JOURNAL

## VOLUME 9 SPRING 1991 NUMBER 4



## PI <br> MU EPSIL $\mathrm{O}_{\mathrm{N}}$ JOURNAL

VOLUME 9 SPRING 1991 NUMBER 4



PI MU EPSILON JOURNAL
THE OFFICIAL PUBLICATION OF THE
NATIONAL HONORARY MATHEMATICS SOCIETY

## EDITOR

Richard L Poss

## ASSOCIATE EDITORS

> Clayton W. Dodge
> Joseph D. E. Konhauser

## OFFICERS OF THE SOCIETY

President: David W. Ballew, Western Illinois University
President-Elect: Robert C. Eslinger, Hendrix College Secretary-Treasurer: Robert M. Woodside, East Carolina University

Past-President: Elleen Polani, St. Peter's College

## COUNCILORS

J. Douglas Faires, Youngstown State University Richard A Good. University of Maryland Joseph D.E Konhauser, Macalester Coliege Doris Schattschnelder, Moravian College

Editorial correspondence, including books tor review, chapter reports, news ltems and manuscripts (two copies) should bo to PI MU EPSILON JOURNAL, Richard L Poss, EDITOR, St. Norbert College, De Pare, WI 54115. Students submitting mensuctipe In requested to Identify their college or university and their class or expected graduation date. Others are requested to theit atfiletion, scademic, or otherwise.
for solution and solutions to problems should be mailed directly to the PROBLEM EDITOR. Puzzle proposals and puze solvitions ahould be milled to $A^{*}$ EDITOR

Th PI MUEPSON JOUPNL is published at St. Norbert College twice a year-Fall and Spring. One volume consists of five yer ( 80 iscmi) beinning with the Fall $19 \times 4$ or Fall $19 \times 9$ Issue, starting In 1949. For rates, see Inside back cover.

## THE RICHARD V. ANDREE AWARDS

Richard V. Andree, Professor Emeritus of the University of Oklahoma, died on May 8, 1987, at the age of 67. Professor Andree was a Past-President of Pi Mu Epsilon. He had also served the society as Secretary-General and as Editor of the PiMu Epsilon Journal. The Society Council has designated the prizes in the National Student Paper Competition as Richard V. Andree Awards.

First prize winners for 1990 are Amy Dykstra and Michelle Schultz for their paper "A Generalization of Odd and Even Vertices in a Graph," which appeared in the Spring, 1990, issue of the Journal. They prepared their paper while undergraduates at Western Michigan University under the supervision of Professor Gary Chartrand. They presented the paper in August, 1989, at the national Pi Mu Epsilon meeting in Boulder, Colorado. They will share the $\$ 200$ first prize.

Second prize winner is Eric Berg for his paper "A Family of Fields," which appeared in the Fall, 1990, issue of the Journal. Eric prepared this paper while still a student in high school. Eric will receive $\$ 100$.

Third prize winner is Joel Atkins for his paper "Regular Polygon Targets," which also appeared in the Fall, 1990, issue of the Journal. Joel prepared this paper while he was a student at Rose-Hulman Institute of Technology under the supervision of Professor Elton Graves. Joel will receive $\$ 50$.

There were three other student-written papers that appeared in 1990:
"More Applications of Full Coverings," by Karen Klaimon, of James Madison University. Karen prepared this paper under the supervision of Professor John Marafino.
"An Approximation for the Number of Primes between K and K², When K Is Prime," by Randall J. Osteen. Randall prepared this paper while he was an undergraduate at the University of Central Florida.
"Convergent Ratios of Parallel Recursive Functions," by David Richter. David preparedthis paper while he was a freshman at St. Cloud State University.

The current issue of the Journalcontains two papers with student authors:
"A Pre-Calculus Method for Deriving Simpson's Rule" was written by John White, who is an undergraduate at Marshall University.
"A Note on a Paper of S. H. Friedberg" was co-written by Janet Valasek, a sophomore at Penn State University • New Kensington Campus, and Professor Javier Gomez-Calderon.

## A PRE-CALCULUS METHOD FOR DERIVING SIMPSON'S RULE John G. White <br> Marshall University

Simpson's Rule is one of a class of numerical methods, known as Newton-Cotesformulas, used to calculate definite integrals. This formula is credited to Thomas Simpson, a self-taught genius, who published it in his Mathematical Dissertations on Physical and AnalyticalSubjects in 1743. However, James Gregory presented the same results earlier in a different form in his Exercitationes Geometricae [1]. Its usefulness is in calculating definite Integrals of functions that are otherwise difficult or Impossible to integrate, such as

$$
\int_{x_{0}}^{x_{2}} e^{x^{3}} d x
$$

There are several standard ways to derive Simpson's Rule using calculus. In one method, three equally spaced points, the endpoints and the midpoint of the interval, are chosen. A parabola is constructed from these points (since a polynomial of degree at most two passing through three given points can always be found) and it is integrated. This yields Sirnpson's Rule:

$$
\frac{h}{3}\left(f\left(x_{0}\right)+4 f\left(x_{1}\right)+f\left(x_{2}\right)\right)=\int_{x_{0}}^{x_{2}} f(x) d x
$$

where $\mathrm{h}=\left(x_{2}-x_{0}\right) / \mathbf{2}$. (See [3] for an example of this derivation.)
Another method takes three points and uses them to construct a Lagrange interpolating polynomial of degree two:

$$
P(x)=\frac{\left(x-x_{1}\right)\left(x-x_{2}\right)}{\left(x_{0}-x_{1}\right)\left(x_{0}-x_{2}\right)} f\left(x_{0}\right)+\frac{\left(x-x_{0}\right)\left(x-x_{2}\right)}{\left(x_{1}-x_{0}\right)\left(x_{1}-x_{2}\right)} f\left(x_{1}\right)+\frac{\left(x-x_{0}\right)\left(x-x_{1}\right)}{\left(x_{2}-x_{0}\right)\left(x_{2}-x_{1}\right)} f\left(x_{2}\right)
$$

This is then integrated, and the final result is once again Simpson's Rule. (See [2].) A third method integrates the Taylor series expansion of $f(x)$ to derive Simpson's Rule [2].

Here is one method of deriving Sirnpson's Rule that does not rely on integration. Rather, piecewise approximations are used to find three differentvalues for the integral. The average is then taken to approximate the definite integral, and the end result is once again Simpson's Rule. For simplification, the following illustrations use only nonnegativefunctions, even though the derivation is the same for functions with negative values as well.

$h f\left(x_{0}\right)+h f\left(x_{1}\right)$

$h f\left(x_{1}\right)+h f\left(x_{1}\right)$
$h f\left(x_{1}\right)+h f\left(x_{2}\right)$


## $\frac{\left(h f\left(x_{0}\right)+h f\left(x_{1}\right)\right)+\left(h f\left(x_{1}\right)+h f\left(x_{1}\right)\right)+\left(h f\left(x_{1}\right)+h f\left(x_{2}\right)\right)}{3}$

$$
\begin{aligned}
& =\frac{h}{3}\left(f\left(x_{0}\right)+f\left(x_{1}\right)+f\left(x_{1}\right)+f\left(x_{1}\right)+f\left(x_{2}\right)\right) \\
& =\frac{h}{3}\left(f\left(x_{0}\right)+4 f\left(x_{1}\right)+f\left(x_{2}\right)\right) .
\end{aligned}
$$

This pre-calculus method of derivation also yields two other Newton-Cotes formulas: the Trapezoidal Rule and Simpson's Three-Eighths Rule.

Trapezoidal Rule:
$+$

$h f\left(x_{0}\right)$

$h f\left(x_{1}\right)$

$$
\frac{h f\left(x_{0}\right)+h f\left(x_{1}\right)}{2}=\frac{h}{2}\left(f\left(x_{0}\right)+f\left(x_{1}\right)\right)
$$

Simpson's Three-Eighths Rule:


With this derivation, each section is approximately two-thirds the total integral, thus the integral is about three-eighths the sum of the four areas.

$$
\frac{3\left(h f\left(x_{0}\right)+h f\left(x_{1}\right)\right)+3\left(h f\left(x_{1}\right)+h f\left(x_{1}\right)\right)+3\left(h f\left(x_{2}\right)+h f\left(x_{2}\right)\right)+3\left(h f\left(x_{2}\right)+h f\left(x_{3}\right)\right.}{8}
$$

$$
=\frac{3 h}{8}\left(f\left(x_{0}\right)+3 f\left(x_{1}\right)+3 f\left(x_{2}\right)+f\left(x_{3}\right)\right)
$$

## References:

[1] C. B. Boyer, A History of Mathematics, John Wiley and Sons, inc., 1968.
[2] R. L. Burden and J. D. Faires, Numerical Analysis, Fourth Edition, PWS, 1989.
[3] E. W. Swokowski, Calculus with Analytic Geometry, Third Edition, PWS, 1984.
John White prepared this paper while he was a senior at Marshall University.

## A NOTE ON A PAPER OF S. H. FRIEDBERG

Javier Gomez-Calderon \& Janet Valasek
Penn State University, New Kensington Campus
Recently in [1], S. H. Friedberg showed that the principal axis theorem, a very important theorem in linear algebra, does not extend to any finite field. He proved, using a simple counting argument, the following:

THEOREM: Let $F$ be a finite field. Then there exists a $2 \times 2$ symmetric matrix (over $F$ ) that possesses no eigenvalues.

The purpose of this note is to point out that Friedberg's results can easily be generalized for a $n \times n$ symmetric matrix. We will prove the following two corollaries.

COROLLARY 1 (to Friedberg's Theorem): Let F be a finite field. Then for each $n>1$, there exists a ( $2 n$ ) $\times(2 n$ ) matrix (over $F$ ) that possesses no eigenvalues.
PROOF: By Friedberg's Theorem, let A denote a $2 \times 2$ matrix over $F$ such that $f_{A}(x)$, the characteristic polynomial of $A$, has no roots in $F$. Then the characteristic polynomial of the $(2 n) \times(2 n)$ block diagonal matrix $C=\operatorname{diag}(A, A, \ldots, A)$ is $f_{C}(x)=\left(f_{A}(x)\right)^{n}$. Therefore, $C$ possesses no eigenvalues.

COROLLARY2: Let F be a finite field. Then for each $n \geq 3$, there exists a $n \times n$ non-diagonalizable symmetric matrix over $F$.
PROOF: With notation as in Corollary 1 , let $\boldsymbol{D}$ denote the $n \times n$ block diagonal matrix

$$
D=\left(\begin{array}{cccccc}
A & & \cdot & \cdot & 0 \\
\cdot & 0 & & & \cdot \\
\cdot & & \cdot & & & \cdot \\
\cdot & & \cdot & & \cdot \\
\cdot & & & \cdot & \cdot \\
0 & & \cdot & \cdot & \cdot & 0
\end{array}\right)_{n \times n} \quad(n \geq 3)
$$

Then the characteristic polynomial of $D$ is $f_{D}(x)=f_{A}(x) x^{n-2}$. Thus, the only eigenvalue of $D$ is 0 . Therefore, since $D \neq 0, D$ is not diagonalizable.

References:
[1] S. H. Friedberg, "Extending the Principal Axis Theorem to Fields Other Than R," American MathematicalMonthly, 97 (1990), 147-149.

Janet Valasek Is currently a sophomore at the New Kensington Campus of Penn State University.

THE FIRST CENTURY<br>Richard L. Francis<br>SoutheastMissouri State University

An abundance of primes meets the eye in examining the first one hundred positive integers. Not quite so many emerge in the second century, and even fewer in the third. However, the frequency of prime encounters in these initial groupings suggests no scarcity. Actually, the first century of positive integersproves a veritablefield of abundancein its containment of major number types. It likewise prompts the question of other collections of positive integers with a plentifu supply of numbers in a select category. The pursuit of primes by centuries is an intriguing part of this basic question.

## Primeless Centuries

Centuries denote groupings by hundreds and begin with the first 100 positive integers. These may also be called aggregates of order two (whereas decades suggest aggregates of order one). Finding primes within the various centuries touches on the subject of the distribution of the primes. Such a distributionwithin an infinite set is, even today, highly perplexing. Similarly elusive is a formula for finding the $\mathrm{n}^{\text {th }}$ prime - or for generating a prime larger than a designated one. Of interest in this context of the infinitude of the primes is the fact that there exists, for example, a onetrillionth prime, but no one can say what it is.

Some centuries contain no primes whatever. Consider the century which begins with $1001+1$ and ends with $100!+100$. Each number in this set is compositeas $100!+\mathrm{n}$ is divisible by n for $0<\mathrm{n} \leq 100$. Moreover, $100!+1$ is divisible by 101 by Wilson's Theorem. It is easy to show that there are infinitely many centuries entirely devoid of primes by a similar factorial construction. For example, the century from $1,000,000!+101$ to $1,000,000!+200$ consists of composites. Or from $1,000,000$ ! +201 to $1,000,000!+300$. Infinitely many primeless centuries are implied by the generalized interval extending from $10^{n}!+101$ to $10^{n}!+200$ where $n$ is greater than or equal to 3 .

## A Prime-Rich Century

More primes appear in the first century than in any other. All primes beyond the first century must "end" in $\mathbf{1}, 3,7$, or 9 . This allows for a maximum of forty primes within the century. But a least three numbers in each terminal digit case must be multiples of 3 . Accordingly, $40 \cdot 12$ or 28 denotes a more impressive maximum number of primes within the century. To lessen the maximum even more, note that centuries can begin in 21 ways based on the 21 possibilities in which the century's first number yields a remainder when divided by 3 and by 7 . For example, the first number $100 n+1$ can be of the form $3 r$ and $7 k, 3 r$ and $7 k+1,3 r$ and $7 k+2$, etc. In each case, striking out the multiples of 3 and of 7 (and in one case, multiples of 11) establishes that no century beyond the first contains more than 24 primes. Of course, the first century contains 25 primes. It is thus the maximal century of primes.

Upper Limit on Number of Primes Based on Numbers Ending in 1, 3, 7, or 9)

| Form of Century's First Number | $x$ (Number of Sure Composites) | Upper Limit of Number of Primes ( $40-\mathrm{x}$ ) | First Number of Sample Century |
| :---: | :---: | :---: | :---: |
| 3r,7k | 18 | 22 | 8001 |
| $3 \mathrm{r}, 7 \mathrm{k}+1$ | 17 | 23 | 14001 |
| $3 \mathrm{r}, 7 \mathrm{k}+2$ | 18 | 22 | 20001 |
| $3 \mathrm{r}, 7 \mathrm{k}+3$ | 17 | 23 | 26001 |
| $3 \mathrm{r}, 7 \mathrm{k}+4$ | 18 | 22 | 32001 |
| $3 \mathrm{r}, 7 \mathrm{k}+5$ | 18 | 22 | 38001 |
| $3 \mathrm{r}, 7 \mathrm{k}+6$ | 18 | 22 | 44001 |
| $3 \mathrm{r}+1,7 \mathrm{k}$ | 18 | 22 | 15001 |
| $3 \mathrm{r}+1,7 \mathrm{k}+1$ | 18 | 22 | 21001 |
| $3 \mathrm{r}+1,7 \mathrm{k}+2$ | 18 | 22 | 6001 |
| $3 \mathrm{r}+1,7 \mathrm{k}+3$ | 18 | 22 | 12001 |
| $3 \mathrm{r}+1,7 \mathrm{k}+4$ | 17 | 23 | 18001 |
| $3 \mathrm{r}+1,7 \mathrm{k}+5$ | 18 | 22 | 24001 |
| $3 \mathrm{r}+1,7 \mathrm{k}+6$ | 17 | 23 | 30001 |
| $3 \mathrm{r}+2,7 \mathrm{k}$ | 16 | 24 | 1001 |
| $3 \mathrm{r}+2,7 \mathrm{k}+1$ | 17 | 23 | 7001 |
| $3 r+2,7 k+2$ | 16 | 24 | 13001 |
| $3 \mathrm{r}+2,7 \mathrm{k}+3$ | 15 | 25 | 19001 |
| $3 \mathrm{r}+2,7 \mathrm{k}+4$ | 16 | 24 | 25001 |
| $3 \mathrm{r}+2,7 \mathrm{k}+5$ | 16 | 24 | 31001 |
| $3 \mathrm{r}+2,7 \mathrm{l}+6$ | 16 | 24 | 37001 |

Note that the upper limit on the number of primes is 25 in the case for leading numbers of centuries which are of the form $3 \mathrm{r}+2$ and $7 \mathrm{k}+3$. In this case, an additional sure composite can be established by considering all possibilities of remainders In dividing the leading number of the century by 11 . These forms are 11$)+1,11]+2 \ldots, 11 j+10$.

## Decades in Passing

As stated earlier, centuries denote groupings by hundreds and begin with the first 100 positive integers. These were called aggregates of order two based on the exponent appearing in $10^{2}$ (where $10^{2}$ is of course the number of elements in a century). Millennia thus denoteaggregates of order three. The case for decades, where the order of aggregate is $\mathbf{1}$, proves interesting. Actually, the firstdecade contains only four primes; this is obviously the maximum number of primes possible within a decade. Other decades may contain the same maximum number of primes. These include, for example, the second decade (with primes 11, 13, 17, and 19) as well as the eleventh (with primes 101, 103, 107, and 109). Were it not for the contrivance that 1 is not a prime, then the first decade would emphatically be the maximum decade in terms of primes possessed. (The arguments of convenience whereby $\mathbf{1}$ is excluded from the list of primes are well known and will not be pursued here.)

The least decade containing no primes is the one beginning with 201 . Following this as the next primeless decade is the one which begins with the number 321. The first encounter with tw 6 primeless decades in succession has 1131 for its leading element. Three primeless decades in
succession can be found by beginning with 1331. Such a fascinating pattern continues. Infinitely many decades of various orders of succession may be found.

Least Century with No Primes
Although there are infinitely many primeless centuries (as shown earlier), there must also be a least such century. It is not necessarily the century whose first element is $100!+1$. Note the magnitude of 100!. The number of terminal zeros alone, namely, twenty-four, classifies $100!+1$ as gargantuan.

Some relatively early centuries come close to meeting the "primeless" standard. For example, the century beginning with $\mathbf{3 1 4 0 1}$ contains only four primes. These are 31469, 31477, 31481, and 31489. Even more impressive is the century beginning with $\mathbf{5 8 8 0 1}$. Only three primes appear; they are $\mathbf{5 8 8 3 1}, \mathbf{5 8 8 8 9}$, and $\mathbf{5 8 8 9 7}$. Likewise, only three primes can be found in the century beginning with 69501.

The least century containing no primes whatever lies somewhere between 1 million and 2 million. It Is the century whose first element is $\mathbf{1 6 7 1 8 0 1}$ and is shown below. As each of the elements in the listing is composite, the reader may wish to find the factors of some. For example, the number 1671813 yields $\left(3^{3}\right)(11)(13)(433)$ when written in factored form. This prime factorization is, of course, unique (Fundamental Theorem of Arithmetic).

First of the Primeless Centuries

| 1671801 | 1671811 | 1671821 | $\ldots$ | 1671881 | 1671891 |
| :--- | :---: | :---: | :---: | :---: | :---: |
| 1671802 | 1671812 | 1671822 | $\ldots$ | 1671882 | 1671892 |
| 1671803 | 1671813 | 1671823 | $\ldots$ | 1671883 | 1671893 |
| $\ldots$ | $\ldots$ | $\ldots$ | $\ldots$ | $\ldots$ | $\ldots$ |
| 1671809 | 1671819 | 1671829 | $\ldots$ | 1671889 | 1671899 |
| 1671810 | 1671820 | 1671830 | $\ldots$ | 1671890 | 1671900 |

The largest prime preceding this primeless century is $\mathbf{1 6 7 1 7 8 1}$. The smallest which follows is 1671907.

By some logic, all numbers can be considered "interesting." Hence, it is with reluctance that the above century is labeled "mathematically barren." Although it contains the exact square $\mathbf{1 , 6 7 1 , 8 4 9}$, there are no prlmes of any kind. Nor are there cubes, fourth and higher powers, or factorials. Perfect numbers (even or odd), triangular numbers, palindromes, and odd abundant numbers likewise fail to appear. But, and Interestingly so, it Is the first of the primeless centuries. The next of the primeless centuries begins with $\mathbf{2 , 6 3 7 , 8 0 1}$ and extends through $\mathbf{2 , 6 3 7}, 900$. One must venture rather far in the sequence of positive Integers before two consecutlve primeless centuries emerge. This first happens with the century whose leading element is $\mathbf{1 9 1 , 9 1 2 , 8 0 1}$.

| The Earliest Encounter with Two Consecutive Primeless Centuries |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 191912801 | 191912811 | 191912821 | $\ldots$ | 191912881 | 191912891 |
| 191912802 | 191912812 | 191912822 | $\ldots$ | 191912882 | 191912892 |
| $\ldots$ | $\ldots$ | $\ldots$ | $\ldots$ | $\ldots$ | $\ldots$ |
| 191912901 | 191912911 | 191912921 | $\ldots$ | 191912981 | 191912991 |
| 191912902 | 191912912 | 191912922 | $\ldots$ | 191912982 | 191912992 |
| $\ldots$ | $\ldots$ | $\ldots$ | $\ldots$ | $\ldots$ | $\ldots$ |
| 191912909 | 191912919 | 191912929 | $\ldots$ | 191912989 | 191912999 |
| 191912910 | 191912920 | 191912930 | $\ldots$ | 191912990 | 191913000 |

The largest prime which precedes this prlmeless pair of consecutlve centuries is $191,912,783$. The smallest whichfollows is $\mathbf{1 9 1 , 9 1 3 , 0 3 1}$. No squares or cubes appear in the above long interval of two-hundredpositive integers. Nor do higher powers, factorials, or perfectnumbers, be they even or odd. Interestingly, only one odd abundant number surfaces. It is 191,912,805.

Extended questionsconcerningthe first of the prlmeless millennia or other major groupings are not pursued here. But, and emphatically, such primeless groupings do exist, and there most be a first In each case.

## The Remarkable First Century

The first century contains a remarkable assortment of notable number types. Included in this impressive assortment are:
25 primes
10 squares
4 cubes
3 fourth powers
2 fifth powers

4 factorials
2 even perfect numbers
3 Mersenne primes
3 Fermat primes

Moreover, this leading century possesses more of the number of types here named than any other century; it stands out as a veritable gold mine of number encounters.

One should not infer that the earlier the century, the greater the number of primes. For example, the fourth century contains $\mathbf{1 6}$ primes whereas the fifth century has more (17). Otherwise, such erroneous logic would lead to the belief that any century following a primeless century must also be primeless. This contradictsthe fact that the set of primes is infinite.

The earliest century with no squares begins at $\mathbf{2 5 0 1}$, with no cubes at $\mathbf{4 0 1}$, and with no factorialsat 201. Careful checking also reveals that the earliest century with no fourth powers, fifth powers, sixth powers, as well as no perfect numbers is the one beginning at 101. In fairness, it should be noted that certain significant number types avoid the first century altogether. For example, no pseudoprimes, no odd abundant numbers, and no amicable pairs appear.

Does the first century contain more of a given number type than any other century? So frequently, the answer is YES. Sometimes, responses are easily given as in the case for wen primes. Or for superpowers, namely, numbers of the form $x^{x}$ where $x$ is a positive integer (e.g. $1^{1}=1,2^{2}=4,33=27$ ). other number classificationsdemand greater analysis. Such types as Pythagorean Triples or palindromic primes (e.g., 2, 3, 5, 7, 11) fall into this last category.

The century definition requires the greatest element to be a multiple of $\mathbf{1 0 0}$. Such an element thus "ends" in two zeros. If other groupings are allowed, various modifications of results stand out. For example, the one hundred consecutive integers $\mathbf{2}$ through $\mathbf{1 0 1}$ contain $\mathbf{2 6}$ prlmes. Or the ten consecutive integers $\mathbf{2}$ through $\mathbf{1 1}$ contain five primes. Definitions here included of decades, centuries, millennia, etc. preclude groupings which begin randomly.

THE FIRST CENTURY


THE FIRST CENTURY
contains more of the number types shown above than any other century.

Millennia and More
Groupings according to powers of ten lend themselves nicely to easy packaging and convenient compartments. This is due to our system of countingwhich is based on ten. Obviously, aggregates could be chosen so as to be of very unusual size (for example, primes within the first 169 positive integers, etc.). Nothing suggesting a mysterious intermingling of base ten notions and the concept of primality is implied.

Acknowledging the above, let us skip momentarily from decades and centuries and look at millennia. In particular, the first millennium contains exactly 168 primes. Counting further, such results as the following are noted:

| Millennium |
| :--- |
| 1st |
| 2nd |
| 3rd |
| 4th |
| 5th |
| 6th |
| ‥ |
| 60th |
| 81st |

Number of Primes
168
135
135
127
120

119
114
91
88

Infinitely many millennia can be found. It is here conjectured that the first millennium contains more primes than any other millennium.

The examination of still larger powers of ten leads to additional conjecturing

| $10^{\prime \prime}$ | Number of Primes <br> Less Than 10" |
| :--- | :---: |
| $10^{1}$ | 4 |
| $10^{2}$ | 25 |
| $10^{3}$ | 168 |
| $10^{4}$ | 1229 |
| $10^{5}$ | 9592 |
| $10^{6}$ | 78498 |
| $10^{7}$ | 664579 |
| $10^{2}$ | 576145 |
| $10^{9}$ | 5084534 |
| $10^{10}$ | 455052512 |
| $10^{12}$ | 4118054813 |
| $10^{12}$ | 37607912018 |
| $\cdots$ | $\ldots$ |

Note that the first million positive integers contain 78498 primes. Will the following groupings of a millionpossess fewer than 78498 primes? More impressively, the first grouping of ten billionpositive integers contains $455,052,512$ primes whereas the second grouping contains only 427,154,204 primes. Will the succeeding groupings of ten billion positive integers containfewer primes also than that of the first? All of this leads to what I have called the TOP HEAVY CONJECTURE, namely,

THE FIRST AGGREGATE OF ORDER $N(N 22)$ CONTAINS MORE PRIMES THAN ANY OTHER AGGREGATE OF ORDER $N$.

Analytic number theory gives some insight on the subject of the occurrence of primes over vast intervals. Such results are approximative In nature and do not permit a meticulous look at select groupings of the positive integers. In particular, if $\mathbf{g}(\mathbf{x})$ denotes the number of primes not greater than $\mathbf{x}$, then the ratio of $\mathrm{g}(\mathrm{x})$ to $\mathrm{x} / \ln \mathrm{x}$ approachesthe number $\mathbf{1}$ as x becomes large without bound. Such a proof was completed in the late nineteenthcentury and was the work of Hadamard and de la Vallee Poussin.

$$
\lim _{x \rightarrow \infty} \frac{g(x)}{x / \ln x}=1
$$

## PRIME NUMBER THEOREM

This limiting relationship provides a look at prime occurrences in an average manner. It does not permit an exact disposition concerning the number of primes in a given aggregate. For example, the first grouping of ten trillion positive integers contains $\mathbf{3 4 6 , 0 6 5 , 5 3 5 , 8 9 8}$ primes. Yet a certain later grouping of ten trillion positive integers will contain no primes. Still later groupings will again contain primes. Note that the number of primes per century (withinthe firstten trillion positive integers) is roughly 3.46 on the average.

## Explorations

Some centuries contain decidedly more primes than others. Accordingly, a century will be considered "crowded if it possesses at leastten primes. Crowded centuries stand out in the earlier encounters with the positive integers. Intriguing questions quickly come to mind in the context of loneliness and crowdedness. Among these, we find the inquiry "Is the set of crowded centuries finite, and, if so, what is the last century?" Generally, an aggregate of order $n(n \geq 2)$ will be considered crowded if it contains at least $10^{\mathrm{n}-1}$ primes.

To place greater focus on the first century as a numerically prominent century, the few additional explorations below are also offered.

1. Show that the first century contains more triangular numbers than any other.
2. Show that no century beyond the first can contain two even perfect numbers.
3. Prime triplets are triples of primes whichdiffer consecutively by 2. The first century contains, for example, the triplet 3,5 , and 7 . Show that no century contains more prime triplets than the first.
4. The first century contains seven primes "ending" in 3. Does any century contain more than seven such primes?
5. The next to the last element of a century "ends' in 99. Consider a century "special" if it next to the last element is of the form 199999.... 999 (all nines except for an initial one). Show that infinitely many special centuries have a next to the last element which is composite.
6. Note that the last decade of the first century contains exactly one prime (97) and is thus a lone-prime decade. A century containing exactly one prime is called a lone-prime century. An example of such is the century beginning with 13,200,001; its only prime is the number $13,200,001$. Find another lone century. Does there exist a millennium with exactly one prime?
7. Are there infinitely many lone-prime centuries? If so, is It possible that all centuries will prove to be lone-prime centuries from a certain number on?
8. Show that infinitely many centuries "begin" with a prime number. Show that infinitely many also "begin" with a composite number.
9. The second decade is perfectly balanced as there are as many primes in the first half as in the second half. Does there exist a perfectly balanced (non-primeless) century? The tenth decade is extremely unbalanced as all of its primes are in one of the halves. Does there exist an extremely unbalanced century, that is, one with all its primes in either the first or second half?
10. Twin primes are primes differing by two. Eight such pairs appear in the first century. Does any century contain a greater number of twin primes?

The last mentioned exploration is a venture into a general area of many unsolved problems. It includes the cardinality of the set of prime twins. Although the first century contains eight such twins, the tenth century contains none whatever. The pattern of their unpredictable occurrence by centuries continues. For example, the entire millennium beginning with 956,001 contains only one such pair whereas the single century beginning with $1,006,301$ remarkably contains five sets of prime twins.

Prime-placed primes likewise lead to additional conjecturing. Suppose $\mathbf{p}_{\mathbf{k}}$ denotes the $\mathbf{k}^{\text {th }}$ prime. If $k$ is also prime, then $\boldsymbol{p}_{\mathbf{k}}$ is called a prime-placed prime. Such numbers as $5,11,67$, and 83 fall into this category. Actually, the first century contains nine prime-placed primes, but the second century only five. All of this is to suggest still another venture. That is, does the first century contain more prime-placed primes than any other?

And more! Does the first century contain more Pythagorean primes (of the form $\bar{x}^{2} \mp y^{2}$ ) than the others? Or more absolute primes (those which are prime regardless of the arrangement of digits such as 17 or 31 or 73 )? Or star primes (those with a prime number of digits such as 23 or 89)? Explorations appear numerous and branch out in varied directions.

Intuitively speaking, none of the results above concerning the first century abundance should prove shocking. Fewer divisors are available in the first century with which factoring attempts can be made. Likely suggested is a fruitful supply of primes in this earlier grouping. Increasing differences among squares and cubes likewise lead one to conjecture a more frequent encounter with such numbers in the smaller setting of the first century. Factorials, small at the outset, lead to the same conclusion. Of course, some numbers behave more mysteriously and superficially erratically than others. Highly intuitive notions often present the greatest of challenges in the many attempts at proof and rigorization. Here, the primes prove no exception. Highlighted in this and similar settings is the first century, an abundant field of golden pebbles called numbers.

Appreciationis expressedto Johnny Lai, SoutheastMissouri State University, for his assistance in the computer verification of certain of the results of this paper.

## References

[1] R. L Francis, "From None to Infinity," The College Mathematics Journal, Journal 17 (May, 1986) 2२6-230.
[2] M. L Gardner, 'The Remarkable Lore of the Prime Numbers," Readings from Scientific American, W.H. Freeman and Co., San Francisco, 1978.
[3] C. Pomerance,'The Search for Prime Numbers," "Scientific American, 247 (December, 1982) 136-147.
[4] K. H. Rosen, ElementaryNumber Theory and Its Applications. Addison-Wesley, Reading, 1988.
[5] E.L Spitznagel, Jr., "An Elementary Proof That Primes Are Scarce," AmericanMathematical Monthly, 77 (April, 1970) 396-397.

## CHANGES OF ADDRESS

Subscribers to the Journa/ should keep the Editor informed of changes in mailing address. Journals are mailed at bulk rate and are not forwarded by the postal system. The cost of sendirfg replacement copies by first class mail is prohibitive.

$$
\frac{\ln \left(b^{n+1}\right)-\ln \left(a^{n+1}\right)}{b^{n+1}-a^{n+1}}=\frac{1}{c}
$$

USING THE MVT TO COMPLETE THE BASIC INTEGRATION FORMULA
NormanSchaumberger
Hofstra University
When considering the formula

$$
\begin{equation*}
\int_{a}^{b} x^{n} d x=\frac{1}{n+1}\left(b^{n+1}-a^{n+1}\right) \tag{1}
\end{equation*}
$$

we are obliged to excludethe case $n=-1$. The usual properties of the logarithmic function along with the formula $d(I n x) / d x=1 / x$ are consequences of the definition

$$
\begin{equation*}
\ln x=\int_{1}^{x} t^{-1} d t, \quad x>0 \tag{2}
\end{equation*}
$$

Furthermore, the relation

$$
\begin{equation*}
\ln \left(\frac{b}{a}\right)=\int_{a}^{b} x^{-1} d x, \quad b>a>0 \tag{3}
\end{equation*}
$$

that it is reasonableto expect that the expression

$$
\frac{1}{n+1}\left(b^{n+1}-a^{n+1}\right)
$$

can readily be derived from (2). Equation (1) is still meaningless when $\boldsymbol{n}=-1$, but (3) does suggest approaches $\ln (b / a)$ as $\boldsymbol{n}$ tends to -1 . This point, although rarely discussed in standard texts, can be made plausible by considering values of $n$ close to -1 . Thus, for example,

$$
\int_{2}^{3} x^{-.999} d x=\frac{1}{.001}\left(3.001-2^{.001}\right)=.4058 \ldots
$$

and $\ln (3 / 2)=.4054 \ldots$
We offer a simple proof that

$$
\begin{equation*}
\lim _{n-1} \frac{1}{n+1}\left(b^{n+1}-a^{n+1}\right)=\ln \left(\frac{b}{a}\right) \tag{4}
\end{equation*}
$$

Using the Mean Value Theorem with $f(x)=\operatorname{In} x$ gives

## THE WEIGHTED JENSEN INEQUALITY

 Norman Schaumberger \& Bert Kabak Hofstra University \& Bronx Community CollegeIf $x_{1}, x_{2}, \ldots x_{n}$, are angles satisfying $0 \leq x_{i} \leq \pi(i=1,2, \ldots, n)$, then

$$
\begin{equation*}
\sin \left(\frac{x_{1}+x_{2}+\ldots+x_{n}}{n}\right) \geq \frac{1}{n}\left(\sin x_{1}+\sin x_{2}+\ldots+\sin x_{n}\right) \tag{1}
\end{equation*}
$$

with equality iff $x_{1}=x_{2}=\ldots=x_{n}$. Furthermore,

$$
\begin{equation*}
\cos \left(\frac{x_{1}}{2}+\frac{x_{2}}{3}+\frac{x_{3}}{6}\right) \geq \frac{1}{2} \cos x_{1}+\frac{1}{3} \cos x_{2}+\frac{1}{6} \cos x_{n} \tag{2}
\end{equation*}
$$

holds If the $x$ 's satisfy $-\pi / 2 \leq x_{i} \leq \pi / 2$, with equality iff $x_{1}=x_{2}=x_{3}$.
Inequality (1) Is a special case of Jensen's inequality which states that if $f(x)$ has a second derivative $\mathrm{f}^{\prime \prime}(\mathrm{x})<0$ in the interval $\mathrm{a} \mathrm{c} \mathrm{x}<\mathrm{b}$ then for $\mathrm{a}<x_{i}<\mathrm{b}(\mathrm{i}=1,2, \ldots, \mathrm{n})$

$$
\begin{equation*}
f\left(\frac{1}{n} \sum_{i=1}^{n} x_{i}\right) \geq \frac{1}{n} \sum_{i=1}^{n} f\left(x_{1}\right) \tag{3}
\end{equation*}
$$

with equality iff $x_{1}=x_{2}=\ldots=x$

The standard derivation of (3) follows Cauchy's method of proof of the AM-GM inequality. (See, for example,[3].) A proof of (3) using elementary properties of the derivative was given by the authors in [2]. Inequality (2), on the other hand, is a special case of Jensen's weighted inequality. This states that if $f(x)$ and $x_{i}$ are as in $(3)$ and $\left.p_{i}>0 i=1,2, \ldots n\right)$ are real numbers such that

$$
\sum_{i=1}^{n} p_{1}=1
$$

then

$$
\begin{equation*}
f\left(\sum_{i=1}^{n} p_{i} x_{i}\right) \geq \sum_{i=1}^{n} p_{i} f\left(x_{i}\right) \tag{4}
\end{equation*}
$$

with equality iff $x_{1}=x_{2}=\ldots=x_{T}$
A not particularly simple non-calculus proof of (4) where the $p$. are restricted to rational numbers can be found in [1]. We offer a simple calculus proof of the weighted Jensen inequality which is valid for all real $p_{\mathrm{i}}$ and which is based on an extension of the argument in [2].

$$
\begin{align*}
& \text { If } \mathrm{a}<\mathrm{x}<\mathrm{b} \text { and } \mathrm{w}=\rho_{1} x_{1}+\rho_{2} x_{2}+\ldots+\rho_{\mathrm{n}} x_{\mathrm{n}} \text { where } \mathrm{a}<x_{i}<\mathrm{b} \text {, then } \\
& \qquad f(w)-w f^{\prime}(w) a f(x)-x f^{\prime}(w) \tag{5}
\end{align*}
$$

with equality iff $\mathbf{x}=\mathbf{w}$. (5) follows from the observation that $\boldsymbol{f}^{\prime \prime}(\boldsymbol{x})<0$ on (a, b) and thus $\boldsymbol{g}(x)=f(x)-x f^{\prime}(w)$ takes its maximum in $(\mathrm{a}, \mathrm{b})$ at $x=w$, because $\boldsymbol{g}^{\prime}(x)=\boldsymbol{f}^{\prime}(x)-f^{\prime}(w)$ is monotone decreasing on this interval and thus vanishes iff $x=w$. Substituting $X=X_{1}, X=X_{2}, \ldots x=X_{n}$ into (5) gives the inequalities

$$
\begin{equation*}
f(w)-w f^{\prime}(w) \geq f\left(x_{i}\right)-x_{i} f^{\prime}(w),(i=1,2, \ldots, n) \tag{16}
\end{equation*}
$$

Multiplying (6), in turn, by $p_{1}, p_{2} \ldots p_{n}$ and adding, we get

$$
\begin{equation*}
f(w) \sum_{i=1}^{n} p_{i}-w f^{\prime}(w) \sum_{i=1}^{n} p_{i} \geq \sum_{i=1}^{n} p_{i} f\left(x_{i}\right)-f^{\prime}(w) \sum_{i=1}^{n} p_{i} x_{i} \tag{17}
\end{equation*}
$$

Since

$$
\sum_{i=1}^{n} p_{i}=1
$$

and

$$
w=\sum_{i=1}^{n} p_{i} x_{i}
$$

we can use (7) to establish (4).

Is, 盍 $x_{1}=x_{2}=\ldots=x_{n}=\mathrm{W}$. If we put $p_{1}=p_{2}=\ldots=p_{n}=1 / n$ then (4) becomes (3). Also, If $f(x)=\ln x, f^{\prime \prime}(x)=-1 / x^{2}<0$ for $x>0$. Hence

$$
\ln \left(p_{1} x_{1}+p_{2} x_{2}+\ldots+p_{n} x_{n}\right) \geq p_{1} \ln x_{1}+p_{2} \ln x_{2}+\cdots+p_{n} \ln x_{n}
$$

or

$$
\begin{equation*}
p_{1} x_{1}+p_{2} x_{2}+\ldots+p_{n} x_{n} \geq x_{1}^{p_{1}} x_{2}^{p_{2}} \ldots x_{n}^{p_{n}} \tag{8}
\end{equation*}
$$

Equality holds iff $x_{1}=x_{2}=\ldots=x_{n}$. Inequality (8) is the weighted AM-GM Inequality. Putting $p_{1}=p_{2}=\ldots=p_{n}=1 / \mathrm{n}$ gives the AM-GM Inequality.

Finally, we note that if $f^{\prime \prime}(x)>0$ then the inequality in (4) is reversed. If, for example, $f(x)=\tan x$ then $f^{\prime \prime}(x)=2 \sec ^{2} x \tan x>0$ for $0<x<\pi / 2$ and by Jensen's weighted inequality,

$$
\begin{equation*}
p_{1} \tan x_{1}+p_{2} \tan x_{2}+\cdots+p_{n} \tan x_{n} \geq \tan \left(p_{1} x_{1}+p_{2} x_{2}+\cdots+p_{n} x_{n}\right) \tag{9}
\end{equation*}
$$

for any set of $n$ positive acute angles $x_{1}, x_{2}, \ldots, x_{n}$, with equality iff $x_{1}=x_{2}=\ldots=x \quad$ If $n=3$, $x_{1}, x_{2}, x_{3}$ are angles of an acute triangle, and

$$
p_{1}=\frac{x_{1}}{x_{1}+x_{2}+x_{3}}, p_{2}=\frac{x_{2}}{x_{1}+x_{2}+x_{3}}, p_{3}=\frac{x_{3}}{x_{1}+x_{2}+x_{3}}
$$

then (9) becomes

$$
x_{1} \tan x_{1}+x_{2} \tan x_{2}+x_{3} \tan x_{3} \text { a it } \tan \left(\frac{x_{1}^{2}+x_{2}^{2}+x_{3}^{2}}{\pi}\right) .
$$

Equality holds iff the triangle is equilateral.

References:
[1] D.S. Mitrinovic', Analytic Inequalities, Springer-Veriag, NY, 1970, pp. 12-13, 74-78.
[2] N. Schaumberger and B. Kabak, "Another Proof of Jensen's Inequality," The College Mathematics Journal, Jan. 1989, pp. 57-58.
[3] Hungarian Problem Book, II, Random House, NY, New York Mathematics Library, 1963, pp. 73-76.

## AWARD CERTIFICATES

Your chapter can make use of the Pi Mu Epsilon Award Certificates available to help you : recognize mathematical achievements of your students. Contact Professor Robert Woodside, Secretary-Treasurer
$\cos (\tau)=\cos \left(\frac{\theta+\frac{\pi}{2}}{4}\right)=\sqrt{\frac{1+\cos \left(\frac{\theta+\frac{\pi}{2}}{2}\right)}{2}}$


Now, $\cos (\theta+\pi / 2)=\cos (\theta) \cos (\pi / 2)-\sin (\theta) \sin (\pi / 2)=-\sin (\theta)=-3 / 5$. So

$$
\cos (\tau)=\sqrt{1+\frac{\sqrt{\frac{1+(-3 / 5)}{2}}}{2}}=\sqrt{\frac{1+\sqrt{1 / 5}}{2}}
$$

We also can see that:

$$
\frac{1}{x}=\frac{1}{\sqrt{3-\phi}}=\frac{1}{\sqrt{3-\frac{1+\sqrt{5}}{2}}}=\frac{1}{\sqrt{\frac{5-\sqrt{5}}{2}}} \frac{\sqrt{2}}{\sqrt{5-\sqrt{5}}}
$$

Now consider the following identity:

$$
\begin{aligned}
2 & =2 \\
2 & =\sqrt{4} \\
2 & =\sqrt{5+\frac{5}{\sqrt{5}}-\sqrt{5-1}} \\
2 & =\sqrt{5-\sqrt{5}} \cdot \sqrt{1+\frac{1}{\sqrt{5}}} \\
\frac{\sqrt{2}}{\sqrt{5-\sqrt{5}}} & =\sqrt{\frac{1+\frac{1}{\sqrt{5}}}{2}}
\end{aligned}
$$

and, therefore, $\cos (\tau)=\mathbf{I} / \mathbf{x}$.
I have shown before (Pi Mu Epsilon Journal, volume 9, number 2) that $\tan (\tau)=\boldsymbol{\operatorname { t a n }}((\theta+\pi / 2) / 4)=1 / \phi$. Therefore,

$$
\sin (\tau)=\tan (\tau) \cdot \cos (\tau)=\frac{1}{\phi} \cdot \frac{1}{\sqrt{3-\phi}}=\frac{1}{\phi \sqrt{3-\phi}}=\frac{1}{Y},
$$

So. $\cos (\tau)=1 / x_{1} \sin (\tau)=1 / y$, and $\tan (\tau)=1 / \phi$, which is what we were trying to prove.

## A NOTE ON $(1+k / n)^{n}$

RussellEuler
NorthwestMissouri State University
A standard textbook technique used to prove that the limit
(*)

$$
\lim _{n-\infty}(1+1 / n)^{n}
$$

exists is to show that the sequence $\left\{(1+1 / \pi)^{n}\right\}$ is increasing and bounded above by 3 . This is sometimes followed with an exercise to show that limit (*) exists for some particular positive integer $\mathrm{k}[1, \mathrm{p} .115-116 ; 2, \mathrm{p} .33-38]$. The purpose of this paper Is to prove that the sequence defined by $x_{n}=(1+k / n)^{n}$ converges for every positive integer $k$ by the completeness property of the real number system.

To prove that $\left\{x_{n}\right\}$ is increasing, the following result will be used. For positive real numbers $y_{1}, y_{2}, \ldots, y_{n+1}$, the arithmetic mean $(M)$ and the geometric mean $(G)$ are defined by $M=\left(y_{1}+\ldots+y_{n+1}\right) /(n+1)$ and $G=\left(y_{1} \ldots y_{n+1}\right)^{1 /(n+1)}$, respectively. It is well known that $M \geq G$, with equallty holding only when $y_{1}=\ldots=y_{n+1}$.

In particular, let $y_{1}=1$ and $y_{1}=1+k / n$, for $i=2,3, \ldots, n+1$. Then it is easy to show that $M=1+k /(n+1)$ and $G=(1+k / n)^{n /(n+1)}$. Hence, since $M>G$,

$$
1+k /(n+1)>(1+k / n)^{n /(n+1)}
$$

So,

$$
\left.x_{n+1}=[1+k /(n+1)]^{n+1}\right\rangle(1+k / n)^{n}=x_{n}
$$

and $\left\{x_{n}\right\}$ is an increasing sequence.
Using the fact that $(1+1 / n)^{n}<3$, it will now be shown that $x_{n}<3^{k}$.

$$
\begin{aligned}
x_{n}=(1+k / n)^{n} & \leq\left(1+k / n+k(k-1) / 2 n^{2}+\cdots+1 / n\right)^{n} \\
& =\left[\left(1+1 / n^{k}\right]^{n}\right. \\
& =\left[(1+1 / n)^{n}\right]^{k} \\
& <3^{k}
\end{aligned}
$$

Since $\left\{x_{n}\right\}$ is increasing and bounded, the sequence converges by the completeness property.

References:
[1] J. A Anderson, Real Analysis, Gordon and Breach Science Publishers, New York, 1969. *
[2] C. W. Clark, ElementaryMathematical Analysis, 2nd edition, Wadsworth, 1982.

# A NAPOLEON TRIANGLE REVISITED <br> <br> Jack Garfunkel <br> <br> Jack Garfunkel <br> Queensboro Community College 

[Jack Garfunkel submitted this paper shortly before his death. (See In Memoriam, on page 272) Clayton Dodge was kind enough to complete the preparation of this paper.]

Some theorems in geometry come and go, but a few catch our fancy and remain popular and exciting. These theorems have a certain elegance and charm, and perhaps an unexpected result. One such theorem is credited to Napoleon Bonaparte. It states that if equilateral triangles are constructed on the three sides of any given triangle, all constructed externally or all internally, then their centroidsform an equllateraltriangle. The areas of these two centroid equilateraltriangles differ by the area of the given trlangle. Furthermore, the three lines formed by joining the third vertex of each equilateral triangle to the opposite vertex of the given triangle concur. The point of concurrence of the lines from the centroids of the equilateral triangles drawn outwardly subtends equal $120^{\circ}$ angles at the sides of the given trlangle. If no angle of the given triangle exceeds $120^{\circ}$, then this point of concurrence is the point from which the sum of the distances to the vertices of the given triangle is a minimum.

We shall prove that the centroids form equilateral triangles and also the area relationship as part of our proof of certainother inequalities. Later in the paper we shall prove the concurrence of the lines In a more general setting. The sizes of the angles and the minimum distance property will be left for the reader to investigate. See [3, pp. 63-65] and [5, p. 72].

It is convenient for us to use the follow"ng equivalent form of Napoleon's theorem in this paper.

Napoleon's Theorem. If on the middle third of each side of a given triangle ABC an equllateral triangle is constructed, all constructed externally or all internally, then their third vertices form an equilateral triangle.

In Figure 1 triangle $A^{\prime} B^{\prime} C^{\prime}$ is called the outer Napoleon triangle and triangle $A^{\prime \prime} B^{\prime \prime} C^{\prime \prime}$ is the Inner Napoleon triangle. In this paper we shall prove some additional properties of the outer Napoleon triangle, and develop some interesting (and perhaps unexpected and surprising) extensions. To that end we shall assume the notation and terminology of Figure 1.

For convenience we shall use the notation $\mathrm{Sa}=\mathrm{a}+\mathrm{b}+\mathrm{c}$. Also we let $\mathrm{Q}=\mathrm{S}(\mathrm{b}-\mathrm{c})^{2}=$ $(b-c)^{2}+(c-a)^{2}+(a-b)^{2}$, which is, of course, nonnegative. Then we prove the followinglemma.


Figure 1

Lemma 1. If $\mathbf{s}$ is the semiperimeter of triangle ABC , then

$$
4 s^{2}-3 \Sigma a^{2}+Q=0
$$

We have that

$$
4 s^{2}+Q=\left(\Sigma a^{2}+2 \Sigma a b\right)+\left(2 \Sigma a^{2}-2 \Sigma a b\right)=3 \Sigma a^{2} \cdot \square
$$

Now we are ready to prove our first theorem, In whose proof we shall make use of the result [1, p. 42, Item 4.3]

$$
s^{2} \geq 3 F \sqrt{ } 3+Q / 2, \text { whence } 2 s^{2}-6 F \sqrt{ } 3 \geq Q
$$

Theorem 1. The perimeter 2 s of a given triangle ABC is not less than the perimeter $2 \mathrm{~s}^{\prime}$ of its outer Napoleon triangle $A^{\prime} \mathrm{B}^{\prime} \mathrm{C}^{\prime}$.


Figure 2

Let W be $1 / 3$ of the way from C to B , let $\mathrm{x}=\mathbf{A}^{\prime} \mathbf{C}, \mathrm{y}=\mathbf{B}^{\prime} \mathbf{C}$, and $\mathbf{c}^{\prime}=A^{\prime} \mathbf{B}^{\prime}$. See Figure 2 Then $W C=W A^{\prime}=a / 3$ and $\angle A^{\prime} W C=120^{\circ}$, sox $=a / \sqrt{ } 3$. Similariy, $y=b / \sqrt{3}$. Then, using the law of cosines In triangle $A^{\prime} B^{\prime} C$, we have

$$
\begin{aligned}
\left(c^{\prime}\right)^{2} & =\frac{a^{2}+b^{2}}{3}-\frac{2 a b}{3} \cos \left(60^{\circ}+c\right) \\
& =\frac{\mathbf{a}^{2}+\mathbf{b}^{2}}{3}-\frac{2 a b}{3}\left(\cos 60^{\circ} \cos C-\sin 60^{\circ} \sin C\right) .
\end{aligned}
$$

Because $\cos C=\left(a^{2}+b^{2} \cdot c^{2}\right) / 2 a b$ and the area $F$ of triangle $A B C$ is given by $F=(a b / 2) \sin C_{1}$ we get that

$$
\left(c^{\prime}\right)^{2}=\frac{a^{2}+b^{2}+c^{2}}{6}+\frac{2 F}{\sqrt{3}} .
$$

Since side $\mathbf{c}^{\prime \prime}$ of the inner Napoleon triangle subtends an angle of $\left|60^{\circ}-\mathbf{C}\right|$, the corresponding relation is

$$
\left(c^{\prime \prime}\right\rangle^{2}=\frac{a^{2}+b^{2}+c^{2}}{6}-\frac{2 F}{\sqrt{3}} .
$$

Because the expressionsfor $\mathbf{c}^{\prime}$ and $\mathbf{c}^{\prime \prime}$ are symmetric $\ln \mathrm{a}, \mathbf{b}$, and $\mathbf{c}$, it follows that $\mathbf{a}^{\prime}=\mathbf{b}^{\mathbf{\prime}}=\mathbf{c}^{\mathbf{\prime}}$ and $\mathbf{a}^{\prime \prime}=\mathbf{b}^{\mathbf{\prime \prime}}=\mathbf{c}^{\mathbf{\prime \prime}}$, proving that the two Napoleon triangles are equilateral.

To show that $2 s \geq 2 s^{\prime}$, we show that $(2 s)^{2}-\left(2 s^{\prime}\right)^{2}$ a 0 . Thus we have

$$
\begin{aligned}
(2 s)^{2}-\left(2 s^{\prime}\right)^{2}=4 s^{2}-\left(3 a^{\prime}\right)^{2} & =4 s^{2}-9\left(a^{\prime}\right)^{2} \\
& =4 s^{2}-(3 / 2) \Sigma a^{2}-6 F \sqrt{ } 3 \\
& \geq 2 s^{2}-(3 / 2) \Sigma a^{2}+Q \\
& =Q \geq 0 . \square
\end{aligned}
$$

It Is easy now to prove the Napoleon theorem area relationship. Let $F, F$, and $F^{\prime \prime}$ denote the areas of the triangles $A B C, A^{\prime} B^{\prime} C^{\prime}$, and $A^{\prime \prime} B^{\prime \prime} C^{\prime \prime}$ respectively. Since the altitude $\subset f$ the equilateral triangle of side a' Is equal to $a^{\prime} \sqrt{3} / 2$, then its area is $F^{\prime}=\left(a^{\prime}\right)^{2} \sqrt{3} / 4$. Similarly, $F^{\prime \prime}=\left(a^{\prime \prime}\right)^{2} \sqrt{3} / 4$. Thus, the difference between the areas of the outer and inner Napoleon triangles is given by

$$
F^{\prime}-F^{\prime \prime}=\frac{\sqrt{3}}{4}\left(\frac{a^{2}+b^{2}+c^{2}}{6}+\frac{2 F}{\sqrt{3}}\right)-\frac{\sqrt{3}}{4}\left(\frac{a^{2}+b^{2}+c^{2}}{6}-\frac{2 F}{\sqrt{3}}\right)=F
$$

which is the desired result. $\square$

Theorem 2 The inradius $r^{\prime}$ of the outer Napoleon triangle $A^{\prime} B^{\prime} C^{\prime}$ is not less than the inradius $r$ of the given triangle $A B C$.

Since $F=r$ and $F^{\prime}=r^{\prime} s^{\prime}$ and we have just shown that $F^{\prime} \geq F$, then $r^{\prime} s^{\prime} \geq r$. Since also $s^{\prime} \leq s$ by Theorem 1, then we must have that $r^{\prime} \geq r$. $\square$

We have seen that $\mathbf{F}^{\prime}$ a $\mathbf{F}$ and $\mathbf{r}^{\prime}$ a $\mathbf{r}$. but $\mathbf{s}^{\prime} \leq \mathbf{s}$. Let us see just what relationship exists between $\mathbf{R}$ and $\mathbf{R}^{\prime}$, the circumradil. This result is not quite so obvious as that of Theorem 2. In it we shall use the results [1, p. 18, Item 2.3] $\Sigma \sin ^{2} A \leq 9 / 4$ and $[1$, p. 20, Item 2.8$] ~ I \sin A \leq 3 \sqrt{3} / 8$, and the known relations $[4, \mathrm{p} .31] \mathrm{F}=\mathbf{a b c} / 4 \mathbf{R}$ and $[4, \mathrm{p} .33$, Exercise 22] $a=2 R \sin A$, etc.

Theorem 3. The circumradius $\mathbf{R}$ of a given triangle $\mathbf{A B C}$ is not less than the circumradius $\mathbf{R}^{\prime}$ of its outer Napoleon triangle $A^{\prime} B^{\prime} C^{\prime}$.

Since the circumradius of an equilateral triangle is equal to $2 / 3$ of its altitude, then

$$
R^{\prime}=\frac{2}{3} h_{a}^{\prime}=\frac{2}{3}\left(\frac{a^{\prime}}{2} \sqrt{3}\right)=\frac{a^{\prime}}{\sqrt{3}} .
$$

Now we have

$$
\begin{aligned}
\left(R^{\prime}\right)^{2} & =\frac{1}{3}\left(\frac{1}{6} \sum a^{2}+\frac{2 F}{\sqrt{3}}\right) \\
& =\frac{1}{18} \sum a^{2}+\frac{2 F}{3 \sqrt{3}} \\
& =\frac{1}{18} \sum a^{2}+\frac{a b c}{6 R \sqrt{3}} \\
& =\frac{4 R^{2}}{18} \sum \sin ^{2} A+\frac{4 R^{3} \square \sin A}{3 R \sqrt{3}} \\
& =\frac{2 R^{2}}{18} \sum \sin ^{2} A+\frac{4 R^{2} \prod \sin A}{3 \sqrt{3}}
\end{aligned}
$$

To show that $\mathbf{R} \geq \mathbf{R}^{\prime}$, we must prove that

$$
1 \geq \frac{2}{9} \sum \sin ^{2} A+\frac{4}{3 \sqrt{3}} \Pi \sin A
$$

Thus

$$
\begin{aligned}
\frac{2}{9} \sum \sin ^{2} A+\frac{4}{3 \sqrt{3}} \Pi \sin A & \leq \frac{2}{9}\left(\frac{9}{4}\right)+\frac{4}{3 \sqrt{3}}\left(\frac{3 \sqrt{3}}{8}\right) \\
& =\frac{1}{2}+\frac{1}{2}=1 .
\end{aligned}
$$

We have proved Theorem 3.
Erecting equilateral triangles on the middle third of each side of a triangleto determine the points $\mathrm{A}^{\prime}$, $\mathrm{B}^{\prime}$, and $\mathrm{C}^{\prime}$ is a rather special and arbitrary choice. The question arises as to what would happen if, as a generalization of the Napoleon figure, we erected arbitrary isosceles triangles instead. Equivalently, let us erect perpendiculars at the midpoints of the sides and extend them to lengths proportional to the sides.

Theorem 4. At the midpoints of the sides of a triangle $A B C$, perpendiculars are drawn, all outwardly or all Inwardly, and extended to lengths proportional to their respective sides. If the endpoints of these perpendiculars are denoted by $A^{\prime}$, $B^{\prime}$, and $C^{\prime}$, then triangles $A B C$ and $A^{\prime} B^{\prime} C^{\prime}$ are in perspective.


Figure 3
Refer to Figure 3. Let $\mathbf{D}, \mathbf{E}$, and F be the midpoints of the sides $\mathrm{BC}, \mathrm{CA}$, and AB of triangle $A B C$, and erect all outward or all inward perpendiculars $A^{\prime} D, B^{\prime} E$, and $C^{\prime} F$ to the sides such that $D A^{\prime} / B C=E B^{\prime} / C A=F C^{\prime} / A B=k$ for a given real $k$. Now draw a line through $A^{\prime}$ parallelto $B C$ and meeting $A B$ at $P$ and $A C$ at $Q$, a line through $B^{\prime}$ parallel to $C A$ and meeting $B C$ at $R$ and $B A$ at $S$, and a line through $C^{\prime}$ parallel to $A B$ and meeting $C A$ at $T$ and $C B$ at $U$. Let $A A^{\prime}$ meet $B C$ at $X, B B^{\prime}$ meet $C A$ at $Y$, and $C C^{\prime}$ meet $A B$ at $Z$.

By Ceva's theorem, it suffices to show that

$$
\frac{A Z}{Z B} \cdot \frac{B X}{X C} \cdot \frac{C Y}{Y A}=1
$$

Because of the similar triangles CAB and CTU, etc., we have

$$
\frac{A Z}{Z B}=\frac{T C^{\prime}}{C^{\prime} U}, \quad \frac{B X}{X C}=\frac{P A^{\prime}}{A^{\prime} Q}, \text { and } \frac{C Y}{Y A}=\frac{R B^{\prime}}{B^{\prime} S}
$$

Hence we need to show that

$$
\frac{T C^{\prime}}{C^{\prime} U} \cdot \frac{P A^{\prime}}{A^{\prime} Q} \cdot \frac{R B^{\prime}}{B^{\prime} S}=\frac{P A^{\prime}}{C^{\prime} U} \cdot \frac{R B^{\prime}}{A^{\prime} Q} \cdot \frac{T C^{\prime}}{B^{\prime} S}=1 .
$$

By the similarity of quadrilaterals $B_{F C ' U ~ a n d ~ B D A ' P, ~ e t c ., ~ w e ~ g e t ~}^{\text {, }}$

$$
\frac{P A^{\prime}}{C^{\prime} U}=\frac{B D}{F B}, \quad \frac{R B^{\prime}}{A^{\prime} Q}=\frac{C E}{D C}, \quad \text { and } \quad \frac{T C^{\prime}}{B^{\prime} S}=\frac{A F}{E A} .
$$

Hence we find that

```
PA'
```

We shall call the triangle $A^{\prime} B^{\prime} C^{\prime}$ of Theorem 4 a Garfunkel triangle for the given triangle ABC.

A special case of theorem 4 proves the concurrence of the three lines joining the third vertices of either Napoleon triangle to the corresponding vertices of the given triangle.

At this point we remind the reader of two delightful special points in a triangle, which enter into our final theorems. If a point is chosen on each side of a triangle and If three circles are drawn, each through a vertex and the chosen points on the two adjacent sides, then these three circles concur at a point called the Miguelpoint for the triangle and the three selected points. See Figure 4.


Figure 4


In triangle $A B C$ draw a circle through vertex $A$ and tangentto side $B C$ at $B$, a circle through $B$ and tangent to $C A$ at $C$, and a circle through $C$ and tangent to $A B$ at $A$ Then these three circles concur at a point called a Brocardpoint for the triangle. See Figure 5. By symmetry there are two Brocard points for a triangle. By considering inscribed angles, it is easy to show that angles CBP, ACP, and BAP are equal. In fact, the converse is also true. If those three angles are equal, then point $P$ is a Brocard point for triangle $A B C$.

Theorem 5. Construct a Garfunkel triangle $A^{\prime} B^{\prime} C^{\prime}$ for a given triangle $A B C$. Let the lines $C^{\prime} A$ and $A^{\prime} B$ meet at $\mathbf{P}$, lines $A^{\prime} B$ and $B^{\prime} C$ meet at $\mathbf{Q}$, and $B^{\prime} C$ and $C^{\prime} A$ meet at $\mathbf{R}$. Then the Miguel point for triangle PQR associated with the three points $\mathrm{A}^{\prime}, \mathrm{B}^{\prime}$, and $\mathrm{C}^{\prime}$ is the circumcenter of triangle ABC.


Figure 6


Figure 7

In Figure 6 let $O$ be the circumcenter of triangle $A B C$. Now we have that angles $C B Q, A C R$, and $B A P$ are equal because triangles $C B A ', A C B '$, and $B A C '$ are similar by construction. Then

$$
\mathrm{LA}=\angle B A C=180^{\circ}-\angle B A P-\angle R A C=180^{\circ}-\angle A C R-\angle R A C=\angle A R C=\angle R
$$

Since $L A+L C^{\prime} O B^{\prime}=180^{\circ}$, then $\angle R+L C^{\prime} O B^{\prime}=180^{\circ}$. Therefore, the circle through $\mathrm{B}^{\prime}, \mathrm{R}_{1}$ and $\mathrm{C}^{\prime}$ passes through $\mathbf{O}$. Similarly, the circles through $\mathrm{A}^{\prime}, \mathrm{Q}$, and $\mathrm{B}^{\prime}$ and through $\mathrm{C}^{\prime}, \mathrm{P}$, and $\mathrm{A}^{\prime}$ both pass through O , so O is the desired Miguel point. $\square$

We conclude our list of theorems with an interesting relation between a Miguel point, a Brocard point, and a Garfunkel triangie.

Theorem 6. Under the hypothesis of Theorem 5, the Miguel point for triangle PQR associated with the three points $A, B, a n d$ is a Brocard point of triangle $A B C$.

Let $M$ be the Miguel point for triangle PQR and points $A, B$, and $C$. See Figure 7. From the proof of Theorem 5 , we know that $L A=L R$. Because $A M C R$ is a cyclic quadrilateral, then

$$
L A M C=180^{\circ}-L R=180^{\circ}-L A .
$$

Therefore we have

$$
180^{\circ}=\angle M A C+\angle A M C+\angle M C A=\angle M A C+180^{\circ}-\angle A+\angle M C A
$$

so that

$$
\angle M A C+\angle M C A=L A=\angle M A C+L M A B .
$$

Now LMCA = LMAB, which in turn $=\angle M B C$ by symmetry. Hence $M$ is a Brocard point for triangle ABC. $\square$

## References

[1] O. Bottema, et al, Geometric Inequalities, Wolters-Noordhoff Publishing, The Netherlands, 1968.
[2] N.A. Court, College Geometry, Johnson Publishing Company, Virginia, 1925.
[3] H.S.M. Coxeter, and S. L Greltzer, Geometry Revisited, The Mathematical Assoclation of America, Washington, D.C, 1967.
[4] C.W. Dodge, Euclidean Geometry and Transformations, Addison-Wesley Publishing Company, Massachusetts, 1972.
[5] H.W. Eves, A Survey of Geometry, rev ed, Allyn \& Bacon, Massachusetts, 1972.

## LETTER TO THE EDITOR

Dear Editor:
In the Fall, 1990, issue of the Journal, there was a letter to the editor from me concerningthe article 'The AM-GM Inequality: A Calculus Quickie," by Norman Schaumberger, which had appeared in Spring, 1990. In my letter I stated that an equality condition given by Schaumbergerwas Incorrect. The equality condition was actually correct as stated in Schaumberger's article.

Sincerely,
Murray Klamkin
Mathematics Department
University of Alberta
Edmonton, Alberta, Canada T6G 2G1

## INQUIRIES

Inquiries about certificates, pins, posters, matching prize funds, support for regional meetings, and travel support for national meetings should be directed to the Secretary-Treasurer, Robert M. Woodside, Department of Mathematics, East Carolina University, Greenville, NC 27858;-919-757-6414.

## FAIR FARE FUNCTIONS

## JN Boyd and P.N. Raychowdhury

 Virginia Commonwealth University
## INTRODUCTION

The Acme Bus Corporation (ABC for short) was created to meet the needs of the good citizens of towns $x_{1}, x_{2}, x_{3}, \ldots x_{n-1}$. The essential geographical feature explaining these transportationneeds is Bear Mountain as indicated on the map below.


Figure 1. The Geography of Towns $x_{1}, x_{2}, x_{3} \ldots x_{n-1}$.
The towns are connected by a country road which runs over level ground at the foot of the mountain. The read also links the towns with villages $x_{0}$ and $x_{n}$ which lie on the main railroad line to the big city. Many of the citizens of $x_{1}, x_{2}, x_{3}, \ldots x_{n-1}$ work $\ln$ the big city; and, from both $x_{0}$ and $x_{n}$, commuter tralns travel to the city with convenient regularity. Eventually, the ABC was established to run buses back and forth along the country road between $x_{0}$ and $x_{n}$, picking up and letting off passengers along the way.

The distances between any two towns, $x_{i}, x_{j}(\mathbf{i} \neq \mathbf{j} ; \mathbf{i}, \mathbf{j} \bullet\{1,2,3, \ldots, n-1\})$, are relatively short when compared to the distance from any of the towns to either $x_{0}$ or $x_{n}$. Consequently, commuters do not care whether they catch a bus headed for $x_{0}$ or one headed for $x_{n}$ since either bus will carry them to a station where the wait for the next train is never long. Therefore, they simply take the first bus that comes along.

The round trip fair $f(i)$, from town $x_{i}$ to either railroad station in the morning and back-again in the afternoon was established by the board of directors of $A B C$. It so happened that the Chairman of the Board had been a mathematicianin his youth with a particular interest in discrete harmonic functions. [1] He persuaded the board that the average value property of harmonic functions representedthe fairest model for establishingthe round trip fares from the differenttowns. Unfortunately, since $f(0)$ and $f(\mathrm{n})$ both had to be zero, the harmonic rule

$$
f(i)=[f(1-1)+f(1+1)] / 2
$$

would have implied that $\mathbf{f}(\mathbf{i})=0$ for all $\mathbf{i}$, thereby quickly putting ABC out of business. So, the board, acting upon the advice of the Chairman, added a surcharge of one dollar to each fare (as indicated in Rule 3 below). The board then set the fare as a function of $I$ by the following rules:
1.) $f(0)=f(n)=0$.
2.) $f(i)=f(n-1)$ for $i \in\{0,1,2, \ldots . . n\}$ to reflect the obvious symmetry resulting from the citizens' willingness to catch their tralns at either $x_{0}$ or $x_{n}$.
3.) $f(i)=[f(1-1)+f(i+1)] / 2$ for $\mathbf{i} \in\{1,2,3, \ldots, n-1\}$.

The extra one dollar (in Rule 3) was justified as consistent with the policy of charging one dollar for a round trip over the relatively short distances between any two towns $x_{i}$ and $x_{j}(i \neq j$ and neither i nor $\mathrm{j} \bullet\{0, \mathrm{n}\}$ ). There had always been a modest amount of travel among the various towns in addition to the primary traffic to and from $x_{0}$ and $x_{n}$.

The Chairman was quite pleased with the properties of his fare function $f(i)$ and it is the intent of this paper to investigate some of those properties.

## THE FIRST SEVERAL CASES

If there are $\mathrm{n}-1$ towns with stations $x_{0}$ and $x_{\mathrm{n}}$ at the ends of the country road, we will denote the fare function by $f_{n}($ (i) for $\mathrm{n} \geq 0$ and $\mathrm{I}=0,1,2, \ldots, \mathrm{n}$.

By definition, we simply say that $f_{0}(0)=0$ and $f_{1}(0)=f_{1}(1)=0$.
For $\mathrm{n}=2$, we have $\mathrm{f}_{2}(0)=\mathrm{f}_{2}(2)=0$ by Rule 1 and $\mathrm{f}_{2}(1)=[0+0] / 2+1=1$ by Rule 3 .
For $n=3$, we have $f_{3}(0)=f_{3}(3)=0$ and $2 f_{3}(1)=\left[0+f_{3}(2)\right]+2$ By Rule 2, $f_{3}(2)=f_{3}(1)$.
Therefore, $f_{3}(1)=f_{3}(2)=2$.
For $n=4$, we find $f_{4}(0)=0, f_{4}(1)=3, f_{4}(2)=4, f_{4}(3)=3, f_{4}(4)=0$.
If the results of these and further computations are displayedin a triangular array, interesting relationships become apparent.


Most of the patterns which arise along various lines through the triangle are so obvious that no comment on those patterns seems required. They suggest that the triangle should serve as a useful source for Inductive statements and proofs.

## MORE GENERAL RESULTS

To make more general sense out of the triangular array, let us take first and then second differences across the horizontal rows of numbers. By so doing, we find that, for each row shown above (except those with all zeros), the second difference has the constant value of -2 . This result leads us to suspect that $\boldsymbol{f}_{n}$ can be written as a quadratic function of 1 That is, $\boldsymbol{f}_{n}(i)=a+b i+\mathrm{ci}^{2}$.

For example, if $\mathrm{n}=8$ (across the last row shown in our triangle of function values), our calculations yield


It Is then easy (e.g., [2]) to find the coefficients $\mathrm{a}, \mathrm{b}, \mathbf{c}$ and to show that

$$
f_{8}(i)=8 i-i^{2} .
$$

Thereafter, a bit more work suggests that

$$
\begin{equation*}
f_{n}(l)=n i-i^{2} . \tag{1}
\end{equation*}
$$

Checking our result against our three rules, we find that $f_{n}(0)=f_{n}(n)=0$ implying that Rule 1 Is satisfied. Since $f_{n}(n-1)=n^{2}-n i \cdot\left(n^{2} \cdot 2 n i+i^{2}\right)=n i-I^{2}$, Rule 2 is satisfied. And, since ${ }^{-}$ $\left[f_{n}(l-1)+f_{n}(l+1)\right] / 2+1=n i-\mathbf{i}^{2}=f_{n}(i)$, Rule 3 is also satisfied.

Furthermore, we can show that $f_{n}(1)$ from Equation 1 uniquely satisfies all three rules. Suppose, to the contrary, both $f_{n}(i)$ and $g_{n}(l)$ satisfy the three rules. Then

$$
\begin{aligned}
f_{n}(i)-g_{n}(i) & =\left\{\left[f_{n}(i-1)+f_{n}(i+1)\right] / 2+1\right\}-\left\{\left[g_{n}(i-1)+g_{n}(i+1)\right] / 2+1\right\} \\
& =\left[\left(f_{n}(i-1)-g_{n}(i-1)+f_{n}(i+1)-g_{n}(i+1)\right)\right] / 2
\end{aligned}
$$

implying that the function $h_{n}(0)=f_{n}(i) \cdot g_{n}(i)$ is harmonic. Since $h_{n}(0)=h_{n}(n)=0$, it follows that $h_{n}(i)=0$ for every $\mathbf{i}$ by the uniqueness of discrete harmonic functions having identical boundary conditions. Therefore, $\boldsymbol{f}_{\mathbf{n}}(\mathbf{l})=\mathbf{g}_{\mathbf{n}}(\mathbf{i})$ for every $\mathbf{i}$ It follows also that Rule 2 Is implied by Rules 1 and 3.

## OBSERVATIONS

We leave it to our readers to decide whether or not Rules $\mathbf{1 , 2}$, and 3 lead to fair fares in our scenario and to generalize the fare functions by making changes in Rule 3.

The Chief Engineer for ABC was not to be outdone. After the Chairman had explained the reasoning behind the definition of his fare function, the Chief Engineer recalled that, for each harmonic function, there oughtto be an electrical networkfor whichthe harmonic functiondescribes the potentials at the branch points of the network. He claimed that he could design a circuit for resistors for which the n -th fare function defined the potentials at the branch points.

Eventually, he submitted the design below.


Figure 2. The Chief Engineer's Circuit.
All resistorsare identical with resistanceR ohms. Point $\mathbf{P}_{\boldsymbol{i}}$ Is maintainedat a potential of 2 volts above the potential $\mathbf{V}_{\mathbf{i}}$ at branch point $x_{i}$ for $\mathbf{i}=1,2,3, \ldots, n-1$. The potentials $V_{0}$ and $V_{n}$ (at $x_{0}$ and $x_{n}$ ) are both set at zero volts.

By Kirchhoff's Rule for currents at any branch point, we have

$$
\left(V_{1} \cdot V_{i-1}\right) / R=\left(V_{i+1} \cdot V_{i}\right) / R+2 / R
$$

where current along the chain $x_{0}, x_{1}, x_{2}, \ldots, x_{n}$ Is taken to be positive in the direction from left to right. After a bit of simplification, the last equation becomes

$$
v_{i}=\left(V_{i-1}+v_{i+1}\right) / 2+1
$$

in accord with Rule 3. Rule 1 is satisfied by $V_{0}=V_{n}=0$; and, as we have noted. Rule 2 is automatically satisfied whenever Rules 1 and 3 hold true.

## REFERENCES

[1] J.N. Boyd and P.N. Raychowdhury, "DiscreteDirichlet Problems, Convex Coordinates, and a Random Walk on a Triangle," College Mathematics Journal 20 (1989), pp. 385-391.
P.F. Dierker and W.L Voxman, Discrete Mathematics, Harcourt Brace Jovanovich, 1986.

A rebus is a kind of puzzle whose meaning is indicated by things rather than by words. The following rebus was submitted by Florentin Smarandache, of Phoenix, AZ.
$\left(\begin{array}{llllll}J & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & R & 1 & 0 & 0 \\ 0 & 0 & 0 & D & 1 & 0 \\ 0 & 0 & 0 & 0 & A & 1 \\ 0 & 0 & 0 & 0 & 0 & N\end{array}\right)$

## MATCHING PRIZE FUND

If your chapter presents awards for Outstanding Mathematical Papers or for Student Achievement in Mathematics, you may apply to the National Office for an amount equal to that spent by your Chapter up to a maximum of fifty dollars. Contact Professor Robert Woodside, Secretary-Treasurer

## Two New Numbers Aid Mathematicians <br> James Metz <br> Maryknoll High School, Honolulu, HI

For many years mathematicians, and perhaps a few students of mathematics, have enjoyed rationalizing the denominators of expressions such as $7 / \sqrt{2}$ and $\mathbf{y} / \sqrt{3}$, and wen more complicated ones including $6 /(\sqrt{2}-5)$ and $(3+71) / 1$. Until now they have been forced to live with such nasty expressions as $9 / \pi$ and $3 / e$ with their irrational denominators. Two new numbers now solve this problem and allow expressions with denominators it, $\boldsymbol{e}$, or a non-zero multiple of either, tho be changed to a form which has a rational denominator.

The two numbers have always existed in the set of real numbers, but they were never given names, since they seemed rather useless except for filling a couple of holes on the number line. (The situation is something akin to "new" asteroids.) The decimal names of these new numbers are impossible to pronounce because you can never finish trying to say them.

The first number is called TINAPAY, after the Tagalog word for "bread." It is pronounced teen - a-pi. Written $\tilde{10}$, it is defined as $\tilde{10}=10 / \pi$. As an example of the usefulness of this number, consider the expression $7 / \pi$ which has the irrational denominator $\pi$.
$7 / \pi=7 / \pi \cdot(\widetilde{1} / \widetilde{10})=(7 \widetilde{0}) / 10$. Notice the rational denominator. As a bonus, this expression also has the convenient decimal representation $7 \mathrm{~T} \mathbf{\mathrm { 0 }}$. For converting radian measure to degree measure, just multiply by $18 \stackrel{\widetilde{10}}{ }$.

The second new discovery is the number EATEN, pronounced e-ten, and written ex. The symbol is the juxtaposition of e and the Roman numeral for 10 , thus giving the number a classical flavor. EATEN is defined as ex = 10/e, and it functions with expressions with denominators e in much the same way as 10 does with expressions with denominators $\pi$. As an example, we see that $9 / e=9 / e \cdot(e x / e x)=(9 e x) / 10$ or $.9 e x$.

The reader should notice immediately that ex will confuse students who will interpret it as the product of $e$ and $x$, or worse as "example." This is nothing new in mathematics. We use " $x$ " as a variable, to indicate multiplication, and as a numeral for 10 . We use a dot for a decimal and to indicate multiplication. The choice of symbol is in keeping with the tradition of math symbols.

Problems for mathematicians to solve in the future will include the rationalization of the denominators of expressions such as $6 /(2+\pi), 7 y /(e+\pi)$, and $8 /(\sqrt{2}-\mathrm{it})$. The reader can appreciate that the mathematics community, up to now, has not advanced far in the rationalization of denominators. $\widetilde{10}$ and ex are two numbers that help.

## Gleanings from the Chapter Reports

GEORGIA EPSILON (Valdosta State College) The speaker at the fall, 1989, meeting was Dr. John Fay, from the Department of Mathematics and Computer Science. The title of his talk was "How to Win Betting on Horse Racing." During the winter quarter, the chapter held its second annual mathematics contest. The contest was open to all students enrolled at Valdosta State College. Steve Hoffman won the contest. The speaker at the spring quarter meeting was Dr. George Meghabghab. The title of his talk was "InductiveLearning." The talk was followed by the initiation ceremony for eight students. Afterwards, the election of new officers was held.

ILLINOIS IOTA (Elmhurst College) The Mathematics and Computer Science Club and the Pi Mu Epsilon Chapter sponsored a barbecue at the beginning of the year, participated in field trips to Argonne National Laboratory, and, along with the Mathematics Department, sponsored a weekly seminar at Elmhurst College. The president of the chapter, Dieter Kunas, inducted new members at the fall meeting of the Associated Colleges of the Chicago Area (ACCA), Mathematics Division. The speaker was Prof. Richard G. Cornell, Department of Biostatlstics, U. of Michigan. He spoke on "Careers in Biostatistics" and "Some Statistical Issues in the Evaluation of the Sweetener Aspartame." At the ACCA Student Spring Symposium, five members presented papers and members were inducted. From this group of students, one presented his work at the lllinois M.A.A. SectionalMeeting and one presented her work at the national Pi Mu Epsilon meeting in Columbus, Ohio.

## ATTENTION FACULTY ADVISORS

To have your chapter's reportpublished, send copies to Robert M. Woodside, Secretary-Treasurer, Department of Mathematics, East CarolinaUniversity, Greenville, NC 27858 and to Richard L Poss, Editor, St. Norbert College, De Pere, WI 54115.

## Message from the Secretary-Treasurer

Copies of the new, revised Constitutionand Bylaws are now available. The prices are: $\$ 1.50$ for each of the first four copies and $\$ 1$ for each copy thereafter. 1.e., $\$(1.50 \mathrm{n})$ for $\mathrm{n}<4$ and $\$(n+2)$ for $n$ a 4.

The videotape of Professor Joseph A Gallian's AMS-MAA-PME Invited Address, "The Mathematics of Identification Numbers," given as part of PME's 75th Anniversary Celebration at Boulder, CO, in August, 1989, is also now available. The tape may be borrowed free of charge by PME chapters, and by others upon an advance payment of $\$ 10$. Please contact my office if you desire to borrow the tape, telling me the date on which you would like to use it. I prefer to mail the tape directly to faculty advisors, and expect them to take responsibility for returning it to my office. Please submit your request in writing and include a phone number and a time that I might reach you if there are problems. Robert M. Woodside, Secretary-Treasurer,Department of Mathematics, East Carolina University, Greenville, NC 27858.

## PUZTESECTION

## Edited by Joseph D. E. Konfauser <br> Macafester College

The PUZZLE SECTION is for the enjoyment of those readers who are addicted to working doublecrostics or who find an occasional mathematical puzzle or word puzzle attractive. We consider mathematical puzzles to be problems whose solutions consist of answers immediately recognizable as correct by simple observation and requiring little formal proof. Material submitted and not used here will be sent to the Problem Editor if deemed suitable for the PROBLEM DEPARTMENT.

Address all proposed puzzles and puzzle solutions to Professor Joseph D. E. Konhauser, Mathematics and Computer Science Department, Macalester College, St. Paul, MN 55105. Deadlines for puzzles appearing in the Fall Issue will be the next March 15, and for the puzzles in the Spring issue will be the next September 15.

## PUZZLESFOR SOLUTION

## 1. A Teaser from the legacy of Leo Moser, first Problem Department Editor of

 the Pi Mu Epsilon Journal.Find positive integers $a$, band csuch that $a^{3}+b^{4}=\boldsymbol{c}^{5}$.

## 2. Proposed by Basil Rennie, Burnside, South Australia.

Take three points at random on the unit sphere. What is the expected value of the area of the triangle that they form?

## 3. From a 1966 paper by S. J. Einhorn and I. J. Schoenberg.

The vertices of a regular octahedron are such that the fifteen distances between pairs of vertices assume just two values. There are five other arrangements of six points in 3 -space such that the distances between pairs of points fall into just two classes. How many of them are you able to find?

## 4. Proposed by the Editor of the Puzzle Section.

Given a unit square, what is the area of the octagonal region bounded by the eight lines joining the four side midpoints to the endpoints of the opposite sides?

## 5. From a 1959 paper by J. Lambek and Leo Moser.

Separate the integers 1 through 16 into two disjoint eight-member sets Sand $\boldsymbol{T}$ such that the $\mathbf{2 8}$ sums of pairs of elements of $\boldsymbol{S}$ are identical with the $\mathbf{2 8}$ sums of pairs of elements of $\boldsymbol{T}$.

## 6. Contributed by E. N. Igma.

Cards labelled 1 through $k$, without duplication, are shuffled and held face up. If the number on the top card is $m$ then the mth card counting from the top is moved to the bottom of the $k$-card pile. Next, the number now on the second card is noted. If the number is $n$ then the nth card from the top is moved to the bottom of the pile. The process is repeated for the 3rd, 4th, 5th cards and so on. If the card to be moved is already on the bottom the pile remains unchanged. For example, for $k=4$ if the initial arrangement is 2143 then the final arrangement is 2431 . If the final arrangement for five cards is 12345 what was the initial arrangement? Is the solution unique?

## 7. Proposed by the Editor of the Puzzle Section.

To how many triangles whose vertices are vertices of a regular polygon of $2 k+1$ sides is the center of the polygon interior?

## COMMENTS ON PUZZLES 1-7, FALL 1990

For Puzzle \#1, RICHARD I. HESS wrote $\overline{\mathrm{xx}} \ldots \mathrm{x} / \mathrm{x} \times \ldots \mathrm{x}$, where $\overline{\mathrm{xx} \ldots \mathrm{x}}$ consists of one or more 0 's, 1 's, 6 's, 8 's and 9 's subject to the conditions (1) there are no leading or trailing 0 's and (2) there is at least one 6 or 9 . $\overline{x x \ldots x}$ is $\overline{x \times \ldots x}$ turned upside down Examples: 619, 916, 89168, 9600811180096 . Similar responses were received from MARK EVANS and EMIL SLOWINSKI. CHARLES ASHBACHER, MARK EVANS, RICHARD I. HESS, BOB PRIELIPP and EMIL SLOWINSKI responded to Puzzle \#2. Most submitted a solution consisting of linear equations in the amounts bet on each horse with results $\$ 33$ on horse A, \$22 on horse B and \$6 on horse C. For Puzzle \#3, MOHAMMAD PARVEZ SHAIKH (freshman at Western Michigan University) gave a complete analytical geometry solution showing that the area of the three-pointed "star" equals 215 that of the given triangle. RICHARD I. HESS solved the problem by projecting the given triangle into an equilateral triangle using a transformation which preserves ratios of areas. Then, using elementary trigonometry, he obtained the result $2 / 5$. EMIL SLOWINSKI did not reveal his method but supplied the correct answer. Only RICHARD I. HESS responded to Puzzle \#4. The scheme used by the proposer was to start with a first row of $0,1,-2,3$. The elements of the following rows, from left to right, were obtained, respectively, as the sum of the first two elements in the row above, the sum of the last two, the first minus the second and the third minus the fourth. It is easy to show that the elements in the $\mathrm{k}+$ 4th row equal four times those in the $k$ th row, so that the elements of the 100th row are those of the 4th row multiplied by 4 to the power 24. In Puzzle \#5, the three-member set $\{2,3,5)$ has the property that the product of any two members leaves a remainder of 1 when divided by the third. Are there any other triplets of distinct positive integers with the same property? EMIL SLOWINSKI and RICHARD I. HESS both said "No," but only HESS supplied a proof. Only RICHARD I. HESS and EMIL SLOWINSKI gave analyses for a winning strategy for the second player in the square-marking game in Puzzle \#6. Very briefly put, these strategies are to leave the first player with only two squares empty but not in the same row or column, or to leave the first player with four empty squares which are the vertices of a rectangle. The correct response to Puzzle \#7 is 17 bishop moves to move a bishop from the upper left corner (white) of an $8 \times 8$ board to the lower right corner so that each of the white squares is occupied at least one time. Solutions and/or answers were supplied by RICHARD I. HESS, EMIL SLOWINSKI and MARK EVANS. Here is the solution of MARK EVANS. From left to right, let the first (top) row of squares be labelled 11, 12, ... , 18; the second row 21, 22, ... , 28; and so on, then, in order, the bishop moves from square 11 to $55,28,17,71,82,64,86,68,13,31,42,51,84$, $48,15,33,88$.

Solution to Mathacrostic No. 31 (Fall 1990)

## NORDS:

A Butterfly effect
B. Relativism

C Invariance
D. Gingerbreadman

E Gardens of Eden
F. Stimp meter

G Athbash
H. Naupathia
H. Naupathia
J. Dissipative
K. Easy
L. Antichthon
M. Totemism
N. Tesla coil
P. Roach
Q. Busy beaver
R. Unknots
S. Limit cycle
T. El Nino

## AUTHOR AND TITLE: BRIGGS AND PEATTURBULENTMIRROR

QUOTATION: (Thus) the dynamics of bifurcations reveal that time is irreversible yet recapitulant. They also reveal that time's movement is immeasurable. Each decision made at a branch point involves an amplification of something small. Though causality operates at every instant, branching takes place unpredictably.
SOLVERS: THOMAS F. BANCHOFF, Brown University, Providence, RI; JEANETTE BICKLEY, St. Louis Community College at Meramec, MO; CHARLES R. DIMINNIE, St. Bonaventure University, NY; MICHELE HEIBERG, Herman, MN; DR. THEODOR KAUFMAN, Brooklyn, NY; HENRYS. LIEBERMAN, Waban, MA; CHARLOTTEMAINES, Rochester, NY; STEPHANIE SLOYAN, Georgian Court College, Lakewood, NJ.

LATE SOLUTIONS: Solutions for Mathacrostic No. 30 (Spring 1990) were received from MICHAEL TAYLOR, IndianapolisPower and Light Company, IN and from JOAN and DICK JORDAN, Indianapolis, IN.

Mathacrostic No. 32

## Proposed by Joseph D. E. Konhauser

The 256 letters to be entered in the numbered spaces in the grid will be identical to those in the 27 keyed words at the matching numbers. The key numbers have been entered in the diagram to assist in constructing the solution. When completed, the initial letters of the Words will give the name and an author and the title of a book; the completed grid will be a quotation from that book.
B. shape with deep Indentations

C corkscrew-like structure formed by linked amino aclds (2 wds.)
D. said of lumber cut radially so that annual rings are perpendicular to the face (comp.)
E. tradename of Plet Heln's seven polycube puzzle
F. a mix of randomly construcled smail oroteins and fatty acids and a variely of active, energy-rich nucleotlde unils (2 wds.)

G ithree-dimenslonal shadow of a Iour-dimenslanal Kleln bottle (2 wds.)
H. Hipparchusdevelopedbask of Greek trigonometry ( 3 wds .)

1. insertion or development of a sound or letter in the body of a word
J. kind of order dillerent from the deterministic one
K. edible tuberous plant of the morning glory variety ( 2 wds .)
L. Jack of Spades, Jack of Heads and KIng of Diamonds (comp.)
M. formerly known as a large dyne
N. third largest natural satellite of Saturn
a a conman's patter (slang; 2 wds.)
P. "We have adroilly delined the infintie in arithmeitc by a $\ldots$ in this manner $\infty$; but we possess not therefore the clearer

## a connected

R. trig
S. H. Buckminster Fuller trademark copyrlghled in hls name in 1926 by copyrlghted in
Marshall Field
T. compound polyhedron formed by two intersecling regular tetrahedra In a cube ( 2 wds .)
U. huge shield volcano on Mars (2 wds.)
V. pun-lover's name for 4.6692016090
W. Norton Juster's detightful romance in lower mathematics published in 1963 ( 5 wds.)
$\overline{13} \overline{8} \overline{2} \overline{2} \overline{9} \overline{1} \overline{1} 9-\overline{61} \quad \overline{1} \overline{6} 6$



$\overline{219} \overline{201} \overline{83} \overline{143}$
 $\overrightarrow{2} \overline{3} \overline{0}-\overline{60} \overline{20} \overline{4}$
 $-\overline{44} \overline{10} \overline{4}$
 -64 $22 \overline{8}$

 $\overline{1} \overline{9} \overline{5} \overline{1} \overline{4} \overline{4}-\overline{24}$
 150 $\overline{1} \overline{1} \overline{6}$-77 $2 \overline{3} \overline{7} \overline{19} \overline{9}$
 $\overline{14} \overline{2} \overline{16} \overline{2} \overline{2} \overline{4} \overline{9}-\overline{11}-70-\overline{19} \overline{7} \overline{17} \overline{2}$
$\begin{array}{lllllllllll}178 & 30 & 57 & 255 & 241 & 90 & 125 & -2\end{array}$

$\overline{2} \overline{4} \overline{3} \overline{2} \overline{1} \overline{4} \overline{1} \overline{1} \overline{0} \overline{0}-\overline{88}-\overline{37}$





 $\overline{2} \overline{2} \overline{6} \overline{2} \overline{4} \overline{8} \overline{1} \overline{2} \overline{2} \overline{1} \overline{8} \overline{3}$ -
Y. Ilnal result
2. Intormal collection of problems in mathematics begun in Lwow, Poland in 1935 (3 wds.)
a capable of making shod flights out of the water and of 'llying. with a propulsive
$\overline{169} \overline{58}-\overline{80}-\overline{92} \overline{14} \overline{1} \overline{10} \overline{0} \overline{18} \overline{6} \overline{1} \overline{5} \overline{4} \overline{2} \overline{4} \overline{4}$


212238667 206 12319022524213239

## $\overline{250} \overline{14} \overline{4}-\overline{93}-\overline{31}$



| T | $2 \quad{ }^{2} 3$ | $3 \quad 64$ | 4 B 5 | $5 \quad \mathrm{~V} 6$ | $6 \quad \mathrm{C} 7$ | 7 z |  | $8 \quad 1{ }^{9}$ | $9 \quad 10$ | $10 \mathrm{~F} /$ | 11 O |  | 12 W | 13 Y |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $14 \quad \mathrm{k} 1$ | 15 G |  | $16 \quad H 17$ | $17 \quad 18$ | 18 G 19 | 19 | 20 L |  | 21 W | 22 s | 23 | 24 K | 25 | 26 T |
| 27 G |  | 28 C | 29 W 3 | 30 P 3 | 31 z |  | 32 T | 33 A |  | $34 \quad \mathrm{~K}$ | 35 B | 36 F | 37 R |  |
| 38 N |  | 39 z 4 | $40 \quad 14$ | $41 \quad 14$ | 42 J 4 | 43 O | 44 G | 45 U |  | 46 k | 47 H |  |  | 49 |
| 50 G | 51 D | 521 |  | 53 W 5 | 54 M 5 | 55 a |  | 56 J 5 | 57 P | $58 \times$ | 59 T | 60 | 61 A | 62 H |
|  |  | 64 H | 65 k | $66 \quad \mathrm{z}$ | 67 N 6 | 68 T | 69 L |  | $70 \quad 0$ | 71 U | 72 r | 73 K |  |  |
|  | 750 | $76 \quad \mathrm{G} 7$ | 77 M |  | $78 \quad \mathrm{H} 7$ | 79 a |  | $80 \times$ | 81 a | 82 | 83 E |  |  |  |
| 86 L | 87 |  | $88 \quad \mathrm{~F}$ | 89 W | 90 | 91 |  | $92 \times$ | 93 Z |  | 94 G | 95 T | 96 | 97 B |
|  | $98 \quad 5$ | $99 \quad 0$ |  | 100 Ft | 101 J |  | $102 \times 1$ | 103 W | 104 G | 105 K | 1068 | 107 L | 108 | 109 C |
| 110 V | 111 of | 112 Y | 113 N | 114 J |  | 115 U | $116 \mathrm{M} / 1$ | $117{ }^{\text {H }}$ | 118 a 1 | 119 A | 120 K | 121 | 122 W | 123 z |
| 124 G |  | 125 P 1 | 126 V |  | 127 D |  | 128 T/1 | 129 C | 130 a 1 | 131 F | 132 Z |  | 133 C | J |
| 135 a | 136 D | 137 Y | 138 A 1 | 139 U | 140 s |  | $141 \times 1$ | 1420 |  | 143 E |  | 144 K | 145 | 1462 |
| 147 T | 148 V |  | 149 G | 150 M 1 | 151 w |  | 152 D | 153 W | $154 \times$ |  | 155 C | 156 | 157 | v |
| 159 G |  | 160 U 1 | 1611 | 16201 | 163 W/1 | 164 D |  | 165 J | 166 A | 167 F | 1680 | 169 x | 170 в | 71 s |
| 172 O | 173 H 17 | 1741 |  | 175 a 1 | 176 T 1 | 177 c | 178 P 1 | 179 F | 1808 | 181 S |  | 182 L | 183 W | 1840 |
| 185 H | 186 $\times$ | 1871 | 188 U |  | 189 a | 190 Z |  | 191 W | 192 M |  | 193 F | 194 | 195 K | 1961 |
| 197 O | 198 U 1 | 199 D |  | 200 W | 201 E |  | 202 L | 203 C | 204 F | 205 H | 206 Z | 207 a | 208 V | 2095 |
|  | 210 U | 211 N | 212 z | 213 V | 214 | 215 | 216 Q | 217 H | 218 T | 219 E |  | 220 G | 221 U | 222 J |
| 223 F | 224 Y | 225 z | 226 W | 227 D | 228 H |  | 229 A | 230 F | 231 J | 232 K |  | 233 a | 234 H | 235 日 |
| 236 N |  | 237 M | 1238 z | 239 F | 240 N |  | 241 P | 242 z | 243 A | $244 \times$ |  | 245 L | 246 D |  |
| 247 V | 248 W | 2490 | 250 z | 251 TR | T252 c |  | 253 v | 254 | 255 P | 256 |  |  |  |  |

## PROBLEM DEPARTMEN <br> Edited by Clayton Dodge University of Maine

This department welcomes problems believed to be new and at a level appropriate for the readers of this journal. Old problems displaying novel and elegant methods of solution are also invited. Proposals should be accompaniedby solutions if available and by any information that will assist the editor. An asterisk (*) preceding a problem number indicates that the proposer did not submit a solution.

All communications should be addressed to C. W. Dodge, Math. Dept., University of Maine, Orono, ME 04469. Please submit each proposal and solution preferably typed or clearly written n a separate sheet (one side only) properly dentified with name and address. Solutions to problems in this issue should be mailed by December 15, 1991.

We generally publish 13 problems per issue, one alphametric followed by one to three problems from each of the areas listed below. To aid you in submitting problems for solution, each area is followed by the number of proposals currently in its file. Please notice that four folders are utterly empty. The areas are algebra (21), alphametrics (6), geometry (6), trigonometry (5), analysis (2), logic and combinatorics (0), number theory (0), probability and statistics (0), and miscellaneous (0).

## PROBLEMS FOR SOLUTION

## 745. Proposed by Alan Wayne, Holiday, Florida.

Find all solutions to

$$
\begin{array}{r}
E N I D \\
+\quad D I D \\
\hline D I N E .
\end{array}
$$

746. Proposed by Gregory Wulczyn, Bucknell University, Lewisburg, Pennsylvania

Find the least positive integer $n$ that will have remainder 1 when dividedby $r$, the quotient will have remainder 2 when divided by $r$, the new quotient will have remainder $\mathbf{3}$ when divided by $r$, and so forth through $r$ - $\mathbf{1}$ divisions. That is, $n=q_{0}$, and $\boldsymbol{q}_{k-1}=q_{k} r+k$ for $k=1,2, \ldots, r-1, r$ a positive integer greater than 1 .
747. Proposed by the late Jack Garfunkel, Flushing, New York.

Let $A B C$ be a triangle with inscribed circle (I) and let the line segments $A I, B I$, and $C /$ cut the incircle at $A^{\prime}, B^{\prime}$, and $C^{\prime}$ respectively. Prove that

$$
\sin A^{\prime}+\sin B^{\prime}+\sin C^{\prime} \geq \cos \frac{A}{2}+\cos \frac{B}{2}+\cos \frac{C}{2}
$$

where $A^{\prime}, B^{\prime}$, and $C^{\prime}$ are the angles of triangle $A^{\prime} B C^{\prime}$

748. Proposed by the late John Howell, Littlerock, California
a) An urn contains $n$ balls numbered 1 to $n$. Algernon, Beauregard, and Chauncey draw a ball one after another with replacement. The game is terminated when two consecutivedrawings produce the same ball. Find the pmbabilities of terminating on Algernon's draw, on Beauregard's draw, and on Chauncey's draw.
b) Repeat the problem for the case that the game terminates when three consecative drawings produce the same ball.
749. Proposer by R. S. Luthar, University of Wisconsin Center at Janesville, Janesville, Wisconsin.

If $\sin x+\sin y+\sin z=0$, then pmve that

$$
|\sin 3 x+\sin 3 y+\sin 3 z| \leq 12|x y z| .
$$

*750. Proposed by Dmitry P. Mavlo, Moscow, U.S.S.R.
Solve the system of equations
$2^{x} y+\left(3^{x}\right) \sqrt{1-y^{2}}=\sqrt{3}$ and $3^{x} y-\left(2^{x}\right) \sqrt{1-y^{2}}=\sqrt{2}$.

This problem appeared in the SYMP-86 Entrance Exam Mathematical Problems
751. Proposed by Murray S. Klamkin, University of Alberta, Edmonton, Alberta, Canada. Determine all pairs of positive numbers $x$ and $y$ such that

$$
9(x+y)+\frac{1}{x}+\frac{1}{y} \geq 10+\frac{x}{y}+\frac{y}{x}
$$

752. Proposed by the late Charles W. Trigg, San Diego, California

Martin Gardner ("Mathematical Games," Scientific American, April 1964, page 135) has shown that the minimum sum of three 3-digit primes that contain the nine non-zero digits is 999. Find a set of three such primes that sums to another multiple of 37.
753. Proposed by R. S. Luthar, University of Wisconsin Center at Janesville, Janesville Wisconsin.

Solve simultaneously

$$
e^{4 x}+e^{4 y}=82 \text { and } e^{x}-e^{y}=2
$$

754. Proposed by Seung-Jin Bang, Seoul, Korea.

Let $a,=a_{2}=1, a_{3}=2$, and $a_{n+1}=a_{n}-a_{n-1}+a_{n-2}$ for $n>3$. Show that

$$
a_{n+2} a_{n} a_{n-2}-a_{n+2} a_{n-1}^{2}-a_{n+1}^{2} a_{n-2}+2 a_{n+1} a_{n} a_{n-1}-a_{n}^{3}+3=0
$$

755. Proposed by Stanley Rabinowitz, Alliant Computer Systems Corp., Littleton, Massachusetts

In triangle $A B C$, a circle of radius $p$ is inscribed in the wedge bounded by sides $A B$ and

BC and the incircle ( $I$ ) of the triangle. A circle of radius $q$ is inscribedin the wedge bounded by sides $A C$ and $B C$ and the incircle. $\| p=q$, prove that $A B=A C$.

756. Proposed by Basil Rennie, Burnside, South Australia.

Consider covering the unit interval $[0,1]$ with $n$ measurable subsets, under the constrain that all $n$ subsets must have the same centroid. The centroid $m$ of a set $E$ may be definedby $\int_{E}(x-m) \mathrm{dx}=0$. How can you choose the $n$ sets to minimize $m$ ?

For example, if $n=4$, it is possible to make $m=7 / 20$ by choosing the four sets $[0,2 / 5] \cup[9 / 10,1],[0,1 / 5] \cup[4 / 5,9 / 10],[1 / 20,1 / 4] \cup[[7 / 10,4 / 5]$, and $[0,7 / 10]$.
757. Proposedby Paul Anthony Coartney, graduate student, San Diego State University San Diego, California

Find the overall height of the pyramid formed from four spherical balls of radius $r$. Student solutions are especially solicited.

## SOLUTIONS

720. [Spring 1990] Proposedby the late Charles W. Trigg, San Diego, California

In base 4, find two repdyads, one the reverse of the other, whose squares are concatenations of two repdyads. A repdyad has the form abab...ab. For example, a base ten solution is
$8989^{2}=80802121$ and $9898=97970404$.
Solutionby WILLIAMH PEIRCE, Stonington, Connecticut.
Let $\mathrm{N}=$ ababbe a four-digit repdyad in base B . The square of N is an eight-digit number which must be of the form

$$
\mathbf{N}^{2}=\text { pqpqrsrs } .
$$

Then we must have that

$$
\text { (1) } \quad \begin{aligned}
N^{2} & =\left[(a B+b)\left(B^{2}+1\right)\right]^{2}=(a B+b)^{2}\left(B^{2}+1\right)^{2} \\
& =(p B+q)\left(B^{2}+1\right) B^{4}+(r B+s)\left(B^{2}+1\right) \\
& =\left(B^{2}+1\right)\left[(p B+q)\left(B^{4}-1\right)+(p B+q)+(r B+s)\right] .
\end{aligned}
$$

Now $\left(B^{2}+1\right)^{2}$ is a factor of the right side of the expression in the first displayed line, so it is a factor of the expression in the last line. Hence
(2) $\quad\left(B^{2}+1\right)$ must divide $(p B+q)+(r B+s)$.

Since $p, q, r$, and $s$ are digits in base $B$ and not all zero, then $(p B+q)+(r B+s)$ can range from 1 to $2 B^{2}-2$. Since $2 B^{2}-2$ is more than $B^{2}+1$ but less than twice $B^{2}+1$, the only way for (2) to hold is to have

$$
\text { (3) } \quad(p B+q)+(r B+s)=B^{2}+1
$$

[ $1 t$ is at this point that the search for repdyads of three or more pairs would end, since for example, when $N=$ ababab, the expression $B^{4}+B^{2}+1$ would have to divide $(p B+q)+(r B+s)$. This is not possible since $B^{4}+B^{2}+1$ is greater than $2 B^{2}-2$.]
Substituting (3) into (1) gives

$$
\text { (4) } N^{2}=\left(B^{2}+1\right)^{2}\left[\left(B^{2}-1\right)(p B+q)+1\right] \text {, }
$$

which will be consideredthe fundamental expression of the problem. It is necessary to find values of $p B+q$ that make the expression in brackets in (4) a square. That is,
(5) $\left(B^{2}-1\right)(p B+q)+1$ is a perfect square.

When B is small, a direct search suffices. [General parametric methods for solving (5) are not included here.]

Two values of $\mathrm{pB}+\mathrm{q}$ that satisfy (5) are $\mathrm{pB}+\mathrm{q}=\mathrm{B}^{2}-3$ and $\mathrm{pB}+\mathrm{q}=\mathrm{B}^{2}-2 \mathrm{~B}$.
If $p B+q=B^{2}-3$, then $a=B-1, b=B-2, p=B-1, q=B-3$, and $r B+s=4$. If $B>4$, then $r=0$ and $s=4$. If $B=4$, then $r=1$ and $s=0$. If $B=3$, then $r=s=1$. Thisisnotasolution for $\mathrm{B}<3$.

If $p B+q=B^{2}-2 B$, then $a=B-2, b=B-1, p=B-2, q=0$, and $r B+s=2 B+1$, so r $=2$ and $s=1$. This solution holds for all $\mathbf{B}>1$.

Hence, for $\mathrm{B}=4$, we have the two required solutions

$$
\begin{aligned}
& \mathbf{N}=3232 \text { and } \mathbf{N}^{2}=31311010 \\
& \mathbf{N}=2323 \text { and } \mathbf{N}^{2}=20202121 .
\end{aligned}
$$

There are no other base 4 solutions
The illustrations given in the proposal are examples of these two solutions for base ten. Other bases can have additional solutions. For example, bases 5, 7, and 9 have six solutions, and base 11 has fourteen solutions. Selected solutions appear in the table below.

| Base | Repmonads | Repdyads | Repdyads | Reptriads |
| :---: | :---: | :---: | :---: | :---: |
| 3 |  | 1212 | 2121 | 221221 |
| 4 |  | 2323 | 3232 | 332332 |
|  |  |  |  | 313313 |
| 5 | 33 | 1212 | 2121 |  |
|  |  | 2323 | 3232 |  |
| 6 | 44 | 3434 | 4343 |  |
| 6 | 4545 | 5454 | 554554 |  |
|  |  |  |  | 443443 |
|  |  |  |  | 112112 |

The method outlined abovecan be used to study repmonads ( $N=\mathbf{a a}, \mathbf{N}^{2}=p p q q$ ), reptriads ( $N=$ abcabc, $\mathbf{N}^{2}=$ pqrpqrstustu), etc. There is always at least one solution.

Subjects for further study would be 1) showing the specific relation between the number of solutions and the prime factors of $B-1$ for repmonads, of $\mathbf{B}^{2}-1$ for repdyads, of $\mathbf{B}^{3}-1$ for reptriads, etc., and 2) proving or dispmving that repdyads are the only case where reversals of solutions are also solutions.

Also solved by CHARLES ASHBACHER, Hiawatha, IA, KAREN L. COOK, Lantana, FL, VICTOR G. FESER, University of Mary, Bismarck,ND, RICHARDI. HESS, Rancho Palos Verdes, CA, NATHAN JASPEN, Stevens Institute of Jechnology, Hoboken, NJ, DEREK LEDBETTER, University of Florida, Gainesville, HENRY S. LIEBERMAN, Waban, MA, KENNETH M. WILKE, Topeka, KS, and the PROPOSER.
721. [Spring 1990] Proposed by Robed C. Gebhardt, Hopatcong, New Jersey. Evaluate the integral

$$
\int \frac{b-\cot a x}{1+b \cot a x} d x
$$

I. Solution by the PROPOSER.

Multiplying numerator and denominator by $\sin \mathrm{ax}$, we get

$$
\begin{aligned}
\int \frac{b \sin a x-\cos a x}{\sin a x+b \cos a x} d x & =-\frac{1}{a} \int \frac{a \cos a x-a b \sin a x}{\sin a x+b \cos a x} d x \\
& =-\frac{1}{a} \ln |\sin a x+b \cos b x|+C
\end{aligned}
$$

II. Solution by GEORGE P. EVANOVICH, Saint Peter3 College, Jersey City, New Jersey. Let $t=\tan a x$, so that $x=\frac{1}{a} \arctan t$ and $d x=\frac{d t}{a\left(1+t^{2}\right)}$. Then we have that

$$
\int \frac{b-\cot a x}{1+b \cot a x} d x=\int \frac{b \tan a x-1}{\tan a x+b} d x
$$

$=\frac{1}{a} \int \frac{b t-1}{(t+b)\left(1+t^{2}\right)} d t$
$=-\frac{1}{a} \int \frac{d t}{t+b}+\frac{1}{a} \int \frac{t d t}{1+t^{2}}$
$=-\frac{1}{a} \ln |t+b|+\frac{1}{2 a} \ln \left|1+t^{2}\right|+C$
$=\frac{1}{a} \ln |\sec a x|-\frac{1}{a} \ln |\tan a x+b|+C$.

Also solved by JOHN T. ANNULIS, University of Arkansas-Monticello, CHARLES ASHBACHER, Hiawatha, IA, MOHAMMAD K. AZARIAN, University of Evansville, IN, SEUNG-JIN BANG, Seoul, Korea, FRANK P BATTLES (two solutions), Massachusetts Maritime Academy, Buzzards Bay, MARTIN BAZANT, Tucson, AZ, J. D. BRASHER, Teledyne Brown Engineering, Huntsville, AL, MARTIN J. BROWN, Jefferson Community College, Louisville, KY, CAVELAND MATH GROUP, Western Kentucky University, Bowling Green, KAREN L. COOK, Lantana, FL, ROBERT I. EGBERT, The Wichita State University, KS, STEPHEN HALE, Drake University,-Des Moines, IA, IEM HENG, Providence College, RI, RICHARD I. HESS, Rancho Palos Verdes, CA, NATHAN JASPEN, Stevens Institute of Technology, Hoboken, NJ, R. N. KALIA, St. Cloud State University, MN, RALPH E. KING, St. Bonaventure University, NY, MURRAY S. KLAMKIN, University of Alberta, Edmonton, Canada, DEREK LEDBETTER, University of Florida, Gainesville, HENRY S. LIEBERMAN, Waban, MA, PETER A. LINDSTROM, Nodh Lake College, Irving, JX, DAVID E. MANES, SUNY at Oneonta, G. MAVRIGIAN, Youngstown State University, OH, LEV S. NAKHAMCHIK, Willowdale, Ont., Canada, OXFORD RUNNING CLUB, University of Mississippi, University, I. PHILIP SCALISI, Bridgewater State College, MA, HARRY SEDINGER, St. Bonaventure University, NY, WADE H. SHERARD, Furman University, Greenville, SC, SAHIB SINGH, Clarion University of Pennsylvania, TIMOTHY SIPKA, Alma College, MI, and KENNETH L. YOKOM, South Dakota State University, Brookings.
722. [Spring 1990] Proposed by Robed C. Gebhardt, Hopatcong, New Jersey.

On Interstate 84 in Connecticut a road sign, indicating a route number change, reads

> NOTICE
> 66
> IS NOW
> 322.

This, of course, is startling news to mathematicians. But consider: in what base would the number 66 equal 322 in what other base?

Solution by S. GENDLER, Clarion University of Pennsylvania, Clarion, Pennsylvania. Let $x$ be the base of the number 66 and $y$ be the base for 322. Then

$$
6 x+6=2+2 y+3 y^{2} \text { so } y=0(\bmod 2) .
$$

Also 3 divides $2+2 y$, so that $y=2(\bmod 3)$.
By the Chinese remainder theorem, $y=2+6 n$ for any integer $n$, so that

$$
6 x+6=2+2(2+6 n)+3(2+6 n)^{2}
$$

from which we get that

$$
\boldsymbol{x}=\mathbf{2}+14 n+18 n^{2} \quad \text { and } \quad \boldsymbol{y}=\mathbf{2}+\mathbf{6} \boldsymbol{n}
$$

for any integer $n>0$ (since $x>7)$. Some solutions $(x, y)$ are $(34,8),(102,14),(206,20)$, and (346,261.

Full solutions were submitted by DAVID ASCHBRENNER and KENDALL BAILEY, Drake University, Des Moines, IA, SEUNG-JINBANG, Seoul, Korea, FRANK P. BATTLES, Massachusetts Maritime Academy, Buzzards Bay, MARTIN BAZANT, Tucson, AZ, JEFFREY JOHN BOATS, St. Bonaventure University, NY, BARRY BRUNSON, Western Kentucky University, Bowling Green, CAVELAND MATH GROUP, Western Kentucky University, Bowling Green, JOE DeMAIO, Emory University, Lenoir, NC, GEORGE P. EVANOVICH, Saint Peter's College, Jersey City, NJ, MARK EVANS, Louisville, KY, VICTOR G. FESER, University of Mary, Bismarck, ND, RICHARD I. HESS, Rancho Palos Verdes, CA, the lateJOHN M. HOWELL, Littlerock, CA, NATHANJASPEN, Stevens Institute of Technology, Hoboken, NJ, DEREK LEDBETTER, University of Florida, Gainesville, CARL LIBIS, Granada Hills, CA, DAVID E. MANES, SUNY at Oneonta, LEV S. NAKHAMCHIK, Willowdale, Ont., Canada, WILLIAM H. PEIRCE, Stonington, CT, DAMEN PETERSON, Alma College, MI, WADE H. SHERARD, Furman University, Greenville, SC, SAHIB SINGH, Clarion University of Pennsylvania, TIMOTHY SIPKA, Alma College, MI, KENNETH M. WILKE, Topeka, KS, DAVID YAVENDITI, Alma, MI, KENNETH L. YOKOM, South Dakota State University, Brookings, and the PROPOSER.

At least one solution was submitted by CHARLES ASHBACHER, Hiawatha, IA, MARTIN J. BROWN, Jefferson Community College, Louisville, KY, BARBARA TON FERULLO, Boylston, MA, MICHAEL W. LANSTRUM, Kent State University, OH, HENRYS. LIEBERMAN, Waban, MA, LOWELL F. LYNDE, JR., University of Arkansas at Monticello, and MIKE PINTER, Belmont College, Nashville, TN.

One incorrect solution was received.
723. [Spring 1990] Proposed by John L. Leonard, University of Arizona, Tucson, Arizona. Show that, for any positive integers $n$ and $k$, the product

$$
(1+n)\left(1+\frac{n}{2}\right)\left(1+\frac{n}{3}\right) \cdots\left(1+\frac{n}{k}\right)
$$

is always an integer.
Solution by DAVID YAVENDITI, Alma, Michigan.
We have that

$$
\begin{aligned}
(1+n)\left(1+\frac{n}{2}\right. & \left(1+\frac{n}{3}\right) \cdots\left(1+\frac{n}{k}\right) \\
& =\left(\frac{n+1}{1}\right)\left(\frac{n+2}{2}\right)\left(\frac{n+3}{3}\right) \cdots\left(\frac{n+k}{k}\right) \\
& =\frac{(n+k)!}{n k}=\binom{n+k}{n}
\end{aligned}
$$

which is a positive integer for all positive integers n and k .
Also solved by JOHN T. ANNULIS, University of Arkansas-Monticello, CHARLES ASHBACHER, Hiawatha, IA, KENDALL BAILEY and SEAN FORBES, Drake University, Des Moines. IA, SEUNG-JIN BANG, Seoul, Korea, FRANK P. BATTLES, Massachusetts Maritime Academy, Buzzards Bay, CAVELAND MATH GROUP, Western Kentucky University, Bowling Green, DAVID DELSESTO, North Scituate, RI, GEORGE P. EVANOVICH, Saint Peter's College,

Jersey City, NJ, MARK EVANS, Louisville, KY, VICTOR G. FESER, University of Mary, Bismarck, NO, the late JACK GARFUNKEL, Flushing, NY, ROBERT C. GEBHARDT, Hopatcong. NJ, S. GENDLER, Clarion University of Pennsylvania, DICK GIBBS, Fort Lewis College, Durango, CO, RICHARDI. HESS. Rancho Palos Verdes. CA, NATHAN JASPEN, Stevens Institute of Technology, Hoboken, NJ, DEREK LEDBETTER, University of Florida, Gainesville,CARLLIBIS, GranadaHills, CA, HENRYS. LIEBERMAN, Waban, MA, PETER A. LINDSTROM, NorthLakeCollege, living, TX, DAVID E. MANES, SUNY at Oneonta, LEV S. NAKHAMCHIK, Willowdale, Ont., Canada, OXFORD RUNNING CLUB, University of Mississippi, University, WILLIAM H. PEIRCE, Stonington, CT, DAMEN PETERSON, Alma College, MI, BOB PRIELIPP, University of Wisconsin-Oshkosh, JOHN PUTZ, Alma College, MI, VIVEK RATAN, Wesleyan University, Middletown, CT, HARRY SEDINGER, St. Bonaventure University, NY, WADE H. SHERARD, Furman University, Greenville, SC, SAHIB SINGH, Clarion University of Pennsylvania, TIMOTHY SIPKA, Alma College, MI, UNIVERSITY OF ARIZONA PROBLEM SOLVING LAB. Tucson. KENNETH M. WILKE (2 solutions), Topeka, KS, KENNETH L. YOKOM, South Dakota State University, Brookings, and the PROPOSER.
724. [Spring 1990] Proposed by Murray S. Klamkin, University of Alberta, Edmonton, Alberta. Canada.

Which of the followingtriangle inequalities, if any, are valid?

```
max{ [\mp@subsup{h}{a}{},\mp@subsup{h}{b}{},\mp@subsup{h}{d}{}}\geq\operatorname{min}{\mp@subsup{m}{a}{},\mp@subsup{m}{b}{},\mp@subsup{m}{c}{}},
```

$\max \left\{w_{a}, w_{b}, w_{c}\right\} \geq \min \left\{m_{a}, m_{b}, m_{c}\right\}$,
$\min \left\{w_{a}, w_{b}, w_{c}\right\} \geq \min \left\{m_{a}, m_{b}, m_{c}\right\}$.

As usual, $h_{a}, m_{a^{\prime}} \boldsymbol{w}_{a^{\prime}}$ etc., denote the altitude, median, and angle bisector, respectively, to side a.
I. Solution by RICHARD I. HESS, Rancho Palos Verdes, California.

Consider the triangle with vertices at $A(0,0), B(1,0)$, and $C(1000,1)$. Then $h_{\max }=h_{c}=1$, $\boldsymbol{w}_{\text {min }}=\boldsymbol{w}_{b}<1$, and $\boldsymbol{m}_{\text {min }}=\boldsymbol{m}_{b}>499$, so inequalities (1) and (3)are false.

Inequality (2)is true. Let $a \leq b \leq c$. Then $w_{\text {max }}=w_{a}$ and $m_{\text {min }}=m_{c}$. Then $\boldsymbol{w}_{a} \geq h_{\mathrm{a}}$ and $\cos$ $C \leq 1 / 2$ with equality if and only if $a=b=c$. Recall that $\boldsymbol{c}^{2}=\boldsymbol{a}^{2}+\boldsymbol{b}^{2}-2 a b \cos C$ by the law of cosines and that

$$
h_{a}^{2}=b^{2} \sin ^{2} C=b^{2}\left(1-\cos ^{2} C\right) \text { and } 4 m_{c}^{2}=2 a^{2}+2 b^{2}-c^{2}
$$

Now we have

$$
\begin{aligned}
4\left(h_{a}^{2}-m_{c}^{2}\right) & =4 b^{2}-4 b^{2} \cos ^{2} C-2 a^{2}-2 b^{2}+c^{2} \\
& =2 b^{2}-4 b^{2} \cos ^{2} C-2 a^{2}+a^{2}+b^{2}-2 a b \cos C \\
& =3 b^{2}-a^{2}-2 a b \cos C-4 b^{2} \cos ^{2} C \\
& 23 b^{2}-a^{2}-a b-b^{2} \\
& =(b-a)(2 b+a) \geq 0
\end{aligned}
$$

from which equation (2)follows.
II. Comment by the Editor

Unfortunately, somewhere between the proposal and the publication, one letter was changed. Inequality (3) should have read "mid" on the left. The correct proposed inequality is
(4) $\quad \operatorname{mid}\left\{w_{a}, w_{b}, w_{d}\right\} \geq \min \left\{m_{a}, m_{b}, m_{d}\right\}$.

I . Solution to Inequality (4) by the PROPOSER.
By considering an isosceles triangle with small vertex angle it follows that (4) is invalid.

## Also solved by the PROPOSER.

725. [Spring 1990] Proposed by Seung-Jin Bang, Seoul, Korea

Let $A, B, C$ be vectors, Let $\|A\|$ denote the usual norm of $A$, and let $p$ and $q$ be real numbers such that $\mathrm{p}+\mathrm{q}=1$. Show that

$$
\left\|\left(p^{2}+q^{2}\right) A+2 p q B+C\right\|^{2}-\left(p^{2}+q^{2}\right)\|A+C\|^{2}-2 p q\|B+C\|^{2}
$$

is independent of $\boldsymbol{C}$.
Solution by KENNETH L. YOKOM, South Dakota State University, Brookings, South Dakota.

$$
\begin{aligned}
\text { Let } a= & p^{2}+q^{2} \text { and } b=2 p q, \text { and note that } a+b=1 . \text { Then } \\
\|(a A+b B)+ & C\left\|^{2}-a\right\| A+C\left\|^{2}-b\right\| B+C \|^{2} \\
= & \|(a A+b B)\|^{2}+2 a\langle A, C\rangle+2 b\langle B, C\rangle+\|C\|^{2} \\
& -a\|A\|^{2}-2 a\langle A, C\rangle-a\|C\|^{2}-b\|B\|^{2}-2 b\langle B, C\rangle-b\|C\|^{2} \\
= & \|(a A+b B)\|^{2}-a\|A\|^{2}-b\|B\|^{2},
\end{aligned}
$$

which is independent of $C$.
Also solved by CHARLES ASHBACHER. Hiawatha. IA, KENDALL BAILEY, Drake University, Des Moines, IA, SUSAN BYE and LINDA RETTIG, St. Cloud State University, MN, CAVELAND MATH GROUP, Western Kentucky University, Bowling Green, CYNTHIA COYLE, Trenton State College, Laurel Springs, NJ, S. GENDLER (solution for 2-dimensional vectors), Clarion University of Pennsylvania, RICHARD I. HESS, Rancho Palos Verdes, CA, NGUYENHOA, St. Cloud State University, MN, SANDRA KEITH, St. Cloud State University, MN, DEREK LEDBETTER, University of Florida, Gainesville, HENRY S. LIEBERMAN, Waban, MA, YOSHINOBU MURAYOSHI, Eugene, OR, LEV S. NAKHAMCHIK, Willowdale, Ont., Canada, WILLIAM H. PEIRCE, Stonington, CT, WADE H. SHERARD, Furman University, Greenville, SC, MICHAEL R. SIEGFRIED, St. Cloud State University, MN, SAHIB SINGH, Clarion University of Pennsylvania, TIMOTHY SIPKA, Alma College, MI, DAVID YAVENDITI, Alma, MI, and the PROPOSER
726. [Spring 1990] Proposed by the late Jack Garfunkel, Flushing, New York.

Given that $x, y, z>0$ and $x+y+z=1$, prove that

$$
\sqrt[3]{1+x}+\sqrt[3]{1+y}+\sqrt[3]{1+z} \leq \sqrt[3]{36}
$$

I. Solution by HENRY S. LIEBERMAN, Waban, Massachusetts

Let $a=1+x, b=1+y$, and $c=1+z$. Then $a, b$, and $c$ are positive and $a+b+c=4$. It is known (cf. Hall and Knight, Higher Algebra, p. 216) that

$$
\frac{\sqrt[3]{a}+\sqrt[3]{b}+\sqrt[3]{c}}{3} \leq \sqrt[3]{\frac{a+b+c}{3}}
$$

Hence

$$
\sqrt[3]{1+x}+\sqrt[3]{1+y}+\sqrt[3]{1+z} \leq 3 \sqrt[3]{\left(\frac{4}{3}\right)}
$$

and the theorem follows.
II. Solution by CAVELAND MATH GROUP, Western Kentucky University, Bowling Green. Kentucky.

Writing $z=1-x-y$, we will show that $\sqrt[3]{36}$ is the maximum value of

$$
f(x, y)=\sqrt[3]{1+x}+\sqrt[3]{1+y}+\sqrt[3]{2-x-y}
$$

over the closed rectangle $[0,1] \times[0,1]$. The desired result then follows immediately. Now

$$
f_{x}(x, y)=\frac{1}{3}(1+x)^{-2 / 3}-\frac{1}{3}(2-x-y)^{-2 / 3}
$$

which is zero when $y+2 x=1$ or $y=3$. We discard the latter value. By symmetry, $f_{y}=0$ when $x+2 y=1$. Solving this linear system gives $(x, y)=(113,113)$ as the only critical point in the domain.

To see that $f(1 / 3,1 / 3)=\sqrt[3]{36}$ is a maximum, we show that $f(x, y)$ is less than this value along the boundary of the square. if $x=0$, then

$$
(0, y)=1+\sqrt[3]{1+y}+\sqrt[3]{2-y}=g(y)
$$

and

There is a critical value for $g$ in $[0,1]$ at $y=112$, so we find

$$
g(0)=g(1)=2+\sqrt[3]{2} \dot{=} .26 \text { and } g\left(\frac{1}{2}\right)=1+2 \sqrt[3]{\frac{3}{2}}=3.29
$$

both less than $\sqrt[3]{36}=3.30$. By the symmetry of $t$, the same values occur along the edge $y=0$ of the square.

For the edge $x=1$ we have

$$
f(1, y)=\sqrt[3]{2}+\sqrt[3]{1+y}+\sqrt[3]{1-y}=h(y)
$$

and

$$
h^{\prime}(\eta)=\frac{1}{3}(1+y)^{-2 \beta}-\frac{1}{3}(1-y)^{-2 / 3}
$$

Since $h$ has a critical point at $y=0$, we calculate

$$
h(0)=2+\sqrt[3]{2} \div 3.26 \quad \text { and } \quad h(1)=2 \sqrt[3]{2} \quad 2.52
$$

both less than $\sqrt[3]{36}$. By symmetry, this same situation exists along the edge $y=1$, too, and the proof is complete.

## III. Solutionand generalizationby MURRAY S. KLAMKIN, University of Alberta, Edmonton

 Alberta, Canada.If $F(t)$ is a concave function and $x_{1}+x_{2}+\ldots+x_{n}=s$, then by Jensen's inequality,

$$
F\left(x_{1}\right)+F\left(x_{2}\right)+\ldots+F\left(x_{n}\right) \leq n F(s / n) .
$$

The given inequality corresponds to the special case $n=3, F\left(Q=\sqrt[3]{1+t}\right.$ and $x_{i} \geq-1$.
Also solved by MOHAMMAD K. AZARIAN, University of Evansville, IN, SEUNG-JIN BANG, Seoul, Korea, GEORGE P. EVANOVICH, Saint Peter's College, Jersey City, NJ, MARK EVANS, Louisville. KY, ROBERT C. GEBHARDT, Hopatcong, NJ, DICK GIBBS, Fort Lewis College, Durango, CO, RICHARD 1. HESS, Rancho Palos Verdes, CA, YOSHINOBUMURAYOSHI, Eugene, OR, LEV S. NAKHAMCHIK, Willowdale. Ont., Canada, OXFORD RUNNING CLUB, University of Mississippi, University, BOB PRIELIPP, University of Wisconsin-Oshkosh, HARRY SEDINGER, St. Bonaventure University, NY, TIMOTHY SIPKA, Alma College, MI, KENNETH L. YOKOM, South Dakota State University, Brookings, and the PROPOSER.
727. [Spring 1990] Proposed by the late Jack Garfunkel, Flushing, New York.

If $A, B, C$ are the angles of a triangle $A B C$, prove that

$$
2+\Pi \cos \frac{B-C}{2}=2 \sum \cos A
$$

Solution by MURRAY S. KLAMKIN, University of Alberta, Edmonton, Alberta, Canada. Since

$$
\sum \cos A=1+4 \prod \sin \frac{A}{2}
$$

the given inequality is equivalent to

$$
\Pi \cos \frac{B-C}{2} \geq 8 \Pi \sin \frac{A}{2} .
$$

The latter inequality appeared by the proposer as Problem 585, Crux Mathematicorum, 7(1981)p.303. In the solution there I had shown that it was equivalent to the known elementary inequality

$$
(b+c)(c+a)(a+b) \geq 8 a b c .
$$

This follows from

$$
\frac{\mathrm{b}+\mathrm{c}}{\mathrm{a}}=\frac{\sin B+\sin C}{\sin A}=\frac{2 \cos \frac{A}{2} \cos \frac{B-C}{2}}{2 \sin \frac{A}{2} \cos \frac{A}{2}}=\frac{\cos \frac{B-C}{2}}{\sin \frac{A}{2}}
$$

etc.
Also solvedby HENRY S. LIEBERMAN, Waban, MA, YOSHINOBUMURAYOSHI, Eugene, OR, BOB PRIELIPP, University of Wisconsin-Oshkosh, and the PROPOSER.
728. [Spring 1990] Proposed by Dmitry P. Mavlo, Moscow, U.S.S.R.

The distance between towns $A$ and $B$ is 5 km . A straight road passes throughtown $A$ and forms the angle $\mathrm{a}=\arccos$ (415)with the line $A B$. Two hikers leave town $A$ at the same time and arrive at town $B$ simultaneously. The first hiker goes by the direct route at 4 kmlhr The second hiker first travels along the road at $6 \mathrm{~km} / \mathrm{hr}$ and then turns off the road and goes directly to $B$ at $4 \mathrm{~km} / \mathrm{hr}$. Find the distance traveled by the second hiker.


Solution by FRANK P. BATTLES, Massachusetts Maritime Academy, Buzzards Bay, Massachusetts.

More generally, let dbe the distance between towns $A$ and $B$, wthe speed of the second hiker along the mad, $v$ (with $w>v$ ) the speed of the first hiker and of the second hiker when he changes direction and heads directly to $B$, and a the angle between the road and the segment $A B$. Let C be the point on the mad at which the second hiker turns, and the time the second hiker travels along the road. The total time of travel is $d / v$, so the second hiker travels from C to B in time $d / v-t$. Then the distance CB is given by $v(d / v-t)=d-t v$. From the law of cosines we have

$$
(w t)^{2}+d^{2}-2 w t d \cos \alpha=(d-t)^{2}
$$

Next we solve fort, obtaining

$$
t=\frac{2 d(w \cos \alpha-v)}{w^{2}-v^{2}}
$$

Clearly we must have $\mathrm{w} \cos \mathrm{a}>\mathrm{v}$. Then the distance travelled by the second hiker is

$$
w t+(d-t)=\frac{d}{v+w}(2 w \cos \alpha+w-V)
$$

Substituting the specific numbers given, we find that the second hiker travels 5.8 miles.
Also solvedby SEUNG-JINBANG, Seoul, Korea, MARTIN BAZANT, Tucson, AZ, MARTIN J. BROWN, Jefferson Community College, Louisville, CAVELAND MATH GROUP (two solutions), Western Kentucky University, Bowling Green, CYNTHIA COYLE, Trenton State College, Laurel Springs, NU, GEORGE P. EVANOVICH, Saint Peter's College, Jersey City, Nu MARK EVANS, Louisville, KY, ROBERT C. GEBHARDT, Hopatcong, NU, S. GENDLER, Clarion University of Pennsylvania, STEPHEN A. HERR, Alma College, MI, RICHARD I. HESS, Rancho Palos Verdes, CA, NATHAN JASPEN, Stevens Institute of Technology, Hoboken, NU, RALPH E. KING (two solutions), St. Bonaventure University, NY, CARL LIBIS, Granada Hills, CA, HENRY S. LIEBERMAN, Waban, MA, PETER A. LINDSTROM, North Lake College, Irving, TX, DAVID E. MANES, SUNY at Oneonta, G. MAVRIGIAN, Youngstown State University, OH, LEON MOSER, Hunter College, New York, NY, YOSHINOBUMURAYOSHI, Eugene, OR. LEV S. NAKHAMCHIK, Willowdale, Ont., Canada, OXFORD RUNNING CLUB, University of Mississippi, University, MIKE PINTER, BelmontCollege, Nashville. TN, BOB PRIELIPP, University of Wisconsin-Oshkosh, JOHN PUTZ, Alma College, MI, VIVEK RATAN, Wesleyan University, Middletown, CT, HARRY SEDINGER, St. Bonaventure University, NY, WADE H. SHERARD, Furman University, Greenville, SC, SAHIB SINGH, Clarion University of Pennsylvania. TIMOTHY SIPKA, Alma College, MI, KENNETH M. WILKE, Topeka, KS, DAVID YAVENDITI, Alma, MI, KENNETH L. YOKOM, South Dakota State University, Brookings, and the PROPOSER.
729. [Spring 1990] Proposedby the late Jack Garfunkel, Flushing, New York.

Given a non-obtuse triangle $A B C$ with altitude $C D=$ hdrawn to side $A B$, denote the inradii of triangles $A C D, B C D$, and $A B C$ by $r_{1}, r_{2}$, and $r_{3}$, respectively. Prove that if $r_{1}+r_{2}+r_{3}=\boldsymbol{h}$ then triangle $A B C$ is a right triangle with right angle at $C$.

I. Solution by HENRY S. LIEBERMAN, Waban, Massachusetts.

We first prove the following lemma.
Lemma: Let ABC be a triangle with inradius $r$, semiperimeter $s$, and side lengths $a, b$, and c. Then $A B C$ is a right triangle with right angle at $C$ if and only if $r=s^{-} C$.

Let 1 be the incenter and IE and $I F$ the inradii to sides $C A$ and $B C$, as shown in the figure. It is well-known (and easy to prove from the fact that the two tangents from an exterior point to a circle are equal in length) that $C E=C F=s-c$. If angle Cis a right angle, then CEIF is a square, so $r=s \cdot c$. Conversely, if $r=s \cdot c$, then CEIF is a rhombus with two right angles, therefore a square. So angle $C$ is a right angle. The lemma is proved.

By the lemma,

$$
r_{1}=\frac{b+A D+h}{2}-b=\frac{A D+h-b}{2} \text { and } r_{2}+\frac{B D+h-a}{2},
$$

whence

$$
r_{1}+r_{2}=h+\frac{c-b-a}{2}
$$

because $A D+D B=\boldsymbol{c}$ when neither angle $A$ nor $B$ is obtuse. Therefore,

$$
r_{1}+r_{2}+r_{3}=h \quad \text { lff } \quad r_{3}=\frac{a+b-c}{2}
$$

Because this last condition is an "if and only if" statement, we have proved both the theorem and its converse, that if ABC is a right triangle with right angle at $C_{\text {, then }} r_{1}+r_{2}+r_{3}=h$.
II. Comment by Murray S. Klamkin and Andy Liu, University of Alberta, Edmonton, Alberta, Canada.

By using the general formula $r s=$ area, we have that

$$
r_{1}=\frac{h b \cos A}{\boldsymbol{h}+\boldsymbol{b}(1+\cos A)}, r_{2}=\frac{h a \cos B}{\boldsymbol{h}+\boldsymbol{a}(1+\cos B)}, r_{3}=\frac{h c}{\boldsymbol{a}+\boldsymbol{b}+\boldsymbol{c}}
$$

and $h=b \sin A=a \sin B$. Then $r_{1}+r_{2}+r_{3}=h$ becomes

$$
\text { (1) } \begin{array}{ccc}
\cos A & \cos B & \sin C \\
\hline 1+\cos A+\sin A & 1+\cos B+\sin B & \sin A+\sin B+\sin C
\end{array}=1
$$

Equation (1)can independently be proved equivalent to the condition that $A B C$ is a right triangle with right angle at $C$. First, we note that

$$
\begin{aligned}
\frac{\cos A}{1+\cos A+\sin A} & =\frac{(1+\cos A-\sin A) \cos A}{(1+\cos A)^{2}-\sin ^{2} A} \\
& =\frac{1}{2}\left(1-\frac{\sin A}{1+\cos A}\right)=\frac{1}{2}-\frac{1}{2} \tan \frac{A}{2}
\end{aligned}
$$

etc. Also

$$
\sin A+\sin B+\sin C=4 \cos \frac{A}{2} \cos \frac{B}{2} \cos \frac{C}{2} .
$$

Then Equation (1) reduces to

$$
\frac{1}{2}-\frac{1}{2} \tan \frac{A}{2}+\frac{1}{2}-\frac{1}{2} \tan \frac{B}{2}+\frac{\sin \frac{C}{2}}{2 \cos \frac{A}{2} \cos \frac{B}{2}}=1 .
$$

Now use the relation

$$
\tan \frac{A}{2}+\tan \frac{B}{2}=\tan \left(\frac{A}{2}+\frac{B}{2}\right)\left(1-\tan \frac{A}{2} \tan \frac{B}{2}\right)
$$

to simplify the equation to $\sin (A+B) / 2=\sin C / 2$, and finally to $\tan C / 2=1$, which is equivalent to $C=\pi / 2$.

Also solved by GEORGE P. EVANOVICH, Saint Peter's College, Jersey City, NJ, NATHAN JASPEN, Stevens Institute of Technology, Hoboken, NJ, MURRAY S. KLAMKIN and ANDY LIU, University of Alberta. Canada, BOB PRIELIPP, University of Wisconsin-Oshkosh,TIMOTHY SIPKA, Alma College, MI, DAVID YAVENDITI, Alma, Mi, and the PROPOSER.

## 730. [Spring 1990] Proposed by R. S. Luthar, University of Wisconsin Center, Janesville,

 Wisconsin.Solve in integers the equation

$$
2 x y+13 x-5 y-11=4 x^{3}
$$

Solutionby JOHN T. ANNULIS, University of Arkansas at Monticello, Monticello, Arkansas.
Solving the equation for y yields

$$
y=\frac{4 x^{3}-13 x+11}{2 x-5}=2 x^{2}+5 x+6+\frac{41}{2 x-5}
$$

The only integer solutions are those in which $2 x-5$ is a factor of 41 . Hence $\mathbf{2 x}-5$ equals $\pm 1$ or $\pm 41$, yielding the solutions

$$
(x, y)=(2,-17),(3,80),(-18,563), \text { and }(23,1180)
$$

Also solved by CHARLES ASHBACHER, Hiawatha, IA, STEVE ASCHER, McNeil Pharmaceutical, Spring House. PA, SEUNG-JIN BANG, Seoul, Korea, FRANK P. BATTLES, Massachusetts Maritime Academy, Buzzards Bay, MARTIN J. BROWN, Jefferson Community College, Louisville, CAVELAND MATH GROUP, Western Kentucky University, Bowling Green, GEORGE P. EVANOVICH, Saint Peter's College, Jersey City, NJ, MARK EVANS, Louisville, KY, VICTOR G. FESER, University of Mary, Bismarck,ND, the late JACK GARFUNKEL, Flushing, NY, ROBERT C. GEBHARDT, Hopatcong, NJ, S. GENDLER, Clarion University of Pennsylvania, RICHARD I. HESS, Rancho Palos Verdes. CA, NATHANJASPEN, Stevens Instituteof Technology, Hoboken, NJ, RALPH E. KING, St. Bonaventure University, NY, MURRAY S. KLAMKIN, University of Alberta, Canada, JAMIE KONRAD, Rockford College, IL, DEREK LEDBETTER, University of Florida. Gainesville. HENRY S. LIEBERMAN, Waban. MA. CARL LIBIS, Granada Hills, CA, G. MAVRIGIAN, YoungstownState University, OH, LEV S. NAKHAMCHIK, Willowdale, Ont., Canada, WILLIAM H. PEIRCE, Stonington, CT, DAMEN PETERSON, Alma College, MI, BOB PRIELIPP, University of Wisconsin-Oshkosh,SAHIB SINGH, Clarion University of Pennsylvania, TIMOTHY SIPKA, Alma College, MI, KENNETH M. WILKE, Topeka, KS, DAVID YAVENDITI, AIma, MI, KENNETH L. YOKOM, South Dakota State University, Brookings, and the PROPOSER. Occasional arithmetic errors on some of the submissions were overlooked, which is a general policy of this editor.

Partial solutions were submitted by MOHAMMAD K. AZARIAN, University of Evansville, IN, KAREN L. COOK, Lantana, FL, JOE DEMAIO, Emory University, Lenoir, NC, and WADE H. SHERARD, Furman University, Greenville, SC.

## 731. [Spring 1990] Proposed by Roger Pinkham, Stevens Institute of Technology,

 Hoboken, New Jersey.a) Show that on the lattice points in the plane having integer coordinatesone cannot have the vertices of an equilateral triangle.
*b) What about a tetrahedron in 3-space?
I. Solution to Part (a) by the late JACK GARFUNKEL, Flushing, New York.

Let a triangle have vertices $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)$, and $\left(x_{3}, y_{3}\right)$. The area of the triangle is

which is an integer whenever the coordinates are all integers. However, the area of an equilateral triangle is given by the well-known formula

$$
A=\frac{s^{2}}{4} \sqrt{3}=\frac{\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}}{4} \sqrt{3}
$$

which is irrational when the coordinates are integers. Hence, a contradiction, proving Part (a).
II. Solution to Part (a) by S. GENDLER, Clarion University of Pennsylvania, Clarion, Pennsylvania.

Assume there is such a triangle. Translate it so its vertices are at $O(0,0), P(a, b), Q(c, d)$ with all coordinates integers. We assume that any common factor of $a, b, \boldsymbol{c}$, and $d$ has been divided out, so that the triangle is of smallest possibledimensions. Since the triangle is equilateral, we must have that $\mathrm{OP}^{2}=\mathrm{PQ}^{2}=\mathrm{OQ}^{2}$, that is,

$$
a^{2}+b^{2}=(a-c)^{2}+(b-d)^{2}=c^{2}+d^{2}
$$

The left inequality simplifies to

$$
2(a c+b d)=c^{2}+d^{2}
$$

Since the left side is even, then $c$ and dare both even or both odd. If both are odd, then

$$
a^{2}+b^{2}=c^{2}+d^{2} \equiv 2(\bmod 4)
$$

so both a and bare odd, too. But then $2(a c+b d) \equiv 0(\bmod 4)$, which is impossible. If $c$ and dare both even, then

$$
a^{2}+b^{2}=c^{2}+d^{2} \equiv 0(\bmod 4)
$$

and $a$ and $b$ must both be even, contradicting our hypothesis that triangle $O P Q$ is smallest possible. Hence there are no solutions.
III. Commentby Seung-Jin Bang, Seoul, Republic of Korea.

Part (a) of this problem appeared in the mathematical competition of university students in Korea held in June 1989. The solution given there is essentially solution II above.
IV. Solutionto Part (b) by ALLENJ SCHWENK, WesternMichiganUniversity, Kalamazoo; Michigan.

In 3-space the situation is entirely different. Let us seek a tetrahedron of the form $O(0,0,0$ ), $\boldsymbol{A}(a, b, c), \boldsymbol{B}(b, c, a), \boldsymbol{C}(c, a, b)$ with $a, b$, and $c$ integers. Clearly we already have $O \boldsymbol{O A}=\boldsymbol{O B}=\boldsymbol{O C}$ and $A B=B C=C A$. Thus we need only have $O A=A B$, that is,

$$
a^{2}+b^{2}+c^{2}=(a-b)^{2}+(b-c)^{2}+(c-a)^{\prime} .
$$

Now use the quadratic formula to solve for $\boldsymbol{c}$, obtaining

$$
c=a+b \pm 2 \sqrt{a b}
$$

Writing $a=m^{2} r$, where $r$ is square-free, in order for cto be rational, then we must have $b=n^{\prime} r$. Thus a triple ( $a, b, c$ ) will give us a regular tetrahedron of lattice points of the form above if and only if $(a, b, c)=\left(m^{2} r, n^{2} r,(m \pm n)^{2} r\right)$, where $m, n$, and rare integers. (Note that $r$ need not be squarefree.) For example, the smallest equilateral lattice tetrahedron of this form is $(0,0,0),(0,1,1)$, $(1,1,0)$, and ( $1,0,1$ ).

## V. Comment by Murray S. Klamkin, University of Alberta, Edmonton, Alberta, Canada.

First, the word "regular" should be inserted in the statement of Part (b). Also, it has been shown that the only regular polygonthat canbe imbedded in a square lattice is the square [1, $\mathbf{p} .4]$. The only other regular polygons that can be imbedded in an n-dimensional cubic lattice are the triangle and the hexagon and $\mathrm{n}=3$ suffices [1, p.43]. It has been shown [2] that it is sometimes possible to imbed a regular $n$-simplex in an $n$-dimensionalcubic lattice. In particular, if $n \equiv 3$ (mod 4), that imbedding is always possible. Finally, a proof by Andy Liu and myself that the only regular polygons that can be imbedded in an equilateral triangular lattice are the triangle and the hexagon is to appear in Mathematics Magazine.

## References

1. H. Hadwiger, H. Debrunner, V. Klee, Combinatorial geometry in the Plane. New York: Holt, Rinehart and Winston, 1964.
2. I. J. Schoenberg, "Regular Simplices and Quadratic Forms," Jour. London Math. Soc. 12(1937)48-55.
VI. Comment by the Editor.

Two solvers of Part (a) cleverly took two vertices of the triangle to be located on the $x$-axis. One used the points $(0,0),(a, 0)$ and $(a / 2, b)$; the other used $(-a, 0),(a, 0)$, and $(0, b)$. In either case, the computations are simplified. It is not obvious, however, that such a choice of coordinates can be made without loss of generality. Clearly, translations are possible, so there is no harm in placing one vertex at the origin. One must prove, then, that if $(0,0),(p, q),(r, s)$ are points with integral coordinates, then it is possible to find a similar triangle $(0,0),(a, 0),(b, c)$ with integral coordinates

To that end, suppose a rotation-homothetycentered at the origin maps $(p, q)$ to $(a, 0)$, where $a, p$, and $q$ are integers. In complex numbers the mapping can be represented by $\boldsymbol{u}+$ viand we have

$$
(\mathrm{p}+q \lambda(u+v i)=\mathrm{a},
$$

which we solve for $u$ and vto get

$$
u=\frac{p a}{p^{2}+q^{2}} \quad \text { and } \quad v=\frac{-q a}{p^{2}+q^{2}}
$$

Hence $\boldsymbol{u}$ and vare rational. It follows that $(\mathrm{r}+s i)(u+v \boldsymbol{v})=\mathrm{b}+$ ciyields rational coordinates band $\boldsymbol{c}$. Now multiply each of $\mathrm{a}, \boldsymbol{b}$, and c by the common denominator $\rho^{2}+q^{2}$ to get the desired integra coordinates.

Also solvedby NATHANJASPEN, Stevens Institute of Technology, Hoboken, NU, DEREK LEDBETTER, University of Florida, Gainesville, andHENRY S. LIEBERMAN (Part (b) solution of the form of Solution IV above, found "while walking on a trail at the Audubon Society Sanctuary in Welffeet"), Waban, MA. Most solvers of Part (b) foundjust the one solutiongiven in the very last line of our Solution IV.

Part (a) solutions were submittedby CHARLES ASHBACHER, Hiawatha, IA, SEUNG-JIN BANG, Seoul, Korea, FRANK P. BATTLES, Massachusetts Maritime Academy, Buzzards Bay MARK EVANS, Louisville, KY, RICHARD I. HESS, Rancho Palos Verdes, CA, LEV S. NAKHAMCHIK, Willowdale, Ont., Canada, DAMEN PETERSON, Alma College, MI, ALLEN J. SCHWENK, Western Michigan University, Kalamazoo, and the PROPOSER.

## INMEMORIAM <br> John M. Howell <br> Jack Garfunkel

John M. Howell taught mathematics, probability, statistics, and computer programming at Los Angeles City College for 23 years, retiring in 1969. He was an active contributor to this department for many years, thoroughly enjoying his Commodore 64 computer. Number theory problems seemed to be his special interest. After retirement he became quite interestedin stamp collecting, forming the Mailer's Postmark Permit Club. He was born February 21, 1910, and died June 29, 1990.

Jack Garfunkel taught at Queensboro Community College. Although retired several years, he returned to teaching this past fall semester because he was getting bored just sitting home. He and I met professionally when I was asked to review his article The Equilic Quadrilateral, which appeared in this JOURNAL in the Fall of 1981. Jack's curious facility for ferreting out geometrical truths and my organizationalskill complemented one another nicely and we collaboratedon four more papers, the last one appearing last spring. Many of his proposals and solutions have appeared in this column over the years. Jack died December 31, 1990, at age 80 after a brief illness.

## П M E

## St. Norbert College

## Sixth Annual

PI MU EPSILON
Regional Undergraduate Math Conference

Featured Speaker:<br>J. Douglas Faires

## Youngstown State University

Sponsored by:
St. Norbert College Chapter of TIME
and
St. Norbert College $\mathbf{\Sigma N \Delta}$ Math Club
The conference will begin on Friday evening and continue through Saturday noon. Highlights of the conference will include sessions for student papers and two presentationsby Professor Faires, one on Friday evening and one on Saturday morning. Anyone interested In undergraduate mathematicsis welcome to attend. There is no registration fee.

For information, contact:
Rick Poss, St. Norbert College
De Pere, W 54115
(414) 337-3198


## Editor's Note

The Pi Mu Epsilon Journal was founded in 1949 and is dedicated to undergraduate and beginning graduate students interested in mathematics. Submitted articles, announcements, and contributions to the Puzzle Section and Problem Department of the Journal should be directed toward this group.

Undergraduates and beginninggraduate studentsare urged to submit papersto the Journal for consideration and possible publication. Student papers are given top priority. Expository articles byprofessionals in all areas of mathematics are especially welcome. Some guidelines are:

1. Papers must be correct and honest.
2. Most readers of the PiMu EpsilonJournal are undergraduates: papers should be directed to them.
3. With rare exceptions, papers should be of general interest.
4. Assumed definitions, concepts, theorems, and notations should be part of the average undergraduate curriculum
5. Papers should not exceed 10 pages in length.
6. Figures provided by the author should be camera-ready.
7. Papers should be submitted in duplicate to the Editor.

## The following chapters were installed in 1990:

Maryland Gamma (The University of Maryland, Baltimore)
Florida Kappa (University of West Florida, Pensacola)
Illinois Kappa (Millikin University. Decatur)
There are now 262 chapters of Pi Mu Epsilon.
A Napoleon Triangle Revisited Jack Garfunkel ..... 234
Letter to the Editor ..... 241
Fair Fare Functions
J. N. Boyd and P.N. Raychowdbury ..... 242
Two New Numbers Aid Mathematicians James Metz ..... 247
Gleanings from the Chapter Reports ..... 248
Puzzle Section
Joseph D.E. Konhauser ..... 249
Problem Department Clayton W. Dodge ..... 254
PI MU EPSILON JOURNAL PRICES
PAID IN ADVANCE ORDERS:

| Members: | $\$ 8.00$ for 2 years <br> $\$ 20.00$ for 5 years |
| :---: | :--- |
| Non-Members: | $\$ 12.00$ for 2 years <br> $\$ 30.00$ for 5 years |
| Libraries: | $\$ 30.00$ for 5 years (same as non-members) |
| Foreign: | $\$ 15.00$ for 2 years (surface mail) |
| Back Issues | $\$ 4.00$ per issue |
| Complete volume | $\$ 30.00$ (5 years, 10 issues) |

