JOURNAL

VOLUME 9 SPRING 1991 NUMBER 4

CO NTENTS
The Rlchavd V. Andree Awards SLER: g_ ................... 213

A Pre-Calculus Method for Derlﬁﬁg Simpson ’s-Rule
John White ...... el o | E R EEkouRnged o Eon 214

A Note.on a“Paper-of-S.H. Eriedberg
Javier Gomez-Caltteron and ddnet Valasek .. ... ... PN . 217

The First Centry N
Richard L. Francis .. .L..... b SN 218

Uslng the MVT to Complete the Basw lptegra‘ﬂon
' Formula— VY € -
- Nofman Schaumbergef .......... S e b P s 226

The Weighted Jensen Inequality | _
Norman 3chaumberger angl Bett Kabak o0 6HH o By cholh ANl 227

A Relationship Be‘!ween the :!-4—5 Right Tﬂangle
and the Unit Pentagram
Michael Eisenstein . . ... N SN TR FI 230

ANote on (1 + k/n)"
Russell Euler ... w....... L e e, A | 1..~233

(continued oh insjd¢ Back ;p'o\_(ér)




JOURNAL

VOLUME 9 SPRING 1991 NUMBER 4

m yoreige




Pl MU EPSILON JOURNAL
THE OFFICIAL PUBLICATION OF THE

NATIONAL HONORARY MATHEMATICS SOCIETY

EDITOR

Richard L Poss

ASSOCIATE EDITORS

Clayton W. Dodge
Joseph D. E. Konhauser

OFFICERS OF THE SOCIETY

President: David W. Ballew, Western lllinois University
President-Elect: Robert C. Eslinger, Hendrix College
Secretary-Treasurer: Robert M. Woodside, East Carolina University
Past-President: Eileen Polani, St. Peter's College

COUNCILORS

J. Douglas Faires, Youngstown State University
Richard A Good. University of Maryland
Joseph DE. Konhauser, Macalester Coliege
Doris Schattschnelder, Moravian College

Editorial correspondence, including books tor review, chapter reports, news Items and manuscripts (two copies) should te I
0 Pl MU EPSILON JOURNAL, Richard L Pess, EDITOR, St. Norbert College, De Pare, W1 54115. Students submitting mansueripts
M requested to Identify their college or university and their class or expected graduation date. Others are requested to

their affiiation, academic, or otherwise.

for solution and solutionsto problems should be maited directly to the PROBLEM EDITOR. Puzzle proposals and puzzie
solutions should be milled to A* EDITOR

e PY MU EPSILON JOURNAL is published at St. Norbert College twice a year—Fall and Spring. One volume consists of five yesrs
{10 msues) beginning with the Fall 19x4 or Fall 19x9 Issue, starting In 1949. For rates, see Inside back cover.

213

THE RICHARD V. ANDREE AWARDS

Richard V. Andree, Professor Emeritus of the University of Oklahoma, died on May 8,
1987, at the age of 67. Professor Andree was a Past-President of Pi Mu Epsilon. He had also
served the society as Secretary-Generaland as Editor of the PiMu Epsifon Journal. The Society
Council has designated the prizes in the National Student Paper Competition as Richard V. Andree
Awards.

First prize winners for 1990 are Amy Dykstra and Michelle Schultz for their paper "A
Generalization of Odd and Even Verticesin a Graph," which appearedin the Spring, 1990, issue
of the Journal. They prepared their paper while undergraduates at Western Michigan University
under the supervision of Professor Gary Chartrand. They presented the paper in August, 1989,
at the national Pi Mu Epsilon meeting in Boulder, Colorado. They will share the $200 first prize.

Second prize winner is Eric Berg for his paper "A Family of Fields," which appeared in the
Fall, 1990, issue of the Journal. Eric prepared this paper while still a studentin high school. Eric
will receive $100.

Third prize winner is Joel Atkins for his paper "Regular Polygon Targets," which also
appeared in the Fall, 1990, issue of the Journal. Joel prepared this paper while he was a student
at Rose-Hulman Institute of Technology under the supervision of Professor Elton Graves. Joel will
receive $50.

There were three other student-written papers that appeared in 1990:

"More Applications of Full Coverings,” by Karen Klaimon, of James Madison University. Karen
prepared this paper under the supervision of Professor John Marafino.

"An Approximation for the Number of Primes between K and K2, When K Is Prime," by Randall J.
Osteen. Randall prepared this paper while he was an undergraduate at the University of Central

Florida.

"Convergent Ratios of Parallel Recursive Functions," by David Richter. David preparedthis paper
while he was a freshman at St. Cloud State University.

The current issue of the Journalcontains two papers with student authors:

"A Pre-Calculus Method for Deriving Simpson's Rule" was written by John White, who is an
undergraduate at Marshall University.

"A Note on a Paper of S. H. Friedberg" was co-written by Janet Valasek, a sophomore at Penn
State University - New Kensington Campus, and Professor Javier Gomez-Calderon.
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A PRE-CALCULUS METHOD FOR DERIVING SIMPSON'S RULE
John G. White
Marshall University

Simpson’s Rule is one of a class of numerical methods, known as Newton-Cotesformulas,
used to calculate definite integrals. This formula is credited to Thomas Simpson, a self-taught
genius, who published it in his Mathematical Dissertations on Physical and AnalyticalSubjects in
1743. However, James Gregory presented the same results earlier in a different form in his
Exercitationes Geometricae [1]. Its usefulness is in calculating definite Integrals of functions that
are otherwise difficult or Impossible to integrate, such as

X2
f e Xdx.
*a
There are several standard ways to derive Simpson's Rule using calculus. In one method,
three equally spaced points, the endpoints and the midpoint of the interval, are chosen. A parabola

is constructed from these points (since a polynomial of degree at most two passing through three
given points can always be found) and it is integrated. This yields Sirmpson's Rule:

X2
g_(f (%) +4F (x,) +F (X;)) = ){f (x) dx
where h = (x, - %5)/2. (See[ 3] for an example of this derivation.)

Another method takes three points and uses them to construct a Lagrange interpolating
polynomial of degree two:

(x-2,) (x-%,)
(36,-%) (2,-%,)

(x-x,) (x-x,)
(x,-3%;) (%,-%;)

(x-x,) (x-x,) £
(36-%,) (%=, )

P(x) = f(x1)+

3 £ (xg) +

This is then integrated, and the final resultis once again Simpson's Rule. (See [2].) A third method
integrates the Taylor series expansion of f(x) to derive Simpson's Rule [2].

Here is one method of deriving Sirnpson's Rule that does not rely on integration. Rather,
piecewiseapproximations are used to find three differentvalues for the integral. The average is then
taken to approximate the definite integral, and the end result is once again Simpson's Rule. For
simplification, the following illustrations use only nonnegativefunctions, even though the derivation
is the same for functions with negative values as well.
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h 1) + h fixy) h fix;) + h fx;) hf(xq) + hfxy)

(B £ (x) +hf () )+(hf () +h £ (%) )+AEf (%) +hE (X))
3

= B(£ Gr) 1) +E () +E ) +£ ()

= B (£(x) £ (x) +£(x5)).

This pre-calculus method of derivation also yields two other Newton-Cotes formulas: the
Trapezoidal Rule and Simpson's Three-Eighths Rule.

Trapezoidal Rule:

Xo Xy

h f(xp) h f(x,)

hE (x,) +hF (x,)

- = g(f(xohf(xl))
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Simpson's Three-Eighths Rule:

2
DI

Xo X X X3 Xs X X3 X3

hf(xg) + hf(x,) hfGe) + hf(x,)

hf(x,) + hf(x,) hf(x,) + hf(xs)
With this derivation, each section is approximately two-thirds the total integral, thus the integral is
about three-eighths the sum of the four areas.

I(hE () +hflx))+3(hE () +hE (x))+3{BE(x) + hE (36))+3(hE (%) + hE ()
8

= Esé(f(xo)+3f(x,)+3f(xz)+f(x,))

References:
[1] C. B. Boyer, AHistory of Mathematics, John Wiley and Sons, inc., 1968.
[2) R-L Burden and J. D. Faires, Numerical Analysis, Fourth Edition, PWS, 1989.

[3] E W. Swokowski, Calculus with Analytic Geometry, Third Edition, PWS, 1984.

John White prepared this paper while he was a senior at Marshall University,
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A NOTE ON A PAPER OF S H. FRIEDBERG
Javier Gomez-Calderon & Janet Valasek
Penn State University, New Kensington Campus

Recently in [1], S. H. Friedberg showed that the principal axis theorem, a very important
theorem in linear algebra, does not extend to any finite field. He proved, using a simple counting
argument, the following:

THEOREM: Let F be a finite field. Then there exists a 2x2 symmetric matrix (over ) that
possesses no eigenvalues.

The purpose of this note is to point out that Friedberg's results can easily be generalized
for a n x n symmetric matrix. We will prove the following two corollaries.

COROLLARY 1 (to Friedberg's Theorem): LetF be a finitefield. Thenfor eachn > 1, there exists
a (2n) x(2n) matrix (over F) that possesses no eigenvalues.

PROOF: By Friedberg's Theorem, let A denote a 2x2 matrix over F such that fa(x), the
characteristic polynomial of A, has no roots in E  Then the characteristic polynomial of the
(2n) x(2n) block diagonal matrix C = diag(AA,...,A) is fol) = (fo()". Therefore, C possesses no
eigenvalues.

COROLLARY2: LetF be a finitefield. Then for each n > 3, there exists a nxn non-diagonalizable
symmetric matrix over F.
PROOF: With notation as in Corollary 1, let D denote the nxn block diagonal matrix

nxn (n 2 3)

Then the characteristic polynomial of D is fy(x) = fA(x)x"'z. Thus, the only eigenvalue of D is 0.
Therefore, since D * 0, D is not diagonalizable.

References:
[11 S. H. Friedberg, "Extending the Principal Axis Theorem to Fields Other Than R," American
MathematicalMonthly, 97(1 990), 147-149.

Janet Valasek Is currently a sophomore at the New Kensington Campus of Penn State University.
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THE FIRST CENTURY
Richard L. Francis
SoutheastMissouri State University

An abundance of primes meets the eye in examining the first one hundred positive integers.
Not quite so many emerge in the second century, and even fewer in the third. However, the
frequency of prime encountersin these initial groupings suggests no scarcity. Actually, the first
century of positive integersproves a veritablefield of abundancein its containment of major number
types. It likewise prompts the question of other collections of positive integers with a plentiful
supply of numbers in a select category. The pursuit of primes by centuries is an intriguing part of
this basic question.

Primeless Centuries

Centuries denote groupings by hundreds and begin with the first 100 positive integers.
These may also be called aggregates of order two (whereas decades suggest aggregates of order
one). Finding primes within the various centuriestouches on the subject of the distribution of the
primes. Such a distributionwithin an infinite set is, even today, highly perplexing. Similarly elusive
is a formula for finding the nth prime - or for generating a prime larger than a designated one. Of
interestin this context of the infinitude of the primes s the fact that there exists, for example, a one-
trillionth prime, but no one can say what it is.

Some centuries contain no primes whatever. Consider the century which begins with
1001 + 1 and ends with 100! + 100. Each number in this set is compositeas 100! + n is divisible
by n for 0 < n <100. Moreover, 100! + 1 is divisible by 101 by Wilson's Theorem. It is easy to
show that there are infinitely many centuries entirely devoid of primes by a similar factorial
construction. For example, the century from 1,000,000! + 101 to 1,000,000! + 200 consists of
composites. Or from 1,000,000! + 201 to 1,000,000! + 300. Infinitely many primeless centuriesare
implied by the generalized interval extending from 10™ + 101to 10™ + 200 where n is greater than
or equal to 3.

A Prime-Rich Century

More primes appear in the first century than in any other. All primes beyond the first
century must "end" in 1, 3, 7, or 9. This allows for a maximum of forty primes within the century.
But a least three numbers in each terminal digit case must be multiples of 3. Accordingly, 40 - 12
or 28 denotes a more impressive maximum number of primes within the century. To lessen the
maximum even more, note that centuries can begin in 21 ways based on the 21 possibilities in
whichthe century's first number yields a remainder when divided by 3 and by 7. For example, the
first number 100n + 1 can be of the form 3r and 7k, 3r and 7k + 1, 3rand 7k + 2, etc. In each
case, striking out the multiples of 3 and of 7 (and in one case, multiples of 11) establishes that no
century beyond the first contains more than 24 primes. Of course, the first century contains 25
primes. It is thus the maximal century of primes.
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Upper Limit on Number of Primes
[Based on Numbers Ending in 1, 3, 7, or 9)

Form of x{Number of Upper Limit First Number
Century's First Sure of Number of of Sample
Number Composites) Primes (40-x) Century N

3r,7k 18 22 8001
3r,7k + 1 17 23 14001
3r,7k + 2 18 22 20001
3r,7k + 3 17 23 26001
3r,7k + 4 18 22 32001
3r,7k + 5 18 22 38001
3r,7k + 6 18 22 44001
3r+1, 7k 18 22 15001
3r+1, 7k +1 1B 22 21001
3r+1, 7k +2 18 22 6001
3r+1, 7k +3 18 22 12001
3r+1, 7k + 4 17 23 18001
3r+1, 7k +5 18 22 24001
3r+1, 7%k +6 17 23 30001
3r+2, 7k 16 24 1001
3r+2,7k+1 17 23 7001
Jr+2, 7%k +2 16 24 13001
3r+2, 7k +3 15 25 19001
3r+2, 7k + 4 16 24 25001
Ir+2, 7k +5 16 24 31001
Ir+2, 7k + 6 16 24 37001

Note that the upper limit on the number of primesis 25 in the case for leading numbers of
centuries which are of the form 3r + 2 and 7k + 3. Inthis case, an additional sure composite can
be established by considering all possibilities of remaindersin dividing the leading number of the
century by 11. These forms are 11) + 1, 11j + 2 ..., 11j + 10.

Decades in Passing

As stated earlier, centuries denote groupings by hundreds and begin with the first 100
positive integers. These were called aggregates of order two based on the exponent appearing in
10 (where 102 is of course the number of elementsina century). Millennia thus denoteaggregates
of order three. The case for decades, where the order of aggregate is 1, proves interesting.
Actually, the firstdecade contains only four primes; this is obviously the maximum number of primes
possible within a decade. Other decades may contain the same maximum number of primes.
These include, for example, the second decade (with primes 11, 13, 17, and 19) as well as the
eleventh (with primes 101, 103, 107, and 109). Were it not for the contrivance that 1 is not a prime,
then the first decade would emphatically be the maximum decade in terms of primes possessed.
(The arguments of conveniencewhereby 1 is excluded from the list of primes are well known and
will not be pursued here.)

The least decade containing no primes is the one beginning with 201. Following this as the
next primeless decade is the one which begins with the number 321. The first encounter with twé
primeless decades in succession has 1131 for its leading element. Three primeless decades in
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succession can be found by beginning with 1331. Such a fascinating pattern continues. Infinitely
many decades of various orders of succession may be found.

Least Century with No Primes

Although there are infinitely many primeless centuries (as shown earlier), there must also
be aleast such century. Itis not necessarilythe century whose first element is 100! + 1. Note the
magnitude of 100l. The number of terminal zeros alone, namely, twenty-four, classifies
100! * 1 as gargantuan.

Some relatively early centuries come close to meeting the “"primeless” standard. For
example, the century beginning with 31401 contains only four primes. These are 31469, 31477,
31481, and 31489. Even more impressiveis the century beginning with 58801. Only three primes
appear; they are 58831,58889, and 58897. Likewise, only three primes can be found in the century
beginning with 69501.

The least century containing no primes whatever lies somewhere between 1 millionand 2
million. It Is the century whose first element is 1671801 and is shown below. As each of the
elements in the listing is composite, the reader may wish to find the factors of some. For example,
the number 1671813yields @ 1)(13)(433) when written in factored form. This prime factorization
is, of course, unique (Fundamental Theorem of Arithmetic).

First of the Primeless Centuries

1671801 1671811 1671821 ... 1671881 1671891
1671802 1671812 1671822 . 1671882 1671892
1671803 1671813 1671823 - 1671883 1671893
1671809 1671819 1671829 1671889 1671899

1671810 1671820 1671830 oo 1671890 1671900

The largest prime preceding this primeless century is 1671781. The smallest which follows is
1671907.

By somelogic, all numbers can be considered "interesting." Hence, it is with reluctance that
the above century is labeled "mathematically barren."  Although it contains the exact square
1,671,849, there are no primes of any kind. Nor are there cubes, fourth and higher powers, or
factorials. Perfect numbers (even or odd), triangular numbers, palindromes, and odd abundant
numbers likewise fail to appear. But, and Interestingly so, it Is the first of the primeless centuries.
The next of the primeless centuries begins with 2,637,801 and extends through 2,637,900. One
must venture rather far in the sequence of positive Integers before two consecutlve primeless
centuries emerge. This first happens with the century whose leading elementis 191,912,801.

The Earliest Encounter with Two Consecutive Primeless Centuries

191912801 191912811 191912821 ... 191912881 191912891
191912802 191912812 191912822 ... 191912882 191912892
191912901 191912911 191912921 ... 191912981 191912991
191912902 191912912 191912922 ... 191912982 191912992
191912909 191912919 191912929 ... 191912989 191912999
191912910 191912920 191912930 ... 191912990 191913000
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The largest prime which precedes this primeless pair of consecutlve centuries s
191,912,783. The smallest whichfollows is 191,913,031. No squares or cubes appear in the above
long interval of two-hundredpositive integers. Nor do higher powers, factorials, or perfect numbers,
be they even or odd. Interestingly, only one odd abundant number surfaces. It is 191,912,805.

Extended questionsconcerningthe first of the primeless millenniaor other major groupings
are not pursued here. But, and emphatically, such primeless groupings do exist, and there most
be a first In each case.

The Remarkable First Century

The first century contains a remarkable assortment of notable number types. Included in
this impressive assortment are:

25 primes 4 factorials
10 squares 2 even perfect numbers
4 cubes 3 Mersenne primes

3 fourth powers
2 fifth powers

3 Fermat primes

Moreover, this leading century possesses more of the number of types here named than any other
century; it stands out as a veritable gold mine of number encounters.

One should not infer that the earlier the century, the greater the number of primes. For
example, the fourth century contains 16 primes whereas the fifth century has more (17). Otherwise,
such erroneous logic would lead to the belief that any century followinga primeless century must
also be primeless. This contradictsthe fact that the set of primes is infinite.

The earliest century with no squares begins at 2501, with no cubes at 401, and with no
factorialsat 201. Careful checkingalso reveals that the earliest century with no fourth powers, fifth
powers, sixth powers, as well as no perfect numbers is the one beginningat 101. In fairness, it
should be noted that certain significant number types avoid the first century altogether. For
example, no pseudoprimes, no odd abundant numbers, and no amicable pairs appear.

Does the first century contain more of a given number type than any other century? So
frequently, the answer is YES. Sometimes, responses are easily given as in the case for wen
primes. Or for superpowers, namely, numbers of the form x* where X Is a positive integer
(eg.1'=1,22=4,33 = 27). other number classificationsdemand greater analysis. Such types
as Pythagorean Triples or palindromic primes {e.g., 2, 3, 5, 7, 11) fall into this last category.

The century definition requires the greatest element to be a multiple of 100. Such an
element thus "ends" in two zeros. If other groupings are allowed, various modifications of results
stand out. For example, the one hundred consecutive integers 2 through 101 contain 26 primes.
Or the ten consecutive integers 2 through 11 contain five primes. Definitions here included of
decades, centuries, millennia, etc. preclude groupings which begin randomly.
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THE FIRST CENTURY
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THE FIRST CENTURY

contains more of the number types shown above than any other century.

Millennia and More

Groupings according to powers of ten lend themselves nicely to easy packaging and
convenientcompartments. This is due to our system of countingwhichis based on ten. Obviously,
aggregates could be chosen so as to be of very unusual size (for example, primes within the first
169 positive integers, etc.). Nothingsuggestinga mysteriousintermingling of base ten notions and
the concept of primality is implied.

Acknowledging the above, let us skip momentarily from decades and centuries and look
at millennia. In particular, the first millennium contains exactly 168 primes. Counting further, such
results as the following are noted:

M| ennium Nunber of Prinmes
1st 168
2nd 135
3rd 127
4th 120
5th 119
6th 114
60th 91
81st 88
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Infinitely many millennia can be found. It is here conjectured that the first millennium
contains more primes than any other millennium.
The examination of still larger powers of ten leads to additional conjecturing.

Nunber of Prines

10" Less Than 10"
10* 4

10* 25

10 168

10* 1229

10° 9592

10* 78498

10° 664579
10° 5761455
10° 50847534
10 455052512
10" 4118054813

10* 37607912018

Note that the first million positive integers contain 78498 primes. Wiill the following groupings of a
millionpossessfewer than 78498 primes? More impressively, the first groupingof ten billion positive
integers contains 455,052,512 primes whereas the second grouping contains only 427,154,204
primes. Willthe succeeding groupings of ten billion positive integers containfewer primes also than
that of the first? All of this leads to what | have called the TOP HEAVY CONJECTURE, namely,

THE FIRST AGGREGATE OF ORDER N (N=22) CONTAINS
MORE PRIMES THAN ANY OTHER AGGREGATE OF ORDER N.

Analytic number theory gives some insight on the subject of the occurrence of primes over
vast intervals. Such results are approximative In nature and do not permit a meticulous look at
select groupings of the positive integers. In particular, if g{x) denotes the number of primes not
greaterthan x, then the ratio of g(x) to x/In x approachesthe number 1 as x becomes large without
bound. Sucha proof was completed in the late nineteenthcentury and was the work of Hadamard
and de la Vallee Poussin.

m,., 9% - 1
** x/In x

PRIME NUMBER THEOREM

This limiting relationship provides a look at prime occurrences in an average manner. It
does not permit an exact disposition concerning the number of primes in a given aggregate. For
example, the first grouping of ten trillion positive integers contains 346,065,535,898 primes. Yet a
certain later grouping of tentrillion positive integers will contain no primes. Still later groupings will
again containprimes. Note that the number of primes per century (within the firstten trillion positive
integers) is roughly 3.46 on the average.
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Explorations

Some centuries contain decidedly more primes than others. Accordingly, a century will be
considered "crowded if it possesses at least ten primes. Crowded centuries stand out in the earlier
encounters with the positive integers. Intriguing questions quickly come to mind in the context of
loneliness and crowdedness. Among these, we find the inquiry "Is the set of crowded centuries
finite, and, if so, what is the last century?" Generally, an aggregate of order n (n > 2) will be
considered crowded if it contains at least 10™1 primes.

To place greater focus on the first century as a numerically prominent century, the few
additional explorations below are also offered.

1. Show that the first century contains more triangular numbers than any other.
2. Show that no century beyond the first can contain two even perfect numbers.
3. Primetripletsare triples of primes whichdiffer consecutivelyby 2. The first century

contains, for example, the triplet 3, 5, and 7. Show that no century contains more
prime triplets than the first.

4. The first century contains seven primes "ending" in 3. Does any century contain
more than seven such primes?
5. The next to the last element of a century "ends' in 99. Considera century "special”

if it next to the last element is of the form 199999...999 (all nines except for an initial
one). Show that infinitely many special centuries have a next to the last element
whichis composite.

6. Note that the last decade of the first century contains exactly one prime (97) and
is thus a lone-prime decade. A century containing exactly one prime is called a
lone-prime century. An example of suchis the century beginning with 13,200,001;
its only prime is the number 13,200,001. Find another lone century. Does there
exist a millenniumwith exactly one prime?

7. Are thereinfinitely many lone-prime centuries? If so, is It possible that all centuries
will prove to be lone-prime centuries from a certain number on?

8. Show that infinitely many centuries "begin" with a prime number. Show that
infinitely many also "begin" with a composite number.

9. The second decade is perfectly balanced as there are as many primes in the first

half as in the second half. Does there exist a perfectly balanced (non-primeless)
century? The tenth decade is extremely unbalanced as all of its primes are in one
of the halves. Does there exist an extremely unbalanced century, that is, one with
all its primes in either the first or second half?

10. Twin primes are primes differing by two. Eight such pairs appear in the first
century. Does any century containa greater number of twin primes?

Thelast mentioned explorationis a venture into a general area of many unsolved problems.
It includesthe cardinality of the set of prime twins. Although the first century contains eight such
twins, the tenth century contains none whatever. The pattern of their unpredictable occurrence by
centuries continues. For example, the entire millennium beginning with 956,001 contains only one
such pair whereas the single century beginning with 1,006,301 remarkably contains five sets of
prime twins.
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Prime-placed primeslikewise lead to additional conjecturing. Suppose py denotes the Kt
prime. If k is also prime, then p, is called a prime-placed prime. Such numbers as 5, 11, 67, and
83 fall into this category. Actually, the first century contains nine prime-placed primes, but the
second century only five. All of this is to suggest still another venture. That is, does the first
century contain more prime-placed primes than any other?

And more! Does the first century contain more Pythagorean primes (of the form >£2 +y)
than the others? Or more absolute primes (those which are prime regardless of the arrangement
of digits suchas 17 or 31 or 73)? Or star primes (those with a prime number of digits such as 23
or 89)? Explorations appear numerous and branch out in varied directions.

Intuitively speaking, none of the results above concerning the first century abundance
should prove shocking. Fewer divisors are available in the first century with which factoring
attempts can be made. Likely suggested is a fruitful supply of primes in this earlier grouping.
Increasing differences among squares and cubes likewise lead one to conjecture a more frequent
encounter with such numbers in the smaller setting of the first century. Factorials, small at the
outset, lead to the same conclusion. Of course, some numbers behave more mysteriously and
superficially erratically than others. Highly intuitive notions often present the greatest of challenges
in the many attempts at proof and rigorization. Here, the primes prove no exception. Highlighted
in this and similar settings is the first century, an abundant field of golden pebbles called numbers.

Appreciationis expressedto Johnny Lai, SoutheastMissouri State University, for his assistance
in the computer verification of certain of the results of this paper.
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USING THE MVT TO COMPLETE THE BASIC INTEGRATION FORMULA
Norman Schaumberger
Hofstra University

When considering the formula

b

1 ns+l = n+l
X" dxX = 3T (b a"™?) (1)

we are obliged to excludethe case n = -1. The usual properties of the logarithmic functionalong
with the formula d(Inx) /dx = 1/x are consequences of the definition

X
lnx=ft'1dt, x> 0. (2)
1

Furthermore, the relation

1n(§)=2x-=dx, b>a>0 (3)

that it is reasonableto expect that the expression

1 n+l _ gnel
n+1(b a™t)

canreadily be derived from (2). Equation (1) is still meaningless whenn = -1, but (3) does suggest
approaches In(b/a) as n tends to -1. This point, although rarely discussed in standard texts, can
be made plausible by consideringvalues of n closeto -1. Thus, for example,

3

-.999 -1 001 _ 5.001) - _4058...
.fx dx = —== (3 )

and In(3/2) = .4054....
We offer a simple proof that

lim,, nil (b1 - a8) = ln(—g). (4)

Using the Mean Value Theorem with f{x) = Inx gives
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ln (bnu) - ln (anb:l)
bnol % an«l

alk

wherec € @*'b"*"). Sinceb > a > 0, it followsthat

1 1n(b™1) - In{a™?) ¢ 1
phl bl _ gnel P
This can be written as

bnol & anol
n+1

vl

a™? ln(%) < < pmt ln(

).

If we let n - -1, then the two outer terms tend to In(b/a) and we get (4).

THE WEIGHTED JENSEN INEQUALITY
Norman Schaumberger & Bert Kabak
Hofstra University & Bronx Community College

If X4, Xp, ... Xp, @re angles satisfying0 <x; < = (i = 1, 2, ..., n), then

Ky +XKpt. ..

: +X, : :
51n( = z ) z _1—17- (sinx +sinx,+...+sinx,) (1)

with equality iff x; = %, = ... = x,, .

Furthermore,
Xy 1
Cos| - + = + =] 2 S CO8X; + FCO8X; + =COSX, (2)

holds If the x's satisfy -x/2 < % < w/2, with equality iff ¥, = X, = X3.

Inequality (1) Is a special case of Jensen's inequality which states that if f{x) has a second
derivative f'(x) < O inthe intervala ¢ x < b thenfor a<x <b {i=12,..,n)

1 1%
fzg;x, zzgf(x,) (3)

with equality iff x; = X, = .. =X -
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The standard derivation of (3) follows Cauchy's method of proof of the AM-GM inequality.
(See, for example,[3].) A proof of (3) using elementary properties of the derivative was given by
the authors in [2]. Inequality (2), on the other hand, is a special case of Jensen's weighted
inequality. This states that if f(x) and x; are as in (3) and p; > 01 = 1,2,...n) are real numbers such
that

n
; p;=1,
=1

then

n n
£ z pi £ (x;) (4)
[Z;szx) E i 1

with equality iff x; = X5 = ... = X,

A not particularly simple non-calculus proof of (4) where the . are restricted to rational
numbers can be found in [1]. We offer a simple calculus proof of the weighted Jensen inequality
which is valid for all real p; and which is based on an extension of the argumentiin [2].

lfa<x<bandw=px, * pgx, + .. 1 px,wherea < x < b, then
f(w) - wt/(w) a f(x) - x£(w) (s)
with equality iff x = w.  (5) follows from the observationthat f(X) < 0 on @ b) and thus
g(x) = f(x) -xf(w) takes its maximumin (@ b) atx = w, because g'(x) = F(x) - F(w) is monotone

decreasing on this interval and thus vanishes iff x = w. Substitutingx = X3, X = X,, ... X = X, into
(5) gives the inequalities

£w) - wtl(w) 2 £(x;) - x;£'(w) , (1 =1,2,...,n) (6

Multiplying (6), in tumn, by p4,P,....p, and adding, we get

n n n n
f(w)g;p,—wf’(w)z;pi 2 gp,f(xl)—f’(w)Qp,x, (7
Since
n
}_: p;=1
=1
and

W= DiX;
=1

we can use (7) to establish (4).
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Is, Hx, = xp = e = X, = W. If we putp, = p = .. =p, = 1/nthen (4) becomes (3). Also, If
f(x) = Inx, f'(x) = -1/ < Q forx > 0. Hence
in (P]xl + Dy X, toaal t pnxnl 2 Py 11’1}(1 + P lnxz + oL 4 p,,lnx,,
or
DX, + DXy + o0a + DXy 2 P Sl (8)
Equality holds iff x; = x, = ... = X,. Inequality (8) is the weighted AM-GM Inequality. Putting
Pq = Pp = ... = py = 1/n gives the AM-GM Inequality.

Finally, we note that if f(x) > O then the inequality in (4) is reversed. If, for example,
f() = tanx then F'(x) = 2 sec®>tanx > Ofor 0 < x < n/2 and by Jensen's weighted inequality,

pytanx; + p,tanx, + ... + pptanx, > tan(pyx; + p,X; + «.« + PpXx,) (9)

for any set of n positive acute angles Xy, X, ..., X, with equality iffx, = x, = ... =% Ifn =3,
Xy, X, X3 are angles of an acute triangle, and
X1 X2 X3

p'.‘.‘————.—..  — T e S
* X1+x2+x3'pz x1"xz"x3'p3 XKyt K K

then (9) becomes

xxz+xz’+xzf)

X, tanx, + x,tanx, + x;tanx; a ittan( =

Equality holds iff the triangle is equilateral.
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0+
8+ 1+cos 22
cos(t) = cos 2

T )N 2
T
\ 1+cos!0+-5l
- N 2
o 2

Now, cos(® + ©/2) = cos(B)cos(r/2) - sin(B)sin(r/2) = -sin(6) = -3/5. So

] I+(=375)"
cos(T) = 4|1+ 22 = «I 1+V21;5

We also can see that:

- 1 1 1 vz

VAL E T

Now consider the following identity:
2 =2
2 = yT

2 = 54+ —-/5-1
V5 s

z

e irm . [1. 1

2 = y5-/5 1‘/5_
1+—1;-
vz .|
5_J§‘ \ 2

and, therefore, cos(z) = 1/x.

I have shown before (Pi M Epsilon Joumnal, volume 9, number 2) that
tan(z) = tan((6 + x/2)/4) = 1/¢. Therefore,

sin(t) = tan(s)-cos(z) = i_ 31 1 =

o
%39 &%

So. cos(t) = 1/x, sin(z) = 1/y, and tan(z) = 1/¢, which is what we were trying to prove.
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A NOTEON (1 * k/n)"
Russell Euler
NorthwestMissouri State University -

A standard textbook technique used to prove that the limit

(%) lim, .. (1+1/nm) 2

exists is to show that the sequence {(7 + 1/n)"} is increasing and bounded above by 3. This is
sometimes followed with an exercise to show that limit (*) exists for some partictlar positive
integer k [1, p. 115-116; 2, p. 33-38]. The purpose of this paper Is to prove that the sequence
defined by x, = (1 + k/m)™ convergesfor every positive integer k by the completeness property
of the real number system.

To prove that {x,} is increasing, the following result will be used. For positive real
NUMbErS ¥y, ¥au «ne 5 ¥4 10 the arithmetic mean (M) and the geometric mean (G) are defined by
M=y t..ty,,)/+1) and G=, ...ynH)’/(““), respectively. It is well known that
M 2 G, with equality holding only when y, = ... =y, ;-

In particular, let y; =1 and y; =1t k/n, fori =2 3,..,n+ 1. Thenitis easy to
showthat M =1t k/n+ D and G = (Lt k/m)™0*N. Hence, since M > G,

1+ k/(n+1) > (1 + k/n)n/ta1),

Xpy = [+ k/(n+1)]™2 > (1 + k/n) " = X,

and {x,} is anincreasing sequence.
Using the fact that (1 + 7/n)" < 3, it will now be shown that X, < 3«

X, = (1+k/m)® s A +k/n+ k(k-1)/2n%+ ... +1/nH*
[(1+1/n¥)"

[(2+1/m™*

3k

(3

N

Since {x,} is increasing and bounded, the sequence converges by the completeness
property.
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A NAPOLEON TRIANGLE REVISITED
Jack Garfunkel
Queensboro Community College

[Jack Garfunkel submitted this paper shortly before his death. (See In Memoriam, on page 272)
Clayton Dodge was kind enough to complete the preparation of this paper.]

Some theoremsin geometry come and go, but a few catch our fancy and remain popular
and exciting. These theorems have a certain elegance and charm, and perhaps an unexpected
result. One such theorem s credited to Napoleon Bonaparte. It states that If equilateral triangles
are constructed on the three sides of any given triangle, all constructed externally or all internally,
then their centroidsform an equllateraltriangle. The areas of these two centroid equilateraltriangles
differ by the area of the given trlangle. Furthermore, the three lines formed by joining the third
vertex of each equilateral triangle to the opposite vertex of the given triangle concur. The point of
concurrence of the lines from the centroids of the equilateraltriangles drawn outwardly subtends
equal 120° angles at the sides of the given trlangle. If no angle of the given triangle exceeds 120°,
then this point of concurrence is the point from which the sum of the distances to the vertices of
the given triangle is a minimum.

We shall prove that the centroids form equilateral triangles and also the area relationship
as part of our proof of certainother inequalities. Later in the paper we shall prove the concurrence
of the lines In a more general setting. The sizes of the angles and the minimum distance property
will be left for the reader to investigate. See [3, pp. 63-65] and [5, p. 72].

It is convenient for us to use the follow’ng equivalent form of Napoleon's theorem in this
paper.

Napoleon's Theorem. If on the middle third of each side of a given triangle ABC an
equllateraltriangle is constructed, all constructed externally or all internally, then their third vertices
form an equilateral triangle.

In Figure 1 triangle AB'C' is called the outer Napoleon triangle and triangle A"B"C" Is the
Inner Napoleon triangle. In this paper we shall prove some additional properties of the outer
Napoleon triangle, and develop some interesting (and perhaps unexpected and surprising)
extensions. To that end we shall assume the notation and terminology of Figure 1.

For conveniencewe shall use the notation Sa=a+ b *+ c. AlsoweletQ = S(b- 02 =
b- o2+ a?+ @- 1)2, which is, of course, nonnegative. Then we prove the followinglemma.
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Lemma 1 If s is the semiperimeter of triangle ABC, then
4s?-3%a2 + Q = 0.
We have that
4s? + Q = (Za? + 2%ab) + (2za? - 2%ab) = 3za® O

Now we are ready to prove our firsttheorem, In whose proof we shall make use of the result
[1, p. 42, Item 4.3]

s? > 3FV3 T Q/2, whence 2s?-6FV3 : Q.

Theorem 1 The perimeter 2s of a given triangle ABC is not less than the perimeter 2s' of
its outer Napoleon triangle AB'C'.

Let W be 1/3 of the way fromCto B, letx = A'G,y = B'C, and ¢’ = A'B’. See Figure 2
Then WC = WA = a/3 and ZA'WC = 120°, sox = a/¥3. Similariy, y = b/v3. Then, using the
law of cosines In triangle ABC, we have
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2
(e)? = &2 LB% 23D cog (60 + )
2 2
. az+b2 Zgb (cos60° COSC - 8in60°® sincC) .

Because cos C = (a2 t b? - c?)/2ab and the area F of triangle ABC is given by F = (ab/2) sin C,
we get that

2 2
(c')? = a?+ b? + c? | 2F

6 v

Since side ¢" of the inner Napoleon triangle subtends an angle of |60° - C|, the corresponding
relation is

(cll)2= a? + b? , ¢? _ 2F

6 Vi

Because the expressionsfor ¢’ and ¢" are symmetricIn a, b, and ¢, it followsthat a' = b' = ¢" and
a" = b* = ¢ proving that the two Napoleon triangles are equilateral.

To show that 2s = 2s’, we show that (2s)2 - (25’)2 a 0. Thus we have
(2s)? - (25')2 = 4s? - (3a)? = 45 - 9(@)?
= 4s% - (3/2)Za® - 6FV3
> 26% - (3/2)8a° + Q
=Q=0.0
It Is easy now to prove the Napoleon theorem area relationship. Let F, F', and F* denote
the areas of the triangles ABC, A'B'C', and A"B"C" respectively. Since the altitude d the equilateral

triangle of side a' Is equal to a'v3/2, theniits areais F' = (a’)2\/3/4. Similarly, F* = (a")2»/3/4. Thus,
the difference between the areas of the outer and inner Napoleon triangles is given by

plo_ogn - V3[at+bPec?  2F)_ J3(a?+bP+c?  2F)_ g
3 6 /3) 4 6 3

whichis the desired result. O

Theorem 2 The inradius r' of the outer Napoleon triangle A'B'C' is not less than the
inradius r of the given triangle ABC.

Since F = rs and F' = r's’ and we have just shown that F* = F, then ¢'s’ 2 rs. Since also
s' s s by Theorem 1, then we must have that ' = r. O
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We have seenthat F' aFand ar, buts' < 8. Let us see just what relationship exists
between R and R', the circumradil. This result is not quite so obvious as that of Theorem 2. In it
we shall use the results [1, p. 18, Item 2.3] Bsin® A s 9/4 and [1, p. 20, ltem 2.8] Tsin A s 3v3/8,
and the known relations [4, p. 31] F = abc/4R and [4, p. 33, Exercise22] a = 2R sin A, etc.

Theorem 3. The circumradius R of a given triangle ABC is not less than the circumradius
R’ of its outer Napoleon triangle AB'C'.

Since the circumradius of an equilateral triangle is equal to 2/3 of its altitude, then

ro 2p . 2(a ):i’
R 5 ha 3(23 5

Now we have

nz . 11 2 2F
= == as + —
w7 - 3(3rat+ 22
= 1 a? + ._zi
18 33
1 2 abec
= =) a%*+
132 6R/3
4R? so2 4R3I I sinA
= ——) sin‘A +
18 % 3R/3
4R?[[ sina

2R? o2
= — sin“A + .
18 E 3/3

To show that R > R', we must prove that

2 _ 4 .
12—2 sin®A + IISJJIA.
9 33

Thus

2 io2 4 e 2(9) 4 (3 3)
——E sSin“A + sinAd < =|—=] + ——|—)2~—
9 3/3 914 3/3\ 8

=1,1
_2+21.

We have proved Theorem 3. O

Erecting equilateral triangles on the middle third of each side of a triangleto determine the
points A, B', and C' is a rather special and arbitrary choice. The question arises as to what would
happen if, as a generalization of the Napoleon figure, we erected arbitrary isosceles triangles
instead. Equivalently, let us erect perpendiculars at the midpoints of the sides and extend them to
lengths proportionalto the sides.
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Theorem 4. At the midpointsof the sides of a triangle ABC, perpendiculars are drawn, all
outwardly or all Inwardly, and extended to lengths proportional to their respective sides. If the
endpoints of these perpendiculars are denoted by A, B, and C', thentriangles ABC and AB'C' are
in perspective.

Figure 3

Referto Figure 3. LetD, E, and F be the midpoints of the sides BC, CA, and AB of triangle
ABC, and erect all outward or all inward perpendiculars AD, B’E, and C'F to the sides such that
DA'/BC = EB'/CA = FC'/AB = kfor a givenreal k Now draw a line through A’ parallelto BC and
meeting AB at P and AC at Q, a line through B' parallel to CA and meeting BC at R and BA at §,
and a line through C' parallel to AB and meeting CA at T and CB at U. Let AA' meet BC at X, BB'
meet CA at Y, and CC' meet AB at Z.
By Ceva’s theorem, it suffices to show that

AZ . BX.CY _

ZB XC YA

Because of the similar triangles CAB and CTU, etc., we have

Az _ ¢’ BX _ PA 4 CY _ RE
zZB clu' xc  alp’ YA  B's

Hence we need to show that

c'v a'o B's c'u a'o B's
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By the similarity of quadrilateralsBFC'U and BDAP, efc, we get

4
B w S S5 o moes— ; #Nd _._TC =._}}£_

cv FB' ap DC B's EA
Hence we find that
C'U alp B'ls FB DC EA DC EA FB
We shall call the triangle A'B'C' of Theorem 4 a Garfunkel triangle for the given triangle

ABC.

A special case of theorem 4 proves the concurrence of the three lines joining the third
vertices of either Napoleon triangle to the corresponding vertices of the given triangle.

At this point we remind the reader of two delightful special pointsin a triangle, which enter
into our final theorems. If a point is chosen on each side of a triangle and If three circles are drawn,
each through a vertex and the chosen points on the two adjacent sides, then these three circles
concur at a point called the Miguelpoint for the triangle and the three selected points. See Figure
4,

AR

Figure 4 Figure 5

Intriangle ABC draw a circlethrough vertex A and tangentto side BC at B, a circlethrough
B and tangentto CA at C, and a circle through C and tangentto AB at A Thenthese three circles
concur at a point called a Brocardpoint for the triangle. See Figure5. By symmetry there are two
Brocard points for a triangle. By considering inscribed angles, it is easy to show that angles CBP,
ACP, and BAP are equal. In fact, the converseis also true. If those three angles are equal, then
point P is a Brocard point for triangle ABC. 2
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Theorem 5. Construct a Garfunke! triangle A'B'C’ for a given triangle ABC. Let the lines
C'Aand A'B meetat P, lines AB and B'C meet at Q, and B'C and C'A meet at R. Then the Miguel
point for triangle PQR associated with the three points A, B', and C' is the circumcenter of triangle
ABC.

Figure 7
Figure 6

In Figure 6 let O be the circumcenter of triangle ABC. Now we have that angles CBQ, ACR,
and BAP are equal because triangles CBA', ACB, and BAC’ are similar by construction. Then

LA= /BAC = 180° - LBAP- /RAC = 180° - LACR - [RAC = [LARC = [R.

Since LA + LC'OB' = 180°, then /R + LC'OB' = 180°. Therefore, the circle through B', R, and
C' passes through O. Similarly, the circles through A, Q, and B’ and through C', P, and A" both
pass through O, so O is the desired Miguel point. 1

We conclude our list of theorems with an interesting relation between a Miguel point, a
Brocard point, and a Garfunkel triangie.

Theorem 6. Under the hypothesis of Theorem 5, the Miguel point for triangle PQR
associated with the three points A B, and C is a Brocard point of triangle ABC.

Let M be the Miguel point for triangle PQR and points A, B, and C. See Figure 7. From the
proof of Theorem 5, we know that LA = LR Because AMCR is a cyclic quadrilateral, then

LAMC = 180° - LR = 180° - LA

Therefore we have

180° = /MAC + LAMC + LMCA = /MAC + 180° - LA + /ZMCA,

so that

(MAC + LMCA = LA = (MAC + LMAB.

Now LMCA = LMAB, whichin turn = ZMBC by symmetry. Hence Mis a Brocard point for triangle
ABC.O
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FAIR FARE FUNCTIONS
JN Boyd and PN. Raychowdhury
Virginia Commonwealth University

INTRODUCTION

The Acme Bus Corporation (ABC for short) was created to meet the needs of the good
citizens of towns x;, X5 Xg e Xpg- The essential geographical feature explaining these

transportationneeds is Bear Mountain as indicated on the map below.

To THE
Big

CowunTRY
RoAD

Figure 1. The Geography of Towns Xy, Xg, Xgs ... Xp_¢-

The towns are connected by a country road which runs over level ground at the foot of the
mountain. The read also links the towns with villages x5 and x, which lie on the main railroad line
to the big city. Many of the citizens of Xy, Xy, X5, ... X,.4 Work In the big city; and, from both x5 and
x,, commuter tralns travel to the city with convenient regularity. Eventually, the ABC was
established to run buses back and forth along the country road betweenXg and X, picking up and

letting off passengers along the way.
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The distances between any two towns, x;, X (i#§ije{1, 2 3 .. n1}), are relatively
short when compared to the distance from any of the towns to either xg or x,. Consequently,
commuters do not care whether they catch a bus headed for X, or one headed for x,, since either
bus will carry them to a station where the wait for the next train is never long. Therefore, they
simply take the first bus that comes along.

The round trip fair f(i), from town x; to either railroad station in the morning and back-again
in the afternoon was established by the board of directors of ABC. It so happened that the
Chairman of the Board had been a mathematicianin his youth with a particular interest in discrete
harmonic functions. [1] He persuaded the board that the average value property of harmonic
functions representedthe fairestmodel for establishingthe round trip fares from the differenttowns.

Unfortunately, since f(0) and f(n) both had to be zero, the harmonic rule

) = [f(-1) T f(+1)]/2

would haveimplied that f(i) = O for all i, thereby quickly putting ABC out of business. So, the board,
acting upon the advice of the Chairman, added a surcharge of one dollar to each fare (as indicated
in Rule 3 below). The board then set the fare as a function of | by the following rules:

1) f(0) = f(n) = 0.

2) f()) = f(n-l) for i e {0, 1, 2, ... n} to reflect the obvious symmetry resulting from the
citizens' willingness to catch their tralns at either x, or x,.

3) f(i) = [f(-1) + f@i+1)]/2forie {1,2 3, ... n1}

The extra one dollar (in Rule 3) was justified as consistent with the policy of charging one
dollar for a round trip over the relatively short distances between any two townsx; and ; (i # ] and
neither i nor j @ {0, n}). There had always been a modest amount of travel among the various
towns in addition to the primary traffic to and from xy and x;,.

The Chairmanwas quite pleased with the properties of his fare function f(i) and it is the
intent of this paper to investigate some of those properties.

THE FIRST SEVERAL CASES

If there are n-1 towns with stations X, and X, at the ends of the country road, we will denote
the fare functionby f, () forn 2 0and1=10, 1,2 .., n.

By definition, we simply say that f3{0) = 0 and f,(0) = f,(1) = 0.

Forn = 2, we have f,(0) = f5(2) = 0 by Rule1 and f,(1) = [0 + 0]/2 + 1 = 1 by Rule 3.

Forn = 3, we have f5(0) = f5(3) = 0 and 2f3(1) = [0 * f3(2)] + 2. By Rule 2, f3(2) = fa(1).
Therefore, f5(1) = f3(2) = 2

Forn = 4, we find £4(0) = 0, £,(1) = 3, 14(2) = 4, 14(3) = 3, 14(4) = 0.

If the results of these and further computations are displayedin a triangular array, interesting
relationships become apparent.
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fo(0)
,(0) fi(1)
f.(0) (1) 2(2)
.(0) (1) f3(2) fi(3)
f.(0) (1) . (2) f.(3) f.(4)
becomes
0
0 0
0 1 0
0 2 2 0
0 3 4 3 0
0 4 6 6 4 0
0 5 8 9 8 5 0
0 6 10 12 12 10 6 0
0 7 12 15 16 15 12 7 0

Most of the patternswhich arise along variouslines through the triangle are so obvious that
no comment on those patterns seems required. They suggest that the triangle should serve as a
useful source for Inductive statements and proofs.

MORE GENERAL RESULTS

To make more general sense out of the triangular array, let us take first and then second
differences acrossthe horizontal rows of numbers. By so doing, we find that, for each row shown
above (except those with all zeros), the second difference has the constant value of -2. This result
leads us to suspect that f, can be written as a quadratic functionof I Thatis, f, () =a + bi + ci.

For example, if n = 8 (across the last row shown in our triangle of function values), our
calculations yield

first difference: 7 5 3 1 -1 -3 -5 -7
second difference: -2 -2 -2 -2 -2 -2 -2
It Is then easy (e.g., [2]) to find the coefficients a, b, ¢ and to show that

fa() = 8i- 2
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Thereafter, a bit more work suggests that
f.() = ni- 2. (1)

Checking our result against our three rules, we find that f,(0) = f,(n) = 0 implying that Rule 1
Is satisfied. Since fy(n-1) = n2-ni- (- 2ni + i) = ni- I Rule 2 is satisfied. And, since”
[fa(t-1) + f(i+1)]/2 + 1 = ni- 2= f,(i), Rule 3 is also satisfied.

Furthermore, we can show that f (i) from Equation 1 uniquely satisfies all three rules. Suppose,
to the contrary, both f,(i) and g, () satisfy the three rules. Then

fa) - 9o() = {[f,(-1) + £ ,(+1)1/2 + 1} - {[g(-1) + ga(i+1)1/2 + 1}
= [y (1) - @, (1) + Ty(i+1) - g, (i+1))]/2

implying that the function h, () = f,() - g,() Is harmonic. Slnce h (0) = hy(n) = 0, it follows that
h,(i) = 0 for every i by the uniqueness of discrete harmonic functions having identical boundary
conditions. Therefore, f,(I) = g,{i) for everyi It followsalso that Rule 2 Is implied by Rules 1 and
3.

OBSERVATIONS

We leave it to our readers to decide whether or not Rules 1, 2, and 3 lead to fair fares in our
scenario and to generalize the fare functions by making changesin Rule 3.

The Chief Engineer for ABC was not to be outdone. After the Chairman had explained the
reasoning behind the definition of his fare function, the Chief Engineer recalled that, for each
harmonic function, there oughtto be an electrical network for whichthe harmonic functiondescribes
the potentials at the branch points of the network. He claimed that he could design a circuit for
resistors for which the n-th fare function defined the potentials at the branch points.

Eventually, he submitted the design below.

R X R X R
A A W
“L R% K R J—:
[4 P..,

Figure 2. The Chief Engineer's Circuit.

Ali resistorsare identical with resistanceR ohms. Point P; Is maintainedat a potential of 2 volts
above the potential V; at branch pointx; fori = 1, 2, 3, ..., n-1. The potentials Vg and V,, (at X, and
x,) are both set at zero volts.
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By Kirchhoff's Rule for currents at any branch point, we have

Vi - Vi)/R = (Viq - V)/R + 2/R

where current along the chain xg, X4, X5, .-, X, IS taken to be positive in the direction from left to
right. After a bit of simplification, the last equation becomes

Vi= (Vig + Viq)/2 +1

in accord with Rule 3. Rule 1 is satisfied by V; = V,, = 0; and, as we have noted. Rule 2 is
automatically satisfied whenever Rules 1 and 3 hold true.

REFERENCES
1] JN. Boyd and P.N. Raychowdhury, "Discrete Dirichlet Problems, Convex Coordinates, and

a Random Walk on a Triangle," College Mathematics Journal 20 (1989), pp. 385-391.
[2) P.F. Dierker and W.L. Voxman, Discrete Mathematics, Harcourt Brace Jovanovich, 1986.

A rebusis a kind of puzzle whose meaning is indicated by things rather than by words.
The followingrebus was submitted by Florentin Smarandache, of Phoenix, AZ.

J 1 0 0 0
o O 1 o0 0 O
0o 0 R t 0 O
o 0 0 O t 0
o 0 0 0 A
0 0 0 O N

MATCHING PRIZE FUND

If your chapter presents awards for Outstanding Mathematical Papers or for Student
Achievement in Mathematics, you may apply to the National Office for an amount equal to that
spent by your Chapter up to a maximum of fifty dollars. Contact Professor Robert Woodside,
Secretary-Treasurer.
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Two New Numbers Aid Mathematicians
James Metz
Maryknoll High School, Honolulu, H1 -

For many years mathematicians, and perhapsa few students of mathematics, have enjoyed
rationalizing the denominators of expressions such as 742 and y/¥'3, and wen more complicated
ones in¢luding 6/(V2 - 5) and (3 + 7i)/i. Until now they have been forcedto live with such nasty
expressionsas 9/x and 3/e with their irrational denominators. Two new numbers now solve this
problem and allow expressionswith denominators it, e, or a non-zero multiple of either,"tko be
changed to a form which has a rational denominator.

The two numbers have always existed in the set of real numbers, but they were never given
names, since they seemed rather useless except for filling a couple of holes on the number line.
(The situation is something akin to "new" asteroids.) The decimal names of these new numbersare
impossible to pronounce because you can never finish trying to say them.

The first number is called TINAPAY; after the Tagalog word for "bread.” It is pronounced
teen - a - pi. Written 10, it is defined as T = 10/x. As an example of the usefulness of this
number, consider the expression 7/x which has the irrational denominator x.

7/x = 7/x - (10/10) = (7 i0)/10. Notice the rational denominator. As a bonus, this expression
also has the convenient decimal representation.7 0. For converting radian measure to degree
measure, just multiply by 18 1.

The second new discovery is the number EATEN, pronounced e -ten, and written ex. The
symbol is the juxtaposition of e and the Roman numeral for 10, thus giving the number a classical
flavor. EATEN is defined as ex = 10/e, and it functions with expressions with denominators e in
much the same way as 10 does with expressions with denominators x. As an example, we see that
9/e = 9/e - (ex/ex) = (9ex)/10 or .9ex.

The reader should notice immediately that ex will confuse students who will interpret it as
the product of e and x, or worse as "example." Thisis nothing new in mathematics. We use "x" as
a variable, to indicate multiplication, and as a numeralfor 10. We use a dot for a decimal and to

indicate multiplication. The choice of symbol is in keeping with the tradition of math symbols.

Problems for mathematiciansto solve in the future will include the rationalization of the
denominators of expressions such as 6/(2 + «), 7y/(e + =), and 8/(¥2 - it). The reader can
appreciate that the mathematics community, up to now, has not advanced far in the rationalization
of denominators. 18 and ex are two numbers that help.
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Gleanings from the Chapter Reports

GEORGIA EPSILON (Valdosta State College) The speaker at the fall, 1989, meeting was Dr. John
Fay, from the Department of Mathematicsand Computer Science. The title of his talk was "How
to Win Betting on Horse Racing." During the winter quarter, the chapter held its second annual
mathematics contest. The contest was open to all students enrolled at Valdosta State College.
Steve Hoffman won the contest. The speaker at the spring quarter meeting was Dr. George
Meghabghab. The title of his talk was "Inductive Learning." The talk was followed by the initiation
ceremony for eight students. Afterwards, the election of new officers was held.

ILLINOIS IOTA (Elmhurst College) The Mathematicsand Computer Science Club and the Pi Mu
Epsilon Chapter sponsored a barbecue at the beginning of the year, participated in field trips to
Argonne National Laboratory, and, along with the Mathematics Department, sponsored a weekly
seminar at ElImhurst College. The president of the chapter, Dieter Kunas, inducted new members
at the fall meeting of the Associated Colleges of the Chicago Area (ACCA), Mathematics Division.
The speaker was Prof. Richard G. Cornell, Department of Biostatlstics, U. of Michigan. He spoke
on "Careers in Biostatistics" and "Some Statistical Issues in the Evaluation of the Sweetener
Aspartame.” At the ACCA Student Spring Symposium, five members presented papers and
members were inducted. Fromthis group of students, one presentedhis work at the lllinois MAA.

SectionalMeeting and one presented her work at the national Pi Mu Epsilon meeting in Columbus,
Ohio.

ATTENTION FACULTY ADVISORS

To have your chapter's report published, send copies to Robert M. Woodside, Secretary-Treasurer,
Department of Mathematics, East CarolinaUniversity, Greenville, NC 27858 and to Richard L Poss,
Editor, St. Norbert College, De Pere, Wl 54115.

Message from the Secretary-Treasurer

Copies of the new, revised Constitutionand Bylaws are now available. The pricesare: $1.50
for each of the first four copies and $1 for each copy thereafter. l.e., $(1.50 n) for n < 4 and
$(n+ 2) forn a4

The videotape of Professor Joseph A Gallian's AMS-MAA-PME Invited Address, "The
Mathematics of Identification Numbers," given as part of PME’s 75th Anniversary Celebration at
Boulder, CO, in August, 1989, is also now available. The tape may be borrowed free of charge by
PME chapters, and by others upon an advance payment of $10. Please contact my office if you
desireto borrow the tape, telling me the date on which you would like to use it. 1 prefer to mail the
tape directly to faculty advisors, and expect them to take responsibility for returning it to my office.
Please submit your request in writing and include a phone number and a time that | might reach
you if there are problems. Robert M. Woodside, Secretary-Treasurer, Department of Mathematics,
East Carolina University, Greenville, NC 27858.
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PUZZLE SECTION

Edited by Joseph D. E. Xonhauser
Macalester College

The PUZZLE SECTION is for the enjoyment of those readers who are addicted to
working doublecrostics or who find an occasional mathematical puzzle or word puzzle
attractive. We consider mathematical puzzles to be problems whose solutions consist of
answers immediately recognizable as correct by simple observation and requiring little
formal proof. Material submitted and not used here will be sent to the Problem Editor if
deemed suitable for the PROBLEM DEPARTMENT.

Address all proposed puzzles and puzzle solutions to Professor Joseph D. E.
Konhauser, Mathematics and Computer Science Department, Macalester College, St.
Paul, MN 55105. Deadlines for puzzles appearing in the Fall Issue will be the next
March 15, and for the puzzles in the Spring issue will be the next September 15.

PUZZLESFOR SOLUTION

1. A Teaser from the legacy of Leo Moser, first Problem Department Editor of
the Pi Mu Epsilon Journal.

Find positive integers a, band csuch that a3 + b* = 5.
2. Proposed by Basil Rennie, Burnside, South Australia.

Take three points at random on the unit sphere. What is the expected value of the
area of the triangle that they form?

3. From a 1966 paper by S. J. Einhorn and I. J. Schoenberg.

The vertices of a regular octahedron are such that the fifteen distances between
pairs of vertices assume just two values. There are five other arrangements of six
points in 3-space such that the distances between pairs of points fall into just two
classes. How many of them are you able to find?

4. Proposed by the Editor of the Puzzle Section.

Given a unit square, what is the area of the octagonal region bounded by the eight
lines joining the four side midpoints to the endpoints of the opposite sides?

5. From a 1959 paper by J. Lambek and Leo Moser.

Separate the integers 1 through 16 into two disjoint eight-member sets Sand T
such that the 28 sums of pairs of elements of S are identical with the 28 sums of pairs of
elements of T.
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6. Contributed by E. N. lgma.

Cards labelled 1 through &, without duplication, are shuffled and held face up. If
the number on the top card is m then the mth card counting from the top is moved to the
bottom of the k-card pile. Next, the number now on the second card is noted. If the
number is n then the nth card from the top is moved to the bottom of the pile. The
process is repeated for the 3rd, 4th, 5th cards and so on. If the card to be moved is
already on the bottom the pile remains unchanged. For example, for k = 4 if the initial
arrangement is 2143 then the final arrangement is 2431. If the final arrangement for
five cards is 12345 what was the initial arrangement? Is the solution unique?

7. Proposed by the Editor of the Puzzle Section.

To how many triangles whose vertices are vertices of a regular polygon of 2k + 1
sides is the center of the polygon interior?

COMMENTS ON PUZZLES 1-7, FALL 1990

For Puzzle #1, RICHARD |. HESS wrote xx...x/xx...X, where Xx..X consists of one
or more 0's, 1's, 6's, 8's and 9's subject to the conditions (1) there are no leading or
trailing 0's and (2) there is at least one 6 or 9. xx...x is Xx...x turned upside down.
Examples: 619, 916, 89168, 9600811180096. Similar responses were received from
MARK EVANS and EMIL SLOWINSKI. CHARLES ASHBACHER, MARK EVANS, RICHARD 1,
HESS, BOB PRIELIPP and EMIL SLOWINSKI responded to Puzzle #2. Most submitted a
solution consisting of linear equations in the amounts bet on each horse with results $33
on horse A, $22 on horse B and $6 on horse C. For Puzzle #3, MOHAMMAD PARVEZ
SHAIKH (freshman at Western Michigan University) gave a complete analytical geometry
solution showing that the area of the three-pointed "star” equals 215 that of the given
triangle. RICHARD I. HESS solved the problem by projecting the given triangle into an
equilateral triangle using a transformation which preserves ratios of areas. Then, using
elementary trigonometry, he obtained the result 2/5. EMIL SLOWINSKI did not reveal
his method but supplied the correct answer. Only RICHARD I. HESS responded to Puzzle
#4. The scheme used by the proposer was to start with a first row of 0, 1, -2, 3. The
elements of the following rows, from left to right, were obtained, respectively, as the
sum of the first two elements in the row above, the sum of the last two, the first minus
the second and the third minus the fourth. 1t is easy to show that the elements in the k +
4th row equal four times those in the kth row, so that the elements of the 100th row are
those of the 4th row multiplied by 4 to the power 24. In Puzzle #5, the three-member
set {2, 3, 5) has the property that the product of any two members leaves a remainder of
1 when divided by the third. Are there any other triplets of distinct positive integers
with the same property? EMIL SLOWINSKIand RICHARD I. HESS both said "No," but only
HESS supplied a proof. Only RICHARD |. HESS and EMIL SLOWINSKI gave analyses for a
winning strategy for the second player in the square-marking game in Puzzle #6. Very
briefly put, these strategies are to leave the first player with only two squares empty but
not in the same row or column, or to leave the first player with four empty squares
which are the vertices of a rectangle. The correct response to Puzzle #7 is 17 bishop
moves to move a bishop from the upper left corner (white) of an 8x8 board to the lower
right corner so that each of the white squares is occupied at least one time. Solutions
and/or answers were supplied by RICHARD [. HESS, EMIL SLOWINSKI and MARK EVANS.
Here is the solution of MARK EVANS. From left to right, let the first (top) row of squares
be labelled 11, 12, ... , 18; the second row 21, 22, ..., 28; and so on, then, in order, the
bishop moves from square 11 to 55, 28, 17, 71, 82, 64, 86, 68, 13, 31, 42, 51, 84,
48, 15, 33, 88.
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Solution to Mathacrostic No. 31 (Fall 1990)

WORDS:

A Butterfly effect K. Easy U. Navaho

B. Relativism L. Antichthon V. Tachylyte
C Invariance M. Totemism W. Metathesis
D. Gingerbread man N. Tesla coil X Immortals
E Gardensof Eden Q Umbilic Y. Ratiocinate
F. Stimp meter P. Roach Z. Rataplan

G Athbash Q Busy beaver a Olive

H. Naupathia R. Unknots b. Revolute

1. Dissipative S Limit cycle

J. Phase space T. EINino

AUTHOR AND TITLE: BRIGGS AND PEATTURBULENTMIRROR

QUOTATION: (Thus) the dynamics of bifurcations reveal that time is irreversible yet
recapitulant. They also reveal that time's movement is immeasurable. Each decision
made at a branch point involves an amplification of something small. Though causality
operates at every instant, branching takes place unpredictably.

SOLVERS: THOMAS F. BANCHOFF, Brown University, Providence, Rl; JEANETTE
BICKLEY, St. Louis Community College at Meramec, MO; CHARLES R. DIMINNIE, St.
Bonaventure University, NY; MICHELE HEIBERG, Herman, MN; DR. THEODOR
KAUFMAN, Brooklyn, NY; HENRYS. LIEBERMAN, Waban, MA; CHARLOTTEMAINES,
Rochester, NY; STEPHANIE SLOYAN, Georgian Court College, Lakewood, NJ.

LATE SOLUTIONS: Solutions for Mathacrostic No. 30 (Spring 1990) were received from
MICHAEL TAYLOR, IndianapolisPower and Light Company, IN and from JOAN and DICK
JORDAN, Indianapolis, IN.

Mathacrostic No. 32
Proposed by Joseph D. E. Konhauser

The 256 letters to be entered in the numbered spaces in the grid will be identical
to those in the 27 keyed words at the matching numbers. The key numbers have been
entered in the diagram to assist in constructing the solution. When completed, the initial
letters of the Words will give the name and an author and the title of a book; the
completed grid will be a quotation from that book.
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Definitions

conceive

. shape with deep Indentations

corkscrew-like structure formed by linked
amino aclds (2 wds.)

said of lumber cut radially so that annual
rings are perpendicularto the face (comp.)

tradenameof Plet Hein's seven polycube
puzzle

a mix of randomly construcled small
oroteins and fatty acids and a variely of
active, energy-rich nuclaotide unils

(2 wds.)

lhree-dimenslonal shadow of a
four-dimenslonal Kleln bottie (2 wds.)

. Hipparchusdevelopedbask of Greek

trigonometry (3 wds.)

insertion or development of a sound or
letter in the body of a word

kind of order different from the
deterministic one

. edible tuberous plant of the morning glory

variety (2 wds.)

. Jack of Spades, Jack of Heads and King of

Diamonds {comp.}

. formerly known as a large dyne

. third largest natural satellite of Saturn

a conman's patter (slang; 2 wds.)

. "We have adroilly defined the infinlte in

arithmetic by a , in this manner o,
but we possess not therefore the clearer
notlon of It" Votlaire

connected

. trig

. H. Buckminster Fuller trademark

copyrighted in his name in 1926 by
Marshall Field

compound polyhadron formed by two
Intersecting regular tetrahedra In a cube
(2 wds.)

. huge shield volcano on Mars (2 wds.)

pun-lover's name for 4.6692016090

Norton Juster's detightful romance in lower
mathematics published in 1963 (5 wds.)

Words

138 229 119 61
235106 35 4
184 252 133 155
227 136 246 152
279 201 83 1
223 25

18 15 94

“62 233 185 173

174 196 187 41
165 74 231 42

195 144 24 65

245 107 182 86

160 116 77 237

211 38 67 236
T42 162 249 11

178 30 57 255

168 75 43 216
243 214 180 88
209 181 157 171

17121 o5 68
176 156
139 45 87 48

126 148 5 247

33 166

97 170 82

109129 6 28

164 127 256 61
T0 193 o1
204

27 220 149 159

205 217 47 16

108 17 63 52

134222 101 56
232 120 46 105
69 202 20

192 54

84 113 240

70 197 172

241 90 125 2

99 111 55

37

22 254 98 140

147 732 49 128
59 40
115 71 188 160

194 110 253 158

239 10

177 208

50 76 124

Ti4 73 34

26 251 218

221 198 210

96 213 208

"1z 153 21 163 20 200 53 103 151 191 85

226 248

122 183 89

final result

round, slender and tapering

Informal collection of problems in
mathematics begun in Lwow, Poland in
1935 (3 wds.)

capable of making shod flights out of the
water and of ‘flying. with a propulsive
force while in the air

5 92 141102 186 154 244

224 23 72 13

206 123190225242 132 39

250 146 93 3l

———

81 175207 118 9

130215 79 189135233

1 T|l2 P|3 G4 B|5 V|6 C|7 Z 8 1|9 aflo Fp1 O 12 WH3 Y|
14 K{15 G 16 H[7 ([18 G[19 J|20 L 21 W|22 s[23 Y|{24 K|25 F|26 T|
27 G 28 C|29 w3 P31 Z 32 T[3 A 34 K|35 B|36 F|37 R
38 N 39 z[40 Tj41 142 J|43 Q]44 G|45 U 46 K|47 H 48 Ul49 T
50 G|51 D|52 1 53 W54 M|55 Q 56 J|s7 P|s8 X|59 Tjeo F|61 Al62 H
63 | B4 Hles K|e6 2|67 N|68 T|69 L 70 O|71 U{72 Y{73 K 74 J
75 Q76 GF7 M 78 H|79 a 80 X|81 al82 B|83 E 84 N85 W|
86 L|87 U 88 R|89 wfoo Pj91 F 92 X|93 Z 94 Glos T[98 V|97 BF
98 S99 Q 100 F{101 J 102 X|103 w[t04 G105 K|[1068 B[107 L[108 I]i09 C
110 V|j111 Q112 Y{H13 Nji14 J 115 U{i16 M[117 H[118 a[i19 A[120 K121 T[122 W123 Z
124 G 125 Pj126 V 127 D 128 TH29 C[130 ali31 F[132 Z 133 C[134 J
135 al136 D|137 Y[13B A[139 U[140 S 141 X142 O] 143 E 144 K|145 H[146 Z|
147 T(148 V 149 G150 Mj151 W 152 D[153 W[I54 X 155 C|i56 T[157 S[i158 V|
159 G| 160 U[161 | [162 O[163 W{164 D 165 J[168 Alt67 F[168 Q[169 X[170 B{i71 §
172 O[173 H[174 | 175 afi76 T[177 C[i78 P{179 F[180 Rj181 S 182 L[183 W[i84 G
185 H|186 X|187 [}188 U 189 alig0 Z 191 W[192 M 193 F[194 V[195 K[186 |
197 Of198 U[189 D 200 W|201 E 202 L[203 C|204 F[205 H|206 Z|207 a}208 Vv|209 S|
210 U[211 N|212 z|213 Vv[214 R[215 a|216 Q|217 H[218 T|219 E 220 Gj221 Uf222 J
223 F|224 Y|225 Z|226 W|227 D|228 H 229 A}230 F|231 J|232 K 233 a|234 Hi235 B
236 N 237 M|238 Z|239 F|240 N 241 P|242 Z|243 R}244 X 245 L|246 D
247 V|248 W|249 O|250 Z|251 TRS52 C| 53 VR54 SrSS PR56 D
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PROBLEMDEPARTMENT
Edited by Clayton Dodge
University of Maine

This department welcomes problems believed to be new and at a level appropriate for the
readers of this journal. Old problems displaying novel and elegant methods of solution are also
invited. Proposals should be accompaniedby solutions if available and by any information that will
assist the editor. An asterisk (*) preceding a problem number indicates that the proposer did not
submit a solution.

All communications should be addressed to C. W. Dodge, Math. Dept., University of Maine,
Orono, ME 04469. Please submit each proposal and solution preferably typed or clearly written
on a separate sheet (one side only) properly ydentified with name and address. Solutions to
problems in this issue should be mailed by December 15, 1991.

We generally publish 13 problems per issue, one alphametric followed by one to three
problems from each of the areas listed below. To aid you in submitting problems for solution, each
area is followed by the number of proposals currently in its file. Please notice that four folders are
utterly empty. The areas are algebra (21), alphametrics (6), geometry (6), trigonometry (5),
analysis (2), logic and combinatorics (0), number theory (0), probability and statistics (0), and
miscellaneous (0).

PROBLEMS FOR SOLUTION

745. Proposed by Alan Wayne, Holiday, Florida.
Find all solutions to

ENID
+ DID
DINE.

746. Proposed by Gregory Wulczyn, Bucknell University, Lewisburg, Pennsylvania.

Find the least positive integer n that will have remainder 1 when divided by r, the quotient
will have remainder 2 when divided by r, the new quotient will have remainder 3 when divided by
1, and so forth through r - 1 divisions. Thatis, n = q,, and g, = gt k for

k=1, 2,..,r-1, rapositive integer greater than 1.

747. Proposed by the late Jack Garfunkel, Flushing, New York.
Let ABC be a triangle with inscribed circle (/) and let the line segments A/, B, and Cl cut
the incircle at A', B, and C' respectively. Prove that
sinA’ + sinB' +sinc 2 cos% + cosJéDZ + cos%,

where A', B, and C' are the angles of triangle ABC'
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748. Proposed by the late John Howell, Littlerock, California.

a) An urn contains n balls numbered 1 to n. Algernon, Beauregard, and Chauncey draw
a ball one after anotherwith replacement. The game is terminated when two consecutivedrawings
produce the same ball. Find the pmbabilities of terminating on Algernon’s draw, on Beauregard's
draw, and on Chauncey’s draw.

b) Repeat the problem for the case that the game terminates when three consecative
drawings produce the same ball.

749. Proposer by R. S. Luthar, University of Wisconsin Center at Janesville, Janesville,
Wisconsin.
If sin X + siny + sin z = 0, then pmve that

|sin3x + sin3y + sin3z| < 12|xyz|.

*750. Proposed by Dmitry P. Mavio, Moscow, U.S.S.R.
Solve the system of equations

2%y + (391 - y2 =y3 and 3%y - (291 -y? = /2.

This problem appeared in the SYMP-86 Entrance Exam Mathematical Problems.

751. Proposed by Murray S. Klamkin, University of Alberta, Edmonton, Alberta, Canada.
Determine all pairs of positive numbers x and y such that

1 1 X y
+ = + = 210 + — + =,
9(x + y) v *

752. Proposed by the late Charles W. Trigg, San Diego, California.

Martin Gardner (“Mathematical Games," Scientific American, April 1964, page 135) has
shown that the minimum sum of three 3-digit primes that contain the nine non-zero digits is 999.
Find a set of three such primes that sums to another multiple of 37.

753. Proposed by R. S. Luthar, University of Wisconsin Center at Janesville, Janesville,
Wisconsin.
Solve simultaneously

e +e¥=82 and &-¢'=2

754. Proposed by Seung-Jin Bang, Seoul, Korea.
Leta,=a=1,4a=2,anda,, = a,- a,, T a, forn>3. Show that

2 2 3 -
Q28,80 2 ~ Anaz@n-1 — @n8p, * 28p.8p8n, — @3 + 3 = 0.
755. Proposed by Stanley Rabinowitz, Alliant Computer Systems Corp., Littleton,

Massachusetts. )
In triangle ABC, a circle of radius p is inscribed in the wedge bounded by sides AB and
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BC and the incircle (/} of the triangle. A circle of radius g is inscribedin the wedge bounded by
sides AC and BC and the incircle. If p = g, prove that AB = AC.

4

756. Proposed by Basil Rennie, Burnside, South Australia.

Consider covering the unit interval [0,1] with n measurable subsets, under the constraint
that all n subsets must have the same centroid. The centroid m of a set E may be definedby
Iglx - m) dx = 0. How can you choose the n sets to minimize m?

For example, if n = 4, it is possible to make m = 7/20 by choosing the four sets
[0,2/5]L[9/10,1], [0,1/5]0[4/5,9/10], [1/20,1/4]U[[7/10,4/5], and {0,7/10].

757. Proposedby Paul Anthony Coartney, graduate student, San Diego State University,
San Diego, California.
Find the overall height of the pyramid formed from four sphericalballs of radiusr. Student
solutions are especially solicited.
SOLUTIONS
720. [Spring 1990] Proposedby the late Charles W Trigg, San Diego, California.
In base 4, find two repdyads, one the reverse of the other, whose squares are

concatenations of two repdyads. A repdyad has the form abab...ab. For example, a base ten
solution is

8989° = 80802121 and 9898' = 97970404.
Solutionby WILLIAMH PEIRCE, Stonington, Connecticut.
Let N= ababbe a four-digit repdyad in base B. The square of Nis an eight-digit number
which must be of the form
N? = pgparsrs.
Then we must have that
(1) N?=[(@aB +b)}(B®+ 1) = (aB + b)B* + 1)°
={pB + q)(B* + 1)B* + (B + s)(B + 1)
= (B +1)[(PB +q)(B*- 1) T (pB+ ) + (1B +5)].
Now (B2 + 1)% is a factor of the right side of the expression in the first displayed line, so it is a

factor of the expression in the last line. Hence
(2) (B?+1) mustdivide (pB +q) * (1B + 5).
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Since p, g, r, and s are digits in base B and not all zero, then (pB + q) + (rB * s) can range from
1to 2B2- 2. Since 2B? - 2 is more than B? + 1 but less than twice B? + 1, the only way for (2) to -
hold is to have

©) (EB +q) + (B +8) = B* +1

[itis at this point that the search for repdyads of three or more pairs would end, since -for..
example, when N = ababab, the expression B* + B? + 1 would have to divide (pB + q) + (rB + s).
This is not possible since B* + B? + 1 is greater than 2B? - 2]

Substituting (3) into (1) gives

@ N°=(B*+1)(B*- 1)(pB +q) + 1],

whichwill be consideredthe fundamental expression of the problem. It is necessary to find values
of pB *+ g that make the expressionin brackets in (4) a square. That is,

(5) (B? - 1)(pB + q) + 1 is a perfect square.

When B is small, a direct search suffices. [General parametric methods for solving (5) are not
included here.]
Two values of pB + q that satisfy (5) are pB + q = B*- 3 and pB + q = B? - 2B.
fpB+q=8B2-3,thena=B-1,b=B-2,p=B-1,q=B-3,andrB+s=4. IfB>4,
thenr=0ands=4. fB=4,thenr=1ands=0. [ B=3,thenr=s=1. Thisisnotasolution
forB < 3.
fpB+q=B*-2B,thena=B-2,b=B-1,p=B-2,q=0,andrB+s=2B+1,s0r
= 2ands=1. This solution holds for allB > 1.
Hence, for B = 4, we have the two required solutions

N =3232 and N?=31311010,

N =2323 and N?=20202121.

There are no other base 4 solutions.

The illustrations given in the proposal are examples of these two solutions for base ten.
Other bases can have additional solutions. For example, bases 5, 7, and 9 have six solutions, and
base 11 has fourteen solutions. Selected solutions appear in the table below.

Base Repmonads Repdyads Repdyads Reptriads

3 1212 2121 221221
4 2323 3232 332332
313313
5 33 1212 2121
2323 3232
3434 4343
6 44 4545 5454 554554
443443
112112
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The method outlined above can be used to study repmonads (N = aa, N’ = ppgq), reptriads
(N = abcabc, N? = pgrpgrstustu),etc. There is always at least one solution.

Subjects for further study would be 1) showing the specific relation between the humber
o solutions and the prime factors of B - 1 for repmonads, of B? - 1 for repdyads, of B? - 1 for
reptriads, etc., and 2) proving or dispmving that repdyads are the only case where reversals of
solutions are also solutions.

Also solved by CHARLES ASHBACHER, Hiawatha, /A, KAREN L. COOK, Lantana, L,
VICTOR G. FESER, University of Mary, Bismarck,ND, RICHARD |. HESS, Rancho Palos Verdes,
CA, NATHAN JASPEN, Stevens Institute of Jechnology, Hoboken, NJ, DEREK LEDBETTER,
University of Florida, Gainesville, HENRY S. LIEBERMAN, Waban, MA, KENNETH M. WILKE,
Topeka, KS, and the PROPOSER.

721. [Spring 1990] Proposed by Robed C. Gebhardt, Hopatcong, New Jersey.
Evaluate the integral

b - cot ax
1 + bcotax
I. Solution by the PROPOSER.
Multiplying numerator and denominator by sin &x, we get

bsinax - cosax, _ 1 racosax - ab sinax
sinax + b cos ax a’ sinax + bcosax

-% In |sinax + b cos bx| + C.

Il. Solution by GEORGE P. EVANOVICH, Saint Peter3 College, Jersey City, New Jersey.

dt

Let t = tan ax, so that x = ‘Lal'ctantand ax = a(—1—

. Then we have that

b - cotax ., _ rbtanax -1
1+ bcotax tanax + b

1 bt -1
B f(nb)(nte)

g oa +_1_ftdt
f+b 1+t2

1t

-%In1t+b|+éln|1 B+ C

—:;ln]secaxl —la|n|tanax+b| s C
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Also solved by JOHN T. ANNULIS, University of Arkansas-Monticello, CHARLES
ASHBACHER, Hiawatha, /A, MOHAMMAD K. AZARIAN, University of Evansville, IN, SEUNG-JIN
BANG, Seoul, Korea, FRANK P BATTLES (two solutions), Massachusetts Maritime Academy,
Buzzards Bay, MARTIN BAZANT, Tucson, AZ, J. D. BRASHER, Teledyne Brown Engineering,
Huntsville, AL, MARTIN J. BROWN, Jefferson Community College, Louisville, KY, CAVELAND
MATH GROUP, Western Kentucky University, Bowling Green, KAREN L. COOK, Lantana, FL,
ROBERT |. EGBERT, The Wichita State University, KS, STEPHEN HALE, Drake University,-Des
Moines, /A, IEM HENG, Providence College, RI, RICHARD |. HESS, Rancho Palos Verdes, CA,
NATHAN JASPEN, Stevens Institute of Technology, Hoboken, NJ, R. N. KALIA, St. Cloud State
University, MN, RALPH E. KING, St. Bonaventure University, NY, MURRAY S. KLAMKIN,
University of Alberta, Edmonton, Canada, DEREK LEDBETTER, University of Florida, Gainesville,
HENRY S. LIEBERMAN, Waban, MA, PETER A. LINDSTROM, Nodh Lake College, Irving, JX,
DAVID E. MANES, SUNY at Oneonta,G. MAVRIGIAN, Youngstown State University, OH, LEV S.
NAKHAMCHIK, Willowdale, Ont., Canada, OXFORD RUNNING CLUB, University of Mississippi,
University, |. PHILIP SCALISI, Bridgewater State College, MA, HARRY SEDINGER, St.
Bonaventure University, NY, WADE H. SHERARD, Furman University, Greenville, SC, SAHIB
SINGH, Clarion University of Pennsylvania, TIMOTHY SIPKA, Alma College, M!, and KENNETH
L. YOKOM, South Dakota State University, Brookings.

722. [Spring 1990] Proposed by Robed C. Gebhardt, Hopatcong, New Jersey.
On Interstate 84 in Connecticut a road sign, indicating a route number change, reads

NOTICE
66

IS NOW
322.

This, of course, is startling news to mathematicians. But consider:inwhat base would the number
66 equal 322 in what other base?

Solution by S. GENDLER, Clarion University of Pennsylvania, Clarion, Pennsylvania.
Let x be the base o the number 66 and y be the base for 322. Then

6x+6=2+2y+3y so y=0(mod2).

Also 3 divides 2 + 2y, so that y = 2 (mod 3).
By the Chinese remaindertheorem, y = 2 + 6n for any integer n, so that

6x+6=2+2@2+6n)+3@2 + 6n)?

from which we get that

X=2+14n +18n%> and y =2+ 6n

for any integer n > 0 (since x > 7). Some solutions (x,y) are (34,8), (102,14), (206,20), and
(346,261.
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Full solutions were submitted by DAVID ASCHBRENNER and KENDALL BAILEY, Drake
University,Des Moines, IA, SEUNG-JINBANG, Seoul, Korea, FRANK P. BATTLES, Massachusetts
Maritime Academy, Buzzards Bay, MARTIN BAZANT, Tucson, AZ, JEFFREY JOHN BOATS, St.
Bonaventure University, NY, BARRY BRUNSON, Western Kentucky University, Bowling Green,
CAVELAND MATH GROUP, Western Kentucky University, Bowling Green, JOE DeMAIO, Emory
University, Lenoir, NC, GEORGE P. EVANOVICH, Saint Peter's College, Jersey City, NJ, MARK
EVANS, Louisville,KY, VICTOR G. FESER, University of Mary, Bismarck,ND, RICHARD . HESS,
Rancho Palos Verdes, CA, the late JOHN M. HOWELL, Littlerock, CA, NATHANJASPEN, Stevens
Institute of Technology, Hoboken, NJ, DEREK LEDBETTER, University of Florida, Gainesville,
CARL LIBIS, Granada Hills, CA, DAVID E. MANES, SUNY at Oneonta, LEV S. NAKHAMCHIK,
Willowdale, Ont., Canada, WILLIAM H. PEIRCE, Stonington, CT, DAMEN PETERSON, Alma
College, Mi, WADE H. SHERARD, Furman University, Greenville, SC, SAHIB SINGH, Clarion
University of Pennsylvania, TIMOTHY SIPKA, Alma College, Ml, KENNETH M. WILKE, Topeka,
KS, DAVID YAVENDITI, Alma, Mi, KENNETH L. YOKOM, South Dakota State University,
Brookings, and the PROPOSER.

At least one solution was submitted by CHARLES ASHBACHER, Hiawatha, /A, MARTIN
J. BROWN, Jefferson Community College, Louisville, KY, BARBARA TON FERULLO, Boylston,
MA, MICHAEL W. LANSTRUM, Kent State University, OH, HENRYS. LIEBERMAN, Waban, MA,
LOWELL F. LYNDE, JR, University of Arkansas at Monticello, and MIKE PINTER, Belmont
College, Nashville, TN.

One incorrect solution was received.

723. [Spring 1930] Proposed by John L. Leonard, University of Arizona, Tucson, Arizona.
Show that, for any positive integers n and k, the product

A« /7)(1 . 12'-)(1 ¥ g) (1 + %)

is always an integer.

Solution by DAVID YAVENDITI, Alma, Michigan.
We have that

A« n)(1 . ﬂ](1 . ﬂ) ( . ﬂ)

2 3 k

(Y ()

-0

which is a positive integer for all positive integers n and k.

Also solved by JOHN T. ANNULIS, University of Arkansas-Monticello, CHARLES
ASHBACHER, Hiawatha, IA, KENDALL BAILEY and SEAN FORBES, Drake University, Des
Moines. /A, SEUNG-JIN BANG, Seoul, Korea, FRANK P. BATTLES, Massachusetts Maritime
Academy, Buzzards Bay, CAVELAND MATH GROUP, Western Kentucky University, Bowling
Green, DAVID DELSESTO, North Scituate, RI, GEORGE P. EVANOVICH, Saint Peter's College,
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Jersey City, NJ, MARK EVANS, Louisville,KY, VICTOR G. FESER, University of Mary, Bismarck,
NO, the late JACK GARFUNKEL, Flushing, NY, ROBERT C. GEBHARDT, Hopatcong. NJ, S.
GENDLER, Clarion University of Pennsylvania, DICK GIBBS, Fort Lewis College, Durango, CO,
RICHARD!. HESS. Rancho Palos Verdes. CA, NATHAN JASPEN, Stevens Institute of Technology,
Hoboken, NJ, DEREK LEDBETTER, University of Florida, Gainesville, CARLLIBIS, GranadaHills,
CA,HENRYS. LIEBERMAN, Waban, MA, PETER A. LINDSTROM, NorthLake College, living, TX,
DAVID E. MANES, SUNY at Oneonta, LEV S. NAKHAMCHIK, Willowdale, Ont., Canada, OXFORD
RUNNING CLUB, University of Mississippi, University, WILLIAM H. PEIRCE, Stonington, CT,
DAMEN PETERSON, Aima College, M/, BOB PRIELIPP, University of Wisconsin-Oshkosh, JOHN
PUTZ, Aima College, M/, VIVEK RATAN, Wesleyan University, Middletown, CT, HARRY
SEDINGER, St. Bonaventure University,NY, WADE H. SHERARD, Furman University,Greenville,
SC, SAHIB SINGH, Clarion University of Pennsylvania, TIMOTHY SIPKA, Alma College, Mi,
UNIVERSITY OF ARIZONA PROBLEM SOLVING LAB. Tucson. KENNETH M. WILKE @
solutions), Topeka, KS, KENNETH L. YOKOM, South Dakota State University, Brookings, and the
PROPOSER.

724. [Spring 1990] Proposed by Murray S. Klamkin, University of Alberta, Edmonton,
Alberta. Canada.
Which of the followingtriangle inequalities, if any, are valid?

(1) max{h,.h,.h} > min{m, m,mj},
(2) max{w,, w,,w,} > min{m,,m,,my},
(3) min{w,,w,,wJ > min{m,,m,mj}.

As usual, h,, m,, w,, etc., denote the altitude, median, and angle bisector, respectively, to side a.

1. Solution by RICHARD I. HESS, Rancho Palos Verdes, California.

Consider the triangle with vertices at A(0,0), B(1,0). and C(1000,1). Then Aga = h. =1,
Wi, = W, < 1, and m,, = m, > 499, so inequalities (1)and (3)are false.

Inequality (2)is true. Let a< b c. Then w,,, = W, and M, = M,. Then w, > h, and cos
C < 1/2 with equality if and only if a=b = ¢. Recallthat & = & + b - 2ab cos C by the law of
cosines and that

h? = b2 sin?C = b¥(1 - cos?C) and 4mj = 2a% + 2b% - ¢2

Now we have
4(h2 - m?) = 4b? - 4b? cos? C - 2a? - 2b? +¢?
= 2b2 - 4b? cos? C - 2a° + a® + b? - 2abcosC
= 3b2 - a? - 2ab cos C - 4b% cos’C
>3b%-a%-ab-b?
=(b-a@2b+a =20

from which equation (2)follows.
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1. Comment by the Editor.
Unfortunately, somewhere between the proposal and the publication, one letter was
changed. Inequality (3) should have read "mid" on the left. The correct proposed inequality is

(4) mid{w,,w,,w,} > min{m,,m, m}.

| . Solution to Inequality (4) by the PROPOSER.

By considering an isosceles triangle with small vertex angle it follows that (4) is invalid.
Also solved by the PROPOSER.

725. [Spring 1980} Proposed by Seung-Jin Bang, Seoul, Korea.

Let A B, C be vectors, Let [A] denote the usual norm of A, and let p and q be real
numbers such that p + g = 1. Show that

Ie* + ¢)A + 2pgB + CF - (F° + ¢)IA + CF - 2pqIB + CFF
is independent of C.

Solution by KENNETH L. YOKOM, South Dakota State University, Brookings, South
Dakota.

Leta=p? + ¢ and b = 2pg, and note that a + b= 1. Then
I(aA + bB) + C|? - alA + CI? - b|B + C|?
= [(aA + bB)I® + 2&(A,C) + 2XB,C) + |CI
- alAlF - 2(A,C) - alCI* - bIBIF - 2XB,C) - b|CY?
= l(aA + bB)I? - alAlF - bIBI7,
which is independent of C.

Also solved by CHARLES ASHBACHER. Hiawatha. /A, KENDALL BAILEY, Drake
University, Des Moines, IA, SUSAN BYE and LINDA RETTIG, St. Cloud State University, MN,
CAVELAND MATH GROUP, Western Kentucky University, Bowling Green, CYNTHIA COYLE,
Trenton State College, Laurel Springs, NJ, S. GENDLER (solution for 2-dimensional vectors),
Clarion University of Pennsylvania, RICHARD I. HESS, Rancho Palos Verdes, CA, NGUYENHOA,
St. Cloud State University, MN, SANDRA KEITH, St. Cloud State University, MN, DEREK
LEDBETTER, University of Florida, Gainesville, HENRY S. LIEBERMAN, Waban, MA,
YOSHINOBU MURAYOSHI, Eugene, OR, LEV S. NAKHAMCHIK, Willowdale, Ont,, Canada,
WILLIAM H. PEIRCE, Stonington, CT, WADE H. SHERARD, Furman University, Greenville, SC,
MICHAEL R. SIEGFRIED, St. Cloud State University, MN, SAHIB SINGH, Clarion University of
Pennsylvania, TIMOTHY SIPKA, Alma College, M/, DAVID YAVENDITI, Alma, M/, and the
PROPOSER.
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726. [Spring 1990} Proposed by the late Jack Garfunkel, Flushing, New York.

Giventhat x, ¥,z >0and x +y * z =1, prove that

::/1+x+:i/1+y+:§/1+2s:§/3_6.

I. Solution by HENRY S. LIEBERMAN, Waban, Massachusetts.

teta=1+x,b=1+y andc=1+2z Then a, b, and c are positive and a+ b+ c= 4.
It is known (cf. Hall and Knight, Higher Algebra, p. 216) that

::/E+s\/_+:i/(—:ssla+b+c
3 3

Hence

3
?(/1+x+:3/1+y+::/17+253 (%)

and the theorem follows.

1. Solution by CAVELAND MATH GROUP, Western Kentucky University, Bowling Green.
Kentucky.

Writing z =1 - x - y, we will show that 3\‘/3_6 is the maximum value of

KX.”=:V1 +x+:’;ﬁ+y+§/2-x-y
over the closed rectangle [0,1] x [0,1]. The desired result then follows immediately. Now
£ = %(1 R -;-(2 x - p2°

which is zero wheny +2x =1 or y = 3. We discardthe latter value. By symmetry, f, = 0 when
x+ 2y =1. Solvingthis linear systemgives {x,y) = (113113) as the only critical point in the domain.

To see that £1/3,1/3) = a;/ég is a maximum, we show that fx,y) is less than this value
along the boundary of the square. if x = 0, then

MO =1+Ay+V2-7=g0
and

wp - Y s - 1o o
00’)—3(1 » LG i
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There is a critical value for g in [0,1] at y =112, so we find

= 2 - L i + aga
g0) = g(1) =2 + Y2 =326 and 45)-1 2\{: 3.29,

both less than 3/3_6 = 3.30. By the symmetry of £, the same values occur along the edge y = 0
of the square.
For the edge x = 1 we have

A1) =V2+ Ty« Ty =my

and
W) = 21+ 9% - L - .
3 3
Since h has a critical point at y = 0, we calculate

MOy =2+ Y2 =326 and A1) =2VE 252,

both less than 3;/3_6 By symmetry, this same situation exists along the edge y = 1, too, and the
proof is complete.

lll. Solutionand generalizationby MURRAY S. KLAMKIN, Universityof Alberta, Edmonton,
Alberta, Canada.
If F{§ is a concave function and x, + x, * ... + x, = s, then by Jensen's inequality,

F(x,) + F(x,) + ... + F(x,) < nAs/n).
The given inequality corresponds to the specialcase n = 3, F(Q= 3¢1 + tand X > -1.

Also solved by MOHAMMAD K. AZARIAN, University of Evansville,IN, SEUNG-JIN BANG,
Seoul, Korea, GEORGE P. EVANOVICH, Saint Peter's College, Jersey City, NJ, MARK EVANS,
Louisville. KY, ROBERT C. GEBHARDT, Hopatcong, NJ, DICK GIBBS, Fort Lewis College,
Durango, CO, RICHARD 1 HESS, Rancho Palos Verdes, CA, YOSHINOBUMURAYOSHI, Eugene,
OR, LEV S. NAKHAMCHIK, Willowdale. Ont., Canada, OXFORD RUNNING CLUB, University of
Mississippi, University,BOB PRIELIPP, University of Wisconsin-Oshkosh,HARRY SEDINGER, St.
Bonaventure University, NY, TIMOTHY SIPKA, Alma College, Ml, KENNETH L. YOKOM, South
Dakota State University, Brookings, and the PROPOSER.

727. [Spring 1990] Proposed by the late Jack Garfunkel, Flushing, New York.
If A, B, C are the angles of a triangle ABC, prove that

2+HCOS

Bé c > 2) cosA
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Solution by MURRAY S. KLAMKIN, University of Alberta, Edmonton, Alberta, Canada.
Since

Y cosA =1 + 4]]sin —'%

the given inequality is equivalent to

[Moos B2€ 8[Isin 4.

The latter inequality appeared by the proposer as Problem 585, Crux Mathematicorum,
7(1981)p.303. In the solution there | had shown that it was equivalent to the known elementary
inequality

(bt g){c* a)a+ b) > 8abc.

This follows from

) ) 2c0s B cos B-C sB-C

b+c _ sinB+sinC 2 2 _ 2 .
a sinA A A A
2 — COos — sin =
SN %83 2

etc.

Also solvedby HENRY S. LIEBERMAN, Waban, MA, YOSHINOBUMURAYOSHI, Eugene,
OR, BOB PRIELIPP, University of Wisconsin-Oshkosh, and the PROPOSER.

728. [Spring 1980] Proposed by Dmitry P. Mavlo, Moscow, U.S.SR.

The distance betweentowns Aand Bis 5 km. A straight road passes throughtown A and
forms the angle a = arccos (415)with the line AB. Two hikers leave town A at the same time and
arrive at town B simultaneously. The first hiker goes by the direct route at 4 kmlhr The second
hiker first travels along the road at 6 kmvhr and then turns off the road and goes directly to B at
4 kmv/hr. Find the distance traveled by the second hiker.

A % Road
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Solution by FRANK P. BATTLES, Massachusetts Maritime Academy, Buzzards Bay,
Massachusetts.

More generally, let dbe the distance between towns A and B, wthe speed of the second
hiker along the mad, v (with w> v) the speed of the first hiker and of the second hiker when he
changes direction and heads directly to B, and a the angle between the road and the segment AB.
Let C be the point on the mad at which the second hiker turns, and t the time the second hiker
travels along the road. The total time of travelis d/v, so the second hiker travels from C to Bin
time div- t. Thenthe distance CBis given by Vd/v- f) = d- tv. From the law of cosines we have

wh? + &? - 2wid cos a = (d - W2

Next we solve fort, obtaining

t= 2dwcosa - g.
w2 2

Clearly we must have wcos a > v. Then the distance travelled by the second hiker is
wt+ (d-0 = __q__(awoosa +w- ).
v+w

Substituting the specific numbers given, we find that the second hiker travels 5.8 miles.

Also solvedby SEUNG-JINBANG, Seoul, Korea, MARTIN BAZANT, Tucson, AZ, MARTIN
J. BROWN, Jefferson Community College, Louisville, CAVELAND MATH GROUP (two solutions),
Western Kentucky University, Bowling Green, CYNTHIA COYLE, Trenton State College, Laurel
Springs, NJ, GEORGE P. EVANOVICH, Saint Peter's College, Jersey City, NJ MARK EVANS,
Louisville, KY, ROBERT C. GEBHARDT, Hopatcong, NJ, S. GENDLER, Clarion University of
Pennsylvania, STEPHEN A. HERR, Alma College, Mi, RICHARD I. HESS, Rancho Palos Verdes,
CA, NATHAN JASPEN, Stevens Institute of Technology, Hoboken, NJ, RALPH E. KING (two
solutions), St. Bonaventure University, NY, CARL LIBIS, Granada Hills, CA, HENRY S.
LIEBERMAN, Waban, MA, PETER A LINDSTROM, North Lake College, Irving, TX, DAVID E.
MANES, SUNY at Oneonta, G. MAVRIGIAN, Youngstown State University, OH, LEON MOSER,
Hunter College, New York, NY, YOSHINOBU MURAYOSHI, Eugene, OR. LEV S. NAKHAMCHIK,
Willowdale, Ont., Canada, OXFORD RUNNING CLUB, University of Mississippi, University, MIKE
PINTER, BelmontCollege, Nashville. TN, BOB PRIELIPP, Universityof Wisconsin-Oshkosh, JOHN
PUTZ, Alma College, M/, VIVEK RATAN, Wesleyan University, Middletown, CT, HARRY
SEDINGER, St. Bonaventure University, NY, WADE H. SHERARD, Furman University, Greenville,
SC, SAHIB SINGH, Clarion University of Pennsylvania. TIMOTHY SIPKA, Alma College, M,
KENNETH M. WILKE, Topeka, KS, DAVID YAVENDITI, Alma, MI, KENNETH L. YOKOM, South
Dakota State University, Brookings, and the PROPOSER.
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729. [Spring 1990] Proposedby the late Jack Garfunkel, Flushing, New York.

Given a non-obtuse triangle ABC with altitude CD = hdrawn to side AB, denote the inradii
of triangles ACD, BCD, and ABCby r,, r,, and r,, respectively. Provethatif r, + r,+ r, = h,
then triangle ABC is a right triangle with right angle at C.

C

I. Solutionby HENRY S. LIEBERMAN, Waban, Massachusetts.
We first prove the following lemma.

Lemma: Let ABC be a triangle with inradius r, semiperimeters, and side lengths a, b, and
c. Then ABC is a right triangle with right angle at Cif and onlyif r=s- c.

Let 1be the incenter and | Eand /Fthe inradii to sides CA and BC, as shown in the figure.
It is well-known (and easy to prove from the fact that the two tangents from an exterior point to a
circle are equal in length) that CE= CF = s- ¢. If angle Cis aright angle, then CEIF is a square,
so r=s- ¢ Conversely, if r = s - ¢, then CEIFis a rhombus with two right angles, therefore a
square. So angle Cis aright angle. The lemma is proved.

By the lemma,

BD+h-a
+—'

- AD+ h-b
n=b+AD+h _, * and 5 >

= 2
whence

c-b-a

l'1+fz=h+ >

because AD *+ DB = ¢ when neither angle A nor B is obtuse. Therefore,

a+b-c

n+h+rg=h Iff f= 2

Because this last condition is an "if and only if" statement, we have proved both the theorem and
its converse, that if ABC is a right triangle with right angle at C, then f; + R, + f, = h.
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Il. Comment by Murray S. Klamkin and Andy Liu, University of Alberta, Edmonton, Alberta,
Canada.
By using the general formula rs = area, we have that

no= hb cos A ro- ha cos B - he
‘" heib1l+cosA) 2 h+a(l tcosB) ° atb+c

and h=bsin A= asin B. Thenr, + r, + r, = h becomes

0 c0s A cos B sinC

T+cosA+sinA 1+c0sB+snB snA+shB-shC -

Equation (1) can independently be proved equivalent to the conditionthat ABC is a right triangle
with right angle at C. First,we note that

cos A _ {1 +cosA - sinAjcosA
1+ cosA + sinA (1 + cos AP - sin?A
1 sinA 1 1 A
=1 - 222 -~ - “anZ,
2( 1 +oosA] 2 23
etc. Also
: A B C
in A B+sinC=4 = COS-, —=.
sinA + sinB + sln ms2 20032
Then Equation (1) reduces to
c
sin =
1 1 A 1 1 B 2
—-—tan_—-+ — - —tan— + =1
2 2 2 2 2 2 50 cos B
2
Now use the relation
A B A B A B
tan — — = =+ =1 - = —,
5 +tan2 m\n(2 + 2)(1 tan2 tanz)

to simplify the equation to sin (At B)/2 = sin C/2, and finally to tan C/2 = 1, which is equivalent
to C=mw2.

Also solved by GEORGE P. EVANOVICH, Saint Peter's College, Jersey City, NJ, NATHAN
JASPEN, Stevens Institute of Technology, Hoboken, NJ, MURRAY 8. KLAMKIN and ANDY LIU,
University of Alberta. Canada, BOB PRIELIPP, University of Wisconsin-Oshkosh,TIMOTHY SIPKA,
Alma College, M/, DAVID YAVENDITI, Alma, Mf, and the PROPOSER.
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730. [Spring 1990] Proposed by A. S. Luthar, University of Wisconsin Center, Janesville,
Wisconsin.

Solve in integers the equation

2xy +13x - 5y- 11 = 45, .
Solutionby JOHN T. ANNULIS, University of Arkansas at Monticello, Monticello, Arkansas.
Solving the equation for y yields

The only integer solutions are those in which 2x - 5 is a factor of 41. Hence 2x - 5 equals £1 or
+41, yielding the solutions
(x.y) = (2,-17), (3,80), (-18,563), and (23,1180).

Also solved by CHARLES ASHBACHER, Hiawatha, /A, STEVE ASCHER, McNeil
Pharmaceutical, Spring House. PA, SEUNG-JIN BANG, Seoul, Korea, FRANK P. BATTLES,
Massachusetts Maritime Academy, Buzzards Bay, MARTIN J. BROWN, Jefferson Community
College, Louisville, CAVELAND MATH GROUP, Western Kentucky University, Bowling Green,
GEORGE P. EYANOVICH, Saint Peter's College, Jersey City, NJ, MARK EVANS, Louisville, KY,
VICTOR G. FESER, University of Mary, Bismarck, ND, the late JACK GARFUNKEL, Flushing,NY,
ROBERT C. GEBHARDT, Hopatcong, NJ, 8. GENDLER, Clarion University of Pennsylvania,
RICHARD 1. HESS, Rancho Palos Verdes. CA, NATHAN JASPEN, Stevens Instituteof Technology,
Hoboken, NJ, RALPH E. KING, St. Bonaventure University, NY, MURRAY S. KLAMKIN, University
of Alberta, Canada, JAMIE KONRAD, Rockford College, IL, DEREK LEDBETTER, University of
Florida. Gainesville. HENRY S. LIEBERMAN, Waban. MA. CARL LIBIS, Granada Hills, CA, G.
MAVRIGIAN, YoungstownState University, OH, LEV 8. NAKHAMCHIK, Willowdale, Ont., Canada,
WILLIAM H. PEIRCE, Stonington, CT, DAMEN PETERSON, Alma College, Ml, BOB PRIELIPP,
University of Wisconsin-Oshkosh,SAHIB SINGH, Clarion University of Pennsylvania, TIMOTHY
SIPKA, Alma College, Ml, KENNETH M. WILKE, Topeka, KS, DAVID YAVENDITI, Alma, Mi,
KENNETH L. YOKOM, South Dakota State University, Brookings, and the PROPOSER.
Occasional arithmetic errors on some of the submissions were overlooked, which is a general
policy of this editor.

Partial solutions were submitted by MOHAMMAD K. AZARIAN, University of Evansville,
IN, KAREN L. COOK, Lantana, FL, JOE DEMAIO, Emory University, Lenoir, NC, and WADE H.
SHERARD, Furman University, Greenville, SC.

731. [Spring 1990] Proposed by Roger Pinkham, Stevens Institute of Technology,
Hoboken, New Jersey.
a) Show that on the lattice points inthe plane having integer coordinatesone cannot have
the vertices o an equilateral triangle.
*b) What about a tetrahedron in 3-space?
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I. Solutionto Part@ by the late JACK GARFUNKEL, Flushing, New York.

Let a triangle have vertices (x,.y;), {(%..¥2), and (X;,¥s). The area of the triangle is

1 h 1
¥ 1
¥ 1

1

which is an integer whenever the coordinates are all integers. However, the area of an equilateral
triangle is given by the well-known formula

_ s __("1“-"2)2*0’1’1/2)2/—
ek 4 v

which is irrational when the coordinates are integers. Hence, a contradiction, proving Part (a).

Il. Solution to Part (@ by S. GENDLER, Clarion University of Pennsylvania, Clarion,
Pennsylvania.

Assume there is such a triangle. Translate it so its vertices are at ({0,0), P(a.b}, Q(c,d)
with all coordinates integers. We assume that any common factor of a, b, ¢, and d has been
divided out, so that the triangle is of smallest possible dimensions. Since the triangle is equilateral,
we must have that OP? = PQ? = OC?, that is,

a®+b’=(a-cl+(b-d?=c*+
The left inequality simplifies to
2(ac *+ bd) = ¢ + d*.
Since the left side is even, then ¢ and dare both even or both odd. If both are odd, then

a®+b®=c?+d? =2 (mod 4),

so both a and bare odd, too. But then 2(ac * bd) = 0 (mod 4), which is impossible. If c and dare
both even, then

a’+ b?= c?+ d®= 0 (mod 4),

and a and b must both be even, contradicting our hypothesis that triangle OPQ is smallest
possible. Hence there are no solutions.

Ill. Commentby Seung-Jin Bang, Seoul, Republic of Korea.
Part (a) of this problem appeared in the mathematical competition of university students
in Korea held in June 1989. The solution given there is essentially solution Il above.
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IV. Solutionto Part (o) by ALLENJ. SCHWENK, WesternMichiganUniversity, Kalamazoo;
Michigan.

In 3-spacethe situation is entirely different. Let us seek a tetrahedron of the form {0,0,0),
Ala,b.c), B(b,c,a), C{c,a,b) with a, b, and c integers. Clearly we already have OA= OB= OC and
AB=BC = CA Thus we need only have OA = AB, that is, -

a?tb’+c?=(a-bP?+(b-¢¥+(c-a).
Now use the quadratic formula to solve for ¢, obtaining

=g+ b 2fab.

Writing a = m?r, where r is square-free, in order for cto be rational, then we must have b = nf.
Thus atriple (a,b,c) will give us a regular tetrahedron of lattice points of the form above if and only
if (a,b,¢) = (m?r, r?r, (M £ n)?r), where m, n, and rare integers. (Note that r need not be square-
free.) For example, the smallest equilateral lattice tetrahedron of this form is (0,0,0), (0,1,1),
(1 1 ,0), and (1 v0-1)'

V. Comment by Murray S. Klamkin, University of Alberta, Edmonton, Alberta, Canada.

First, the word "regular” should be inserted in the statement of Part (b). Also, it has been
shown that the only regular polygonthat canbe imbeddedin a square lattice is the square [1, p-4].
The only other regular polygons that can be imbedded in an n-dimensional cubic lattice are the
triangle and the hexagon and n = 3 suffices [1, p.43}. It has been shown [2] that it is sometimes
possible to imbed a regular n-simplex in an n-dimensionalcubic lattice. In particular, if n= 3 (mod
4}, that imbedding is always possible. Finally, a proof by Andy Liu and myself that the only regular
polygons that can be imbedded in an equilateral triangular lattice are the triangle and the hexagon
is to appear in Mathematics Magazine.
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VI. Comment by the Editor.

Two solvers of Part (a) cleverly took two verticesof the triangle to be located on the x-axis.
One used the points (0.0), (2,0) and (a/2,b); the other used (-a,0), (a,0), and (0,b). In either case,
the computations are simplified. It is not obvious, however, that such a choice of coordinates ¢an
be made without loss of generality. Clearly, translations are possible, so there is no harm in
placing one vertex at the origin. One must prove, then, that if (0.0), (0.9}, (.S} are points with
integral coordinates, then it is possible to find a similar triangle (0,0), (&0}, (b,6) with integral
coordinates
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Tothat end, suppose a rotation-homothetycentered at the origin maps (.4 to (a.0), where
a, p, and g are integers. In complex numbers the mapping can be represented by u + viand we
have
(Pt gt vi=a,
which we solve for ¢ and vto get

___pa . _-ga
U—"—pz—"‘q*2 and v= p2+q2.

Hence v and vare rational. It follows that (r+ s){u * vi) = b + ciyields rational coordinates band
¢. Now multiply each of a, b, and ¢ by the common denominator i + ¢ to get the desired integral
coordinates.

Also solvedby NATHAN JASPEN, Stevens Institute of Technology, Hoboken, NJ, DEREK
LEDBETTER, University of Florida, Gainesville, andHENRY S. LIEBERMAN (Part (0) solutionof
the form of SolutionV above, found "while walking on a trail at the Audubon Society Sanctuary
in Wellfleet”), \Waban, MA. Most solvers of Part (0) foundjust the one solutiongiven in the very
last line of our Solution IV.

Part (@ solutions were submittedby CHARLES ASHBACHER, Hiawatha, 1A, SEUNG-JIN
BANG, Seoul, Korea, FRANK P. BATTLES, Massachusetts Maritime Academy, Buzzards Bay,
MARK EVANS, Louisville, KY, RICHARD |. HESS, Rancho Palos Verdes, CA, LEV S.
NAKHAMCHIK, Wilowdale, Ont, Canada, DAMEN PETERSON, Alma College, M/, ALLEN J.
SCHWENK, Western Michigan University, Kalamazoo, and the PROPOSER.

INMEMORIAM
John M. Howell
Jack Garfunkel

John M. Howell taught mathematics, probability, statistics, and computer programming at
Los Angeles City College for 23 years, retiring in 1969. He was an active contributor to this
department for many years, thoroughly enjoying his Commodore 64 computer. Number theory
problems seemed to be his specialinterest. After retirement he became quite interestedin stamp
collecting, formingthe Mailer's Postmark Permit Club. He was born February 21, 1910, and died
June 29, 1990.

Jack Garfunkel taught at Queensboro Community College. Althoughretired several years,
he returned to teaching this past fall semester because he was getting bored just sitting home.
He and I met professionallywhen | was asked to review his article The Equilic Quadrilateral,which
appeared in this JOURNAL in the Fall of 1981. Jack's curious facility for ferreting out geometrical
truths and my organizationalskill complemented one another nicely and we collaboratedon four
more papers, the last one appearing last spring. Many of his proposals and solutions have

appeared in this column over the years. Jack died December 31, 1990, at age 80 after a brief
iliness.
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Editor's Note

The Pi Mu Epsilon Journal was founded in 1949 and is dedicated to undergraduate and
beginning graduate students interested in mathematics. Submitted articles, announcements, and
contributions to the Puzzle Section and Problem Department of the Journal should be directed
toward this group.

Undergraduates and beginninggraduate studentsare urged to submit papersto the Journal
for consideration and possible publication. Student papers are given top priority. Expository
articles byprofessionals in all areas of mathematics are especiallywelcome. Some guidelinesare:

1. Papers must be correct and honest.
Most readers of the PiMu Epsilon Journal are undergraduates: papers should be
directed to them.

3. With rare exceptions, papers should be of general interest.

4. Assumed definitions, concepts, theorems, and notations should be part of the

average undergraduate curriculum.
5. Papers should not exceed 10 pages in length.
6. Figures provided by the author should be camera-ready.
7. Papers should be submitted in duplicate to the Editor.

The following chapters were installed in 1990:
Maryland Gamma (The University of Maryland, Baltimore)
Florida Kappa (University of West Florida, Pensacofa)
lllinois Kappa (Millikin University. Decatur)

There are now 262 chapters of Pi Mu Epsilon.

@ printed on recycled paper.




