbers, for
which the roots become pure imaginary, that for quaternions the two roots must lie on
the two rays of the line through 0 and u. That is, a square root is found at a distance
(-a)172in the u direction (and another at an equal distance in the opposite direction.)
But the arbitrariness of u means that an entire sphere of such square roots exists. (Thus
the estimate of six square roots for -1 is far short of the mark!) Note that when V is not
0, u is not arbitrary, so that we don't get the sphere in that case. Similarly, when Vis 0
but a > 0, the vector parts of the roots are O and no sphere is obtained.
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OBLIQUE PYTHAGOREAN LATTICE TRIANGLES

By Stanley Rabinowitz
Westford, Massachusetts 01886

A lattice point is a point in the plane with integer coordinates. A lattice triangle
is a triangle whose vertices are lattice points. A Pythagorean triangle is a right triangle
with integer sides.

It is obvious that, given any Pythagorean triangle, a congruent copy can be found
in the lattice with its legs parallel to the coordinate axes.

Definition. A triangle is oblique (or is embedded in an oblique manner), if no
side is parallel to one of the coordinate axes.

In general, given a Pythagorean triangle (such as a 3-4-5 triangle), it is not
possible to find a congruent copy embedded obliquely in the lattice. The author asked in
this journal ([3]) if there is an oblique lattice triangle similar to a 3-4-5 right
triangle. A solution was given in [1}. In this note, we will investigate this question in
more detail.

A computer search reveals that the smallest oblique lattice triangle similar to a
3-4-5 triangle has vertices at (0, 0}, (4, 4), and (7, 1). This triangle is shown in
Figure 1.

Figure 1

Note that the sides of this triangle have lengths 3V2, 4¥2, and 5¥2. A more
interesting question is: Can such a triangle have integral sides? The answer is "yes" as
we will see below.

We can find an entire family of lattice triangles similar to the 3-4-5 triangle by
considering the three points:

where m and n are any positive integers. Note that letting m=1 and n=1 yields the
triangle previously found by the computer search.

To make the sides of the triangle integral, first make OB integral. To do this,
apply the general formula for the sides of a Pythagorean triangle: let m=p2 - ¢ and
n=2pg. This yields the 2-parameter solution
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4p? - 442, 8pq)
C = (4p2- 442 + 6pq, 8pq - 3p2 + 3¢?) |

In some of these, a side may be parallel to one of the axes. It is simple to avoid
such a case. For example, choose p= 2 and =1 to get the integral triangle with-vertices
at (0, 0}, (12, 16), and (24, 7). This triangle has sides of lengths 15, 20, and 25. lts
sides are 5 times as large as the sides of a 3-4-5 triangle. A computer search reveals
that this is the smallest integral triangle similar to a 3-4-5 triangle with no side
parallel to an axis.

We now show this can be done in general.

Theorem 1. Given a Pythagorean Triangle, one can find an oblique Pythagorean
lattice triangle similar to the given triangle.

Proof. Suppose the given Pythagorean triangle has sides r, s, and t, with t being
the length of the hypotenuse. Let A=(m, n). Lay off r copies of OA along ray OA to bring
us to the point B= (rm, rn). Erect a perpendicularto OB at B and lay off s copies of OA to
bring us to the point C = @mni- sn, rn+ sn).

Now let m = p2 — ¢2 and n= 2pq to guarantee that OA has integral length. Then we
have constructed a Pythagorean lattice triangle OBC similar to the given triangle. Sides
OB and BC are clearly not parallel to any axis. OC might be parallel to the y-axis. To
prevent this, take p=4s and g= 1. Then the sides of the resulting triangle are:

0= (0,0
B = (16rs2 - r, 8sr)
C= (16rs2 - r—- 8s2, Brs + 8s2)

The line OC cannot be parallel to the y-axis, since that would require 16rs2 =
r+ 8s2or s2=r/8(2r- 1) < (2r- 1¥8(2r- 1) = 1/8, which cannot be since s? is a
positive integer.

Recall that a Pythagorean triangle is called primitive if its three sides are
relatively prime.

The above procedure always produces a non-primitive Pythagorean triangle,
since all sides of the triangle formed are divisible by the length of OA and it is clear that
OA > 1. It is therefore natural to ask if there is a primitive Pythagorean triangle
embedded obliquely in the lattice. We answer this question in the negative.

Theorem 2. No primitive Pythagorean triangle can be embedded obliquely in the
lattice.

Proof. Suppose Pythagorean triangle ABC (wlth right angle at C) is embedded
obliquely in the lattice. Translate the triangle so that C coincides with the origin. Then
perform a rotation through a multiple of =/2 until ray CB lies in the first quadrant.
Point B will not be mapped onto an axis since the triangle is still embedded obliquely
(and this property is not affected by the translations or rotations just performed). We
may assume that point A has been moved into the second quadrant, for if It moved into the
third quadrant, we may perform a reflection about the line y = x to bring it into the
second quadrant, leaving Bin the first quadrant. Furthermore, we may assume that B
lies further from the x-axis than A, for if A were further from the x-axis, we could -,

perform a reflection about the y-axis and then relabel points A and B. Thus, AABC is
situated as shown in Figure 2.
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Figure 2

Let D be the foot of the perpendicular from B to the x-axis, and let E be the foot of
the perpendicular from A to BD. Since B was further from the x-axis than A, point E lies
between B and D. Also note that since A and B are lattice points, the coordinates of points
A, B, D, and E are integers. Quadrilateral ACEB is cyclic since ZACB = ZAEB = =/2. Thus,
£ABC = £AEC. But AE|| CD implies that ZAEC = LECD. Thus £<ABC=LECD. But triangles
ECD and ABC are right triangles. Hence they are similar. Let the ratio of similarity be
plg with ged(p, g) =1. This ratio is rational since it is equal to the ratio of DE to AC,

both of which are integral. But AB > BC > CE, so AABC is strictly larger than ACDE, and
so g>1. Now CE= (p/g) . AB, so CE is rational. But CE2 = CD2 + DE2, so CE2 is an
integer. If a rational number squared is integral, the rational number must itself be an
integer. Hence CEiis an integer. Let the lengths of the sides of AABC be a, b, and c. Then
the lengths of the sides of A ECD are pa/q, pb/q, and pdq. But these lengths are integers
and p and q are relatively prime. So gl a, g|b,andq | c. Thus, q | ged(a, b, c) and
consequently, AABC is not primitive.

Corollary. The set of diophantine equations

a2+ p2=r2
(b+d2+c2=52
(a+c)2+d2=1
rR+s2=f

has no solution with 7, s, and t being relatively prime.

Proof. In the preceding configuration, let point B have coordinates (c,d}, let C
have coordinates (-a,b+ &t and let AC=r, AB= s, and BC = t. Now the above equations
represent the Pythagorean Theorem applied to the various right triangles involved.

Although no oblique lattice triangle congruent to the 3-4-5 triangle exists in the
planar lattice, what about in the higher dimensions? We conclude this paper with the
following surprise: An oblique 3-4-5 triangle exists in the integer lattice in 7-
dimensional spacel Its vertices are given by the points

O = (oy 0: o: o) 0, 0, 0)
B=(1,2 200, 0, 0)
C = (o, ov ov 2, 21 2! 2) .

For other easily-stated but unsolved problems concerning lattice points, consult

(21.
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ON THE COVER OF THE SPRING 1989 ISSUE
Editor

The formulas for the two functions presented on the front and back covers of the
Spring 1989 issue are:

Front: (abs(x) + abs(y))/4 (mod 3)
Back: 7 .log(x2+ y2+2 - abs(x - y)+ 0.001) (mod 3)

The front and back covers commemorating the 75th Anniversary of the founding of Pi Mu
Epsilon were designed and prepared by Professor E P. Mlles, Jr., Florida State
University, Tallahassee, Florida, at the FSU Muench Center for Color Graphics, on a
INTERCOLOR 2427, DATAVUE, and PRINTACOLOR GP 1024.

Professor Miles presented the J. Sutherland Frame Lecture at the Summer
Meeting of Pi Mu Epsilon in Pittsburgh, PA in 1981 on "The Beauties of Mathematics

Revealed i n Color Block Graphs.”



A NOTE ON THE ADDITION FORMULAS FOR SINE

By Arthur Guetter
Hamline University

Many formulas in mathematics, especially in number theory, are derived by
evaluating some quantity in two different ways. The purpose of this note is to show how
the addition and subtraction formulas for the sine function can be derived by calculating
the area of a triangle in two ways. A cursory search of several texts did not reveal the
following derivations, though I would doubt if they are new. I will assume in the sequel
that 0 < 0<xn/2,0< pc n/2, and ¢ < 0.

1 first noticed that these derivations would be possible while grading an
assignment which required finding the area of a triangle. Comparing an answer which
seemed to be different than mine revealed the double angle formula for sine. We start
with an isosceles triangle with the length of the equal sides 1, and the angle between
these sides with measure 26.

h
20 m!
1 1
Figure 1a Figure 1b

Each of the two smaller triangles in Figure 1a has area given by (1/2)hx =

(1/2) cos 8sin 0, so that twice the area of the triangle is 2 cos @sin 0. In Figure 1b, we
calculate twice the area of the triangle as h = sin 20. Putting this together gives the
double angle formula

sin 20=2cos Osin @

After making this observation, | wondered if I could derive the addition formula
for sine in this manner. | needed a triangle with one angle given by 8+ ¢, the segment
which divides these angles to be an altitude, and one side of length 1.

In Figure 2a, we note that cos ¢ =h = z cos O Then twice the area of the triangle is
xh+yh hx+y

ZCosS 8(x+y)

2 cos 8(sin ¢+ z sin 6)

Z (cos @sin ¢+ z cos @sin §)

Z (Cos @ sin ¢ + CcOS ¢ sin 6)
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Figure 2a Figure 2b
In Figure 2b, we calculate twice the area as zh =z sin (8 + ¢). Equating these areas gives
sin (6+ ¢) =cos 0sin ¢+ cos ¢ sin O,
which is of course the addition formula for sine.

We can obtain the subtraction formula for sine in a similar manner. In this case,
we use a right triangle with one leg of length one.

Figure 3

In Figure 3, twice the area of the lower triangle is zh sin (0- p), twice the area of the
whole triangle is z sin 0, and twice the area of the upper triangle is x=h sin ¢. It follows
that

zhsin(8-¢) = zsin0-hsing¢

sin (6-¢) = SI;‘I] 0. 512 [
cos ¢ sin 8- cos 8 sin ¢.

We have used the relations 1/h=cos ¢ and 1/z= cos 0. The last line is the subtraction
formula

sin (8- ¢) = cos ¢ sin 0- cos @ sin ¢.

Itis now an easy exercise to extend these formulas to all values of 0 and ¢.



A FALLACY IN PROBABILITY

By Prern N. Bajaj
The Wichita State University

A card is drawn from a standard well-shuffled deck and put aside. Then a second
cardis drawn. Let Q denote the event that the first cardls a queen. Let K denote the event
that the second card is a king. We are interested in verifying the identity:

P(K) = P(Q)P(K/Q) + P(Q°)P(K/Q°) (A)

where Q€ denotes the event that the first card is not a queen, P(K) is the probability for
the event K, and P(K/Q) denotes the conditional probability of K when event Q has
happened, etc.

To compute P(K), condition it whether the first card is a king or not. If Ky

denotes the event that the first card is a king, we have

P(K) = P(K{)P(K/Ky) + P(K)P(K/KS)

IA

+ 48 4 3 i
251 52° 0

U\Iw
(4]

5

(4]
[, 1N

Clearly P(K/Q) 347 : (i)

To find P(K/Q€), notice that the first card, which is not a queen, may or may not
be a king. Consequently

4 3 44 4
PIKIQ®) =53 57 * 52 " 57

-4 47

52 "51° (i

Finally, P(Q) = 52 , P(Q¢ )"-E together with (i), (i) and (H) do not verify the
identity (A). What went Wr0ng’7

Solution: Computation of P(K/QC) is in error. Indeed, we have

C
P(K/QC) =Pl;‘(%—c'()l

P(QCK1)P(K/Q®K4) + P(QCKS)P(K/QEKY)
- P(QS)

44 4

52 51 _ 447
4851

A3
52 51

’(iV)

&t o+
o

(4]

2

With this value of P{K/Q®), identity (A) is verified to be true.

NOTE ON A WELL-KNOWN UMIT

By Prern N. Bajaj
The Wichita State University

n
i vn! . .
In the Spring 1989 issue of this journal ,I,T“ (T] Is obtained using the fact

lim 1 lim » .
h a n—-w'ui = R implies that Vu,-,: R, u, > 0. (The converse is not true of
n
course.)

However the above limit can be obtained using the definition of an integral and the
technique of integration by parts. To see this, recall that (with usual notation):

b f n
[ t0ax= (,‘2_)1 f(r;k)Ak)

a

In particular,
! lim 1~ , (k
im
Jrnax=1" 1% ¢ (;)
[¢] k=1
y
i !
Now let L= ,l,:n“ [’VBE‘) ’

then logL = “m ( Zlog J

]
[ S
=3
(=]
X
3
|

using integration by parts.

1
Hence, L = P
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THE INEQUALITY BETWEEN POWER MEANS VIA COORDINATE GEOMETRY

By Norman Schaumberger
Bronx Community College

The inequality between power means states that if r > s are nonzero real numbers
then for any positive numbers aq, a, ..., an:

r r 1l s _s s\L1
a + @y + .. +ay a +ag+ .. +a,l;
2
n n (1)
with equality holding if and only if a; = ap = ... = a,.

If x>0andr>s 21 then the graph of f(x) = sx™-s+1+ —xﬁ is concave

upward and has y = rx as a tangent line at (1, r). This follows from the fact that
F) =r f)=rand f'(x) = s(r=s+ 1) - s)xM~s+1 + (r - g)(-s + 1)(-s)x—5-1 is
positive.

y
= r-s+1 r-s
fx) = sx *+ e
(1,1)
y=m
X
Hence sx's+1 + xrs:f 2rx, or ’
sxf+r—s2rxs (2)
with equality if and only if x = 1.

s s s\l

a4 +ap+ .. +aplg a
LetP = and substitute X:E' i=1 2 ..,n

n

successively into (2). Adding gives

r r r S s s
a + a8y + .. +a a +a,+ .. +ay
s +rn-snzxr =rn.
pr ps
s\.L -
r r r s s tanh]s T
a4 tat.. a a +ag+ .. with equality if
It follows that 2pf=
n n
. q .
and only if -FT equalsl, (i=1,2, ...,n),0ra;=aps=...=a,,

Hence, we have proved (1) for the important special case r > s 2 1. For example,
putting r =2 and s = 1 in (1) gives the familiar arithmetic-quadratic mean inequality:

a12+a§+...+aﬁ (a1+az+...+an2
>
n n

with equality if and only if aj=as=...=a
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LETTERS TO THE EDITOR
Dear Editor,

Samuel Councilman, Pi flu Epsifon Journal 8 (1989), 669-671, suggested a
matrix generalization of complex numbers. A differentand natural
generalization of considerable interest consists of the "skew-—circulices" (matrices
whosedeterminants areskew circulants), exemplified inthe4 by 4 case by

0 1 % %
a=|"% % % 2
T8y T8 % 9

-G - @, -, (>3

A theory of Junctions of such matrices, coiled complicated numbers, is presented
by Good, "A simple generalization of complex functions", Expositiones
Mathematicae 6 (1988), 289-311. | n three dimensions, polesof Junctionsare
replaced by straight Cines. Shew circufants area SO of interestin. the theory of
numbers, for example, every primeof theform 8n + 1 isequal to a4 by 4 skew
circulant with integer elements, just as in theclassic theorem that every primeof

2 2
theform4n + lisof theformag +a, (a 2 by 2 skew circulant) (Good, Fibonacci

Quarterly 24. 1986, 47-60, 176-177; Waterhouse, Fibonacci Quarterly 26, 1988, 172-
177).

Yours sincerely,

1.'3.Good

University Distinguished.Professor of Statistics
Adjunct Professor of Philosophy
VirginiaPolytechnic | nstituteand State University
Blacksburg, VA 24061

Dear Editor,

Thesolvers of Problem #663 (page 617, Fal{l 1988) were too industrious to
n/2

seethe easy methods. Thequestion was to express L;: < dx as aseries.
0

) oo

x
(a) Int. = fcosh )

# ¥

Thefirststep isclear from complex function theory, but can aso be((one
by first-year ealculus methods as follows:

/2 1 0 oo
- t
RS | .. 1y & —ZJ‘E? dt=-2 | %X x
an x t t 1+ e+ e dX=JW%‘xdx
0 . e cosh X

by changing variables, then integrating by parts, and t hen changing variables
again in theobvious way.

b) Another calculation, slightly lesselementary, second or third year, isas
follows:

4 ind iny
Put x = = [sinx S L ERx and- then usethefact that
n 3 32
n/2
in(2n+1)x . .
J-—sm ,n dx = . The sameseries expression comes out.
sSinx
0

0f course, you arewelcome to use these bitsif yout hi nk t hemof any
interest, but Lwould rather nothave my nameattached. Modern youngsters
have adeplorable tendency to look up books and believe what they read instead of
working things out for themselves. But now that1 haveretired | try notto
worry about it.

Maine withefd by request

1
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1989 NATIONAL PI MU EPSILON MEETING

The Annual Meeting of the Pi Mu Epsilon National Honorary Mathematics Society
was held at the University of Colorado in Boulder August 7 through August 9. The year,
1989, marked the 75th Anniversary of the founding of Pi Mu Epsilon and the 40th
Anniversary of the establishmentof the PiMu Epsilon Journal.

Letters of congratulation and/or certificates were received from the American
Mathematical Society, the Governor of New Jersey, President George Bush, the Governor
of Colorado, the National Council of Teachers of Mathematics, Kappa Mu Epsilon, The
Mathematical Association of America and the Association for Women in Mathematics.

Memorabilia, including the original journal of the Mathematics Club of Syracuse
University on the founding of Pi Mu Epsilon, were on exhibit in Boulder, courtesy of the
Library of Syracuse University.

A generous National Security Agency grant enabled Pi Mu Epsilon to support an
increased number of student paper presenters at the meeting.

In honor of Pi Mu Epsilon's 75th Anniversary, the American Mathematical
Society announced an annual grant to be administered by Pi Mu Epsilon to further
scholarship in undergraduate mathematics. In 1989, part of this grant was used to
provide prizes to students whose paper presentations were judged to be of especially
high quality by members of the Pi Mu Epsilon Council.

W. H. Freeman and Company Publishers, PWS-Kent Publishing Company and
Brooks/Cole Publishing Company provided financial support for the opening reception
and a selection of books to further the goals of the Society.

Pi Mu Epsilon hosted the Western Hoe Down, the big social event of the joint
meeting with The Mathematical Association of America and the American Mathematical
Society.

The AMS-MAA-PME Invited Address "The Mathematics of Identification Numbers"

was presented by Joseph A. Gallian, University of Minnesota, Duluth.

The J. Sutherland Frame Lecturer was Professor Jane Cronin Scanlon, Rutgers
University. Her lecture was "Entrainment of Frequency: A Recurring Theme."

A special T-shirt in honor of the Society's 75th Anniversary was on sale and is
still available from the Editor. An ad for the T-shirt appears on page 72.

At the Annual Banquet, $100 awards for excellence in presentation were awarded
to the following nine students: Beth-Allyn Eggens, Chikako Mese, Darrin Frey, William
C. Regli, M. Chris Haase, Robert A Cullen, Stephen J. Smith, Nicholas Ahn, and Michele
Pezet. The complete program of 46 student papers follows.

PROGRAM - STUDENT PAPER SESSIONS

mathematics G Digital Image Processing Nicholas Ahn
Ulinois lota
Elmhurst College

Chaotic Linear Transformationson a Toms Joel Atkins
Indiana Gomma
Rose-Hutman I nstituted
Technology

Hamiltonian and Eulerian Circuitsin the Join of
Two Connected Graphs

Solving DiophantineEquationsUsing Continued
Fractions

A Brief Introduction to Fractal Images

The Hyperbalic Geometry of M. C Escher

Automorphism Groupsd Hasse Subgroup

Diagramsfor Groupsd Low Order

Evolutionary Evaluation d Risk Strategies

Put Up more Wallpaper,It'sFriezeing in Here

The Classification d Finite Simple Groups

Fibonacci Periodsmod(m)

A Generalizationof Ot and Even Verticesin
Graphs Part |

Al Phase Assort method in Geophysics

Change for a Dollar = How Many Ways?

39

Timothy Bahmer
Ohio Zeta

University of Dayton

JimBanoczi
Ohio Xi - -
Youngstown StateUniversity

Mark Boardman, presenter
David. Leavitt

Nebraska Alpha
University of Nebraska

Kathleen L. Brigham
Ulinois Epsilon
Northern Ulinois University

Melanie L. Butt
TennesseeGamma
Middle Tennessee StateUniversity

Elizabeth Clarkson
Kansas Gommu
Wichita StateUniversity

JamestEllis Colliander
Minnesota Gamma
Maculester Coflege

Robert A. Cullen
Wisconsin Alpha
Marquette University

Keith R. Dean
Texas Delta
Stephen . Austin StateUniversity

Amy Dykstra
Michigan Epsifon
Western Michigan University

Richard L. Edington
Texas Delta
Stephen F. Austin StateUniversity

Beth-Allyn Eggens
Ohio Xi
Youngstown StateUniversity
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The Computer as Catalyst

Rpplications d Difference Tables in number
Theory

Chaos Theory

Conjugationsin Inverse Semigroups

The Determination o the Expected Length d a
Coin Toss Game

Fractals. R llew Geometry

The Relationship between a Grgph and itsLine
Graph

Fixed Points, Compactness, and Existence
Theorems for Differential Equations

A Proposed Secondary mathematics Curriculum
for the 1990°s

Elliptic Curves: Theory and Rpplication

The Domination number and Uniquely Domatic
Graphs

Singularly Perturbed Systems (numerical
methods for)

Shari J. Feldman
Pennsylvania Rho
Dickinson College

JosephE. Fields
Maryland Gamma
University of Maryland,
Baltirnore County

JamesA. FitzSimmons
Ohio Theta
Xavier University

Darrin Frey
Nebraska Alpha
University of Nebraska

Francis Fung
Kansas Beta
Kansas StateUniversity

Mary Anne Gallagher
New Jersey Epsifon
Saint Peter's College

Cofleen Galligher
Ohio Zeta
University of Dayton

Paul Glezen
Arkansas Alpha
University of Arkansas

Kevin. Groothuis
Michigan Alpha
Michigan State University

M. Chris Haase
Ohio Alpha
Ohio StateUniversity

Sheri Jordan
Arkansas Beta
Hendrix College

¥holed Xahlouni
TexasNu

University of Houston - Downtown

Isa Transitive Banach Space a Hilbert Space?

mathematicsfora Digital Centrolling Unit Used
in a Forestry Experiment

Plucking a Ledf of a Tree and Other Graphs

fAin Rpplicationd the Rayleigh-Ritz method

Evolutionary Operation

fin Elementary Analysis ¢ Conformal mappings
d Simply-ConnectedDomains

An Rpproximation for the number o Primes
between k and k2 when k is an Integer

i mathematical method for Finding Anisotropy
Constants

A Computer |s Worth a Thousand Blackboards
Bounding the Chromatic number d a Graph
Hour Many Licks Does It Take to Reach

ths Center d 1 Tootsie Roll Pop?

Games. Graph Theory, flgorithms, and Kayles

Shinko Xojima
Tennessee Alpha
Memphis StateUniversity

Pad €. Lewis
Texas Delta

Stephen F. Austin State University

Chikako Mese
Ohio 2eta
University oJ Dayton

J. Greer Milam
Alabama Garmma
Samford University

PamMiller
OhioNu
University of Akron

JeffreyOsikiewicz
Ohio Xt
Youngstown StateUniversity

Randall Osteen
Florida Theta
University of Central Florida

Brad,Pad
Ohio Delta
MiamiUniversity

Michele Pezet
Michigan Ganma
Andrews University

Marla Prenger
Ohio Zeta
University of Dayton

Henry W d t Ramsey
SouthCarolina Gamma
College o) Charleston

william C. Regli
Pennsylvania X i
St. Joseph'sUniversity
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CHANGES OF ADDRESSINQUIRIES
Subscribers to the Journal should keep the Editor informed of changes in mailing

address. Journals are mailed at bulk rate and are not forwarded by the postal system. The

cost of sending replacement copies by first class mail is prohibitive.
Inquiries about certificates, pins, posters, matching prize funds, support for

regional meetings, and travel support for national meetings should be directed to the
Secretary-Treasurer, Robert M. Woodside, Department of Mathematics, East Carolina

Some d the notions d Geometric measure Theory K ansas Gamma
University. Greenville, NC 27858. 919-757-6414.

Pseudo-Orhbit Shadowing on the Unit Interval

Seen Rny Good Films Lately? - Rn Introduction to
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Association for’Wamen in Mathematics

Office Address: Box 178, Wellesley College,
Wellesley, Massachusetts 02181

Telephone, 617-235-0320 Ext. 2643

July 6, 1989

Professor Eileen L. Poiani
Saint Peter's College
2641 Kennedy Boulevard
Jersey City, NJ 07306

Dear Professor Poiani:

On behalf of the Association for Women in Mathematics. | extend warm
congratulationsto Pi Mu Epsilon on the occasion of its 75th Anniversary. It
isour hope that, through its role as a national honor society promoting
research and scholarship in mathematics. Pi Mu Epsilon will encourage more
undergraduate women to continue in mathematics, and to go onto successful
careers in the mathematical sciences.

Sincerely,

Yol /(’/
Jill P, Mesx; v

President

IPM/cc
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THE WHITE HOUSE

WASHINGTON

June 27, 1989

It is a pleasure to extend warmest greetings to the
members of Pi Mu Epsilon as vou celebrate your 75th
anniversary.

The great German mathematician Carl Frledrich Gauss
called mathematics the "queen of the sciences" -- an apt
description for this field of knowledge that has, from
the very beginning of civilization, been one of man's
ablest tools in understanding and working in the world
around him. Medicine, engineering. space exploration
-- the great feats accomplished in these and so many
other fields would be impossible without mathematics.

For 75 years, your society has encouraged and furthered
excellence in mathematics.” In so doing. you have not
only enriched the scholarly pursuits of your members
but also touched the lives of all. because we all depend
on the fruits of applied mathematics in our everyday
lives.

| salute you for your efforts and achievements, and
wish you an enjoyable celebration and every future

success. God bless you.
4:63 7 e o
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4. Proposed by the Editor.
(A timely variation on a familiar theme.) Find a law of formation for the 5 x 5
array
164 244 306 128 448 N -
I N 7
] N\ ’
268 348 410 232 552 | ’\)r__ :’(’
N
387 467 529 351 671 ! :
! sl
425 505 567 389 709 ' ran U N
1 \
276 356 418 240 560 [ e D <=

5. Proposed by the Editor.

Label the sixteen vertices of the "cube within a cube" so that the twenty-four
quadrilateral faces have equal vertex surns.

6. Proposed by the Editor.

By making cuts along its diagonals, a square can be dissected into four pieces
which can be reassembled to form two congruent squares. By making cuts along the line
segments joining the midpoints of opposite sides, the square can by dissected into four
congruent squares. By cutting a square along the four line segments joining vertices to
midpoints of opposite sides, the square can de dissectedinto nine pieces which can be
reassembled to form five congruent squares. Dissect a square into a "small number" of
pieces which can be reassembled to form thrge congruent squares.

7. Proposed by the Editor.

In a certain mathematics journal, seven puzzles were proposed. In response, for
each puzzle the Editor received two correct solutions. In all, 14 solutions were submitted
by 7 different readers, two solutions from each. Is it possible to publish the readers'
solutions so that exactly one from each of the seven contributors will appear?

COMMENTS ON PUZZLES 1 -7, SPRING 1989

Responses to Puzzle #1 were either 101! = 1111000 in base 2 or 010! =
3628800 in base 10. In Puzzle #2, several readers recognized the old puzzle of drawing
a continuous path of four line segments through a 3x3 array of points without passing
through any of the nine points more than one time. The secret is to "overshoot" the 2 and
the 4. For Puzzle #3, the nine responses were quite varied. The most succinct was
RICHARD |. HESS' "These are the integers expressible in base 3 using only ones and
zeros." In Puzzle #4, the shortest solution for going from ONE to TWO was VICTOR
FESER's ONE - ORE - ORT - OAT - TAT -TOT - TOO - TWO. Nineteen readers responded
to the matching problem in Puzzle #5 and were in complete agreement (1 - comb, 2 -
pen, 3 - key, 4 - book). The solution to Puzzle #6 is not unique. One solution is to
arrange the numbers 1 through 15 in three rows 1, 2, 11, 12, 14; 8, 9, 10, 7, 6; 15,
13, 3, 5, 4. In all solutions, row surns are 40 and column surns 24. ROBERT PRIELIPP
pointed out that Puzzle #7 had appeared as Problem 73 in the January 1970 issue of the
Journal of Recreational Mathematics. The longest chain consists of six isosceles triangles

with degrees 124°, 28°, 28; 28°, 76°, 76; 76°, 52°, 52°; 52°, 64°, 64°; 64°, 58°,
58° and 58°, 61°, 61°.

49

SOLVERS: Charles Aschbacher (1, 3, 5, 6}, Amy Bohachek (5, 6, 7), Margaret Boles
(5), wiliam Boulger (1, 3, 4, 5, 6, 7), Matthev)\; Broadhead( @, 3,)4, 5,96, 7),
William Chau (1, 3, 5, 6, 7), Chris Conrad 85, 6, 7), Anna Contadino (5), Victor Feser
(1. 4, 5), Robert C. Gephardt (5), I. J. Good (4), Richard I. Hess (1, 2, 3, 5, 6, 7),
Donna Hiestand (3, 6), Jon Lange (7), Bro. Howard Lohrey, SM. (2, 5, 6), Thomas
Mitchell (5), Donald B. Onnen (1, 2, 3, 4, 5, 6, 7), Robert Prielipp (4, 7), Emil
Slowinski (1, 3, 4, 5, 6, 7), Michael Taylor (5, 6), Katharine Vance (5), Tian-Yih
Wang (5, 6) and Yvonne Zhou (1, 5, 6). .

ERRATA
William Chau and Thomas Mitchell pointed out the omission of a square root
symbol on page 679 of the Spring 1989 issue in the discussion of the solution to Puzzle
#3 in the Fall 1988 issue.

Solution to Mathacrostic No. 28 (Spring 1989)

WORDS

A Wythoff's Nim K. Ecotone U. Slingshot Effect
B. Penrose Tiles L. Leftover \. Outlier

C Offshoot M. Axiom of Choice W. Flowsnake
D. Unpolished N. Benford's Law X. Race

E Neusis Q Yang-Mills Gauge Field Y. Eotvos

F. Dehydrated Elephant P. Relativity Z Aeodlian

G Swivel Joint Q Itself a Sphinx

H. Time Reversal R. Neurite b. Ophiuride
I. One-time Pad S. Trapdoor ¢ Necker Cube
J. Norm T. Hilbert's Hotel

AUTHOR AND TITLE: W. POUNDSTONE LABYRINTHS OF REASON

QUOTATION: There is a subversive joy in seeing logic tumble like a house of cards. All
the well-known paradoxes of confirmation theory and epistemology were conceived more
or less in the spirit of intellectual play. In few other fields is it possible for the inter-
ested nonexpert to sample so much of the true flavor of the field and have fun doing it.

SOLVERS: JEANETTEBICKLEY, St. Louis Community College at Meramec, MO; J. KEVIN
COLLIGAN, National Security Agency; CHARLES R. DIMINNIE, St. Bonaventure Univer-
sity, NY; ROBERT FORSBERG, Lexington, MA; MICHELE HEIBERG, Herman, MN; JOAN
AND DICK JORDAN, Indianapolis, IN; DR. THEODOR KAUFMAN, Brooklyn, NY; HENRY S.
LIEBERMAN, Waban, MA; CHARLOTTE MAINES, Rochester, NY; DON PFAFF, University of
Nevada-Reno; STEPHANIE SLOYAN, Georgian Court College, Lakewood, NJ; MICHAEL
TAYLOR, Indianapolis Power and Light, Co., IN; and BARBARA ZEEBERG, Denver, CO.

Mathacrostic No. 29
Proposed by Joseph D. E. Xonhauser

The 239 letters to be entered in the numbered spaces in the grid will be identical to
those in the 25 keyed words at the matching numbers. The key numbers have been
entered in the diagram to assist in constructing the solution. When completed, the initial
letters of the Words will give the names(s) of the author(s) and the title of a book; the ~
completed grid will be a quotation from that book.
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Definitions

Wood inlay which flourished in Italy during
the Renaissance

. One of order n gives rise to n - 1 mufually

orthogonal Latin squares (2 wds.)

A device consistingof balls of equal mass on
strings of equal length te illustrate elastic
impact (2 wds.)

. A multi-layered structure which simulates

chaotic folding (2 wds.)

John ___, pseudonym under which mathemati-
cian, Eric Temple Bell, wrote science fiction

. Aperiod or state of decline (2 wds.)

The pivoted swinging bar to which the traces
of a harness are fastened and by which a
vehicle or implement is drawn

. A small, stemless aquatic plant of the mustard

family having slender, sharp-pointed leaves
and minute white flowers

- geometry, a picturesque but inaccurate
description of the intrinsic topology of a
surface (sometimes comp.)

A very small amount (3 wds.; or 2 wds., one
comp.)

. A movement in art and literature,1918-1922,

intendedto outrage and offend by flouting
traditional aesfhetic standards and social mores

Complete (comp.)

. Something that is seen or intuited

. The three concepts whose unity is symbolized

by fhe triple pentagon emblem of the Berlin
Philharmonic (3 wds.)

James Lovelock's theory that the earth, its
oceans and atmosphere, and all living things
are parts of one great organism

The upper integral of the characteristic

function of a point set P on an interval
(a,b) (2 wds.)

To become apparent

. Compact, connected, and locally connected

metric spaces (2 wds.)

"Books are the __ of men."
Mark Twain (2 wds.)

Dodecahedron-based game sold to a London
toymaker for 25 £ in 1859 by Sir William
Rowan Hamilton (3 wds.)

Words
144 760 10 226 167 49 205 130

81 159 52 35 121 180 113 170 61 235 39

108 166 197 © 87 45 185 69 129 208 173

1217156 48 131 239 3 208 17 56 72 195
106 123 53 181

193 93 41 184 5

"32 237187 94 84 78 146

153 20 73 168 112 222 2 116 180 203 97

140 224 188 132 70 212 50

134 128 105 145 152 55 68 38 124 103 206

43 137 149 80 13 229 62 211165 51 76

100 171 136 79

133201 15 57 36 147 164 228 46

183 155 218 199 23

89 163223 58 75 31 25 14 230142178

22 54 27 217 83 90 158 71 37 107118
148

H2 &7 1 172

a7 77 126 220 111 85 210 99 34 234175

169 104

202120 24 4 64 30 115162 40 157 178
214 716 194 127 227

98 118 11 63 216 74 160 198 110 225 28

91 135 221

Championship (2 wds.)

an ambitious project

Any business venture, operation, or product
that is a dependable source of inwme or profit

(2 wds.)

An advocate of the interpretationof myths as
traditional accounts of historical persons and

events

. Standard, touchstone, criterion

. Inadequate for or incapable of bringing about

18 138 96 204 42 26 192176 6

. Winner of the 1889 World Computer Chess e
190117 65 82 150162

-5

95 233154

86 207232 143 174 114 125

109 236 139 102

9 177 66

92 88 161 213 231 59

200 33 196101

33

145

154 V

155 M

158

165 J

166 C

167

77 X

178 N

79

184 Eras cras

188 H

91 crwz

195 D|196

97 cjies T

199 M|

207 W

208 D

209 Ci

210 R

211 J

200

Y|201 Lj202 S|

203 G

204

205 Al

206 |

212 HI213 Y

214 S

215

0

216 T{217 P

218 M

219 Q|

220 R

21 7

222 G|

223

Nj224 H

225 T

226

A

230 N

231 Y|

232 W

233 V

234 A

235

B|236 X|237 F

238 (]

239

227 §

228 L|229 4

29



PROBLEM DEPARTMENT

Editedby Clayton W. Dodge
University of Maine

This department welcomes problems believed t0 ke new and at a level appropriate for the
readers Of this journal. Ol problems displaying novel and elegant methods of solution are also
invited Proposals should be accompanied by sofutions if available and by any information that
will asis the editor. An asterisk(*) preceding a problem number indicates that the proposer did
not submit a sofution.

Al communications should ke addressed to C.W. Dodge, Math. Dept., University of Maine,
Orono, ME 04469. Please ubmit each proposal and solution preferably typed o clearly Written
ON a separate sheet (ONe side only) properly identified with name and address. Solutions t0
problems in this iSUe should te mailed by July 1, 1990.

PROBLEMS FOR SOLUTION

704. Troposedby the late Charles W. Trigg, San Diego, California.
Find the least HEAT necessary to BOIL the HoO:

HEAT + HHO = BOIL

705. Troposedby the late Charles W. Trigg, San Diego, California.
In this "Ovis" group, the EWES and every LAMB are in prime condition. Find the two
solutions:

RAM + EWES + LAMB + IAMB = SHEEP.

706. Troposed by John Dalbec, Ohio Xi Chapter, Youngstown State University,
Youngstown, Ohio.

This alphametric is too "compact" to have a unique solution. If, however, one CECHs
for primality, then there is just one conclusion:

STONE +CECH=LECAR.

707. Troposed by Murray S. KlamKkin, University of Alberta, Edmonton, Alberta, Canada.

From a point R taken on any circular arc PQ of less than a quadrant, two segments are
drawn, one to an extremity P of the arc and the other RS perpendicular to the chord PQ of
the arc and terminated by it. Determine the maximum of the sum PR + RS of the lengths
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of these two segments. This problem without solution is given in Todhunter's Trigonometry.

Q

/

708. Troposedby Jack Garfunkel, Flushing, New York.
Find a Mascheroni construction (a construction using only compasses -- no
straightedge allowed) for the orthic triangle of an acute trlangle ABC.

709. Troposed by Nprman Schaumberger, Bronx, Community College, Bronx, New York.
If a, b, and c are the lengths of the sides of a triangle and if K and P are the area and
perimeter, respectively, then prove that

4
a2b2 + b202 + 02a2 b-4 12K2 + %

with equality if and only if the triangle is equilateral.

710. Proposed by Thomas €. Moore, Bridgewater State College, Bridgewater, Massachusetts.

Under what conditions on the positive integers a and b will the sides of a
nondegenerate triangle be formed by

a) a, b, and ged(a,b)?
b) a, b, and lcm[a,b]?

711. Troposed by James N, Boyd, St. Christopher's School, Richmond, Virginia.
A pentagon is constructed with five segrnents of lengths 1, 1, 1, 1, and w. Find w so
that the pentagon will have the greatest area.

712. Proposed by Rebert C. Gebhardt, Hopatcong, New Jersey.

A cube 4 inches on a side is painted. Then it is cut into 64 one-inch cubes. A cube is
chosen at random and tossed. Find the probability that none of the five faces that are
showing is painted.

713. Proposed by R, S. Luthar, University of WisconsinCenter, Janesvifle, isconsin.

Evaluate

/30
I tan5x tan3x tan2x dx .
/60



714. Proposed by Sam Pearsall, Loyola Marymount University, Los Angeles, California.

A flea crawls at the constant rate r = 1 foot per minute along a uniformly stretched
elastic band, starting at one end. The band is initially L = 1 yard in length and is
instantaneously and uniformly stretched L = 1 yard at the end of each minute while the
flea maintains his grip on the band at the instant of each stretch. It is well known that
the flea will reach the other end of the band in under 11 minutes. Find all lengths L such
that the flea will reach the other end of the band in finite time.

715. Proposed by Christopher Stuart, New Mexico State University, University Park, New
Mexico.
Euler's constant v is defined by the equation

N
=lim [ L _ |oN
v N—)oo(k=1k n

Show that

716. Proposed by Jack Garfunkel, Flushing, New York.
It is known that, for x, ¥, z > 0,

xy+\]7z+\rz_x < */?\/xy+yz+zx .

Prove the "other side" of this inequality, namely,

xy+\/72+‘/;( > 3V3n _xyz____.

X +y + 2

717. Proposed by Russell Euler, Nprthwest Missouri State University, Maryville, Missouri.
Find all positive integers n for which

is an integer,

718. Proposed by David Petry, Eugene, Oregon.
Prove or find a counterexample: [f a, b, ¢, p are integers such that
0<a<b<c<2p+1,thenaP +bP <cP.
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SOLUTIONS

678. [Fall 1988} Proposed by Brian Conrad, Centereach High School, Centereach, New
York, T
Find all solutions to this base ten multiplication alphametric in honor of my Soviet
mathematician and theoretical physicist pen pal who also is a regular contributor to thls
department:
DMITRI = P « MAVLO.

Solution by Alan \Wayne, Holiday, Florida.

Because a BASIC program to solve this problem on my small computer takes more
than 500 hours to run if no power surges occur, | have resorted to a "by hand" search.
It took only about 50 hours, with the following five steps.

1l ForP=2t09 forD=11t0 9, and for M = 1 to 9, M is the greatest integer in
(10D + MyP. This determines 32 ordered triples (P, D, M).

2. The product of P and O ends in I. This determines 44 ordered trlples (P, O, I}.

3. Combining the previous results, omitting duplicated digits, we find 99 ordered
quintuples {P, D, M, O, I).

4. Each of these pentuples is examined for values of V; then for values of T; and
finally, if need be, for the three remaining values possible for L.

5. Two solutions result:

130780 = 4 « 32695 and 356426 = 7 « 50918
Also solved by CHARLES ASHBACHER, Mount MercyCoflege, Cedar Rapids, I3, MARK
EVANS (partial solution), Louisville, X, ROBERT C. GEBHARDT, Hopatcong, N, RICHARD .
HESS, Rancho Palos Verdes, CA, L J. UPTON, Mississauga, Ontario, Canada, LIEN VUONG,
Texas A + M University, Colfege Station, and the PROPOSER.

679. [Fall 1988] Proposed by Dmitry P. Mavlo, Moscow, US. S. R,

a) Prove this inequality for positive real numbers U, S,and A, dedicated to 100 years
of American mathematics, as evidenced by the 100th anniversary of the American

Mathematical Society:

u . S . A ,__3USA_
T+ 01+ +8)(1+A) T+ AT +U “(1+USA)?2

with equalityif and only if U = S = A=1
b) Which inequality, if either, is more general, the USA inequality of part (a) or the
TUE inequality of Problem 642 [Spring 1987, Spring 19881:

1 1 ]
(1 'Hme)'(n(l +H.)+ na +8)+ E(1+1t))23

for positive numbers &, W, and g, with equality if and only if x = =€ = 1?

Solution by the proposer.

a) We use the notation U = U+ S+ Aand SUS = US + SA + AU. First we prove the
lemma

(1) XU + ZUS 2 6YUSA with equality iff U=S = A= 1.
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By the AM-GM inequality we have U + SA > 2VUSA and two similar inequalities,
establishing the inequality of the lemma. Equality occurs when and only when U = SA and
similarly S = AU and A = US, which are true if andonly if U=S = A = 1.

Next we prove another lemma

@ 2(1 - USA + U282A2) > VUSA(1 + USA)

with equality iff USA = 1.
Let t=YUSA. Then inequality (2) is equivalent to this chain of inequalities:

2-212 +21% 2 11 +12),

2-t-22 -3 424 20,

(t— 1)2(212 + 31+ 2) > 0.
This last inequality is true since the quadratic factor has no real roots and is therefore
always positive. Furthermore, equality holds only when the first factor is zero: when
t = 1. Hence inequality (2) is established.

Now we prove the main theorem. Multiply both sides of the proposed inequality by
the nonzero expression

201 + U)(1 + S)(1 + A){1 + USA)2

to get the equivalent inequality

2(1 + USA)? (xU + ZUS) 2 6USA(1 + XU + ZUS + USA),

which reduces to
2(1 - USA + U2S2A2 y(xU + SUS) = 6USA(1 + USA).

This inequality is seen to be just the result of multiplying the inequalities (1) and (2)
of the two lemmas side for side, establishing the theorem.

b) The USA inequality is more general. (Naturally in real life the prosperity of Pi
Mu Epsilon should follow from the prosperity of the country.) To prove this assertion
we rewrite both inequalities in the "unified” notation: U = x, S =y, A=2,t =X, H =2,
ande=y:

X + y + z - 3xyz
(T +x)(1 +y) (1 + )1 +2) (1 +2)(1 +x)" (14 xyz)?

and

1 1 1
(1 + XZY)[X“ + Z)+ z(1 + y)+ y(1 + X)]ZS'

We must show that the latter inequality follows from the former. To that end we shall
rewrite each inequality to have the same left side. We get
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2
1 + Xyz
@ [(1 T+ (1 + z)] 2
3xyz

X y Z 2 2 2
[(1+x)(1+y) * O * (1+z)(1+x)]“*"’ (1+y)=(1+2)

and

2
1 + xyz
“ [(1 X1+ )1+ z)] 2

3

1 1 1
(X(1+Z) Y Z(+y) T y(1+x))(1+x)(1+y)(1+z)

We must show that the right side of inequality (3) is greater than or equal to the right
side of (4}, which is equivalent to

leyz deZ nyz B
) [x(1+z)+ Z(1+y) ¥ y(1+x)] &

X Z
3[(1+x)(1+y)+ S (1+z)(1+x)|'

The substitution

P _ y _ z
d=(1 + x)(1 + y)' e_(1 + ¥y (1 + 2)’ b= (1 + z}{(1 + x)

changes (5) into

FERER IR
which is equivalent to the following chain of inequalities:
(de + ef + fd)2 > 3def(d + e + f),
(d2e2 - 2d2ef + 12d2) + (€22 = 2de2f + d2e2) + (2d2 — 2def? + e2f2) 2 0,
d2(e — )2 + e2(f—d)2 + 2(d - )2 2 0.

This last inequality is obviously true for any d, e, f in the reals and hence for any
positive X, y, z.

680. [Fall 1988] Proposed by Rebert C. Gebhardt, Hopatcong, New Jersey.

A regular heptagon (seven-sided polygon) is randomly placed far from an observer.
Find the probability that the observer can see four sides of the heptagon.
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O

Solution by Richard | . Hess, Rancho Palos Verdes, California.

Ifany odd-sided polygon (with n sides) is placed far from the observer, then the
probability that he can see more (or less) then half the sides approaches 1/2 as the
distance increases. To prove this statement, consider that another observer placed
diametrically opposite the first one will see the complementary number of sides (for all
but a finite number of positions). As the polygon is rotated through one revolution,
then, each sees (n + 1)/2 sides just as often as the other. Hence the probability is 1/2.

Also solved by CHARLES ASHBACHER, Mount Mercy Coflege, Cedar Rapids, 4, WILLIAM
CHAU, Eggertsville, A, RICHARD DUNLAP (2 solutions), Georgia Tech, Atfanta, GREGORY F.
MARTIN, University of North Florida, Jacksonville, PROBLEM SOLVING GROUP, University of
Arizona, Tueson, and the PROPOSER.

681. [Fall 1988] Proposed by R. S. Luthar, University d 'Wisconsin Center, Janesville,
Wisconsin.

Professor E. P. B. Umbugio is in the midst of writing his thirteen-volume treatise on
analytic geometry. He would like to use the following theorem in Volume 9, but is having
difficulty with it. Help the poor old professor by supplying a proof for him.

Fori=1,2 .., n,let P; represent the plane

=1 where 3ab; + 3bic; + 3cia; = ab;c;.
i"’ BY_+ i0i + <0G idi = &0
i i

Then the intersection of all the planes is nonempty.

Solution by 'William Chau, Eggertsville, New York,

The intersection of all the planes contains at least the point (3,3,3) since the given
condition is equivalent to

It is clear that if the coefficients (3,3,3) in the given condition are replaced by the
three numbers (p,q,r), then the intersection of the three planes will be the point
(p.a.r). The problem can also be extended into hyperspace quite readily.

Also solved by RICHARD DUNLAP, Georgia Tech, Atlanta, RUSSELL EULER, Nprthwest
Missouri State University, Maryville, RICHARD |. HESS, Rancho Palos Verdes, CA, DON

PFAFF, University d Nevada, Reno, MIKE PINTER, Befmont College, Nashville, TN,
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WADE H. SHERARD, Furman University, Greenvifle, SC, ALAN WAYNE, Holiday, FL, and the
PROPOSER.

682. [Fall 1988] 'Proposed by 'Brian Conrad, Centereach High School, Centereach, New
York, -

Find all ordered pairs of nonzero integers a and b with b prime such that
ad-bd =a

\. Solution by Alan Wayne, Holiday, Florida.
The given relation is equivalent to

(a— 1)a(a + 1) = b3.

The left member, being the product of three consecutive integers, contains both 2 and 3

as factors. Hence 6 divides b®, so 6 divides b, as that b cannot be a prime. Therefore
there is no solution.

Dropping the requirement that b be prime, the following result is easily proved by
applying Descartes' Rule of Signs to the polynomial

Px) = x3 — x— b3

The product of the three consecutive integers x - 1, x, and x *+ 1 is the cube of an integer
b if and only if

(ab) e {(-1,0).(0.0).(1,0)}.

Il. Solution by Francéis C. Leary, Saint Bonaventure University, New Jork.

There are no positive integral solutions even if b is not assumed prime. The given
equation is equivalent to

a3-a=b3.

Since the left side is even. then sois b. Letb = 2n for some nonzerointeger n. Then a
must be a root of the polynomial

p(x) = x3 —x—8n3 .

The discriminant of this polynomialis D = 4 = 1728n3 , which is clearly negative if
n is a nonzero integer. Thus the polynomial has exactly one real root.

If n> 0, thenp(2n) = —2n < 0 and P(2n + 1) = 4n(3n + 1) > 0. By the
intermediate value theorem, p(x) = O for some x such that 2n < x < 2n+ 1. This x is

the unique real root of p(x) = 0 and is clearly not an integer. A similar argument holds
if n < 0. Thus the only integral solutions are the trivial ones (a,b) = (1,0), (0,0), or

(-1,0).

Afso solvedby CHARLES ASHBACHER, Mount Mercy College, Cedar Rapids, 12, SEUNG-JIN
BANG, Seouf, Korea, FRANK P. BATTLES and LAURA L KELLEHER (2 sofutions),
Massachusetts Maritime Academy, 'Buzzards 'Bay, JAMES F. BURKE, lllinois 'Benedictine
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College, Lisle, WILLIAM CHAU, Eggertsville, N, RICHARD DUNLAP, Georgia tch, Atlanta,
GEORGE P. EVANOVICH, Saint (Peter 'Sfalfege, JersgyCity, AJ, ROBERT C. GEBHARDT,
Hopatcong, N9, STEPHEN 1| GENDLER, ClarionUniversity of Pennsylvania, RICHARD A
GIBBS, Tort Lewis College, Durango, CO, RICHARD |. HESS, Rancho Palos Verdes, CA, JUDITH
P. KHAN, James Madison #igk School, Brookfyn, N, CARL LIBIS, Granada #4ills, C4, CHRIS
LONG, Rutgers University, New Brunswick, A9, OXFORD RUNNING CLUB, University Of
Mississippi, University, DON PFAFF, University of Nevada, Reno, MIKE PINTER, Belmont
College, Nashville, TN; BOB PRIELIPP, University of Wisconsin-Oshkosh, PROBLEM
SOLVING GROUP @ solutions), University of Arizona, Tucson, JOHN PUTZ, Afma Co[[ege, MI,
ST. OLAF PROBLEM SOLVING CLASS, St. Ofaf College, Northfield, MN; WADE H. SHERARD,
Furman University, Greenville, SC, and the PROPOSER.

Two solvers asked if the problem was correctly stated. It was. Prielipp found the
theorem "The product of three consecutive natural numbers cannot be a power with
exponent greater than 1 of a natural number” in Sierpinski, Efementary Theory of

Numbers, Hafner Publishing Co., New York, 1964, page 68.

"683. [Fall 1988] Proposed by Jack.Garfunkef, flushing, Aew York,

a) Given three concentric circles, construct an isosceles right triangle so that its
vertices lie one on each circle.

b) Is the construction always possible?

I. Sofution by William H. Peirce, Stonington, Connecticut.

Let the three circles be centered at the origin of the Cartesian plane and have radii 1,
r, and s with r £ s, and let the right angle vertex C of right triangle ABC lie at the point
where the circle of radius 1 crosses the x-axis. Let vertices A and B lie on the circles of
radii r and s respectively. Let the sides of the triangle opposite vertices A, B, and C have
lengths a, b, and c. See Figure 1. (This figure covers all cases except that where the
circle on which the right angle vertex lies degenerates to a point, in which case the other
two circles must coincide and the solutionis clear.) Then we see that

A=(1+bcos@,bsing) and B = (1 - asine, acosé ),

where 8 is the angle of inclination of side b. Since A and B lie on circles of radiir and s,
we have

@+hb cose)2+ (b sine)2 =12
and
1l-a sine)2 *(a cose)2 =s2,
Since triangle ABC is isosceles, then a = b and these equations reduce to
2acos®=-1-a°+r2 and 2asing=1+a%—s2 .
Now square both sides of both equations and then add to obtain the quartic in a),
(1) 2a% - 2(2 +52)a2 + (2 - 12 +(s?- 12 =o0.

Now triangles can be constructed for those values of r and s which yield real roots of
(1), in which case those roots have the form *u, v, where u and v may or may not be
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equal. Thus there are at most two solution triangles and their legs are the positive real

roots of (1). Considering equation (1) as a quadratic in a? , there will be two real roots
when its discriminant

D=—4(r%+s%— 2252 —4r2- 452 + 4) > 0. :

Let x = r and y= s? and graph D = 0 in this new xy-plane. We get a parabolain the
first quadrant, as shown in Figure 2. The solution set for the construction problem is
the region inside the parabola and above the line y = x (so that r £ s). That is, any r and
s such that the point (r2, 52) lies in that region will permit the desired construction,
and only those points. So the constructionis not always possible. If the point lies on the
parabolaor if r = s = 1, there is just one solution triangle; if it is inside and not the
point (1,1}, then there are two distinct solutions.

When a solution exists, all required operations can be performed with ruler and
compass.

g2
c —————
AR, —
\ J“%) (r,0) (s,0) :
\<'(1.1)
2
Figure 1 Figure 2

1 Solution by Bro. Kenarch, Bologna, taly.

a) Pick the right angle vetex C on one of the three circles. Rotate the common
center O and one of the other two circles s and t, say s, about C through a right angle,
either clockwise or counterclockwise,to 0' and s'. If circles §' and t intersect, then any
such point of intersection is a vertex, say A of the desired isosceles right triangle. The
third vertex B is the preimage of A under the stated rotation. If 8'and t intersect in two
points, then there are two essentially distinct solutions; if one point, then one solution.
The entire figure can be reflected in the line OC to produce other solution(s), which we
do not consider as being distinct from the first solution(s).




62

b} Let the radii of the three circles be a, b, and ¢ where
O<a<bc<ec.

Then the circles s and t' of part (a) wlll intersect if the appropriate following condition
is satisfied. If the right angle vertex lies on

circle (a), then we must have ¢ —b < av2<c+ b;

circle (b), then we must have ¢ —as bV2sc+ a

circle (c), then we must have b —as cV2sb+a

These conditions can be rewritten. Thus, if the right angle vertex lies on

circle (a), then we must have b zc— a\/?;
circle (b), then we must have a2 |c - b\/?];
circle (c), then we must have a+b 2 cVa.

Also solved U RICHARD |. HESS, Rancho Palos Verdes, CA.

684. [Fall 1988] Proposed by Dmitry S. Mavlo, 'Moscow, 11.S. . &,

This problem is dedicated to Paul Erdos on his 75th birthday. Erdds and Hans
Debrunner published (E£ Math. 11(1956)20) the following theorem: Let D, E, F be

points on the interiors of sides BC, CA, AB of triangle ABC. Then the area [DEF] of
triangle DEF cannot be less than the smallest of the three other triangles formed:

[DEF] = min{[AEF], [CDE], [BFD]).

a) Prove this generalization of the Erdos-Debrunner inequality: Assuming the
configuration of the Erdos-Debrunner inequality, for some fixed real humber a*,

if —~ < a €a*, then

[DEF] 2 M(®), where M(®) - [[AEF]“ + [CDE|® + [BFDIG]HG
3

is the power mean of order a of the three positive areas {AEF], [CDE], and [BFD].
b) Determine the maximum value of a* for which the inequality holds.
¢) Find all cases where equality holds.
d) Prove that, for a = -1, the inequality of part (a) is equivalent to the wpe
inequality referred to in Problem 679(b) above.

Solution 5 the proposer.
Let points D, E, F divide sides CB, AC, BA in the ratios g, &, respectively. Then
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T
[AEF] :m[ABC], [BFD]=(7t ST 1)[ABC].
[CDE] = S N [ABC],
(b + 1)(e + 1)
and hence
[DEF] =[1 - £ - E - = : ][ABCI
(e + 1) (m + 1) (m + 1)( + 1) (n+ 1) + 1)

(Rpe 4 1)
T(e L IHT L )R o+ 1)

[ABC].

In the inequality of part (a) we let k = —a to get

3
1 1 i

AEF * [coEX T [BFDJK

[DEFJX >

which becomes, when the above substitutions are made,

(mpe + 1)k N
[(e + 1)(m + 1)(n + 1)1k~
3
[(e + 1)(m + 1):|k . [(1; + 1)(Q +L]k [(u + 1)(e + 1):|k
€ T * n
and finally
1 k 1 k 1 k 3
1 f
& [€(u+1)] +[1t(!;+1)] +l:u(1t+1)] 2(1+1mt-:)k

Thus we have proved the equivalence of inequality (1) for all k such that k* < k < = for
some k* and the inequality of part (a).

We have also proved part (d), for if k = 1, inequality (1) is equivalent to the Tpe
inequality. Since the tpe inequality is true, we have also proved the inequality of



part (a) for a = —1.
Now define

F(n’“’e)=[e(u1+ 1)]k+[n(e1+ 1)]k+[u(1t1+ 1)]k T+ iﬂe)k'

It is straightforward but tedious to set the three first partial derivatives aF/dm,

dF/ayL, aF/de equal to zero and solve simultaneously to get that t=p =€ =1. Nextwe
form all second order partial derivatives and evaluate them at (1,1,1) to get

1
1

By the Sylvester theorem the function F will have the point (1,1,1) as a minimum if
and only if the following three inequalities hold at the point {1,1,1):

Fyq F
1 11 F12
Ay =Fqq9 = —ktk + 1) >0, A=| >
1T e 27 |Fay Fap
and
F11 F12 Fy3
Az = | Fo1 Fa2 Fa3 | >0.
Fa1 F32 Fa3

To that end we calculate that
1 3 1 9 1
Ek(k+1)>0, ﬁkz(k—g)(k+5)>0, and Ek3 (k—é‘)2 > 0,

which are all true if and only if k > 113. That is, for all positive &, |, and € and
k 2 113, we have

F(m,u,e) 2 F(1,1,1) = 0.

Since k =- a, we have shown that the original inequality of part (a) holds for
a<-113. That is, we have proved part (a) and also we have shown that a' = -113 is
the value that satisfies part (b). Additionally, we have seen that equality holds if and
only if ® = =€ = 1, that is, when points D, E, F are the midpoints of the sides of
triangle ABC.

Editorial note. The proposer's details of the work summarized in the last two
paragraphs will be furnished by the problems editor upon request.
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685. [Fall1988] Troposed by R. S. Luthar, University of 'Wisconsin Center, Janesville,
'Wisconsin.

In any triangle ABC with C < 45° and given any other angle D with 0°< D < 45°,
prove that

bcosD—ccos(A-D)<a.

Solution By Bob Prielipp, University of Wisconsin-Oshkosh, OshKosh, 'Wisconsin,
More generally, we shall show that if ABC is a triangle and D is any angle with
0°<D<180° thenbcos D—ccos Acos D <a.

Since 0° < C < 180° and 0° < D < 180°, then —1 < cos C cos D < 1. It follows that
acos C cos D <a. Hence

(acosC+ccosA)cosD—ccosAcosD<a,

making bcos D— ccos A €0s D cabecause b =acos C + ¢ cos A.

Also solved by SEUNG-JIN BANG, Seoul, Kprea, WILLIAM CHAU, Zggert.wi[[e, A, JACK
GARFUNKEL, }'[usﬁing, AY, RICHARD |. HESS, Rancfio Tolos Verdes, CA, RALPH E. KING, St.
Bonaventure University, AD; and the PROPOSER.

686. [Fall 1988] Troposed By Murray S. Kfamkin, University of Afberta, 'Edmonton,
Alberta, Canada.

Determine the matrix [A3 - A2+ I]'1 where A is an n by n matrix such that
AS + A=5nland | is the identity matrix.

Solution By the proposer.
The number 5n can be replacedby any number except -1, say m—1. Then

mi=AS +A+1=[A2 +A+ (A3 - AZ 4 ]
S0

[AS - A2 + )71 [A2 + A+ 1] An.
For the stated problem, then, we have that
(A3 - A2 « 1171 = [AZ + A + 1] /(5N + 1).

Also sa[un{Ey SEUNG-JIN BANG, Seoul, Korea, WILLIAM CHAU, ‘Eggzmvi[[e, A, JOHN
CORTESE, Reading, MA, RICHARD DUNLAP, Georgia Tech, Atlanta, RICHARD A GIBBS, Tart
Lewis Co[[ege, Durango, CO, RICHARD|. HESS, Rancho Tolos Denies, CA, CHRIS LONG,
Rutgers University, New Brunswick, N9, MASSACHUSETTS GAMMA, ﬁn’d’gewater.? tate
College, DON PFAFF, University of Nevada, Reno, and BOB PRIELIPP, University of
Wisconsin-OshKkosh.

687. [Fall 1988] 'Proposed by 'Basi| Rennie, Burnside, South Australia.
For positive reals x and y, prove the "quaint little inequality,”



4xy < (x + y)(xy + 1).

. Sofution by'Bob Priefipp, University of Wisconsin-OshKosh, OshKesh, Wisconsin.
The required inequality is equivalent to

2 2
X + X + X
y Y4 Yy > xy = 4,,X4y4

which follows immediately from the arithmetic mean-geometric mean
inequality with n = 4. Equality holds if and only if

x2y:xy2-_-x=y, thatis, x=y=1,

Il. Solution by George P. Evanovich, Saint ' Peter'sCollege, Jersey City, New Jersey.
Let a, b, x, y be positive real numbers. By the AM-GM inequality,

ab+xy 2 ZN/Ey—and ax+by 2 2\/ax—by.
Multiply together the two inequalities to get the more general inequality
(ab + xy)(ax + by) > 4abxy.
Now set a =b =1 to get the desired inequality.

lll. Solution by Seung-Jin 'Bang, Seouf, Korea.
We have

0<x(y - 1)2 + y(x — 1)2

x(y2- 2y + 1) + y(x2 - 2x + 1)

(x + y)(xy + 1) — 4xy .
Equality holds for x = y = 1.
IV. Solution by St. Olaf Problem Solving Class, St. Ofaf College, Northfield, Minnesota.

Since x and y are positive, then x+1/x 2 2andy * 1/y =z 2. Consequently,

x+1—+y+1-24,
X y

so then

x2y+y+xy2+x=(x+y)(xy+1)24xy.

Afso solved by JOHN T. ANNULIS, University of Arkunsas-Monticells, FRANK P. BATTLES,
Massachusetts Maritime Academy, Buzzards 'Bay, WILLIAM CHAU, Eggertsville, A, DAVID
DEL SESTO,North Scituate, RJ, RICHARD DUNLAP, Georgia Tech, Atlanta, RUSSELL EULER,
Northwest Missouri State University, Manyville, JNCK GARFUNKEL, flushing, A%, ROBERT
C. GEBHARDT, Hopatcong, \(J, RICHARD A GIBBS, Fort Lewis College, Durango, CO,
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RICHARD |. HESS, Rancho Palos Verdes, CA, DAVID INY, 'Westinghouse'ElectricCorporation,
'Baltimore, MD, JUDITH P. KHAN, JamesMadison High School, Brooklyn, NY, RALPH E
KING, St.'BonaventureUniversity, A%, CARL LIBIS, Granada Hills, CA, CHRIS LONG, Rutgers
University, New Brunswick, NJ, W. MOSER, McGill University, Montreal, Canada,
YOSHINOBU MURAYOSHI, Portland, OR, DON PFAFF, University af Nevada, Reno, MIKE
PINTER, Belmont Calfege, Nashville, TN; PROBLEM SOLVING GROUP @ solutions),
University of Arizona, Tucson, JOHN PUTZ, Afma College, M|, ALAN WAYNE, Holiday, FL,
andthePROPOSER.

688. [Fall 1988] Proposed by Willie Yong, Singapore, Republic 0f Singapore.

A row of n chairs is to be occupied by n boys and girls taken from a group of more
than n boys and more than n girls. If the boys do not want to sit next to one another, in
how many ways can the children occupy the chairs? (This problem is taken from the
Malaysian Math. Bulletin.)

Solution by John Putz, Afma College, Alma, Michigan.

Let f(n) denote the number of ways of seating n children. Assuming that the first
n - 1 chairs have been filled satisfactorily, the nth chair can certainly be filled by a
girl.  So the number of arrangements in which a girl fills the nth chair is equal to
f(n = 1), the number of ways the first n —= 1 chairs can be filled. The nth chair can be
filled with a boy only if the (n = 1)st chair has been filled with a girl, which can be done
in f(n - 2) ways. Therefore

fin) = f(n - 1) + f(n - 2),

a Fibonacci sequencel Since f(l) = 2 and f(2) = 3, specifically bg, gg, gb, then we have
that

f(1) = 2, f(2) =3, and f(n) = f(n- 1) t+f(n - 2)
for n > 2. Thatis, f(n) is the (n + 2)nd Fibonacci number Fy, , where,
Fi=Fa=1 and Fp=Fp 4t Fpeo forn>2

Also solved by WILLIAM CHAU, Eggertsville, A, RICHARD DUNLAP, Geongia Tech,
Atlanta, RICHARD A GIBBS, Tort LeWiSCa[[ege, Durango, CO, RICHARD I. HESS, Rancho
Palos Verdes, CA, DAVID INY, ‘Westinghouse 'ElectricCorporation,'Baltimore, MD, PROBLEM
SOLVING GROUP, University of Anizona, Tucson, and th: PROPOSER.

Gibbs commented that this problem is a "fairly well-known result," citing a problem
sheet he used several years ago. Hess asked about the solution if the boys and girls are
distinguishable. Indeed, Dunlap provided a solution for this “more difficult problem."

*689. [Fall 1988] Proposed by Wiflie Yong, Singapore, Republic of Singapore.

Show that for any three infinite sequences of natural numbers

81, 32. 33. ceey b1, b2, b3, T 01, 02, 03,

there can be found numbers p and q such that ap>ag bp > bq ,and Cp > Cq-
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Solution S Chris Long, Rytgers University, New Brunswick, New Jersey.
We prove the stronger result: If

{X11, X12, },{X21, X22, },..., {Xn1, Xn2, }

are infinite sequences of natural numbers, then there exist infinitely many pairs of
numbers p, q with p < g such that

Xpk S Xgk for 1sk<n.
We prove the theorem by mathematicalinduction. For n = 1, let
P = inf{t lx.‘t = inf{X11 . X12 3 e }}.

Then clearly p, q is such a pair of numbers for all g > p.

Assume that the statement is true for 1, 2, ..., n — L.
Define

8(1) = inf |Xnt = inf{xqy41, X12, -}
and recursively define
8(m) = inf{t [xny = infXq(5(m—1)+1) Xn(s(m—1)+2) - I
Consider the subsequences
x15(1) *18(2): - b - Xn—1)5(1)» X(n-1)5(2)> =~ }

By the inductive assumption there are infinitely many pairs of numbers &(p), 8(q) with
8(p) < 8(q) such that

st(p) < st(q) for 1S ksn-1

We finish the inductive step by noting that the sequence
{Xng(1): *ns(2): -}
is nondecreasing by construction, so we also have that

Xk8(p) < *k&(q)

690. [Fall 1988] 'Proposed by 'David Iny, Rensselaer Polytechnic |nstitute, 'Troy, Aew
York,

A unit square is covered by five circles of equal radius. Find the minimum necessary
radius. (See Problem 507, Fall 1982).
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Solution by the proposer.

We show that five circles of radius r = 0.3261606 will cover the square. Consider
the figure. Let the diagonals of each of the four corner rectangles be 2r and let the
circumradius of the isosceles triangle in the remaining rectangle be r. Then we must
have, using the notation of the figure,

(1 - 2y)2
8(1 — x)

x2 a2 - L y2=2x—i‘, and r=%(l— x) +

The last equation is from the isosceles triangle. By calculator we find that r =
0.3261606, x = 0.4189546, and y = 0.2964947. The sketch in the figure shows that
these five circles cover the square.

1/2 1/2

e Y241 - 2y

Now suppose a solution where one of the five circles lies inside the square and each of
the other circles covers a vertex and each edge has a point covered by two circles. These
four edge points and the four vertices partition the perimeter into eight segments whose

lengths total 4 units. The sum of the squares of these segments is not less than 80(1/2)2
since the midpoint of an edge minimizes the sum of the squares on it. Hence at least one

circle covers a segment (hypotenuse of a right triangle) of length at least 1N2. The
radius of that circle is at least half that value, namely 0.35.

The only other possibility is for the fifth circle to cover a portion of one of the sides.
This is the solution we have given above.

Solutionswen also submitted by RICHARD |. HESS, Rancho Palos Verdes, CA, and LIEN
VUONG, Texas A ¢ M University, College Station. Both solutions assumed one circle lying

inside the square to produce a radius of V2/4 = 0.353553. The proposer, who is now at
Westinghouse Electric Corp., Baltimore, MD, also gave a solution for six covering

circles, proving that V65/16 is the minimum radius.

CORRECTIONS

Bob Prielipp pointed out a misplaced exponent in the solution to Problem 674 on pége
694 of the Spring 1989 issue. The line



(—aq/aghn" = (-1)aj/ag)t/"
should read
(-aq/agin = ((-1)"aj/ag)t/n.
In the Spring 1988 issue the solution to Problem 642 on page 539 has an error.
William Chau discovered that the multiplication factor given there should not contain

(1 + mpee); it should be only

TUe(? + w)(1 + L)1 + €).

IN MEMORIAM
Charles W. Trigg

Born February 7, 1898, he started his career as a chemist and during World War |
invented an instant coffee soluble in cold water. In the next 10 years he published
nearly 200 articles, notes and editorials on coffee, tea and spices. He began teaching
chemistry in 1927. From 1938-43 he taught mathematics and physics at Los Angeles
City College.

From 1943-46, serving to Lt. Commander in the U. S. Naval Reserve, Charles earned
his wings as a navigator and taught celestial navigation.

In 1946 he returned to Los Angeles City College as Coordinator of Instruction, was
promoted to full professor, and in 1955 became Dean of Instruction until his retirement
in 1963.

In the ensuing 26 years he proposed hundreds of problems, submitted thousands of
solutions, and wrote more than 500 articles, book reviews, and other items in
mathematics. The LACC Engineering Department presented him with a diploma awarding
him the degree of PD.P.F. (Polyhedra Doctor in Paper Folding) for his careful
cardboard-and-rubber-band geometric models, many of which hung in hls office at his
San Diego retirement home.

The late Léo Sauvé, editor of Crux Mathematicorum, conveyed upon him the title of
"prince of digit delvers," but later demoted him to "count of digit delvers." That still left
him with a D.D., Charles said.

Humor enlivens any serious study and Charles was a master at mathematical humor.
Several of the editor's pseudonyms used in this department were suggested by Trigg,
including S. E Ducer, M. T. Kopf, Pauvre Fish, Bro. Kenarch, and Titus Canby. Nathan
Altshiller Court commended him for endowing his contributions with "a quality which Is
rare, namely wit" The dedication of Howard Eves' 1988 book, Return to Mathematical
Circles reads, "To Charles W. Trigg, the wittiest and cleverest of us all."

Charles W. Trigg died June 28, 1989. He was a delightful mathematician and
problemist and a dear friend. We dedicate to his memory this issue of the Problem
Department, which in his honor contains two extra of his digit-delving proposals,
problems 704 and 705
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Editor's Note

The Pi Mu Epsilon Journal was founded in 1949 and is dedicated to undergraduate
and beginning graduate students interested in mathematics. Submitted articles, ~
announcementsand contributions to the Puzzle Section and Problem Department of the
Journal should be directed toward this group.

Undergraduate and beginning graduate students are urged to submit papers to the
Journal for consideration and possible publication. Student papers are given top
priority. Expository articles by professionals in all areas of mathematics are especially
welcome. A copy of the Guidelines for Referees follows this note.

Each year, the National Student Paper Competition awards prizes of $200,
$100, and $50, provided that at least five student papers have been submitted to the
Editor. All students who have not yet received a Master's Degree, or higher, are eligible
for these awards. Awards for 71987-1988 are announced on the first page of this issue.

GUIDELINES FOR REFEREES

In making recommendations regarding the enclosed paper, please keep in mind
the following:

the paper must be correct and honest

most readers of the Pi Mu Epsilon Journal are undergraduates; the paper
should be directed to them

with rare exceptions, the paper should be of general interest

assumed definitions, concepts, theorems and notation should be part of the
average undergraduate curriculum

expository papers are actively encouraged

the Journal does not necessarily expect the same quality of exposition from an
undergraduate author as it does from more experienced authors

stylistic comments and changes are welcomed and encouraged

if you recommend to reject a paper, please state why in a form that can be
copied and sent to the author (without your name)

if you feel that the paper or parts of it need to be rewritten, please so state
feel free to recommend improvements in the statements of definitions,
theorems, and so on
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The Editor and the author(s) appreciate you help. Please be frank with your
comments and suggestions.

If for some reason you find that your schedule does not permit you to referee the
enclosed paper within four to six weeks, please return it to the Editor.

Joseph D. E. Konhauser
Editor, Pi Mu Epsilon Journal
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