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THE RICHARD V. ANDREE AWARDS 

Richard V. Andree, Professor Emeritus of the University of Oklahoma, died on May 8, 
1987, at the age of 67. Professor Andree was a Past-President of Pi Mu Epsilon. He had also 
served the society as Secretary-General and as Editor of the Pi Mu Eps/ton Journal. The Society 
Council has designated the prizes in the National Student Paper Competition as Richard V. Andree 
Awards. 

First prize winners for 1990 are Amy Dykstra and Michelle Schultz for their paper "A 
Generalization of Odd and Even Vertices in a Graph," which appeared in the Spring, 1990, issue 
of the Journal. They prepared their paper while undergraduates at Western Michigan University 
under the supervision of Professor Gary Chartrand. They presented the paper in August, 1989, 
at the national Pi Mu Epsilon meeting in Boulder, Colorado. They will share the $200 first prize. 

Second prize winner is Eric Berg for his paper "A Family of Fields," which appeared in the 
Fall, 1990, issue of the Journal. Eric prepared this paper while still a student in high school. Eric 
will receive $100. 

Third prize winner is Joel Atkins for his paper "Regular Polygon Targets," which also 
appeared in the Fall, 1990, issue of the Journal. Joel prepared this paper while he was a student 
at Rose-Hulman Institute of Technology under the supervision of Professor Elton Graves. Joel will 
receive $50. 

There were three other student-written papers that appeared in 1990: 

"More Applications of Full Coverings," by Karen Klaimon, of James Madison University. Karen 
prepared this paper under the supervision of Professor John Marafino. 

"An Approximation for the Number of Primes between K and K2, When K Is Prime," by Randall J. 
Osteen. Randall prepared this paper while he was an undergraduate at the University of Central 
Florida. 

"Convergent Ratios of Parallel Recursive Functions," by David Richter. David prepared this paper 
while he was a freshman at St. Cloud State University. 

The current issue of the Journalcontains two papers with student authors: 

"A Pre-Calculus Method for Deriving Simpson's Rule" was written by John White, who is an 
undergraduate at Marshall University. 

"A Note on a Paper of S. H. Friedberg" was co-written by Janet Valasek, a sophomore at Penn- 
State University - New Kensington Campus, and Professor Javier Gomez-Calderon. 



A PRE-CALCULUS METHOD FOR DERIVING SIMPSON'S RULE 
John G. White 

Marshall University 

Slmpson's Rule is one of a class of numerical methods, known as Newton-Cotes formulas, 
used to calculate definite integrals. This formula is credited to Thomas Simpson, a self-taught 
genius, who published it in his Mathematical Dissertations on Physical and Analytical Subjects in 
1743. However, James Gregory presented the same results earlier in a different form in his 
Exercitationes Geometricae [I]. Its usefulness is in calculating definite Integrals of functions that 
are otherwise difficult or Impossible to integrate, such as 

"1 

[e ̂ dx. 
XO 

There are several standard ways to derive Simpson's Rule using calculus. In one method, 
three equally spaced points, the endpoints and the midpoint of the interval, are chosen. A parabola 
is constructed from these points (since a polynomial of degree at most two passing through three 
given points can always be found) and it is integrated. This yields Sirnpson's Rule: 

where h = ly  ̂- x0)/2. (See [3] for an example of this derivation.) 

Another method takes three points and uses them to construct a Lagrange interpolating 
polynomial of degree two: 

This is then integrated, and the final result is once again Simpson's Rule. (See [2].) A third method 
integrates the Taylor series expansion of f(x) to derive Simpson's Rule 121. 

Here is one method of deriving Sirnpson's Rule that does not rely on integration. Rather, 
piecewise approximations are used to find three different values for the integral. The average is then 
taken to approximate the definite integral, and the end result is once again Simpson's Rule. For 
simplification, the following illustrations use only nonnegative functions, even though the derivation 
is the same for functions with negative values as well. 

= -h (f (x,) +f (xi) +f(xJ +f (xi) +f (x2)) 
3 

= A(ftxo) +4ftxi) +f(x2)).  
3 

This pre-calculus method of derivation also yields two other Newton-Cotes formulas: the 
Trapezoidal Rule and Simpson's Three-Eighths Rule. 

Trapezoidal Rule: 

7 



Simpson's Three-Eighths Rule: 

With this derivation, each section is approximately two-thirds the total integral, thus the integral is 
about three-eighths the sum of the four areas. 

3 ( h f  (xo) + h f  (xi)) + 3 ( h f  (xi) + h f  ( x ~ ) )  + 3 (h f  (x2) + h f  <x2))  + 3 ( h f  (x2) + h f  (x,) 
8 
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A NOTE ON A PAPER OF S. H. FRIEDBERG 
Javier Gomez-Calderon & Janet Valasek 

Penn State University, New Kensington Campus 

Recently in [I], S. H. Friedberg showed that the principal axis theorem, a very important 
theorem in linear algebra, does not extend to any finite field. He proved, using a simple counting 
argument, the following: 

THEOREM: Let F be a finite field. Then there exists a 2x2  symmetric matrix (over F) that 
possesses no eigenvalues. 

The purpose of this note is to point out that Friedberg's results can easily be generalized 
for a n x n  symmetric matrix. We will prove the following two corollaries. 

COROLLARY 1 (to Friedberg's Theorem): Let F be a finite field. Then for each n > 1, there exists 
a (2n)x(2n) matrix (over F) that possesses no eigenvalues. 
PROOF: By Friedberg's Theorem, let A denote a 2x2  matrix over F such that fA(x), the 
characteristic polynomial of A, has no roots in F. Then the characteristic polynomial of the 
(2n)x(2n) block diagonal matrix C = diag(A,A, ...,A) is fcM = (fA@))". Therefore, C possesses no 
eigenvalues. 

COROLLARY 2: Let F be a finite field. Then for each n 2 3, there exists a nxn non-diigonalizable 
symmetric matrix over F. 
PROOF: With notation as in Corollary 1, let D denote the nxn block diagonal matrix 

Then the characteristic polynomial of D is = fAw '2 .  Thus, the only eigenvalue of D is 0. 
Therefore, since D i> 0, D is not diagonalizable. 
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Upper Limit on Number of Primes 
[Based on Numbers Ending i n  1, 3,  7, or 9) 

THE FIRST CENTURY 
Richard L. Francis 

Southeast Missouri State University 

An abundance of primes meets the eye in examining the first one hundred positive integers. 
Not quite so many emerge in the second century, and even fewer in the third. However, the 
frequency of prime encounters in these initial groupings suggests no scarcity. Actually, the first 
century of positive integers proves a veritable field of abundance in its containment of major number 
types. It likewise prompts the question of other collections of positive integers with a plentiful 
supply of numbers in a select category. The pursuit of primes by centuries is an intriguing part of 
this basic question. 

Primeless Centuries 
Centuries denote groupings by hundreds and begin with the first 100 positive integers. 

These may also be called aggregates of order two (whereas decades suggest aggregates of order 
one). Finding primes within the various centuries touches on the subject of the distribution of the 
primes. Such a distribution within an infinite set is, even today, highly perplexing. Similarly elusive 
is a formula for finding the nth prime - or for generating a prime larger than a designated one. Of 
interest in this context of the infinitude of the primes is the fact that there exists, for example, a one- 
trillionth prime, but no one can say what it is. 

Some centuries contain no primes whatever. Consider the century which begins with 
1001 + 1 and ends with 100! + 100. Each number in this set is composite as 100! + n is divisible 
by n for 0 < n Ã§ 100. Moreover, loo! + 1 is divisible by 101 by Wilson's Theorem. It is easy to 
show that there are infinitely many centuries entirely devoid of primes by a similar factorial 
construction. For example, the century from 1,000,000! + 101 to 1,000.000! + 200 consists of 
composites. Or from 1,000,000! + 201 to 1,000,000! + 300. Infinitely many primeless centuries are 
implied by the generalized interval extending from lon! + 101 to 10"l + 200 where n is greater than 
or equal to 3. 

A Prime-Rich Century 
More primes appear in the first century than in any other. All primes beyond the first 

century must "end" in 1, 3, 7, or 9. This allows for a maximum of forty primes within the century. 
But a least three numbers in each terminal digit case must be multiples of 3. Accordingly, 40 - 12 
or 28 denotes a more impressive maximum number of primes within the century. To lessen the 
maximum even more, note that centuries can begin in 21 ways based on the 21 possibilities in 
which the century's first number yields a remainder when divided by 3 and by 7. For example, the 
first number 100n + 1 can be of the form 3r and 7k, 3r and 7k + 1, 3r and 7k + 2, etc. In each 
case, striking out the multiples of 3 and of 7 (and in one case, multiples of 11) establishes that no 
century beyond the first contains more than 24 primes. Of course, the first century contains 25 
primes. It is thus the maximal century of primes. 

Form of  number o f  
Century's F i r s t  Sure 

Number Composites) 

Upper Limit  
of Number of 
Primes (40-x) 

F i r s t  Number 
of Sample 

Century - - - -- -- 
8001 

14001 
20001 
26001 
32001 
38001 
44001 

Note that the upper limit on the number of primes is 25 in the case for leading numbers of 
centuries which are of the form 3r + 2 and 7k + 3. In this case, an additional sure composite can 
be established by considering all possibilities of remainders In dividing the leading number of the 
century by 11. These forms are 11) + 1, 111 + 2, ...., 11j + 10. 

Decades in  Passing 
As stated earlier, centuries denote groupings by hundreds and begin with the first 100 

positive integers. These were called aggregates of order two based on the exponent appearing in 
lo2 (where lo2 is of course the number of elements in a century). Millennia thus denoteaggregates 
of order three. The case for decades, where the order of aggregate is 1, proves interesting. 
Actually, the first decade contains only four primes; this is obviously the maximum number of primes 
possible within a decade. Other decades may contain the same maximum number of primes. 
These include, for example, the second decade (with primes 11, 13, 17, and 19) as well as the 
eleventh (with primes 101, 103, 107, and 109). Were it not for the contrivance that 1 is not a prime, 
then the first decade would emphatically be the maximum decade in terms of primes possessed. 
(The arguments of convenience whereby 1 is excluded from the list of primes are well known and 
will not be pursued here.) 

The least decade containing no primes is the one beginning with 201. Following this as the 
next primeless decade is the one which begins with the number 321. The first encounter with two 
primeless decades in succession has 1131 for its leading element. Three primeless decades in 



succession can be found by beginning with 1331. Such a fascinating pattern continues. Infinitely 
many decades of various orders of succession may be found. 

Least Century with No Primes 
Although there are infinitely many primeless centuries (as shown earlier), there must also 

be a least such century. It is not necessarily the century whose first element is loo! + 1.  Note the 
magnitude of loo!. The number of terminal zeros alone, namely, twenty-four, classifies 
loo!  + 1 as gargantuan. 

Some relatively early centuries come close to meeting the "primeless" standard. For 
example, the century beginning with 31401 contains only four primes. These are 31469, 31477, 
31481, and 31489. Even more impressive is the century beginning with 58801. Only three primes 
appear; they are 58831,58889, and 58897. Likewise, only three primes can be found in the century 
beginning with 69501. 

The least century containing no primes whatever lies somewhere between 1 million and 2 
million. It Is the century whose first element Is 1671801 and Is shown below. As each of the 
elements In the listing is composite, the reader may wish to find the factors of some. For example, 
the number 1671813 yields (a3)(1 1)(13)(433) when written In factored form. This prime factorization 
is, of course, unique (Fundamental Theorem of Arithmetic). 

First of the Primeless Centuries 

The largest prime preceding this primeless century is 1671781. The smallest which follows is 
1671 907. 

By some logic, all numbers can be considered "interesting." Hence, it is with reluctance that 
the above century is labeled "mathematically barren." Although it contains the exact square 
1,671,849, there are no prlmes of any kind. Nor are there cubes, fourth and higher powers, or 
factorials. Perfect numbers (even or odd), triangular numbers, palindromes, and odd abundant 
numbers likewise fail to appear. But, and Interestingly so, it Is the first of the primeless centuries. 
The next of the primeless centuries begins with 2,637,801 and extends through 2,637,900. One 
must venture rather far in the sequence of positive Integers before two consecutlve primeless 
centuries emerge. This first happens with the century whose leading element is 191,912,801. 

The Earliest Encounter with Two Consecutive Primeless Centuries 

The largest prime which precedes this prlmeless pair of consecutlve centuries .is 
191,912,783. The smallest which follows is 191,913,031. No squares or cubes appear in the above 
long Interval of two-hundred positive integers. Nor do higher powers, factorials, or perfect numbers, 
be they even or odd. Interestingly, only one odd abundant number surfaces. It Is 191,912,805. 

Extended questions concerning the first of the prlmeless millennia or other major groupings 
are not pursued here. But, and emphatically, such primeless groupings do exist, and there most 
be a first In each case. 

The Remarkable First Century 

The first century contains a remarkable assortment of notable number types. Included In 
this impressive assortment are: 

25 primes 4 f a c t o r i a l s  
10 squares 2 even perfec t  numbers 

4 cubes 3 Mersenne primes 
3 fourth powers 3 Format primes 
2 f i f t h  powers 

Moreover, this leading century possesses more of the number of types here named than any other 
century; it stands out as a veritable gold mine of number encounters. 

One should not infer that the earlier the century, the greater the number of primes. For 
example, the fourth century contains 16 primes whereas the fifth century has more (17). Otherwise, 
such erroneous logic would lead to the belief that any century following a primeless century must 
also be primeless. This contradicts the fact that the set of primes is infinite. 

The earliest century with no squares begins at 2501, with no cubes at 401, and with no 
factorials at 201. Careful checking also reveals that the earliest century with no fourth powers, fifth 
powers, sixth powers, as well as no perfect numbers is the one beginning at 101. In fairness, it 
should be noted that certain significant number types avoid the first century altogether. For 
example, no pseudoprimes, no odd abundant numbers, and no amicable pairs appear. 

Does the first century contain more of a given number type than any other century? So 
frequently, the answer is YES. Sometimes, responses are easily given as In the case for wen 
primes. Or for superpowers, namely, numbers of the form x" where x Is a positive integer 
(e.g., 1'  = 1,2' = 4,33 = 27). other number classifications demand greater analysis. Such types 
as Pythagorean Triples or palindromic primes (e.g., 2, 3, 5, 7, 11) fall into this last category. 

The century definition requires the greatest element to be a multiple of 100. Such an 
element thus "ends" in two zeros. If other groupings are allowed, various modifications of results 
stand out. For example, the one hundred consecutive integers 2 through 101 contain 26 prlmes. 
Or the ten consecutive integers 2 through 11 contain five primes. Definitions here Included of 
decades, centuries, millennia, etc. preclude groupings which begin randomly. 



THE FIRST CENTURY 

THE FIRST CENTURY 
contains more of the number types shown above than any other century. 

Millennia and More 
Groupings according to powers of ten lend themselves nicely to easy packaging and 

convenient compartments. This is due to our system of counting which is based on ten. Obviously, 
aggregates could be chosen so as to be of very unusual size (for example, primes within the first 
169 positive integers, etc.). Nothing suggesting a mysterious intermingling of base ten notions and 
the concept of primality is implied. 

Acknowledging the above, let us skip momentarily from decades and centuries and look 
at millennia. In particular, the first millennium contains exactly 168 primes. Counting further, such 
results as the following are noted: 

Millennium 
1st 
2nd 
3rd 
4th 
5th 
6th 
. . . 
60th 
81st 

Number of  Primes 
168 
135 
127 
120 
119 
114 
. . . 
91 
88 

Infinitely many millennia can be found. It is here conjectured that the first millennium 
contains more primes than any other millennium. 

The examination of still larger powers of ten leads to additional conjecturlng. 

Number o f  Primes 
10" Less Than 10" 

Note that the first million positive integers contain 78498 primes. Will the following groupings of a 
million possess fewer than 78498 primes? More impressively, the first grouping of ten billion positive 
integers contains 455,052,512 primes whereas the second grouping contains only 427,154,204 
primes. Will the succeeding groupings of ten billion positive integers contain fewer primes also than 
that of the first? All of this leads to what I have called the TOP HEAVY CONJECTURE, namely, 

THE FIRST AGGREGATE OF ORDER N (N22) CONTAINS 
MORE PRIMES THAN ANY OTHER AGGREGATE OF ORDER N. 

Analytic number theory gives some insight on the subject of the occurrence of primes over 
vast intervals. Such results are approximative In nature and do not permit a meticulous look at 
select groupings of the positive integers. In particular, if g(x) denotes the number of primes not 
greater than x, then the ratio of g(x) to x/ln x approaches the number 1 as x becomes large without 
bound. Such a proof was completed in the late nineteenth century and was the work of Hadamard 
and de la Vallee Poussin. 

PRIME NUMBER THEOREM 

This limiting relationship provides a look at prime occurrences in an average manner. It 
does not permit an exact disposition concerning the number of primes in a given aggregate. For 
example, the first grouping of ten trillion positive integers contains 346,065,535,898 primes. Yet a 
certain later grouping of ten trillion positive integers will contain no primes. Still later groupings will 
again contain primes. Note that the number of primes per century (within the first ten trillion positive 
integers) is roughly 3.46 on the average. 



Explorations 
Some centuries contain decidedly more primes than others. Accordingly, a century will be 

considered "crowded if it possesses at least ten primes. Crowded centuries stand out in the earlier 
encounters with the positive integers. Intriguing questions quickly come to mind in the context of 
loneliness and crowdedness. Among these, we find the inquiry "Is the set of crowded centuries 
finite, and, if so, what is the last century?" Generally, an aggregate of order n (n 2 2) will be 
considered crowded if it contains at least 10""' primes. 

To place greater focus on the first century as a numerically prominent century, the few 
additional explorations below are also offered. 

Show that the first century contains more triangular numbers than any other. 
Show that no century beyond the first can contain two even perfect numbers. 
Prime triplets are triples of primes which differ consecutively by 2. The first century 
contains, for example, the triplet 3, 5, and 7. Show that no century contains more 
prime triplets than the first. 
The first century contains seven primes "ending" in 3. Does any century contain 
more than seven such primes? 
The next to the last element of a century "ends' in 99. Consider a century "special" 
if it next to the last element is of the form 199999 ... 999 (all nines except for an initial 
one). Show that infinitely many special centuries have a next to the last element 
which is composite. 
Note that the last decade of the first century contains exactly one prime (97) and 
is thus a lone-prime decade. A century containing exactly one prime is called a 
lone-prime century. An example of such is the century beginning with 13,200,001; 
its only prime is the number 13,200,001. Find another lone century. Does there 
exist a millennium with exactly one prime? 
Are there infinitely many lone-prime centuries? If so, is It possible that all centuries 
will prove to be lone-prime centuries from a certain number on? 
Show that infinitely many centuries "begin" with a prime number. Show that 
infinitely many also "begin" with a composite number. 
The second decade is perfectly balanced as there are as many primes in the first 
half as in the second half. Does there exist a perfectly balanced (non-primeless) 
century? The tenth decade is extremely unbalanced as all of its primes are in one 
of the halves. Does there exist an extremely unbalanced century, that is, one with 
all its primes in either the first or second half? 
Twin primes are primes differing by two. Eight such pairs appear in the first 
century. Does any century contain a greater number of twin primes? 

The last mentioned exploration is a venture into a general area of many unsolved problems. 
It includes the cardinality of the set of prime twins. Although the first century contains eight such 
twins, the tenth century contains none whatever. The pattern of their unpredictable occurrence by 
centuries continues. For example, the entire millennium beginning with 956,001 contains only one 
such pair whereas the single century beginning with 1,006,301 remarkably contains five sets of 
prime twins. 

Prime-placed primes likewise lead to additional conjecturing. Suppose pk denotes the k* 
prime. If k is also prime, then pk is called a prime-placed prime. Such numbers as 5, 11, 67, and 
83 fall into this category. Actually, the first century contains nine prime-placed primes, but the 
second century only five. All of this is to suggest still another venture. That is, does the first 
century contain more prime-placed primes than any other? - 

And more! Does the first century contain more Pythagorean primes (of the form Y? 7 y2) 
than the others? Or more absolute primes (those which are prime regardless of the arrangement 
of digits such as 17 or 31 or 73)? Or star primes (those with a prime number of digits such as 23 
or 89)? Explorations appear numerous and branch out in varied directions. 

Intuitively speaking, none of the results above concernlng the first century abundance 
should prove shocking. Fewer divisors are available in the first century with which factoring 
attempts can be made. Likely suggested is a fruitful supply of primes in this earlier grouping. 
Increasing differences among squares and cubes likewise lead one to conjecture a more frequent 
encounter with such numbers in the smaller setting of the first century. Factorials, small at the 
outset, lead to the same conclusion. Of course, some numbers behave more mysteriously and 
superficially erratically than others. Highly intuitive notions often present the greatest of challenges 
in the many attempts at proof and rigorization. Here, the primes prove no exception. Highlighted 
in this and similar settings is the first century, an abundant field of golden pebbles called numbers. 

Appreciation is expressed to Johnny La;, Southeast Missouri State University, for his assistance 
in  the computer verification of certain of the results of this paper. 
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USING THE MVT TO COMPLETE THE BASIC INTEGRATION FORMULA 
Norman Schaumberger 

Hofstra University 

When considering the formula 

b 

f x n  & = Ã‘1 - a"*1) 
n+l 

a 

we are obliged to exclude the case n = -1. The usual properties of the logarithmic function along 
with the formula d(lrw)/dx = 1/x are consequences of the definition 

Furthermore, the relation 

( $ 1  = jx-l&, b >  a > 0 

that it is reasonable to expect that the expression 

- 
n + 1  

can readily be derived from (2). Equation (1) is still meaningless when n = -1, but (3) does suggest 
approaches In(b/a) as n tends to -1. This point, although rarely discussed in standard texts, can 
be made plausible by considering values of n close to -1. Thus, for example, 

and ln(3/2) = .4054.... 
We offer a simple proof that 

i n  2 ( b ~  - an+>) = ln(;). 
n+l 

Using the Mean Value Theorem with f(x) = Inx- gives 

where c e (an+',b"+'). Since b > a > 0, it follows that 

This can be written as 

If we let n - -1, then the two outer terms tend to ln(b/a) and we get (4). 

THE WEIGHTED JENSEN INEQUALITY 
Norman Schaumberger & Bert Kabak 

Hofstra University & Bronx Community College 

If xl, x2, ... x,,, are angles satisfying 0 s xi s n (i = 1, 2, ..., n), then 

with equality iff xl = x2 = ... = x, . Furthermore, 

holds If the x's satisfy -v/2 s xi s n/2, with equality iff xl = x2 = x,. 

Inequality (1) Is a special case of Jensen's inequality which states that if f(x) has a second 

derivative f(x) c 0 in the interval a c x c b then for a c x, < b (I = 1.2, ..., n) 

with equality iff x, = x, = ... = x,,. 



The standard derivation of (3) follows Cauchy's method of proof of the AM-GM inequality. 

(See, for example,[3].) A proof of (3) using elementary properties of the derivative was given by 
the authors in [2]. Inequality (2), on the other hand, is a special case of Jensen's weighted 

inequality. This states that if f(x) and xi are as in (3) and o, > 0 I = 1,2, ... n) are real numbers such 

that 

then 

with equality iff xl = x2 = ... = x,,. 

A not particularly simple non-calculus proof of (4) where the p. are restricted to rational 

numbers can be found in [I]. We offer a simple calculus proof of the weighted Jensen inequality 
which is valid for all real p, and which is based on an extension of the argument in [2]. 

If a c x c b and w = plxl + p$2 + ... + p#,, where a <x. < b, then 

f (w) - wfl (w)  a f ( x )  - xf ' (w)  (5) 

with equality iff x = w. (5) follows from the observation that f(x) c 0 on (a, b) and thus 

g(x) = f(x) -xf'(w) takes its maximum in (a, b) at x = w, because gt(x) = f'M - rfw) is monotone 

decreasing on this interval and thus vanishes iff x = w. Substituting x = xl, x = x,, ... x = xn into 

(5) gives the inequalities 

f ( w )  - wf i (w)  i f ( x i )  - x i f q w )  , (i = 1,2, ..., n) ( 6  

Multiplying (6), in turn, by pl,p2. ...pn and adding, we get 

(7 

Since 

and 

we can use (7) to establish (4). 

18, ~ f f  xl = x2 = ... = x = w. If we put pi = pa = ... = p,, = 1/n then (4) becomes (3). Also, If 

f(x) = Inx, f'(x) = -I/? c 0, for x > 0. Hence 

In (plxl  + p2x2 + . . . + pnxn) 2 pl lnx, + p, 1nx2 + . + pnlnxn 

a 

or 

Equality holds iff xl = x2 = ... = x,,. Inequality (8) is the weighted AM-GM Inequality. Putting 
pl = p2 = ... = pn = 1/n gives the AM-GM Inequality. 

Finally, we note that if f(x) > 0 then the inequality in (4) is reversed. If, for example, 

f(x) = tan x then r(x) = 2 set% tan x > 0 for 0 < x < v/2 and by Jensen's weighted inequality, 

p1 tan x1 + p2 tanx; + . . . + pn tanxn i tan (pixl + p2x2 + . . . + pnxn) (9 ) 

for any set of n positive acute angles x,, x2, ..., xn with equality iffx, = x2 = ... = x,, If n = 3, 

xl, x2, x, are angles of an acute triangle, and 

then (9) becomes 

xl tanx, + x, tanx, + x3 tanx, a it tan 

Equality holds iff the triangle is equilateral. 
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(7, = J l+cos[$] 
cos (t) = cos Ã‘Ã‘ 

Now, cos(0 + z/2) = cos(0)cos(ii/2) - sin(O)sin(z/2) = -sin(â‚¬ = -3/5. So 

We also can see that: 

Now consider the following identity: 

2 = 2  

2 = @  

and, therefore, cos(t) = I /x. 

I have shown before (Pi Mu Epsilon Journal, volume 9, number 2) that 
 tan(^) = tan((0 + 1r/2)/4) = 114. Therefore, 

1 1  1 - 1, s i n ( t )  = t an ( t ) -COS(T)  = --- = - - - 
4 -  @,,IF+ Y 

So. cos(t) = 1/x, sin(t) = 1/y, and tan(t) = 114, which is what we were trying to prove. 

A NOTE ON (1 + kin)" 
Russell Euler 

Northwest Missouri State University "/Z .- - 

A standard textbook technique used to prove that the limit 

exists is to show that the sequence {(I + l/nJn} is increasing and bounded above by 3. This is 

sometimes followed with an exercise to show that limit (*) exists for some particular positive 

integer k [I, p. 115-1 16; 2, p. 33-38]. The purpose of this paper Is to prove that the sequence 

defined by xn = (1 + k/n)" converges for every positive integer k by the completeness property 

of the real number system. 

To prove that {xn} is increasing, the following result will be used. For positive real 

numbers yl, yy, ... , yn+ the arithmetic mean (M) and the geometric mean (G) are defined by 

M = ly, + ... + ~ ~ + ~ ) / ( n  + 1) and G = lyl ... yn+l)l̂ n+l), respectively. It is well known that 

M i G, with equality holding only when yl = ... = yn+,. 

In particular, let yl = 1 and y, = 1 + k/n, for i = 2, 3, ... , n + 1. Then it is easy to 

show that M = 1 + k/(n + 1) and 6 = (1 + k/n)nl("tl). Hence, since M > G, 

So, 

and { x }  is an increasing sequence. 
Using the fact that (1 + 1/nln < 3, it will now be shown that x,, < sk. 

x,, = ( 1  + k/n) " s (1 + k/n + k ( k - l ) / 2 n 2  + . . . + l /nqn 
= [ ( 1+1 /n * ]~  

= [ ( I  + * ) " I k  
< 3* 

Since {xn} is increasing and bounded, the sequence converges by the completeness 

property- 
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A NAPOLEON TRIANGLE REVISITED 
Jack Garfunkel 

Queensboro Community College 

[Jack Garfunkel submitted this paper shortly before his death. (See In Memoriam, on page 272.) 
Clayton Dodge was kind enough to complete the preparation of this paper.] 

Some theorems in geometry come and go, but a few catch our fancy and remain popular 
and exciting. These theorems have a certain elegance and charm, and perhaps an unexpected 
result. One such theorem is credited to Napoleon Bonaparte. It states that If equilateral triangles 
are constructed on the three sides of any given triangle, all constructed externally or all internally, 
then their centroids form an equllateral triangle. The areas of these two centroid equilateral triangles 
differ by the area of the given trlangle. Furthermore, the three lines formed by joining the third 
vertex of each equilateral triangle to the opposite vertex of the given triangle concur. The point of 
concurrence of the lines from the centroids of the equilateral triangles drawn outwardly subtends 
equal 120' angles at the sides of the given trlangle. If no angle of the given triangle exceeds 120Â° 
then this point of concurrence is the point from which the sum of the distances to the vertices of 
the given triangle is a minimum. 

We shall prove that the centroids form equilateral triangles and also the area relationship 
as part of our proof of certain other inequalities. Later in the paper we shall prove the concurrence 
of the lines In a more general setting. The sizes of the angles and the minimum distance property 
will be left for the reader to investigate. See [3, pp. 63-65] and [5, p. 721. 

It Is convenient for us to use the following equivalent form of Napoleon's theorem in this 

paper- 

Napoleon's Theorem. If on the middle third of each side of a given triangle ABC an 
equllateral triangle is constructed, all constructed externally or all internally, then their third vertices 
form an equilateral triangle. 

In Figure 1 triangle A'B'C' is called the outer Napoleon triangle and triangle A"B"C" Is the 
Inner Napoleon triangle. In this paper we shall prove some additional properties of the outer 
Napoleon triangle, and develop some interesting (and perhaps unexpected and surprising) 
extensions. To that end we shall assume the notation and terminology of Figure 1. 

For convenience we shall use the notation Sa = a + b + c. Also we let Q = S(b - c)' = 

(b - c)' + (c - a)' t (a - b)2, which is, of course, nonnegative. Then we prove the following lemma. 

Figure 1 

Lemma 1. If s is the semiperimeter of triangle ABC, then 

We have that 

Now we are ready to prove our first theorem, In whose proof we shall make use of the result 
[I, p. 42, Item 4.31 

s i 3Fd3 + Q/2, whence 2s' - 6Fd3 2 Q. 

Theorem 1. The perimeter 2s of a given triangle ABC is not less than the perimeter 2s' of 
its outer Napoleon triangle A'B'C'. 

Figure 2 

Let W be 113 of the way from C to B, let x = A'C, y = B'C, and c' = A'B'. See Figure 2. 
Then WC = WA' = a/3 and LA'WC = 120Â° sox = a/d3. Similariy, y = b/d3. Then, using the 
law of cosines In triangle A'B'C, we have 



= a - 3 cos (60' + C) 
3 3 

a2 + b2 2ab = - - - (cos6o0 cos c - sin6O0 s ine)  . 
3 3 

Because cos C = (a2 + b2 - c2)/2ab and the area F of triangle ABC is given by F = (ab/2) sin C, 
we get that 

Since side c" of the inner Napoleon triangle subtends an angle of 160' - Cl, the corresponding 
relation is 

( c ~ ~ ) z  = a 2 + b 2  + c2  - x. 
6 6 

Because the expressions for c' and c" are symmetric In a, b, and c, it follows that a' = b' = c' and 
a* = t/ = cn , proving that the two Napoleon triangles are equilateral. 

To show that 2s 2 2s" we show that ( 2 ~ ) ~  - ( 2 ~ ' ) ~  a 0. Thus we have 

It Is easy now to prove the Napoleon theorem area relationship. Let F, F', and F" denote 
the areas of the triangles ABC, A'B'C', and A"B"C" respectively. Since the altitude of the equilateral 
triangle of side a' Is equal to a'd3/2, then its area is F = (a1)~J3/4. Similarly, F" = Thus, 
the difference between the areas of the outer and inner Napoleon triangles is given by 

We have seen that F a F and r' a r, but s' s s. Let us see just what relationship exists 
between R and R', the circumradil. This result is not quite so obvious as that of Theorem 2. In it 
we shall use the results [ I ,  p. 18, Item 2.31 B i n 2  A s 914 and [I, p. 20, Item 2.81 B i n  A s 3/3/8, 
and the known relations 14, p. 311 F = abc/4R and 14, p. 33, Exercise 221 a = 2R sin A, etc. 

Theorem 3. The circumradius R of a given triangle ABC is not less than the circumradius 
R' of its outer Napoleon triangle A'B'C'. 

Since the circumradius of an equilateral triangle is equal to 213 of its altitude, then 

Now we have 

To show that R & R', we must prove that 

2 1 zÃ‘Es in2  + Ã‘4 n s i n ~ .  
3 6  

Thus 

which is the desired result. 0 We have proved Theorem 3. 

Theorem 2. The inradius r' of the outer Napoleon triangle A'B'C' is not less than the Erecting equilateral triangles on the middle third of each side of a triangle to determine the 

inradius r of the given triangle ABC. points A', B', and C' is a rather special and arbitrary choice. The question arises as to what would 
happen if, as a generalization of the Napoleon figure, we erected arbitrary isosceles triangles 

Since F = rs and F' = r's' and we have just shown that F' a F, then r's' 2 rs. Since also instead. Equivalently, let us erect perpendiculars at the midpoints of the sides and extend them to 

s' s s by Theorem 1, then we must have that r' 2 r. 0 lengths proportional to the sides. 



Theorem 4. At the midpoints of the sides of a triangle ABC, perpendiculars are drawn, all 
outwardly or all Inwardly, and extended to lengths proportional to their respective sides. If the 
endpoints of these perpendiculars are denoted by A', B', and C', then triangles ABC and A'B'C' are 
in perspective. 

Figure 3 
Refer to Figure 3. Let D, E, and F be the midpoints of the sides BC, CA, and AB of triangle 

ABC, and erect all outward or all inward perpendiculars A'D, B'E, and C'F to the sides such that 
DA'/BC = EB'/CA = FC'/AB = k for a given real k. Now draw a line through A' parallel to BC and 
meeting AB at P and AC at Q, a line through B' parallel to CA and meeting BC at R and BA at 8, 
and a line through C' parallel to AB and meeting CA at T and CB at U. Let AA' meet BC at X, BB' 
meet CA at Y, and CC' meet AB at 2. 

By Ceva's theorem, It suffices to show that 

Because of the similar triangles CAB and CTU, etc., we have 

Hence we need to show that 

By the similarity of quadrilaterals BFC'U and BDA'P, etc., we get 

Hence we find that 

We shall call the triangle A'B'C' of Theorem 4 a Garfunkel triangle for the given triangle 
ABC. 

A special case of theorem 4 proves the concurrence of the three lines joining the third 
vertices of either Napoleon triangle to the corresponding vertices of the given triangle. 

At this point we remind the reader of two delightful special points in a triangle, which enter 
into our final theorems. If a point is chosen on each side of a triangle and If three circles are drawn, 
each through a vertex and the chosen points on the two adjacent sides, then these three circles 
concur at a point called the Miguelpoint for the triangle and the three selected points. See Figure 
4. 

Figure 4 

q2fq 
Figure 5 

In triangle ABC draw a circle through vertex A and tangent to side BC at B, a circle through 
B and tangent to CA at C, and a circle through C and tangent to AB at A. Then these three circles 
concur at a point called a Brocard point for the triangle. See Figure 5. By symmetry there are two 
Brocard points for a triangle. By considering inscribed angles, it is easy to show that angles CBP, 
ACP, and BAP are equal. In fact, the converse is also true. If those three angles are equal, then 
point P is a Brocard point for triangle ABC. a 



Theorem 5. Construct a Garfunkel triangle A'B'C' for a given triangle ABC. Let the lines 
C'A and A'B meet at P, lines A'B and B'C meet at Q. and B'C and C'A meet at R. Then the Miguel 
point for triangle PQR associated with the three points A', B', and C' is the circumcenter of triangle 
ABC. 
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- 
Figure 6 

In Figure 6 let 0 be the circumcenter of triangle ABC. Now we have that angles CBQ, ACR, 
and BAP are equal because triangles CBA', ACB', and BAG are similar by construction. Then 

L A =  LBAC= 180- - LBAP- iRAC= 180Â - LACR- .MAC= LARC= LR. 

Since LA + LC'OB' = 180Â° then LR + LC'OB' = 180'. Therefore, the circle through B', R, and 
C' passes through 0. Similarly, the circles through A', Q, and B' and through C', P, and A' both 
pass through 0, so 0 is the desired Miguel point. 

We conclude our list of theorems with an interesting relation between a Miguel point, a 
Brocard point, and a Garfunkel triangie. 

Theorem 6. Under the hypothesis of Theorem 5, the Miguel point for triangle PQR 
associated with the three points A, B, and C is a Brocard point of triangle ABC. 

Let M be the Miguel point for triangle PQR and points A, B, and C. See Figure 7. From the 
proof of Theorem 5, we know that LA = LR. Because AMCR is a cyclic quadrilateral, then 

LAMC = 180Â - LR = 180' - LA. 

Therefore we have 

180' = /MAC + LAMC + LMCA = iMAC + 180Â - LA + LMCA, 

so that 

LMAC + iMCA = LA = LAHC + LMAB. 

Now LMCA = LMAB, which in turn = LMBC by symmetry. Hence M is a Brocard point for triangle 
ABC. 

LETTER TO THE EDITOR 

Dear Editor: 

In the Fall, 1990, issue of the Journal, there was a letter to the editor from me concerning the article 
'The AM-GM Inequality: A Calculus Quickie," by Norman Schaumberger, which had appeared in 
Spring, 1990. In my letter I stated that an equality condition given by Schaumberger was Incorrect. 
The equality condition was actually correct as stated in Schaumberger's article. 

Sincerely, 

Murray Klamkin 
Mathematics Department 
University of Alberta 
Edmonton, Alberta, Canada T6G 2G1 
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FAIR FARE FUNCTIONS 
J.N. Boyd and P.N. Raychowdhury 
Virginia Commonwealth University 

INTRODUCTION 

The Acme Bus Corporation (ABC for short) was created to meet the needs of the good 
citizens of towns x,, x,, x,, ... xÃ‘ The essential geographical feature explaining these 

transportation needs is Bear Mountain as indicated on the map below. 

Figure 1. The Geography of Towns xl, x,, x,, ... x,,-~. 

The towns are connected by a country road which runs over level ground at the foot of the 
mountain. The read also links the towns with villages x0 and xn which lie on the main railroad line 
to the big city. Many of the citizens of x,, x,, x,, ... xn-, work In the big city; and, from both x0 and 
xn, commuter tralns travel to the city with convenient regularity. Eventually, the ABC was 

established to run buses back and forth along the country road between x0 and xn. picking up and 
letting off passengers along the way. 

The distances between any two towns, xi, 9 (i * j; I, j { I ,  2, 3, ..., n-I}), are relatively 
short when compared to the distance from any of the towns to either x0 or xn. Consequently, 
commuters do not care whether they catch a bus headed for x0 or one headed for xn since either 
bus will carry them to a station where the wait for the next train is never long. Therefore, they 
simply take the first bus that comes along. 

The round trip fair f(i), from town xi to either railroad station in the morning and backagain 
in the afternoon was established by the board of directors of ABC. It so happened that the 
Chairman of the Board had been a mathematician in his youth with a particular interest in discrete 
harmonic functions. [ I ]  He persuaded the board that the average value property of harmonic 
functions represented the fairest model for establishing the round trip fares from the different towns. 

Unfortunately, since f(0) and f(n) both had to be zero, the harmonic rule 

( i )  = [f(i-1) + f(i+1)]/2 

would have implied that f(i) = 0 for all i, thereby quickly putting ABC out of business. So, the board, 
acting upon the advice of the Chairman, added a surcharge of one dollar to each fare (as indicated 
in Rule 3 below). The board then set the fare as a function of I by the following rules: 

1 .) f(0) = f(n) = 0. 

2.) f(i) = f(n-i) for i e {O, 1, 2, .... n} to reflect the obvious symmetry resulting from the 

citizens' willingness to catch their tralns at either xo or xn. 

3.) f(i) = [f(i-1) + f(i+1)]/2 for i 6 {I, 2, 3, ..., n-I}. 

The extra one dollar (in Rule 3) was justified as consistent with the policy of charging one 
dollar for a round trip over the relatively short distances between any two towns xi and xi (i * j and 
neither i nor j {O, n}). There had always been a modest amount of travel among the various 
towns in addition to the primary traffic to and from x0 and xn. 

The Chairman was quite pleased with the properties of his fare function f(i) and it is the 
intent of this paper to investigate some of those properties. 

THE FIRST SEVERAL CASES 

If there are n-1 towns with stationsx0 and xn at the ends of the country road, we will denote 
the fare function by fn (i) for n a 0 and I = 0, 1, 2, ..., n. 

By definition, we simply say that fo(0) = 0 and f,(O) = fl(l) = 0. 

For n = 2, we have fn(0) = f,(2) = 0 by Rule 1 and f,(l) = [O + 0]/2 + 1 = 1 by Rule 3. 

For n = 3, we have f3(0) = f3(3) = 0 and 2f3(1) = [O + f3(2)] + 2. By Rule 2, f3(2) = f3(1). 
, 

Therefore, f3(1) = f3(2) = 2. 

For n = 4, we find f4(0) = 0, f4(1) = 3, f4(2) = 4, f4(3) = 3, f4(4) = 0. 

If the results of these and further computations are displayed in a triangular array, interesting 
relationships become apparent. 



becomes 

Most of the patterns which arise along various lines through the triangle are so obvious that 
no comment on those patterns seems required. They suggest that the triangle should serve as a 
useful source for Inductive statements and proofs. 

MORE GENERAL RESULTS 

To make more general sense out of the triangular array, let us take first and then second 
differences across the horizontal rows of numbers. By so doing, we find that, for each row shown 
above (except those with all zeros), the second difference has the constant value of -2. This result 
leads us to suspect that fn can be written as a quadratic function of 1. That is, fn (i) = a + bi + ci2. 

For example, if n = 8 (across the last row shown in our triangle of function values), our 
calculations yield 

f i r s t  difference: 7 5 3 1 -1 -3 -5 -7 

second difference: -2 -2 -2 -2 -2 -2 -2 

It Is then easy (e.g., [2]) to find the coefficients a, b, c and to show that I 

Thereafter, a bit more work suggests that 

fn(i) = ni - i2. *(I) 

Checking our result against our three rules, we find that fn(0) = fn(n) = 0 implying that Rule 1 
Is satisfied. Since fn(n-1) = n2 - ni - (n2 - 2ni + i2) = ni - i2, Rule 2 is satisfied. And, since ' - - 
[fn(i-1) + fn(1+1)]/2 + 1 = ni - i2 = fn(i), Rule 3 is also satisfied. 

Furthermore, we can show that fn(i) from Equation 1 uniquely satisfies all three rules. Suppose, 
to the contrary, both fn(i) and gn(i) satisfy the three rules. Then 

implying that the function hn(i) = fn(i) - gn(i) Is harmonic. Since hn(0) = hn(n) = 0, it follows that 
hn(i) = 0 for every i by the uniqueness of discrete harmonic functions having identical boundary 
conditions. Therefore, fn(i) = gn(i) for every i. It follows also that Rule 2 Is implied by Rules 1 and 
3. 

OBSERVATIONS 

We leave it to our readers to decide whether or not Rules 1. 2. and 3 lead to fair fares in our 
scenario and to generalize the fare functions by making changes in Rule 3. 

The Chief Engineer for ABC was not to be outdone. After the Chairman had explained the 
reasoning behind the definition of his fare function, the Chief Engineer recalled that, for each 
harmonic function, there ought to be an electrical network for which the harmonic function describes 
the potentials at the branch points of the network. He claimed that he could design a circuit for 
resistors for which the n-th fare function defined the potentials at the branch points. 

Eventually, he submitted the design below. 

Figure 2. The Chief Engineer's Circuit. 

All resistorsare identical with resistance R ohms. Point Pi Is maintained at a potential of 2 volts 
above the potential V, at branch point 5 for i = 1, 2,3, ..., n-1. The potentials Vo and Vn (at x0 and 
xn) are both set at zero volts. 



By Kirchhoffs Rule for currents at any branch point, we have 

(VI - Vi-,)/R = (Vi+l - + 21' 

where current along the chain x0, x,, x,, ..., x Is taken to be positive in the direction from left to 
right. After a bit of simplification, the last equation becomes 

in accord with Rule 3. Rule 1 is satisfied by Vo = Vn = 0; and, as we have noted. Rule 2 is 
automatically satisfied whenever Rules 1 and 3 hold true. 
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A rebus is a kind of puzzle whose meaning is indicated by things rather than by words. 
The following rebus was submitted by Florentin Smarandache, of Phoenix, AZ. 
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If your chapter presents awards for Outstanding Mathematical Papers or for Student 
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Two New Numbers Aid Mathematicians 
James Me& 

Matyknoll High School, Honolulu, H I  - - - -- - 
For many years mathematicians, and perhaps a few students of mathematics, have enjoyed 

rationalizing the denominators of expressions such as 7/& and y/i/"3, and wen more complicated 

ones Including 6/(/2 - 5) and (3 + 7i)/l. Until now they have been forced to live with such nasty 

expressions as 9/it and 3/e with their irrational denominators. Two new numbers now solve this 

problem and allow expressions with denominators it, e, or a non-zero multiple of either,'tko be 

changed to a form which has a rational denominator. 

The two numbers have always existed in the set of real numbers, but they were never given 

names, since they seemed rather useless except for filling a couple of holes on the number line. 

(The situation is something akin to "new" asteroids.) The decimal names of these new numbers are 

impossible to pronounce because you can never finish trying to say them. 

The first number is called TINAPAY, after the Tagalog word for "bread." It is pronounced 

teen - a - pi. Written 15, it is defined as 'io = 10/n. As an example of the usefulness of this 

number, consider the expression 7/u which has the irrational denominator it. 

7/ic = 7/u - (io'/io) = (7 io')/l0. Notice the rational denominator. As a bonus, this expression 

also has the convenient decimal representation -7 E. For converting radian measure to degree 

measure, just multiply by 18 i?. 

The second new discovery is the number EATEN, pronounced e -ten, and written ex. The 

symbol is the juxtaposition of e and the Roman numeral for 10, thus giving the number a classical 

flavor. EATEN is defined as ex = 10/e, and it functions with expressions with denominators e in 

much the same way as 10 does with expressions with denominators K. As an example, we see that 

9/e = 9/e - (ex/ex) = (9ex)/10 or .9ex. 

The reader should notice immediately that ex will confuse students who will interpret it as 

the product of e and x, or worse as "example." This is nothing new in mathematics. We use 'Y as 

a variable, to indicate multiplication, and as a numeral for 10. We use a dot for a decimal and to 

indicate multiplication. The choice of symbol is in keeping with the tradition of math symbols. 

Problems for mathematicians to solve in the future will include the rationalization of the 

denominators of expressions such as 6/(2 + w ) ,  7y/(e + v) ,  and 8/(i/"2 - it). The reader can 

appreciate that the mathematics community, up to now, has not advanced far in the rationalization 
of denominators. i6 and ex are two numbers that help. 

4 



Gleanings from the Chapter Reports 

GEORGIA EPSILON (Valdosta State College) The speaker at the fall, 1989, meeting was Dr. John 
Fay, from the Department of Mathematics and Computer Science. The title of his talk was "How 
to Win Betting on Horse Racing." During the winter quarter, the chapter held its second annual 
mathematics contest. The contest was open to all students enrolled at Valdosta State College. 
Steve Hoffman won the contest. The speaker at the spring quarter meeting was Dr. George 
Meghabghab. The title of his talk was "Inductive Learning." The talk was followed by the initiation 
ceremony for eight students. Afterwards, the election of new officers was held. 

ILLINOIS IOTA (Elmhurst College) The Mathematics and Computer Science Club and the Pi Mu 
Epsilon Chapter sponsored a barbecue at the beginning of the year, participated in field trips to 
Argonne National Laboratory, and, along with the Mathematics Department, sponsored a weekly 
seminar at Elmhurst College. The president of the chapter, Dieter Kunas, inducted new members 
at the fall meeting of the Associated Colleges of the Chicago Area (ACCA), Mathematics Division. 
The speaker was Prof. Richard G. Cornell, Department of Biostatlstics, U. of Michigan. He spoke 
on "Careers in Biostatistics" and "Some Statistical Issues in the Evaluation of the Sweetener 
Aspartame." At the ACCA Student Spring Symposium, five members presented papers and 
members were inducted. From this group of students, one presented his work at the Illinois M.A.A. 
Sectional Meeting and one presented her work at the national Pi Mu Epsilon meeting in Columbus, 
Ohio. 

ATTENTION FACULTY ADVISORS 

To have your chapter's report published, send copies to Robert M. Woodside, Secretary-Treasurer, 
Department of Mathematics, East Carolina University, Greenville, NC 27858 and to Richard L Poss, 
Editor, St. Norbert College, De Pere, Wl 54115. 

Message from the Secretary-Treasurer 

Copies of the new, revised Constitution and Bylaws are now available. The prices are: $1.50 
for each of the first four copies and $1 for each copy thereafter. I.e., $(1.50 n) for n < 4 and 
$(n + 2) for n a 4. 

The videotape of Professor Joseph A. Gallian's AMS-MAA-PME Invited Address, "The 
Mathematics of Identification Numbers," given as part of PME's 75th Anniversary Celebration at 
Boulder, CO, in August, 1989, is also now available. The tape may be borrowed free of charge by 
PME chapters, and by others upon an advance payment of $10. Please contact my office if you 
desire to borrow the tape, telling me the date on which you would like to use it. I prefer to mail the 
tape directly to faculty advisors, and expect them to take responsibility for returning it to my office. 
Please submit your request in writing and include a phone number and a time that I might reach 
you if there are problems. Robert M. Woodside, Secretary-Treasurer, Department of Mathematics, 
East Carolina University, Greenville, NC 27858. 

PUZZLE SECTION 

Edited by Joseph tl. E. finhauser 
Hocalester College 

777e PUZZLE SECTION is for the enjoyment of those readers who are addicted to 
working doublecrostics or who find an occasional mathematical puzzle or word puzzle 
attractive. We consider mathematical puzzles to be problems whose solutions consist of 
answers immediately recognizable as correct by simple observation and requiring little 
formal proof. Material submitted and not used here will be sent to the Problem Editor if 
deemed suitable for the PROBLEM DEPARTMENT. 

Address all proposed puzzles and puzzle solutions to Professor Joseph D. E. 
Konhauser, Mathematics and Computer Science Department, Macalester College, St. 
Paul, MN 55105. Deadlines for puzzles appearing in the Fall Issue will be the next 
March 15, and for the puzzles in the Spring issue will be the next September 15. 

PUZZLES FOR SOLUTION 

1 .  A Teaser from the legacy of Leo Moser, first Problem Department Editor of 
the Pi Mu Epsilon Journal. 

Find positive integers a, band csuch that a3 + b4 = c5. 

2.  Proposed by Basil Rennie, Burnside, South Australia. 

Take three points at random on the unit sphere. What is the expected value of the 
area of the triangle that they form? 

3. From a 1966 paper by S. J. Einhorn and I. J. Schoenberg. 

The vertices of a regular octahedron are such that the fifteen distances between 
pairs of vertices assume just two values. There are five other arrangements of six 
points in 3-space such that the distances between pairs of points fall into just two 
classes. How many of them are you able to find? 

4. Proposed by the Editor of the Puzzle Section. 

Given a unit square, what is the area of the octagonal region bounded by the eight 
lines joining the four side midpoints to the endpoints of the opposite sides? 

5 .  From a 1959 paper by J. Lambek and Leo Moser. 

Separate the integers 1 through 16 into two disjoint eight-member sets Sand  T 
such that the 28 sums of pairs of elements of S are identical with the 28 sums of pairs of 
elements of T. 



6. Contributed by E. N. Igma. 

Cards labelled 1 through k, without duplication, are shuffled and held face up. If 
the number on the top card is m then the mth card counting from the top is moved to the 
bottom of the k-card pile. Next, the number now on the second card is noted. If the 
number is n then the nth card from the top is moved to the bottom of the pile. The 
process is repeated for the 3rd, 4th, 5th cards and so on. If the card to be moved is 
already on the bottom the pile remains unchanged. For example, for k =  4 if the initial 
arrangement is 2143 then the final arrangement is 2431. If the final arrangement for 
five cards is 12345 what was the initial arrangement? Is the solution unique? 

7, Proposed by the Editor of the Puzzle Section. 

To how many triangles whose vertices are vertices of a regular polygon of 2 k i  1 
sides is the center of the polygon interior? 

COMMENTS ON PUZZLES 1-7, FALL 1990 

For Puzzle #I ,  RICHARD I. HESS wrote where i Z Z  consists of one 
or more O's, l's, 6's, 8's and 9's subject to the conditions (1) there are no leading or 
trailing 0's and (2) there is at least one 6 or 9. is z x  turned upside down. 
Examples: 619, 916, 89168, 9600811180096. Similar responses were received from 
MARK EVANS and EMIL SLOWINSKI. CHARLES ASHBACHER, MARK EVANS, RICHARD I. 
HESS, BOB PRIELIPP and EMIL SLOWINSKI responded to Puzzle #2. Most submitted a 
solution consisting of linear equations in the amounts bet on each horse with results $33 
on horse A, $22 on horse B and $6 on horse C. For Puzzle #3, MOHAMMAD PARVEZ 
SHAIKH (freshman at Western Michigan University) gave a complete analytical geometry 
solution showing that the area of the three-pointed "starn equals 215 that of the given 
triangle. RICHARD I. HESS solved the problem by projecting the given triangle into an 
equilateral triangle using a transformation which presewes ratios of areas. Then, using 
elementary trigonometry, he obtained the result 2/5. EMIL SLOWINSKI did not reveal 
his method but supplied the correct answer. Only RICHARD I, HESS responded to Puzzle 
#4. The scheme used by the proposer was to start with a first row of 0, 1, -2, 3. The 
elements of the following rows, from left to right, were obtained, respectively, as the 
sum of the first two elements in the row above, the sum of the last two, the first minus 
the second and the third minus the fourth. It is easy to show that the elements in the k + 
4th row equal four times those in the k?h row, so that the elements of the 100th row are 
those of the 4th row multiplied by 4 to the power 24. In Puzzle #5, the three-member 
set (2, 3, 5) has the property that the product of any two members leaves a remainder of 
1 when divided by the third. Are there any other triplets of distinct positive integers 
with the same property? EMIL SLOWINSKI and RICHARD I. HESS both said "No," but only 
HESS supplied a proof. Only RICHARD I. HESS and EMIL SLOWINSKI gave analyses for a 
winning strategy for the second player in the square-marking game in Puzzle #6. Very 
briefly put, these strategies are to leave the first player with only two squares empty but 
not in the same row or column, or to leave the first player with four empty squares 
which are the vertices of a rectangle. The correct response to Puzzle #7 is 17 bishop 
moves to move a bishop from the upper left corner (white) of an 8x8 board to the lower 
right corner so that each of the white squares is occupied at least one time. Solutions 
andlor answers were supplied by RICHARD I. HESS, EMIL SLOWINSKI and MARK EVANS. 
Here is the solution of MARK EVANS. From left to right, let the first (top) row of squares 
be labelled 11, 12, ... , I& the second row 21, 22, ... , 28; and so on, then, in order, the 
bishop moves from square 11 to 55, 28, 17, 71, 82, 64, 86, 68, 13, 31, 42, 51, 84, 
48, 15, 33, 88. 

Solution to Mathacrostic No. 31 (Fall 1990) 

A Butterfly effect 
B. Relativism 
C Invariance 
D. Gingerbread man 
E Gardens of Eden 
F. Stimp meter 
G Athbash 
H. Naupathia 
I. Dissipative 
J . Phase space 

K. Easy 
L. Antichthon 
M. Totemism 
N. Tesla coil 
CI Umbilic 
P. Roach 
Q Busy beaver 
R. Unknots 
S. Limit cycle 
T. El Nino 

- -. 
"- .- 

U. Navaho 
V. Tachylyte 
W. Metathesis 
X. Immortals 
Y. Ratiocinate 
2. Rataplan 
a Olive 
b. Revolute 

AUTHOR A N D l l l E  BRIGGS AND PEATTURBULENT MIRROR 

QUOTATION: (Thus) the dynamics of bifurcations reveal that time is irreversible yet 
recapitulant. They also reveal that time's movement is immeasurable. Each decision 
made at a branch point involves an amplification of something small. Though causality 
operates at every instant, branching takes place unpredictably. 

SOLVERS: THOMAS F. BANCHOFF, Brown University, Providence, Rl; JEANElTE 
BICKLEY, St. Louis Community College at Meramec, MO; CHARLES R. DIMINNIE, St. 
Bonaventure University, N t  MICHELE HEIBERG, Herman, MN; DR. THEODOR 
KAUFMAN, Brooklyn, NY; HENRYS. LIEBERMAN, Waban, M 4  CHARLOTTE MAINES, 
Rochester, NY; STEPHANIE SLOYAN, Georgian Court College, Lakewood, NJ. 

LATE SOLUTIONS: Solutions for Mathacrostic No. 30 (Spring 1990) were received from 
MICHAEL TAYLOR, Indianapolis Power and Light Company, IN and from JOAN and DICK 
JORDAN, Indianapolis, IN. 

Mathacrostic No. 32 

Proposed by Joseph D. E. Konhauser 

The 256 letters to be entered in the numbered spaces in the grid will be identical 
to those in the 27 keyed words at the matching numbers. The key numbers have been 
entered in the diagram to assist in constructing the solution. When completed, the initial 
letters of the Words will give the name and an author and the title of a book; the 
completed grid will be a quotation from that book. 



A concelve X r&. 8IeMer m d  tapering 

B. shape with deep indentations 
Y. flnal result 

C corkscrew-like structure formed by linked 
amino aclds (2 wds.) 2. Informal collection of problems In ................................. 

mathematics begun in Lwow, Poland in 2 1 2  2 3 8  66 7 2 0 6  1 2 3  1 9 0  2 2 5  2 4 2  1 3 2  39 
1935 (3 wd~. )  D. said of lumber cut radially so that annual 

rings are perpendicular to the face (comp.) 

E tradename of Plet Heln's seven polycube 
puzzle --" a capable of making shod flights out of the --- --- --- --- --- --- --- --- --- --- --- 

water and of 'flying. with a propulsive 81 1 7 5  2 0 7  1 1 8  9 1 3 0 2 1 5  79 1 8 9  1 3 5 2 3 3  
F. a mlx of randomly construcled small 

oroleins and fatlv adds and a variely of 
force while in the air 

active, energYrich nucleotlde unl l i  
(2 WdS.) 

G three-dlmensionai shadow of a 
four-dlmenslonal Kleln bottle (2 wds.) 

H, Hlpparchusdeveloped bask of Greek 
trigonometry (3 wds.) 

I. lnserllon or development of a sound or 
letter in the body of a word 

J. kind of order different from the 
deterministic one 

K. edible tuberous plant of the morning glory 
variety (2 wds.) 

L. Jack of Spades, Jack of Heads and Klng of 
Diamonds (comp.) 

M. formerly known as a large dyne 

N. thlrd largest natural satellite of Saturn 

Q a conman's patter (slang; 2 wds.) 

P. .We have adroitly dafined the lnfinlte in 
arithmetic by a -, in this manner -; 
but we possess not therefore the clearer 
notlon of it: Voliaire 

S. H. Bucbnlnster Fuller trademark 
copyrighted in hls name in 1926 by 
Marshall Field 

T. compound polyhedrm formed by two 
IntersecUng regular tetrahedra In a cube 
(2 wds.) 

U. huge shield volcano on Mars (2 wds.) 

V. pun-IoveCs name for 4.6692016090 

W. Nodon Juslafs dallghliul romance in lowar 
mathematics published in 1963 (5 wds.) 



PROBLEM DEPARTMENT 
Edited by Clayton Dodge 

University of Maine 

This department welcomes prvblems believed to be new and at a level appropriate for the 
readers of this journal. Old problems displaying novel and elegant methods of solution are also 
invited. Proposals should be accompanied by solutions if available and by any information that will 
assist the editor. An asterisk r) preceding a problem number indicates that the proposer did not 
submit a solution. 

All communications should be addressed to C. W. Dodge, Math. Dept., University of Maine, 
Orono, ME 04469. Please submit each proposal and solution preferably typed or clearly written 
on a separate sheet (one side only) properly &entified with name and address. Solutions to 
problems in this issue should be mailed by December 15, 1991. 

We generally publish 13 problems per issue, one alphametric followed by one to three 
problems from each of the areas listed below. To aid you in submitting problems for solution, each 
area is followed by the number of proposals currently in its file. Please notice that four folders are 
utterly empty. The areas are algebra (211, alphametrics (61, geometry (61, trigonometry (5), 
analysis (21, logic and combinatorics (01, number theory (01, probability and statistics (01, and 
miscellaneous (0). 

PROBLEMS FOR SOLUTION 

745. Proposed by Alan Wayne, Holiday, Florida. 
Find all solutions to 

ENID 
&D 

DINE. 

746. Proposed by Gregory Wulczyn, Bucknell University, Lewisburg, Pennsylvania. 
Find the least positive integer n that will have remainder 1 when divided by r, the quotient 

will have remainder 2 when divided by r, the new quotient will have remainder 3 when divided by 
r, and so forth through r - 1 divisions. That is, n = G, and a., = a r  + k for 
k = 1, 2, ..., r - 1, r a positive integer greater than 1. 

747. Proposed by the late Jack Garfunkel, Flushing, New York. 
Let ABC be a triangle with inscribed circle (I) and let the line segments Al, Bl, and Cl cut 

the incircle at A', B, and C' respectively. Prove that 

A B C s i n d 1  + s i n  B' + s i n  CI 2 cos - + cos - + cos -, 
2 2 2 

where A', B, and C' are the angles of triangle A'BC' 

748. Proposed by the late John Howell, Littlerock, California. 
a) An urn contains n balls numbered 1 to n. Algernon, Beauregard, and Chauncey draw 

a ball one after another with replacement. The game is terminated when two consecutive drawings 
produce the same ball. Find the pmbabilities of terminating on Algernon's draw, on Beauregads 
draw, and on Chauncey's draw. 

b) Repeat the problem for the case that the game terminates when three ConsecOtiv~ 
drawings produce the same ball. 

749. Proposer by R. S. Luthar, University of Wisconsin Center at Janesville, Janesville, 
Wisconsin. 

If sin x + sin y + sin z = 0, then pmve that 

*750. Proposed by Dmitry P. Mavlo, Moscow, U.S.S.R. 
Solve the system of equations 

This problem appeared in the SYMP-86 Entrance Exam Mathematical Problems. 

751. Proposed by Murray S. Klamkin, University of Alberta, Edmonton, Alberta, Canada. 
Determine all pairs of positive numbers x and y such that 

752. Proposed by the late Charles W. Trigg, San Diego, California. 
Martin Gadner ("Mathematical Games," Scientific American, April 1964, page 135) has 

shown that the minimum sum of three 3-digit primes that contain the nine non-zem digits is 999. 
Find a set of three such primes that sums to another multiple of 37. 

753. Proposed by R. S. Luthar, University of Wisconsin Center at Janesville, Janesville, 
Wisconsin. 

Solve simultaneously 

& + d y = 8 2  and @ - e " = 2 .  

754. Proposed by Seung-Jin Bang, Seoul, Korea. 
Let a, = & = 1, + = 2, and a*, = an - a*, + am2 for n > 3. Show that 

755. Proposed by Stanley Rabinowitz, Alliant Computer Systems Corp., Littleton, 
Massachusetts. 

In triangle ABC, a circle of radius p is inscribed in the wedge bounded by sides AB and A 



BC and the incircle (4 of the triangle. A circle of radius q is inscribed in the wedge bounded by 
sides AC and BC and the incircle. I1 p = q, prove that AB = AC. 

756. Proposed by Basil Rennie, Burnside, South Australia. 
Consider covering the unit i n t e ~ a l  [O,l] with n measurable subsets, under the constraint 

that all n subsets must have the same centroid. The centroid m of a set E may be defined by 
&(x - m) dx = 0. How can you choose the n sets to minimize m? 

For example, if n = 4, it is possible to make m = 7/20 by choosing the four sets 
[0,2/5]u[9/1 O,l], [0,1/5]u[4/5,9/10], [ I  120,1/4]~[[7/10,4/5], and [0,7/10]. 

757. Proposed by Paul Anthony Coartney, graduate student, San Diego State University, 
San Diego, California. 

Find the overall height of the pyramid formed from four spherical balls of radius r. Student 
solutions are especially solicited. 

SOLUTIONS 

720. [Spring 19901 Proposed by the late Charles W. Trigg, San Diego, California. 
In base 4, find two repdyads, one the reverse of the other, whose squares are 

concatenations of two repdyads. A repdyad has the form abab ... ab. For example, a base ten 
solution is 

898g = 80802121 and 9898' = 97970404. 

Solution by WILLIAM H. PEIRCE, Stonington, Connecticut. 
Let N = abab be a four-digit repdyad in base B. The square of N is an eight-digit number 

which must be of the form 

N' = pqpqrsrs. 

Then we must have that 

= (6' + l)[(pB + q)(B4 - 1) + (pB + q) + (rB + s)]. 

Now (â‚¬ + 1)' is a factor of the right side of the expression in the first displayed line, so it is a 
factor of the expression in the last line. Hence 

(2) (B2 + 1) must divide (pB + q) + (rB + s). 

Since p, q, r, and s are digits in base B and not all zero, then (pB + q) + (rB + s) can range from 
1 to 26' - 2. Since 26' - 2 is more than 6' + 1 but less than twice 6' + 1, the only way for (2) to. 
hold is to have 

[It is at this point that the search for repdyads of three or more pairs would end, sincerf6r.- 
example, when N = ababab, the expression @ + B' + 1 would have to divide (pB + q) + (rB + s). 
This is not possible since @ + B2 + 1 is greater than 26' - 2.1 

Substituting (3) into (1) gives 

which will be considered the fundamental expression of the problem. It is necessav to find values 
of pB + q that make the expression in brackets in (4) a square. That is, 

(5) (6' - l)(pB + q) + 1 is a perfect square. 

W.hen B is small, a direct search suffices. [General parametric methods for solving (5) are not 
included here.] 

Two values of pB + q that satisfy (5) are pB + q = 6' - 3 and pB + q = B' - 26. 
l f p B + q = B 2 - 3 , t h e n a = B - l , b = B - 2 , p = B - l , q = B - 3 , a n d r B + s = 4 .  l f B > 4 ,  

thenr=Oands=4.  l f B = 4 , t h e n r = l  ands=O. l f B = 3 , t h e n r = s = l .  Thisisnotasolution 
for B c 3. 

l f p ~ + q = ~ ~ - 2 B , t h e n a = B - 2 , b = B - l , p - B - 2 , q = O , a n d r B + s = 2 B + l , s o r  
= 2 and s = 1. This solution holds for all B > 1. 

Hence, for B = 4, we have the two required solutions 

N = 3232 and ~ = 313ll0lO. 

N = 2323 and N' = 20202121. 

There are no other base 4 solutions. 
The illustrations given in the proposal are examples of these two solutions for base ten. 

Other bases can have additional solutions. For example, bases 5.7. and 9 have six solutions, and 
base 11 has fourteen solutions. Selected solutions appear in the table below. 

Base Repmonads ReMvads Repdvads Reptriads 
3 1212 2121 221221 
4 2323 3232 332332 

313313 
5 1212 21 21 

2323 3232 
3434 4343 
4545 5454 554554 

443443 
112112 



The method outlined above can be used to study repmonads (N = aa, N'= ppqq), reptriads 
(N = abcabc, N2 = pqrpqrstustu), etc. There is always at least one solution. 

Subjects for further study would be 1) showing the specific relation between the number 
of solutions and the prime factors of B - 1 for repmonads, of B2 - 1 for repdyads, of B3 - 1 for 
reptriads, etc., and 2) proving or dispmving that repdyads are the only case where reversals of 
solutions are also solutions. 

Also solved by CHARLES ASHBACHER, Hiawatha, /A, KAREN L. COOK, Lantana, FL, 
VICTOR G. FESER, University of Mary, Bismarck, ND, RICHARD I. HESS, Rancho Palos Verdes, 
CA, NATHAN JASPEN, Stevens Institute of Jechnology, Hoboken, NJ, DEREK LEDBElTER, 
University of Florida, Gainesville, HENRY S. LIEBERMAN, Waban, MA, KENNETH M. WILKE, 
Topeka, KS, and the PROPOSER. 

721. [Spring 1990] Proposed by Robed C. Gebhardt, Hopatcong, New Jersey. 
Evaluate the integral 

I .  Solution by the PROPOSER. 

Multiplying numerator and denominator by sin m, we get 

1 1 .  Solution by GEORGE P. EVANOVICH, Saint Peter3 College, Jersey City, New Jersey. 

1 * Then we have that Let t =  tanax, sothat x =  - arctantand uk= - 
a 41 + 6. 

Also solved by JOHN T .  ANNULIS, University of Arkansas-Monticello, CHARLES 
ASHBACHER, Hiawatha, IA, MOHAMMAD K. AZARIAN, University of Evansville, IN, SEUNG-JIM 
BANG, Seoul, Korea, FRANK P BATTLES (two solutions), Massachuse~s Maritime Academy, 
Buzzards Bay, MARTIN BAZANT, Tucson, AZ, J. D. BRASHER, Teledyne Brown Engineering, 
Huntsville, AL, MARTIN J. BROWN, Jefferson Community College, Louisvi/le, KY, CAVELAND 
MATH GROUP, Western Kentucky University, Bowling Green, KAREN L. COOK, Lantana, EL, 
ROBERT I.  EGBERT, The Wichita State University, KS, STEPHEN HALE, Drake University,- Des 
Moines, /A, IEM HENG, Providence College, Rl, RICHARD I. HESS, Rancho Palos Verdes, CA, 
NATHAN JASPEN, Stevens Institute of Technology, Hoboken, NJ, R. N. KALIA, St. Cloud State 
University, MN, RALPH E. KING, St. Bonaventure University, NY, MURRAY S. KLAMKIN, 
University of Albefla, Edmonton, Canada, DEREK LEDBETTER, University of Florida, Gainesville, 
HENRY S. LIEBERMAN, Waban, MA, PETER A. LINDSTROM, Nodh Lake College, /wing, JX, 
DAVID E. MANES, SUNY at Oneonta, G. MAVRIGI AN, Youngstown State University, OH, LEV S. 
NAKHAMCHIK, Willowdale, Onf., Canada, OXFORD RUNNING CLUB, University of Mississ@pi, 
University, I .  PHILIP SCALISI, Bridgewater State College, MA, HARRY SEDINGER, St. 
Bonaventure University, NY, WADE H. SHERARD, Furman University, Greenville, SC, SAHIB 
SINGH, Clarion University of Pennsylvan~a, TIMOTHY SIPKA, Alma College, MI, and KENNETH 
L. YOKOM, South Dakota State University, Brookings. 

722. [Spring 1990] Proposed by Robed C. Gebhardt, Hopatcong, New Jersey. 
On Interstate 84 in Connecticut a road sign, indicating a route number change, reads 

NOTICE 
66 

IS NOW 
322. 

This, of course, is startling news to mathematicians. But consider: in what base would the number 
66 equal 322 in what other base? 

Solution by S. GENDLER, Clarion University of Pennsylvania, Clarion, Pennsylvania. 
Let x be the base of the number 66 and y be the base for 322. Then 

6~ + 6 = 2 + 2y + 3 9  so y 0 (mod 2). 

Also 3 divides 2 + 2y, so that y 5 2 (mod 3). 
By the Chinese remainder theorem, y = 2 + 6n for any integer n, so that 

from which we get that 

x =  2 + 14n + 18n2 and y = 2 + 6n  

for any integer n > 0 (since x > 7). Some solutions (x,y) are (34,8), (102,14), (206,20), and 
(346,261. 



Full solutions were submitted by DAVID ASCHBRENNER and KENDALL BAILEY, Drake 
University, Des Moines, IA, SEUNG-JIN BANG, Seoul, Korea, FRANK P. BATTLES, Massachusetts 
Maritime Academy, Buzzards Bay, MARTIN BAZANT, Tucson, AZ, JEFFREY JOHN BOATS, St. 
Bonaventure University, NY, BARRY BRUNSON, Western Kentucky University, Bowling Green, 
CAVELAND MATH GROUP, Western Kentucky University, Bowling Green, JOE DeMAlO, Emory 
University, Lenoir, NC, GEORGE P. EVANOVICH, Saint Peter's College, Jersey City, NJ, MARK 
EVANS, Louisville, KY, VICTOR G. FESER, University of Mary, Bismarck, ND, RICHARD 1. HESS, 
Rancho Palos Verdes, C A  the late JOHN M. HOWELL, Littlerock, CA, NATHAN JASPEN, Stevens 
Institute of Technology, Hoboken, NJ, DEREK LEDBETTER, University of Florida, Gainesville, 
CARL LIBIS, Granada Hills, CA, DAVID E. MANES, SUNY at Oneonta, LEV S. NAKHAMCHIK, 
Willowdale, Ont., Canada, WILLIAM H. PEIRCE, Stonington, CT, DAMEN PETERSON, Alma 
College, MI, WADE H. SHERARD, Furman University, Greenville, SC, SAHIB SINGH, Clarion 
University of Pennsylvania, TIMOTHY SIPKA, Alma College, MI, KENNETH M. WILKE, Topeka, 
KS, DAVID YAVENDITI, Alma, MI, KENNETH L. YOKOM, South Dakota State University, 
Brookings, and the PROPOSER. 

At least one solution was submitted by CHARLES ASHBACHER, Hiawatha, /A, MARTIN 
J. BROWN, Jefferson Community College, Louisville, KY, BARBARA TON FERULLO, Boylston, 
MA, MICHAEL W. LANSTRUM, Kent State University, OH, HENRYS. LIEBERMAN, Waban, MA, 
LOWELL F. LYNDE, JR., University of Arkansas at Monticello, and MIKE PINTER, Belmont 
College, Nashville, TN. 

One incorrect solution was received. 

723. [Spring 19901 Proposed by John L. Leonard, University of Arizona, Tucson, Arizona. 
Show that, for any positive integers n and k, the product 

is always an integer. 

Solution by DAVID YAVENDITI, Alma, Michigan. 
We have that 

which is a positive integer for all positive integers n and k. 

Also solved by JOHN T. ANNULIS, University of Arkansas-Monticello, CHARLES 
ASHBACHER, Hiawatha, IA, KENDALL BAILEY and SEAN FORBES, Drake University, Des 
Moines. /A, SEUNG-JIN BANG, Seoul, Korea, FRANK P. BATTLES, Massachusetts Maritime 
Academy, Buzzards Bay, CAVELAND MATH GROUP, Western Kentucky University, Bowling 
Green, DAVID DELSESTO, North Scituate, Rl, GEORGE P. EVANOVICH, Saint Peter's College, 

Jersey City, NJ, MARK EVANS, Louisville, KY, VICTOR G. FESER, University of Mary, Bismarck, 
NO, the late JACK GARFUNKEL, Flushing, NY, ROBERT C. GEBHARDT, Hopatcong. NJ, S. 
GENDLER, Clarion University of Pennsylvania, DICK GIBBS, Fort Lewis College, Durango, CO, 
RICHARD 1. HESS. Rancho Palos Verdes. CA, NATHAN JASPEN, Stevens Institute of Technology, 
Hoboken, NJ, DEREK LEDBETTER, University of Florida, Gainesville, CARL LIBIS, Granada Hills, 
CA, HENRYS. LIEBERMAN, Waban, MA, PETER A. LINDSTROM, North Lake College, living, TX, 
DAVID E. MANES, SUNY at Oneonta, LEV S. NAKHAMCHIK, Willowdale, Ont., Canada, OXFORD 
RUNNING CLUB, University of Mississippi, University, WILLIAM H. PEIRCE, Stonington, CT, 
DAMEN PETERSON, Alma College, MI, BOB PRIELIPP, University of Wisconsin-Oshkosh, JOHN 
PUTZ, Alma College, MI, VIVEK RATAN, Wesleyan University, Middletown, CT, HARRY 
SEDINGER, St. Bonaventure University, NY, WADE H. SHERARD, Furman University, Greenville, 
SC, SAHIB SINGH, Clarion University of Pennsylvania, TIMOTHY SIPKA, Alma College, MI, 
UNIVERSITY OF ARIZONA PROBLEM SOLVING LAB. Tucson. KENNETH M. WILKE (2 
solutions), Topeka, KS, KENNETH L. YOKOM, South Dakota State University, Brookings, and the 
PROPOSER. 

724. [Spring 19901 Proposed by Murray S. Klamkin, University of Alberta, Edmonton, 
Alberta. ~anada. 

Which of the following triangle inequalities, if any, are valid? 

As usual, ha, ma, wa, etc., denote the altitude, median, and angle bisector, respectively, to side a. 

I. Solution by RICHARD I. HESS, Rancho Palos Verdes, California. 
Consider the triangle with vertices at A(0,0), B(1,0), and C(1000,l). Then h ,̂ = hÃ = 1, 

w,,,,,, = wb c 1, and mmn = mb > 499, so inequalities (1) and (3) are false. 
Inequality (2) is true. Let a s  b s  c. Then w- = w. and mmn = mc. Then we 2 ha and coS 

C 5 112 with equality if and only if a = b = c. Recall that 2 = 2 + tf - 2ab cos C by the law of 
cosines and that 

Now we have 

from whic ;h equation (2) follows. 



II. Comment bv the Editor. 
Unfortunately,somewhere between the proposal and the publication, one letter was 

changed. Inequality (3) should have read "mid" on the left. The correct proposed inequality is 

I .  Solution to Inequality (4) by the PROPOSER. 

By considering an isosceles triangle with small vertex angle it follows that (4) is invalid. 

Also solved by the PROPOSER. 

725. [Spring 19901 Proposed by Seung-Jin Bang, Seoul, Korea. 
Let A, B, C be vectors, Let IAII denote the usual norm of A, and let p and q be real 

numbers such that p + q = 1. Show that 

is independent of C. 

Solution by KENNETH L. YOKOM, South Dakota State University, Brookings, South 
Dakota. 

~ e t a = i f + #  andb=2pq,andnotethata+b=l.  Then 

which is independent of C. 

Also solved by CHARLES ASHBACHER. Hiawatha. /A, KENDALL BAILEY, Drake 
University, Des Moines, /A, SUSAN BYE and LINDA RETTIG, St. Cloud State University, MN, 
CAVELAND MATH GROUP, Western Kentucky University, Bowling Green, CYNTHIA COYLE, 
Trenton State College, Laurel Springs, NJ, S. GENDLER (solution for 2-dimensional vectors), 
Clarion University of Pennsylvania, RICHARD 1. HESS, Rancho Palos Verdes, CA, NGUYEN HOA, 
St. Cloud State University, MN, SANDRA KEITH, St. Cloud State University, MN, DEREK 
LEDBETTER, University of Florida, Gainesville, HENRY S. LIEBERMAN, Waban, MA, 
YOSHINOBU MURAYOSHI, Eugene, OR, LEV S. NAKHAMCHIK, Willowdale, Ont., Canada, 
WILLIAM H. PEIRCE, Stonington, CT, WADE H. SHERARD, Furman University, Greenville, SC, 
MICHAEL R. SIEGFRIED, St. Cloud State University, MN, SAHIB SINGH, Clarion University of 
Pennsylvania, TIMOTHY SIPKA, Alma College, MI, DAVID YAVENDITI, Alma, MI, and the 
PROPOSER. 

726. [Spring 19901 Proposed by the late Jack Garfunkel, Flushing, New York. 

Given that x, y, z > 0 and x + y + z = 1, prove that 

3 ~ x  + 3 ~ y  + 3fi s 3@. 

- .  
I. Solution by HENRY S. LIEBERMAN, Waban, Massachusetts. 

L e t a = l  + x , b = l + y , a n d c = l  + z .  Thena,b,andcarepositiveanda+b+c=4. 
It is known (cf. Hall and Knight, Higher Algebra, p. 216) that 

Hence 

and the theorem follows. 

II. Solution by CAVELAND MATH GROUP, Western Kentucky University, Bowling Green. 
Kentucky. 

3 
Writing z = 1 - x - y, we will show that i/36 is the maximum value of 

over the closed rectangle [0,1] x [0,1]. The desired result then follows immediately. Now 

which is zero when y + 2x = 1 or y = 3. We discard the latter value. By symmetry, f ,  = 0 when 
x +  2y = 1. Solving this linear system gives (x,y) = (113,113) as the only critical point in the domain. 

To see that f(1/3,1/3) = 3@ is a maximum, we show that f(x,y) is less than this value 
along the boundary of the square. if x = 0, then 

and 



There is a critical value for g in [0,1] at y = 112, so we find 

both less than 3/3S - 3.30. By the symmetry of f, the same values occur along the edge y = 0 
of the square. 

For the edge x = 1 we have 

Q , ^ = " ~ / ~ + ' ~ / T T ~ + ~ J V Ã ‘ ~ .  

and 

1 h'W = -(1 + -̂"l3 - 1(1 - ^-We 
3 3 

Since h has a critical point at y = 0, we calculate 

40) = 2  + % - 3.26 and h(1) = 2% - 2.52, 

3 
both less than /3S. By symmetry, this same situation exists along the edge y = 1, too, and the 
proof is complete. 

I .  Solution and generalization by MURRAY S. KLAMKIN, University of Alberta, Edmonton, 
Alberta, Canada. 

If F(Q is a concave function and x, + x, + ... + xn = s, then by Jensen's inequality, 

The given inequality corresponds to the special case n = 3, F(Q = ' ~ t  and xi 2 -1. 

Also solved by MOHAMM AD K. AZARIAN, University of Evansville, IN, SEUNG-J IN BANG, 
Seoul, Korea, GEORGE P. EVANOVICH, Saint Peter's College, Jersey City, NJ, MARK EVANS, 
Louisville. KY, ROBERT C. GEBHARDT, Hopatcong, NJ, DICK GIBBS, Fort Lewis College, 
Durango, CO, RICHARD 1. HESS, Rancho Palos Verdes, CA, YOSHINOBU MURAYOSHI, Eugene, 
OR, LEV S. NAKHAMCHIK, Willowdale. Ont.. Canada, OXFORD RUNNING CLUB, University of 
Mississippi, University, BOB PRIELIPP, University of Wisconsin-Oshkosh, HARRY SEDINGER, St. 
Bonaventure University, NY, TIMOTHY SIPKA, Alma College, MI, KENNETH L. YOKOM, South 
Dakota State University, Brookings, and the PROPOSER. 

727. [Spring 19901 Proposed by the late Jack Garfunkel, Flushing, New York. 
If A, B, C are the angles of a triangle ABC, prove that 

Solution by MURRAY S. KLAMKIN, University of Alberta, Edmonton, Alberta, Canada. 
. 

Since 

A  cos A  = 1 + 4n sin -, 
2  

the given inequality is equivalent to 

The latter inequality appeared by the proposer as Problem 585, Crux Mathematicorurn, 
7(1981)p.303. In the solution there I had shown that it was equivalent to the known elementary 
inequality 

( b  + c)(c + a)(a + b) 2 8abc. 

This follows from 

B - C  2 m A m s =  ms- 
b + c sin B  + sin C 2  - =  2 - 2 

a sin A  A A  2 sin - cos - A  
' 

sin - 
2 2  2  

etc. 

Also solved by HENRY S. LIEBERMAN, Waban, MA, YOSHINOBU MURAYOSHI, Eugene, 
OR, BOB PRIELIPP, University of Wisconsin-Oshkosh, and the PROPOSER. 

728. [Spring 19901 Proposed by Dmitry P. Mavlo, Moscow, U.S.S.R. 
The distance between towns A and B is 5 km. A straight road passes through town A and 

forms the angle a = arccos (415) with the line AB. Two hikers leave town A at the same time and 
arrive at town B simultaneously. The first hiker goes by the direct route at 4 kmlhr The second 
hiker first travels along the road at 6 km/hr and then turns off the road and goes directly to B at 
4 km/hr. Find the distance traveled by the second hiker. 



Solution by FRANK P. BATTLES, Massachusetts Maritime Academy, Buzzards Bay, 
Massachusetts. 

More generally, let d be the distance between towns A and 13, wthe speed of the second 
hiker along the mad, v (with w > v) the speed of the first hiker and of the second hiker when he 
changes direction and heads directly to 13, and a the angle between the road and the segment AB. 
Let C be the point on the mad at which the second hiker turns, and t the time the second hiker 
travels along the road. The total time of travel is dv, so the second hiker travels from C to B i n  
time d v  - 1. Then the distance CB is given by v(dv - [i- d - tv. From the law of cosines we have 

Next we solve fort, obtaining 

Clearly we must have w cos a > v. Then the distance travelled by the second hiker is 

Substituting the specific numbers given, we find that the second hiker travels 5.8 miles. 

Also solvedby SEUNG-JIN BANG, Seoul, Korea, MARTIN BAZANT, Tucson, AZ, MARTIN 
J. BROWN, Jefferson Community College, Louisville, CAVELAND MATH GROUP (two solutions), 
Western Kentucky University, Bowling Green, CYNTHIA COYLE, Trenton State College, Laurel 
Spritx7S, NJ, GEORGE P. EVANOVICH, Saint Peter's College, Jersey City, NJ, MARK EVANS, 
Louisville, KY, ROBERT C. GEBHARDT, Hopatcong, NJ, S. GENDLER, Clarion University of 
Pennsylvania, STEPHEN A. HERR, Alma College, MI, RICHARD 1. HESS, Rancho Palos Verdes, 
CA, NATHAN JASPEN, Stevens Institute of Technology, Hoboken, NJ, RALPH E. KING (two 
solutions), St. Bonaventure University, NY, CARL LIBIS, Granada Hills, CA, HENRY S. 
LIEBERMAN, Waban, MA, PETER A. LINDSTROM, North Lake College, Irving, TX, DAVID E. 
MANES, SUNY at Oneonta, G. MAVRIGIAN, Youngstown State University, OH, LEON MOSER, 
Hunter College, New York, NY, YOSHINOBU MURAYOSHI, Eugene, OR. LEV S. NAKHAMCHIK, 
Willowdale, Ont., Canada, OXFORD RUNNING CLUB, University of Mississippi, University, MIKE 
PINTER, Belmont College, Nashville. TN, BOB PRIELIPP, University of Wisconsin-Oshkosh, JOHN 
PUTZ, Alma College, MI, VIVEK RATAN, Wesleyan University, Middletown, CT, HARRY 
SEDINGER, St. Bonaventure University, NY, WADE H. SHERARD, Furman University, Greenville, 
SC, SAHIB SINGH, Clarion University of Pennsylvania. TIMOTHY SIPKA, Alma College, MI, 
KENNETH M. WILKE, Topeka, KS, DAVID YAVENDITI, Alma, MI, KENNETH L. YOKOM, South 
Dakota State University, Brookings, and the PROPOSER. 

729. [Spring 19901 Proposed by the late Jack Garfunkel, Flushing, New York. 
Given a non-obtuse triangle ABC with altitude CD = hdrawn to side AB, denote the inradii 

of triangles ACD, BCD, and ABC by r,, r,, and r,, respectively. Prove that if r, + r, + r, = h, 
then triangle ABC is a right triangle with right angle at C. 

- - 

l. Solution by HENRY S. LIEBERMAN, Waban, Massachusetts. 

We first prove the following lemma. 

Lemma: Let ABC be a triangle with inradius r, semiperimeter s, and side lengths a, b, and 
c. Then ABC is a right triangle with right angle at C if and only if r = s - c. 

Let 1 be the incenter and IE and IFthe inradii to sides CA and BC, as shown in the figure. 
It is well-known (and easy to prove from the fact that the two tangents from an exterior point to a 
circle are equal in length) that CE = CF= s - c. If angle Cis a right angle, then CElFis a square, 
so r = s - c. Conversely, if r = s - a, then CEIF is a rhombus with two right angles, therefore a 
square. So angle C is a right angle. The lemma is proved. 

By the lemma, 

r, = b + ~ ~ + h - ~ =  A D + h - b  and r 2 +  BD+ h - a  
2 2 2 ' 

whence 

r , + r 2 = h +  c -  b - a  
2 

because AD + DB = c when neither angle A nor B is obtuse. Therefore, 

r, + r, + r3 = h  Iff r3 = 
a +  b - c  

2 

Because this last condition is an "if and only if" statement, we have proved both the theorem and 
its converse, that if ABC is a right triangle with right angle at C, then r, + r, + r, = h. A 



I I .  Comment by Murray S. Klamkin and Andy Liu, University of Alberta, Edmonton, Alberta, 
Canada. 

By using the general formula rs = area, we have that 

r, = hb w s A  ha cos B hc 
h +  + c o s ~ ) "  A +  a(l + c o s m s r 3  a + t o +  c1 

and h = b sin A = a sin B. Then r, + r, + r, = h becomes 

w s A  + w s B  + sin C 
= 1 

1 + w s A + s i n A  l + w s B + s i n B  s inA+sinB+sinC 

Equation (1) can independently be proved equivalent to the condition that ABC is a right triangle 
with right angle at C. First, we note that 

etc. AISO 

A B C  sinA + sin B + sinC = 4 a s -  cos- ws- .  
2 2 2  

Then Equation (1 )  reduces to 

Now use the relation 

to simplify the equation to sin (A + 6)/2 = sin CI2, and finally to tan Cl2 = 1 ,  which is equivalent 
to C = d 2 .  

Also solved by GEORGE P. EVANOVICH, Saint Peter's College, Jersey City, NJ, NATHAN 
JASPEN, Stevens Institute of Technology, Hoboken, NJ, MURRAY S. KLAMKIN and ANDY LIU, 
University of Alberta. Canada, BOB PRIELIPP, University of Wisconsin-Oshkosh, TIMOTHY SIPKA, 
Alma College, MI, DAVID YAVENDITI, Alma, MI. and the PROPOSER. 

730. [Spring 19901 Proposed by R. S. Luthar, University of Wisconsin Center, JanesviHe, 
Wisconsin. 

Solve in integers the equation 

2 x y + 1 3 ~ - 5 y -  11 = 4 2 .  
- - - 

Solution by JOHN T. ANNULIS, University of Arkansas at Monticello, Monticello, Arkansas. 

Solving the equation for y yields 

The only integer solutions are those in which 2x - 5 is a factor of 41. Hence 2x - 5 equals *1 Or 
Â±41 yielding the solutions 

(x,y) = (2,-17). (3,80), (-18,563), and (23,1180). 

Also solved by CHARLES ASHBACHER, Hiawatha, /A, STEVE ASCHER, McNeil 
Pharmaceutical, Spring House. PA, SEUNG-JIN BANG, Seoul, Korea, FRANK P. BATTLES, 
Massachusetts Maritime Academy, Buzzards Bay, MARTIN J. BROWN, Jefferson Community 
College, Louisville, CAVELAND MATH GROUP, Western Kentucky University, Bowling Green, 
GEORGE P. E'?ANOVICH, Saint Peter's College, Jersey City, NJ, MARK EVANS, Louisville, KY. 
VICTOR G. FESER, University of Mary, Bismarck, NO, the late JACK GARFUNKEL, Flushing, NY, 
ROBERT C. GEBHARDT, Hopatcong, NJ, S. GENDLER, Clarion University of Pennsylvania, 
RICHARD 1. HESS, Rancho Palos Verdes. CA, NATHAN JASPEN, Stevens Instituteof Technology, 
Hoboken, NJ, RALPH E. KING, St. Bonaventure University, NY, MURRAY S. KLAMKIN, University 
of Alberta, Canada, JAMIE KONRAD, Rockford College, IL, DEREK LEDBETTER, University of 
Florida. Gainesville. HENRY S. LIEBERMAN, Waban. MA. CARL LIBIS, Granada Hills, CA. G. 
MAVRIGIAN, Youngstown State University, OH, LEV S. NAKHAMCHIK, Willowdale, Ont., Canada, 
WILLIAM H. PEIRCE, Stonington, CT, DAMEN PETERSON, Alma College, MI, BOB PRIELIPP, 
University of Wisconsin-Oshkosh, SAHIB SINGH, Clarion University of Pennsylvania, TIMOTHY 
SIPKA, Alma College, MI, KENNETH M. WILKE, Topeka, KS, DAVID YAVENDITI, Alma, MI, 
KENNETH L. YOKOM, South Dakota State University, Brookings, and the PROPOSER. 
Occasional arithmetic errors on some of the submissions were overlooked, which is a general 
policy of this editor. 

Partial solutions were submitted by MOHAMMAD K. AZARIAN, University of Evansville, 
IN, KAREN L. COOK, Lantana, FL, JOE DEMAIO, Emory University, Lenoir, NC, and WADE H. 
SHERARD, Furman University, Greenville, SC. 

731. [Spring 19901 Proposed by Roger Pinkham, Stevens Institute of Technology, 
Hoboken, New Jersey. 

a) Show that on the lattice points in the plane having integer coordinates one cannot have 
the vertices of an equilateral triangle. 

*b) What about a tetrahedron in 3-space? 



I. Solution to Part (a) by the late JACK GARFUNKEL, Flushing, New York. 

Let a triangle have vertices (xl,yl), (x2,y2), and (x*). The area of the triangle is 

which is an integer whenever the coordinates are all integers. However, the area of an equilateral 
triangle is given by the well-known formula 

which is irrational when the coordinates are integers. Hence, a contradiction, proving Part (a). 

II. Solution to Part (a) by S. GENDLER, Clarion University of Pennsylvania, Clarion, 
Pennsylvania. 

Assume there is such a triangle. Translate it so its vertices are at 0(0,0), P{a,b), q c . 4  
with all coordinates integers. We assume that any common factor of a, b, c, and d has been 
divided out, so that the triangle is of smallest possible dimensions. Since the triangle is equilateral, 
we must have that OP2 = PQ2 = OQ2, that is, 

The left inequality simplifies to 

2(ac + bd) = c2 + d2. 

Since the left side is even, then c and dare both even or both odd. If both are odd, then 

a2 + b2 = c? + d2 = 2 (mod 4), 

so both a and bare odd, too. But then 2(ac + bd) = 0 (mod 4), which is impossible. If c and dare 
both even, then 

a2+ b2= c 2+  d2= 0 (mod 41, 

and a and b must both be even, contradicting our hypothesis that triangle OPQ is smallest 
possible. Hence there are no solutions. 

I I I. Comment by Seung-Jin Bang, Seoul, Republic of Korea. 
Part (a) of this problem appeared in the mathematical competition of university students 

in Korea held in June 1989. The solution given there is essentially solution II above. 

IV. Solution to Part (b) by ALLEN J. SCHWENK, Western Michigan University, Kalamazoo-, 
Michigan. 

In 3-space the situation is entirely different. Let us seek a tetrahedron of the form 0(0,0,0), 
A(a,b,c), B(b,c,a), C(c,a,b) with a, 6, and c integers. Clearly we already have OA = OB = OC and 
AB = BC = CA. Thus we need only have OA = AB, that is, 

- - .- 

a2 + b2 + 2 = (a - b)' + (b - c)' + (c - a)'. 

Now use the quadratic formula to solve for c, obtaining 

Writing a = m2r, where r is square-free, in order for c to  be rational, then we must have b = n'r. 
Thus a triple (a,b,c) will give us a regular tetrahedron of lattice points of the form above if and only 
if (a,b,c) = (rrfr, rr'r, (m Â n)'r), where m, n, and rare integers. (Note that r need not be square- 
free.) For example, the smallest equilateral lattice tetrahedron of this form is (0,0,0), (0,1,1), 
(1,1,0), and (1,0,1). 

V. Comment by Murray S. Klamkin, University of Alberta, Edmonton, Alberta, Canada. 

First, the word "regular" should be inserted in the statement of Part (b). Also, it has been 
shown that the only regular polygon that can be imbedded in a square lattice is the square [I, p.41. 
The only other regular polygons that can be imbedded in an n-dimensional cubic lattice are the 
triangle and the hexagon and n = 3 suffices [ I ,  p.431. It has been shown [2] that it is sometimes 
possible to imbed a regular n-simplex in an n-dimensional cubic lattice. In particular, if n = 3 (mod 
4). that imbedding is always possible. Finally, a proof by Andy Liu and myself that the only regular 
polygons that can be imbedded in an equilateral triangular lattice are the triangle and the hexagon 
is to appear in Mathematics Magazine. 
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VI. Comment by the Editor. 

Two solvers of Part (a) cleverly took two vertices of the triangle to be located on the x-axis. 
One used the points (0,0), (a,0) and (a12.b); the other used (-a,O), (a,O), and (0,b). In either case, 
the computations are simplified. It is not obvious, however, that such a choice of coordinates Can 
be made without loss of generality. Clearly, translations are possible, so there is no harm in 
placing one vertex at the origin. One must prove, then, that if (0,0), (p,q), (r,s) are points with 
integral coordinates, then it is possible to find a similar triangle (0,0), (a,O), (b,c) with integral 
coordinates 



To that end, suppose a rotation-homothety centered at the origin maps (p,@ to (a,O), where 
a, p, and q are integers. In complex numbers the mapping can be represented by u + viand we 
have 

(p + qMu + vt) = a, 
which we solve for u and vto get 

Hence u and vare rational. It follows that (r + sfl(u + vo = b + ciyields rational coordinates band 
c. Now multiply each of a, b, and c by the common denominator {f + rf to get the desired integral 
coordinates. 

Also solved by NATHAN JASPEN, Stevens Institute of Technology, Hoboken, NJ, DEREK 
LEDBETTER, University of Florida, Gainesville, and HENRY S. LIEBERMAN (Part (b) solution of 
the form of Solution IV above, found "while walking on a trail at the Audubon Society Sanctuary 
in Wellfleet"), Waban, MA. Most solvers of Part (b) found just the one solution given in the very 
last line of our Solution IV. 

Part (a) solutions were submitted by CHARLES ASHBACHER, Hiawatha, IA, SEUNG-JIN 
BANG, Seoul, Korea, FRANK P. BATTLES, Massachusetts Maritime Academy, Buzzards Bay, 
MARK EVANS, Louisville, KY, RICHARD 1. HESS, Rancho Palos Verdes, CA, LEV S. 
NAKHAMCHIK, Willowdale, Ont., Canada, DAMEN PETERSON, Alma College, MI, ALLEN J. 
SCHWENK, Western Michigan University, Kalamazoo, and the PROPOSER. 

IN MEMORIAM 
John M. Howell 
Jack Garfunkel 

John M. Howell taught mathematics, probability, statistics, and computer programming at 
Los Angeles City College for 23 years, retiring in 1969. He was an active contributor to this 
department for many years, thoroughly enjoying his Commodore 64 computer. Number theory 
problems seemed to be his special interest. After retirement he became quite interested in stamp 
collecting, forming the Mailer's Postmark Permit Club. He was born February 21, 1910, and died 
June 29, 1990. 

Jack Garfunkel taught at Queensboro Community College. Although retired several years, 
he returned to teaching this past fall semester because he was getting bored just sitting home. 
He and I met professionally when I was asked to review his article The Equilic Quadrilateral, which 
appeared in this JOURNAL in the Fall of 1981. Jack's curious facility for ferreting out geometrical 
truths and my organizational skill complemented one another nicely and we collaborated on four 
more papers, the last one appearing last spring. Many of his proposals and solutions have 
appeared in this column over the years. Jack died December 31, 1990, at age 80 after a brief 
illness. 
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Editor's Note 
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beginning graduate students interested in mathematics. Submitted articles, announcements, and 
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