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PRELIMINARY ANNOUNCEMENT = 1992 NATIONAL MEETING

Pi Mu Epsilon has traditionally held its annual meeting in conjunction with the hummer
meetings of the AMS and the MM. In 1992, however, the International Congress of Mathematics
Educators (ICME) will hold its annual meeting in Quebec City, in Canada. It has been the policy
of the AMS and M M to forego their summer meetings in years when an international mathematics
meeting (e.g. ICME or the International Congress of Mathematicians) takes place in North America.
Thus there will be no AMS-MM national meeting in the summer of 1992.

Pi Mu Epsilon will, however, have a national meeting in 1992. It will take place August 6
through August 8 at Miami University, in Oxford, Ohio. In addition to Pi Mu Epsilon student
contributed paper sessions and invited faculty lectures, there will be the opportunityfor members
of student chapters of the M M to give presentations. Look for further information in the spring,
1992, Pi Mu Epsilon Journal and in an announcement to be sent to chapter advisors in the spring
of 1992.

STUDENTPAPERS

In each year that at least five student papers have been received by the Editor, prizes of
$200, $100. and $50, known as Richard V. Andree Awards, are given to student authors. All
students who have not yet received a Master's Degree or higher are eligible for the prizes.

There are four student papers in thisissue of the Journal. The firstis ‘Turning Trianglesinto
Circles", by Judy Marie Kenney. Judy prepared this paper while she was a senior at the College
of St. Benedict.

The second paper is "Computerized Segmentation of Liver Structures”, by Heng Hak Ly.
Heng prepared this paper, with the help of Dr. Maryellen Giger and Dr. Rose Carney, while he was
a junior at lllinois Benedictine College.

The third paper is "Inversions and Adjacent Transpositions", by Amy Pinegar. Amy prepared
this paper, under the supervision of David Sutherland, while she was a senior at Middle Tennessee
State University.

The final student paper is "A Math Problem Within an Antique Clock Label" by Shannon L.
Spittler. Shannon wrote this paper while she was a junior at Miami University.
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TURNING TRIANGLES INTO CIRCLES

Judy Marie Kenney
College of St Benedict

Imagine drawing any simple closed curve on a piece of paper, and then stretching or
contractingthe paper in several directions. If it were possible to do this without wrinklingor ripping
the paper, we could create another simple closed curve In any shape we wanted. That is, there
would be a mapping from the original closed curve to the transformed closed curve. But what
happens to the pointsinterior to the closed curves? The points interior to the original closed curve
should remain interior to the new closed curve.

Suppose the original curve is an equilateraltriangle, the created curve Is the unit circle, and
the "paper" is the complex plane. We want to find a conformal mapping so that the interior of the
equilateral triangle will be mapped onto the unit disk in the complex plane. Even though this
mapping will take the interior of the equilateral triangle onto the unit disk, the edges of the triangle
should transform into the unit circle. This mapping will take the vertices of the triangle to any three
specified points on the unit circle. The Riemann Mapping Theorem ensures as a special case that
a mapping from the interior of an equilateraltriangle onto the unit disk exists.

Riemann Mapping Theorem: Let A be a simply connected region such that A # C. Then there
exists a one-to-one and onto conformal map f:A = D, where D is the unit disk.

(This mapplng is analytic, which means that it is differentiable In the complex plane. It
should also be noted that A is a region, which is an open set, and therefore the mapping is
conformal inside the region A, not necessarily on the boundary of A)

However, like many theorems in mathematics, the Rlemann Mapping Theorem is an
existencetheorem; that is, it does not state how to find this mapping. Before we show the details
of this mapping, we need to define both conformal and a family of unfamiliar functions.

A mapping f, from a region A to a region B8, is said to be conformal if, for each z; in A, f
rotates tangent vectors to curves throughz, by a definite angle 6. (The angle is locally preserved.)
In other words, suppose two curves intersect at a pointz,, and the tangents to these curves at z,,
form anangle 8. Then, under the mapping f, the two mapped curves intersect at a point #(z,,), and
the tangents to these curves throughf{{zg) form the same angle 8 (locally), in sense as well as size.
An example should help make this definition clear.

The mapping z = 22 maps the first quadrant onto the upper half plane. We can see this
when we look at lines parallel to the y-axis: if z = z * yi, where a is constant, then under the
transformation, z becomes 2 = (@ + yi)?, yieldingz' = a®- y? *+ 2ayi, the equation of a parabola.
Similarly, lines parallel to the x-axis are transformed into parabolas. Thus the mapping is:

o 90°
©
zrr 2

a},90°

C, A

G
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The tangentsto the curves €4 and C, form an angle of 90°. Under the conformal mapping z »22,
the tangents to the transformed curves C, and C, again form an angle of 80°; so. the mappling
z = 2% is conformal.

The family of unfamiliar functions are the Jacoblan Elliptic Functions, which are similar to
the trigonometricfunctions. The Integralsrepresentingtrigonometric functions involve the equation
for a circle; similarly, the integrals for the Elliptic Functions involve the equation for an ellipse.
Arthur Cayley’s An Elementary Treatise on Elliptic Functions provides a connection betwéert the
equation of an ellipse and the elliptic Integral.

If we look at the integrals

x dt T _ 1 dt
u = I — and 3 = Io —_—_—
0 J1-t2 V1i-t?
we see that as x varies from 0 to 1, v varies from 0 to =/2. Also, from calculus, we see that

x dt . .
u = I ——_ = arcsinx;
0 1_t2

that is, sint = x. Now, if we look at the integrals

x dt _ (e dt
. f" (1-t2) (1-k?3t?) o f“ Y(1-t?2) (1-k%t?)

where 0 < k < 1, we see that as x varies from 0 to 1, u varies from O tom. This relationship defines
a function sn by the formula sn (©,k) = x. We see that whenk = 0, the integral becomes the arcsin
Integral as above. Thus, sn (u,0) = sinu. Also, whenk = 1, the Integral becomes

x dt
jO 1-t2

and, from calculus, sn{u,1) = tanh u.

Trigonometry involves more than the sin function; similarly, thereis more than one Jacobian
Elliptic function. Two functions that we are interested in are cn (u,k) and dn (&,k). An explanation
of the explicit forms of these functions can be found in Jacobian Elliptic Function Tables, by LM.
Milne-Thomson.

As mentioned above, the Riemann Mapping Theorem ensures that the mapping we want
exists, but does not state how to find it. However, because the composition of two conformal
mappings produces a conformal mapping, the mapping from the interior of an equilateral triangle
onto the unit disk can be brokeninto two mappings, which we can then compose. First, a mapping
from the interior of the equilateral triangle onto the upper half plane, and second, a mapping from
the upper half plane onto the unit disk.
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This second mapping from the upper half plane onto the unit disk can be found using a
linear fractional transformation, which will take any three specified points on the real axis to three
specified points on the unit circle. A linear fractional transformation is defined as

T(w) - BW*D .
(w) =rid , where ac - bd # 0. wy wo

Thus, this mapping transforms the real number 0 to T(0) = b/d = wj,; the number 1 to T(l) =
(a+ b)/{c + d) = wy; and if we take the limit as w becomes large, we see that T(w) = T(=) = a/c
= W,. Because we have four parameters (a,b,c,d), and only three arguments T(0), 7(1), T(-), we
do not have a unique mapping. However, we can find a unique solution by arbitrarily assigning a
value to one of the parameters. Settingb = 1, the other variables are:

1 Wi-W, Wo (Wq-W,
d=_;c=___1_°_;anda=__2(1_°).
Wo Wo (Wa-Wwy) Wo (Wa-wy)

So. this mapping T(w) will take the points0, 1 and =to any three specified points on the unit circle,
Wo Wy, and w,:

aw+b un wo

T(W) agiu it , where ac - bd # 0.

ws

-0Q 0 I o0

To verify that this mapping of T(w) takes any point in the upper half plane to the unit disk, we
choose a point, say 4 * 3, and show that its transformation is in the unit disk. We need to specify
Wo Wy, and wy, so letw = -1 + Of, wy =0 -4, andw, = 1 + Oi. Thus,

1(-i+1) ; i-1 ;
—_— = (4+31) +1 —riegs L F 3
T(4+3i) = SIELEI ) I A - -6+2i _ 3 _1,
—i+1 ; 1 i-1 . -8 4 &
—_— e (4+3 .y Lo d ~
“I(1+0) ( i)+ - 173 (4+31i) -1

which is in the unit disk.

To show that T(w) Is a mapping from the upper half plane onto the unit disk. we need to
verify that for any point, z, in the unit disk, there is a point, w, in the upper half plane such that T(w}
=2z
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Wo(Wq -Wo)W + Wo(Wy —Wq)
Let z € the unit disk. Then, 2(W1 o) o(¥2 1" =z
(W -wo)w + (W —Wq)

"

- Wo (W —Wo)W + Wo(Wo —Wq) = Z(Wy -Wo)W + Z(Wp -W;)
- Wo (Wy ~Wo)W — Z (W1 -Wo)W = Z(Wp=Wy) - Wo(Wy ~W;)

_ zZ(wy -Wy) — Wo(Wa —-W7p) .
wo (W1 —Wg) — Z (W1 —Wp)

So, for any point z in the unit disk, we can find a point win the upper half plane such that T(w) =
z; therefore, T(w) is a mapping from the upper half plane onto the unit disk.

Now we have the mapping from the upper half plane onto the unit disk, but we still need
to find the mapping from the interior of the equilateraltriangle onto the upper half plane in order to
compose the mappings. The Schwarz-Christoffel Formula gives an explicit mapping from the upper
half plane onto any polygon:

Schwarz-Christoffel Formula: Let P be a polygonin the w-plane with vertices at wy, w,....w, and
exterior angles wa;, where -1 s a; s 1. Then

£(z) = a‘[oz (z-%1) % (z-x%5) % (2-%,_1) T'dz + b.
are conformal maps from the upper half plane onto the interior of P, where 'a’ determines the size
of the polygon and ‘b’ determines the position. Furthermore, f(;) = w;, and three s can be

specified; if x, = =, then the mapping becomes:

£(z) = aJ: (z-%x,) Mz -x5) " (2 -X,_1) ®'dz + b.
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If we use this formula with the equilateral triangle as our polygon, witha = 1andb = g for
simplicity, and the three pointsx; = 0, x, = 1, and x5 = =, we find the mapping is:

z dz
f =
(z) _[o (z-0)2/3(z-1)2/3

d

Note that £(x,) = £(0) = _[oo "("_2——2)—&73 =0
z2 -z

and f(xy) = £(1) =I: ?d_‘zﬁ % 5,298,

This gives the coordinates of two vertices of the triangle: (0.0) and (5.298,0). Thus, the third
coordinate is (2.649, 4.5882), which correspondsto f(=). Becausef(z) is continuous, points between
0 and 1 on the real axis will lie on the edge of the triangle with endpoints (0,0} and (5.298,0); points
greater than 1 on the real axis will lie on the edge with endpoints (2.649,4.5882) and (5.298,0);
points less than O on the real axis will lie on the edge with endpoints (0,0) and(2. 649, 4. 538):

(2.649, 4.5882)

3o 2
1, 5 -k

Thus, f maps the upper half plane onto the interior of the equilateral triangle. However,
because we want the mapping from the interior of the equilateral triangle onto the upper half plane,
we needto findthe inverse of f(z). Dictionaryof ConformalRepresentations, by H. Kober, givesthis

] ) - 7 1/4 17 B\ A c k)
inverse: t '% + (2 )(l'f‘zzm(lrk))é

k=_.?__‘/__+_1
22

where rw 2z - zy

enTEaR

1

1 dz
—_— ®~ 5,298.
_[o (22 _2)2/3

(5.298,0)
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We now have the two mappings we need: the mapping from the interior of the equilateral
triangle onto the upper half plane, and the mapping from the upper half plane onto the unit disk.
Composing the mapping from the triangle onto the upper half plane

£- 1, 20)% sn(l,k) dn({,k)

2 (1 + cn(l,k))?

where k, {, and z, are givenas above, with T, the mapping from the upper half plane onto the unit
disk, the new mapping
Wa(Wo ~W1)t + Wo(Wy - W)

g(Z) = (Wo ~w1)t + (Wl '-Wz)

takes the equilateral triangle with vertices (0,0), (5.298,0) and
(2.649,4.5882) onto the unit circle with specified points wy, wy, and w;.

During the summer of 1990, 1 participatedin a NSF Summer Research program at
Washington Universityin St Louis. B wouldlike to thank the director of the program, Professor
Clean Yohe. 1would also like to thank my advisor, Professor Steven Krantz, who gave me this
problem.

References:
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[2 M. J. Hoffman and J. E. Marsden, Baste Complex Analysis, W. H. Freeman and Company,
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(4 L M. Miine-Thomson, Jacobian Elliptic Function Tables,Dover Publications, Inc., USA,
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Judy Kenney prepared this paper while she was a senior at the College of St Benedict.

There were 1635 initiates to Pi Mu Epsilon during the 1990-91 academic year.
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COMPUTERIZED SEGMENTATION OF LIVER STRUCTURE FROM CT IMAGES

HengHak Ly
Illinois Benedictine College

Computed tomography (CT) produces cross sectional images of a 3-dimensional object
such as a patient's abdomen. Once 2-dimensional cross sections are obtained, image processing
and display need to be performed in order to visualize the original 3-dimensional object. The ability
to view the 3-dimenslonal image of some organ of interest is a useful tool to physicians about to
perform a related surgery.

In November of 1989, the first live donor liver transplant operation was successfully
performed at the University of Chicago Medical Center. Without a liver transplant, liver disease in
patients can proveto be fatal. The segmentationand 3-dimensional representationof the liver from
CT scansis a desired step in the surgical planning of alivingdonor transplant operation. Currently,
this visualizationis done qualitatively by the physician as he views the series of cross-sectional
Images (slices) of the abdomen obtained froma CT scan. Aresearchprojectinthe Kurt Rossmann
Laboratories for radiologic Image Researchin the Department of Radiology at the University of
Chicago involves the computerized segmentation of the liver in the cross-sectional images of the
abdomen and the subsequent 3-dimensional representationof the organ on a display monitor. {
participated in the research by implementingthe computerized scheme on an initial database of
patientsand by analyzingthe effect of digital filters on the performance of the scheme as compared
to that of a radiologist.

Before surgically removing a part of the liver, one needs to know the size, shape, and
volume of the donor liver. To find the volume of the liver, computed tomography (using x-ray
beams) was employed to generate cross-sectionalimages of the abdomen. The number of images
can vary greatly. As few as 15 and as many as 38 images were used for different patients.

The order of the steps that the computer uses to segment the liver are as follows: obtain
2-D slices, detectabdomen boundary, detectliver boundary, smooth liver boundary, calculateliver
areain each slice and estimate volume. To find the volume of the liver, the computer determines
its contours and boundary. Then interpolation techniques are used to stack these contours and
produce the 3-dimensional image.

The mathematical methods used in the extraction of the liver from the CT image of the
abdomen use a priori information of iiver morphology as well as various image processing and
computer-visiontechniques. The segmentationalgorithm is performed sequentially slice-by-slice,
starting with a reference slice in which the liver occupies almost the entireright half of the abdomen
cross section. The original image is converted to a binary image using what is called gray-level
thresholding. Each gray level for each pixelin the image has a number value ranging from 0 to 256.
Initially, the contour of the abdomenis located by the computer using information of itslocationand
shape. The shape is represented by a measure of circularity obtained from the ratio of the square
of the perimeter to the area of the structure in question.

Inthe reference slice the liver occupies a relatively large area in the abdomenand a region
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of interest is created in this approproximate area. By readingin the gray level values in this area
and limiting the values, a binary Image can be generated by making pixelswithin thisrange "1'* and
making those above or below "0" (0 = black pixel and 1 = white pixel).

Most of the undesirable entities in the Image, such as the stomach, are readily eliminated
becausethey are in the different part of the abdomen and do not have gray level values within the
desired range. However, they may create certain disturbancesin the binary Image that need to be
eliminated. To detectthe contour of the liver, the computer used a technique called region growing.
First, the approximate center portion of the liver is found using a priori Information of liver anatomy.
Liver gray level histogram analysis is performed within this portion. Gray-level thresholding is
performed to yield an initial estimate of the liver structure by using the range of gray levels that
correspond to possibleiiver structure. This estimate is subjected to smoothing by a Gaussian filter
and then region-growing techniques. The contour of the liver is then traced, using a process called
the "8-point connectivity test."

The screen Is searched for a *1* or a "0" that is part of the binary liver image. Then the
computer searches for the next closest black pixel using a set of eight vectors, labeled 0-7, each
45° apart, starting in the direction of the O-vector. If the pixel in that directionis black, then the two
pixels are connected, otherwise the next pixel directed by the next higher number is checked for
its color. Two pixels are connectedif their color is the same. The computer terminatesthe process
when the original pixel is reached.

If certain "objects" or "dots" are close enough to be part of the liver but are not connected
to the binary image, then they can be connected by applying the linear, shift-invariant Gaussian
filters. The function is the liver image. The process of changing and altering the function using
another functionis called convolution.

Up to this point most of the rough edges along the boundary of the liver have been
eliminated through the convolution with the Gaussian filter, but artifacts can occur due to the
presence of other anatomic structures that neighbor the liver. To eliminate the remnants of these
projections, morphological filtering was performed. The area enclosedby the detected contourcan
be considered as a binary image. A morphological filter sequence of an erosion followed by a
dilation is used to remove protruding projections alongthe boundary of the liver. Erosionis a non-
linear operation that calculates the logical AND of pixels w'thin a kernel of given size and shape,
whereas dilation determines the logical OR of such pixels. The sequence of an erosion followed
by dilationis referred to as an "open" process.

In the research, the sizes of both the linear Gaussian kernel and the non-linear open filter
were varied systematicallyand the effect on the computer-calculatedarea of the liver In each slice
was analyzed. The calculated area of each slice was then compared to that as drawn by a

radiologist. The variation in area between the computer and the radiologist was about 10% as
determined from four clinical cases, each with approximately 20 slicesto the case. The future aim
of the research will be to display the detected liver contours in 3-dimensional format for physician
viewing and for the electronic simulation of abdominal surgery.

Acknowledgementis made to the KurtRossmannLaboratory for the use of their facilities;
the Nationallnstitutes of Health for funding this project (CA 48985), Dr. Maryellen Giger, assistant
professor at the University of Chicago, for directing my work on this researchproject; Dr. Rose
Carmney, professor at lllinois Benedictine College, for her encouragementand support. -

Heng Hak Ly prepared this paper while he was a junior at lllinois Benedictine College.
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INVERSIONS AND ADJACENT TRANSPOSITIONS

Amy Pinegar
Middle Tennessee State University

We begin with a review of basic definitions. A permutation of a set A is a one-to-one
function fromA ontoA  More simply, a permutation of the numbers 1,2,3,...,7 is a rearrangement
of these numbers into a particular order. Two common notations are used for writing permutations:

column notation -- e.g., 7 = [1 2345
34152

cyclenotation--eg. g = (1 3)(2 4 5)
Permutation multiplication is defined as function composition on two permutations from left to

right. For example,
[12345][12345_12345
34152)25134) 13245

[(13)(245)][(12543)] = (23)

and

The permutations on 1,2,3,..,n with permutation multiplication form a group called S, the
Symmetric Group on 1,2,3,...,n.

Definition 1 If it is a permutation written in column notation, an inversion if in a permutation it
is a pair of numbers { and f suchthat init, the position of i comes before the position of j and
i > j. I(x) denotesthe set of inversions for it and |I(x)| denotes the number of inversions in
it.

12345

Example1 If m :[
3 4 4102

] , then I(x) = {4:1, 4:2, 3:1, 3:2, 5:2} and |I(x)] = 5.

The goal of this paper is to describe the effect of permutation multlplicationon inversions.
e begin by examining simpler permutations. Atranspositionis definedas a cycle containingonly
two elements. An adjacent transposition is a transposition where the two elements are
consecutive. For example (12) is an adjacent transposition, while (13) is not. e learn in group
theory that every permutation can be written as a product of transpositions. For example,

x = (1346) = (13)(14)(16).
However, properties of adjacent transpositions are not as well known.
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Theorem 1. If ® = {f j) is a transposition, then it can be expressed as a product of adjacent
transpositions. In particular,

it = () = (I+0)G+11+2)..(j1 J{ j2)(f-23)..(+H1 L
Example 2. The transpositionit = (25) can be written as
n = (25) = (23)(34)(45)(43)(32). -

Proof. Assume it = (i j) is a transposition. Without loss of generality assume/ < J. Let o denote
the decomposition

(1) +1 1+2)..(J4 DU 202 J8)...0+1 D).

We will show that it = a.

First consider all numbers X suchthatx < /. Thus ®{(x) = x And sincex is not involved in
the decomposition, oh) = x. Similarly, ex) = x = x(x) for numbers x such that x > .

Next consider aff x suchthat / < X < /. We know that ®{) = /, x(j/} =/, and ={¢) = x for
all i < x <} Using permutation muitlpiication from left to right on the transpositions in a, we
compute o)) = j and o(j) = i. We also notice that for i < x < j, the first time that x appears in a,
Xis senttox - 1. Then as we continue multiplyingto the right. we find that x - 1 does not appear
again until the right side where X - 1 is senttox. Thus, e{x) = x. Therefore,it = 0. 8

Theorem 2 Every permutation can be written as a product of adjacent transpositions.

Example 3. if it is the permutation (126){45}, then
it = (12)(16)(45) = {12)(12)(23)(34)(45)(56)45)(34)23)(12)(45).

Proof. Given a permutation, we can first express it as a product of transpositions. Then, by
Theorem 1, we can take each one of these transpositions and express it as a product of adjacent
transpositions. Therefore, it foilows that any permutation can be written as a product of adjacent
transpositions. @

Theorem 3. The expansion in Theorem 1 of the transposition it = (//} contains 2/ - 2/ - 1 adjacent
transpositions.

Example 4 The permutation ® = (14) can be decomposed into (12)(23)(34)(23)(12). This
decomposition has 2 - 21- 1 = 2{4) - 2(1} - 1 = 5 adjacent transpositions.

Proof. Letit = (i j) be atranspositionwith / < j. in column notation,

j—1jj+1---n]
j-14ij+1 - - - n

123 - -+ 3i-11idi+1 -
123 - - - i-13F i+1 -

Let a denote the decomposition of it into adjacent transpositions. Rewrite a by dividing it into
three parts. Call the three parts the left side. the middle, and the right side:

a = [ i+1) (+1742)...(j2 O] G-1 ) [ 242 141) @+10))

Notice that there are the same number of transpositions on the left side as there are on the right
side,with (/-1 j) being the middle. Also notice that the left and right sides contain the same
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transpositions written in reverse order.

First consider {x : 1 < x < i} and {x :j < x < n}. From the form of the expansion, no x
in these sets Is Included in an adjacent transposition in the expanded expression.

Now consider {x : / < x < f- 1}. There are j - 1 elements in this set with x and x + 1
forming an adjacent transpositionin the expression. If we look at the adjacent transpositions on
the left side, we know that all numbers in the set except x = i and x = j = 1 will appear In two
adjacent transpositions. Therefore there will be j - i - 1 adjacent transpositions on the left side with
(f 1+ 1) adjacent transpositions on the left side with ( /+ 1) being the first and (-2 f-1) being the last.
Since we know that the right side has the same transpositions as the left side, we know that the
right side also has f - i - 1 adjacent transpositions. Finally we count the middle adjacent
transposition, (-1 j), which we know only appears once In the expression.

Therefore adding up the number of adjacent transpositions from each part of a, we get
(j-7i-1)+ (j-i-1)+1 =2 -2 -1 adjacent transpositionsin a. ©

Theorem 4 If = = (j j) is a transposition, then it has 2 - 2j - 1 inversions.

Examples If @7 = (14) = [ ] , then I(r) = {4:2, 43, 41, 2:1, 3:1}

and |I(x)| = 2(4) - 2(1) - 1 = 5.

Proof.  Letit = (if) be a transpositlonwithi < j. Written in column notation
(r23 - -+ i-14id+1 - - - j-13 je1 - n
123 - . i-1jdis1 - - - j-1 :

First consider {x:x < i orx > j}. Since x(x) = x and all numbers followingx In it are larger

than x and all numbers preceding x in it are smaller than x, there are no inversions involving x.
Now consider {x: i + 1 < x < j-1}. There arej-i -1 elements in this set and all are

smaller than j. Thus j : x is an inversion and there are j - i - 1 inversions. Similarly, there are

j - -1 elementsin this set that all are larger than/. Thus, x:{ Is an inversion. Therefore there are

Jj-i-1moreinversions.  Finally sincej : i is an Inversionwe have (j-i-1) + (j-i-1)* 1 =

2f - 2i - 1 inversions. o

Now we returnto the question of the effect of permutation multiplicationoninversion. Given
permutations it and a, what is the relationship between I{x), I{e) and I{xa)? The preceding
theorems suggest we first consider the question when a is an adjacent transposition.

Lemma 1. The product of a permutation & and a transposition (i j) is the same permutation as it
except that / and § are switched in the product.

Example 6. Consider

12345[12345_12345]
(3512414325 |35142)

Notice that the product is the original permutation with 2 and 4 in switched positions.
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Proof. Assume = is a permutation and(if) is a transposition. Let a = ()(/ /), the product of it
and (ff). Choose x and y such that x{x) = i and =(y) = /. We want to show that e(z) = () for
all numbersz = x andz #y. When ={z) is multiplied by { ), since ={z) does not involve i or f, ©z)
will not change. Therefore e(z) = =(z).

Now consider x andy. By definitiion of the multiplicationof permutations, a{) = =(y) and
a{y) = =(x). Therefore the product of any permutation and a transposition (if) is the -same
permutation except for / and / belng switched in the product. © T

Theorem 5. If it is a permutation and a is the product of it and the adjacent transpositlon
(i i+1), then |I(e)| = |I(x)| = 1.

12345)(12345 _'[12345]
54132Jl12435/ |53142)
we find that I(x) = {5:4, 5:1, 5:3, 5:2, 4:1, 4:3, 4:2, 3:2} and I{¢) = {5:3, 5:1, 5:4, 5:2, 31, 3:2,
4:2}. Thus7 = |I(o)] = |I(m)[-1 =8-1=7.

Example 7. Given the product

Proof. Assume it is a permutation and a is the product of it and (f /+1). First consider all
inversionsin it and a not Involving i or i + 1. These inversions will be of the form x : y such that
x #i,i+1andy #1,i+1. We know by Lemma 1 that the product a of any permutation & and some
adjacent transposition {f i + 1) is the same permutation as w except for i and i + 1 being switched
In a. Since the positions of x andy are unchanged in it and a, if x:y is an inversionin =, it wlll also
be an Inversionin a.

Next we consider all inversionsInvolvingi or i + 1. First consider the inversionsusing / or
i T 1 and some number x whose positionis before the positions of / and i+1. If x:i or x:f+1 is an
inverslonin it, it will also be an inverslonin a since the position of x is still before the positions of
jiandi + 1lina.

Next consider the inversions using / or i + 1 and some number x whose position is after
the positionsof fand i * 1. If i or i+1x is an inversionin x, it will also be an inversionin a since
the position of x is still after the positions of f and i + 1 In o.

Now we consider the inversions involving / or i + 1 and some number x such that the
positionx comes between the positionsof f and i + 1. Without loss of generality, suppose/ comes
beforei * 1 Init. There are four possible inversions to consider:

) If i Is an Inversionin =, /+1:x will be an inversionin a.
) If x:i+1 is an inversionin it, x:/ will be an inversion In a.
iy If i2x is not an inversionin it, then i+ 1x will not be an inversionin a.
1Y) If x:i+1 is not an inversion in it, then x:/ will not be an inversionin a.

Observe that x will either be smaller than/ or larger than i + 1.

If i is an inversion in &, then the position of / comes before the position of x and i > x.
Since in a the positions of / and i * 1 are switched, theni + 1 comes before x and 7 + 1 > x.
Thus, i+1x @ I{e) and i) Is true. Similar reasoning proves ii), iii), and iv). Therefore the number
of Inversionsinvolving 7 or f + 1 and some number in a position between the positions of f and i +
1 In it will be the same number of inversionsin a.

Now finally we consider the inversioninvoking f and i + 1. If i+1:i is an inversion in =,
Lemma 1 implies that it will not be an inversionin a. If i:i+1 is not an inversion in =, it will be an
inversion in a by similar reasoning.
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Therefore, depending on the positions of iand/ + 1inx, |I(e)| = |I{x)| £ 1. o

The next example shows that Theorem 5 is not always true if the transposition|ls not
adjacent.

1 6
Example 8. Let 1r—{2345

53621 4] and a = (25). Then |I(x)] = 10 and

1234586

5 5 & § 4]. Thus |I(0)| = 7 * |i(x)] = 1.

og=ma = [

Next we turnto the question of the effect on the Inversionswhen permutation = is multiplied

by any other permutation a. Theorem 2 implies that we can restrict attention to multiplication of

= by a finite number of adjacent transpositions. We first consider the special case when the
adjacent transpositions are disjoint transpositions.

Lemma 2 The product e of any permutation ® and n disjoint transpositions is the same
permutationas & except that each pair of numbers in each transposition has switched positions in
a

1234586

2516 3 4] with the disjoint transpositions (12), (35),

Example 9 The productof IT = [

and (46) is found by switching the positions in = of 1 and 2, 3and 5, and finally 4 and 6. Thus

123456
1324568)

7 (12) (35) (46) = [

Proof. Since the transpositions are disjoint, the result follows from Lemma 1 and induction
onn. o

Theorem 6 If = is a permutationand a is the product of = and n disjoint adjacent transpositions
a,, &g..., &, then

B

|Z() | [[T(may)| - |I(m|]+ |T(m|

1

.
I

™M s

[[T(mey)|]+ (-n + 1) |T(m)].
i=1

-
"

(123 45 6)

Example 10 The result of multiplying o = LZ i 4J by the disjoint adjacent

transpositions(12), (34) and (56) is found by Lemma 2. Thus

12

o = m(12) (34) (56) = [1 p

s] Thus, |I{x)| = 6 and |I(0)| = 7. We
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can also calculate |I(xa,)| = 5, |I(ray)| = 7 and |I{xag)| = 7. Therefore,

3
[I(o)]| = 2_'1 |T(ma;)| + (-2) (6)

1=
(5+7+7) - 12
=7

7

Proof. Let = be a permutation and a be the product of = andn disjoint adjacent transpositions a,,
..., @ The proof is by induction onn.

Suppose n = 1. Thena = xa; where a4 Is an adjacent transposition. The formula says
|I(e)| = |I(kaq)| + O( |I(x)|) = |I(rxa,)| whichis true.

Now suppose the formula holds for a = ®a4a,...a, where the a,'s are disjoint adjacent
transpositions for / = 1,2....n.

Suppose a = xaj&,..&,, ¢ Where the ;s are disjoint adjacent transpositions for
[ =12..,n+1. Then o = [ra,ya,..a,]a,,, by associativity of permutation multiplication. From
Theorem 5,

)| = [|IEaypagen, ]l = [Leepa)l 21,

()

Applying the Induction hypothesis to |I(xe a,...a)| , we obtain

[I(maz)| +(-n + 1) |I(m)| £ 1

™

|I(0) |
1

9
)

|I(may)| + (-n) |I(m)]| % 1. (2)

M

1

.
1

Appiying Theorem 5 again, we find that
I(xan, )] = |I(x)] 1. @)

At this point we would like to be able to substitute |I(xe,, )] for |I(x)| = 1 in
Equation.2 However, in Equation 2 the |I(x)| £ 1 came from Equation 1. So in order to make
a valid substitutionwe need to verify that the +1 in Equations 1 and 3 have the same value.

Supposethat &,y = (If). Since the transpositions are adjacent,j = | + 1 and since the
transpositions are disjoint, Lemma 2 implies that the positions of / and j are the same in
®a %o &0, 4 (Equation 1) as in ma, 4 (Equation 3). Also recall that from the proof of Theorem
5, the inversion that is lost or gained in Equations 1 and 3, is the inversion I+ 1:/ in re &, .00, 4.
Thus the 1 in these two equations must have the same value. Thus

n
|T(o)| = ¥ |T(may)| + (-n) [T(m) | + |I(Ten.) |
i=1

n+l

Y |I(raz)| + (-n) |I(m)].
i=1

Therefore the formula holds true by induction. o
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e were not ableto generalize Theorem6 completely. Howeverthe final theoremdescribes
limits on how much |I{xa)| can differ from |I(x)|.

Theorem 2 If = Is a permutation and e |S the product of it and n adjacent transpositions, a, ,
oy, &, then

i) 1I(x)| - n < }I(e}| s |I(x)| + n.
i) There are (2*"2"1) = 4 possible values for |I{o)).
H These values are |I{s)| = |I(x)| + (n - 2K)

Vksuchthat 0 < k < (nl’;l) -1

Example 10. Let i = (145362) and multiply on theright by a, = (23), &, = (34), and &5 = (12).
In column notation, we obtain

416532){132456){124356)J)21345@86

[123456][123456][123456}(123456]_[123456

Thus I(x) = {4:1, 4:3, 4:2, 65, 6:3, 6:2, 5:3, 5:2, 3:2} and I{o) = {3:2, 31, 2:1, 6:5, 6:1, 6:4, 5:1,
5:4}. Thus we see that |I(x)| = 9 and |I(s)| = 8.
Condition) says |I(x)| -3 < |I{a)| < |I(x)| + 3. S06 <8 < 12.

Conditionil) says there are = 4 possible values for |I(a)|.

(2+3-1)
3
ConditionTii) says |I(e)| = |I(x)| *+ (3-2k), fork = 0,1,2,3.
For. k=0 |I(c)] =9+ 3 = 12,

k=1 ]I{(c)] =9 + 1 = 10,

k=2 |I{(a)] =9+ (-1) = 8,

k=3 |I(e)] =9+ (3 =6

Proof. Assume = is a permutation and a is the product of = and n adjacent transpositions a,
q ..a, Wefirst show [I(e)| s |I(r)| + n. Consider xe; = %, By Theorem 5 we will either
gain or lose an inversion. Therefore, at most |I(x,)| = |I(x)] + 1.

Now we look at (req)e, = mya, = & Again by Theorem 5, at most we will gain one
inversion. Therefore, at most |I(mg)| = [ [I(x)] + 1]+ 1 = [I{x)] + 2. Notice that each
time we multiply by an adjacent transposition, we can gain at most one more inversion. Therefore
[ we multiply by an adjacent transposition n times, we can gain at most n Inversions. Therefore
|I(o)| < |W(x}| + n. Similar reasoning proves that |B(it)| = n < |{I{o)].

li) Each multiplicationby an adjacent transpositioncorreponds to either a gain (+) or loss
(-) of an Inversion. Thus multiplying each of then adjacent transpositions will correspond to either
gaining (+) or losing (-) an Inversion. The number of possible combinations of gains and losses
corresponds to choosing a n-element multiset from a 2-element set P = { +, - }. From

326514
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combinatorics, we know this formula is (

2+n-1\ _(n+1
n ; n °

iii) The proof is by induction on the number of adjacent transpositions.

Letn = 1 Then |I{a)| = |I{x)| + (1 - 2k), fork = 0,1. Thus |I(e)| = |I(r)] =
1 which|s confirmed by Theorem 5. -

Now suppose n = m works and a = w& e,...&n,. Then

IL(a)] = |L(x)| + (m - 24) fork = O, 1, 2,.. (’";1) ~1.
Suppose ¢ = fa @,..ap .y Lt A = na a,..an. Then o = Aag, 4. By Theorem5,
JI(e)| = |I(A)] = L But by the induction hypothesis,

[T = JI=)| + (m - 2K), for 0, 1,2, (’";1) “1.

m+2
Now we show that the set A = |T{e)| = |I(x)| + (m + 1 - 2k), fork = 0,1,2,..., (m+l 1

is the same as 8 = |I{o)| = |I(x)| + (M - 2k) = 1, fork = O, 1, 2,..., (m;l) -1. We

need to show that
{m+1-2k|k=012..m+1}t={m-2k+1]k=012.,m}

To show that these are the same set. we will show that each set contains the same
numbers. in the first set observe that as k takes on the values from 0 to m + 1, the numbers
obtained range fromm + 1 downto -m - 1 and increment by two. Inthe second set, observe that
when we choose +1 and let k range from 0 to m, the numbers obtained range fromm + 1 down
to -m t 1 and increment by two. When the -1 Is chosen, the numbers obtained range fromm - 1
downto -m - 1 and also increment by two. Thus. the numbers In the second set range fromm +
1 down to -m - 1 and increment by two. Therefore, the two sets are equal.

Therefore, |I(e)| = |I(x)] + (m + 1-2K), fork =0, 1, 2..., ("”i) - 1 and. by induction,
m+

II(o)] = |I(m)| + (n - 2K), fork = O, 1, 2.... (”;1) -1.0

This paper was written under the supervision of David Sutherland while the author was a
senior mathematics major at Middle Tennessee State University.
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A MATH PROBLEM WITHIN AN ANTIQUE CLOCK LABEL

Shannon L. Spiffler
Miami University

inside an antique grandfather clock in my house is an interesting label that sets forth a
‘question withina solution." The question is how. before the advent of rapid communications such
as telegraph and radio, does one know what time it is and how much time has elapsed to make
sure one's dock is keeping accuratetime? The labelis dated 1789 and it sets forth the solution to
the question but, in doing so it brings to life another interesting fact about time. the solution of
which is the concentrationof this discussion of sidereal time.

‘ e
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1501 40ve; 1o n Becond,
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Hirle, 1 mo 3 ie'fnudb
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Figure 1: Label in 1789 Grandfather
Clock that contains a Math Problem
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The label (Figure 1) is located inside the door of a Scottish grandfather clock. The label
is yellow from age and worn through in places. It reads:

DIRECTIONS
SHEWING AT
HOW TO SET UP AND REGULATE AN
EIGHT-DAY-CLOCK

1 The Clock being carefullytransportedto the house or place meantto show the Time
in; see if the Pendulum be hung in its proper place; that done, set the Ciock and Case plum Inthe
place it is to be fixed in with the going or right hand weight hung on; thentake the winding Key, and
wind up the right hand weight one turn, and observe if the Pendulum moves from one side of the
Case to the other equal, likewise to move free of the back of the Case, half an inch. and no more,
this done, with a wedge below the front of the Case if wanted, then make the Case fast to the wall
with two screws.

il. To Regulate the Clock if not at Time, being set to Time with a good Sun-Dial at
Twelve @' Ciock. Then observe any particular fixed Star, you know, and mark down the precise
Time to a second shown by the Clock, when the fixed Star vanishes behind the Door or Chimney,
or to pass any hole, made for the purpose of seeing through. Then make this observation Ten
Nights after, and mark the time on the Clock, as above, to a Second, when the Star passes the
mark; then the Clock ought to be 39 Minutes, 19 Seconds behind the Star In passing the Mark; if
not so much behind, the Pendulum must be screwed down a little, if more behind, it must be
screwed up in proportion as you see the difference require.

April 1789

It Is paragraph ll, specifically the procedure explaining how to regulate the clock by timing
the passing of a known fixed star over a ten-day period, that is the subject of this article. The
question that needs to be answered is why does the star pass precisely 39 minutesand 19 seconds
before the clock shows ten full days? This question involves some mathematics and some
understanding of sidereal time.

it will be helpful to first mention that the only period of time that can be measured
accurately with simple Instrumentsis the day. The exact instant of noon can be determined using
a stick on a sunny day. The point of noon is when the sun is at its zenith, and the stick's shadow
is the shortest, pointing exactly at true north in the northern latitudes. Our common day is the
period between two noons. Every other period = a month, second, year, etc. -- can only be
approximated without instruments or must be calculated by accurately dividing a day or adding
days. Thus, the day is the basis of time and most time-keeping philosophies.

So, what exactly is a day? is it the time it takes the Earth to make 1 rotation on its axis?
No, it is the time it takes the Earth to make 1 and 1/365.25 rotations. The Earth revolves around
the sun once every 365 and 1/4 days (the 1/4 due to leap years). This is an approximation off by
only +11 minutes a year. In terms of orientationto the sun, the Earth makes 365 and 1/4
revolutions on its axis in a year. However, in terms of true rotations on Its axis, it makes 366 and
1/4 rotationsper year. This figure is determinedin terms of any fixed object in space such as a star
other than the sun or a planet. This is because the Earth must orient itself to point exactly at the
sun at noon each day and thus in the course of 365 and 1/4 days, one extra true rotationon its axis
is needed.
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Now, how long does It take the Earth to make one true rotation on its axis?

Let X = the time it takes for the Earth to complete one rotation on its axis
1X + (1/365.25) X = 24 hours.

The extra 1/365.25 rotation is the added rotation from above.
By substitution,

(365.25,/365.25)X + (1/365.25)X = 24 hours
365.25 + 11365.25 = 24 hours/X
366.25/365.25 = 24 hours/X
Solving, X = (365.25) (24) / 366.25
X = 23.93447 hours
or X = 23 hours. 56.0682 minutes
or X = 23 hours, 56 minutes, 4092 seconds

The Earth rotates once about Its axis every 23 hours, 56 minutes, and 4092 seconds. This
period is known as a siderealday. One true rotation accordingto a star is 3 minutes and 55.908
seconds short of our 24 hour day. In ten rotationsrelative to a fixed star, the amount of time short
of a ten (sun) day period Is 30 minutes and 559.08 seconds or 39 minutes and 19.08 seconds.

The label on the Robert Hon clock stated this time as 39 minutes and 19 seconds -- quite
accurate for 17891 The .08 seconds was probably known but dropped as no one could accurately
measure that amount of time anyway. For the same reason a 10-day period was probably selected
to make the observation. Any shorter period and errors made in calculatingthe instant of passing
of a fixed star are magnifiedand any greater period make the task of regulating the clock very time
consuming as the entire procedure must be repeated each time the pendulumis adjusted.

Shannon Spittler was a junior Englishmajor (mathematics minor) atMiamiUniversity when
she prepared this paper.
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REGULAR N -GONS ON THE SIDES OF A TRIANGLE
Hiroshi Okumura
Maebashi Daini High School, Japan

A well known theorem in plane geometry, attributed to Napoleon Bonaparte, says: |If
equilateral triangles are erected externally on the sides of a triangle, then their centers form an
equilateral triangle [1; theorem 3.36]. For squares erected on the sides of a triangle, we have the
following theorem [1; theorem 4811: If squares, with centers Oy, 0,, Oy, are erected externally on
the sidesBC, CA, AB of triangle ABC, then O, 05, and O, are equal and perpendicular. So we may
ask what we can say about regular pentagons, regular hexagons and, more generally, regular n -
gons erected on the sides of a triangle. To answer this question we need one more regular
n -gon. We shall agree that in the notation A, A, A, ... A, denoting a regular n -gon, the vertices
A, A, A .., A, lie counterclockwise.

FGURE 1

Theorem 1 Let Ay A, A, .. A, ByBy;B;..8, C C;C;..C, DyDy D, ... Dy be
regular n -gons in the plane with the centers A, B, C, D suchthat Cy = A,, A, =By, B, = C,,
C,=D,,andD, =A ThenA =C and B = D, or AC and BD are perpendicular with BD/AC =
2sin0, where 0 is the interior angle of the n -gons. Moreover if we exclude the trivial case in which
the figure is symmetric about the point A,, AC and BD bisect each other If and only ifn = 3 and
A, is the mid-point of BD if and only if n = 4
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Proof. We denote points of the plane by complex numbers In the Argand diagramwiththe
originA = €, and identify the points and their corresponding complex numbers. (See Figure 1)
LetA, = r, C, = s (rand s are complex numbers); then, since the image of a point w by the dilative
rotation with an angle ¢ about a point z and a ratio of magnificationk is (W - z)ke® + z, we get A
n =rt2andC, = st? wheret = e%/2 FromA,A /AA, = (2cos (8/2))" = (t + t-1) 1, letting
u=(t+t" " we also have:

A=rty, B= (rt3+stNy, C=st,D=(st°+rt
Therefore we obtain
AC=(s-r)tu and BD = (t2-t2)(s - r)tu

Hence it is clear that A = C implies B = D, and conversely. Now we suppose A # Corr-s = 0.
Then we have

BD JAC = t2-t2 = 2isin®.
This shows that BD/AC = 2 sin 8 and AC is perpendicularto BD.

If our figure is non-symmetricabout A, we have s + r # 0. The mid-points M and N of AC

and BD are obtained by simple manipulations:
M= (1/2)¢ + s)tu and N = (I/2)(t2 + t2)(r + s)tu.

Hence, M = Nif and only if t2 + t*2 = 1 and this equation is equivalent to having 28! . 8 + 1
= 0, or ¥ be a primitive third root of 1. ThereforeM = N if and onlyifn = 3. SimilarlyNisthe
origin If and onlyift2 + t2 = 0. The last equationis equivalent to that ® be a primitive 4-th root
of 1 orn = 4 The proof is now complete.

Since 9 = (1 - 2/n)x, we have sin9 = 1/2 and AC = BD whenn = 12. So we get the
same conclusionas Von Aubel's quadrilateraltheorem for regular dodecagons. Inthe casen = 3,
AC and 8D hisect each other and AC :BD = 1: 3. Therefore ABC and DAC are equilateral
triangles. Thisis Napoleon'stheorem. Similarlywe can deduce the theoreminvolving three squares
erected on the sides of a triangle mentioned above. The figure in our theorem was considered by
Japanese mathematicians in the case of n = 4 In the nineteenth century [2; p.47].

FIGURE 2
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The proof of the following theoremis a simple applicationof Theorem 1 (see Figure 2). So
we leave it to the interested reader.

Theorem2 Let A AyA5..A,, ByB,B,..B,, CyC;Cy...C,, be regularn-gons with
the centers A, B, C erected on the sides of atriangle XYZ externally such that A = Y=C,,
Bl=2=4,C =X=8, and A, A, A;.. A, B', B, B3 .. B, C, C,0;.. C,
regular n -gons with the centers A, B', ¢’ suchthatA, = B,4, A’y = C5 B’y = C,
B',=A, Cy=A,,C, =8,, thenAd’, BB', CC’ are concurrent.

References:

)] H. 8. M. Coxeter and S L Greizer, Geometry Revisited, Mathematical Association of
America, Washington DC, 1967.

2] H. Fukagawa and D. Pedoe, Japanese Temple Geometry Problems, Charles Babbage
Research Center, Winnipeg, Canada, 1989.

It is impossible for the human Intellect to grasp the idea of absolute continuity of motion.
Laws of motion of any kind only become comprehensibleto man when he can examine arbitrarily
selected units of that motion. But at the same time it | this arbitrary division of continuous motion
into discontinuousunits which gives rise of a large proportion of human error.

By adopting smaller and smaller units of motion we only approach the solution of the
problem but never reach it.. A new branch of mathematics, having attained the art of reckoning
with infinitesimals, can now yield solutions in other more complex problems of motion which before
seemed insoluble.

This new branch of mathematics, which was unknown to the ancients, by admitting the
conception, when dealing with problems of motion, of the infinitely small and thus conforming to
the chief condition of motion (absolute continuity), corrects the inevitable error which the human
intellect cannot but make if it considers separate units of motion Instead of continuous motion.

Inthe investigation of thelaws of historicalmovement precisely the same principle operates.
The march of humanity, springing as #t does from an infinite multitude of individual wins, Is
continuous. The discovery of the laws of this continuous movement Is the aim of history.

Only by assuming an infinitesimally small unit for observation - adifferential of history (that
is, the common tendencies of men) -- and arriving at the art of integration (finding the sum of the
infinitesimals) can we hope to discover the laws of history.

L Tolstoy, War and Peace, (first published in 1869). Translation by R. Edmonds, Penguin
Books, inc., Baltimore, 1957, pp. 974-5.
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SOME MATRIX IDENTITIES

RussellEuler
Northwest MissouriState University

in general, algebraic identities such as (a * b)? = a + 2ab * b% anda? - b2 = (a-b){a + b)
are not valid for n x n matrices with respect to the usual matrix multiplication. The reason for this
is that matrix multiplicationis not commutative. The purpose of this paper is to define a nontrivial
matrix multiplication (in terms of the usual matrix muitiplication) in such a way that some common
algebraic identities will still be valid for n x n matrices with respect to the defined matrix
multiplication.

Ail matricesin this paper are of ordern x n and have entriesfromthe field of complex numbers.
The usual matrix multiplicationof A and B will be written using the standard juxtaposition notation,
namely, AB. Define the matrix productA -8 by

A-B = (AB T BA)/2
where the addition of AB and BA is assumed to be the usual matrix addition. Some properties of

this product will now be discussed.
First, notice that

A-A= (AA + AA)/2 = A2 + AR)/2 = A2
Similarly, A -:A™! = A" for all integers n > 2. Also, since matrix addition is commutative,
A-B=(ABtBA)/2=(BA + AB)/2 = B-A.
If A is invertible, then
AA = AAT s A2 =T+ D)2 =1
There is a distributive property since

A-(B+C)=[AB +C)+ (Bt CAl/2
= (AB + AC + BA +.CA)/2,
= [(AS + BA) * (AC + CA))/2,
= (AB *+ BA)/2 + (AC + CA)/2,
=A-B+A-C.

301

Also, it can be shown that for any complex number a,
(xA) ‘B =A-(aB) = a(A*B).
Some algebraic properties will now be derived based upon some of the above properties. -
A+B)2=(A+B)@A+B)
=A-AtABtB:-B+B:-A+B-B,
=A2+A-B+A'B+B?
=A24+24-B+B2

Similarly, (A -B)2=A2.24-8+t B2 These properties are, of course, analogousto
@tby2=a2?+2ab+b2
Furthermore.
(A-B)-A+B)=A-B)A+(A-B)B
=A-A-B‘A+A-B-B-8B,
=A2.A-B+A-B-B?
=A%.B2

Hence, A2 - B2 can be factored as the difference of two squares with respect to the defined matrix
multiplication. As a result, one can obtain results such as

A*-B*=(A%-B%)-a%+8Y)
=(A-B)-A+B)- A%+ B3

Unfortunately, the muitiplicationdefined in this paper is nonassociative. Thatis, in general,
A-(B°C)+(A-B) C. Asaresult, anticipated results such as

(A+B)3=A%+342.B+34-B2+B?
are not valid in general. it can be shown that
A+B)3=A%+24-(A-B)+A-B2+A%.B+24A-B)B+B5
and
(A+B)*=A%+4aA-B)-A2+242.B2 1 4A-B)2 +4(a-B)-B%+ B

Undoubtedly, the interested reader can find other Interesting properties involving the matrix
product given in this article.
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ON THE COS(= - 8) AND SIN(x £ g8) IDENTITIES

Joseph M.Moser
San Diego State University

Trigonometry books generally Include a constructionproof of the cos (a + B) identity. (See
[11, p. 137, for example.) In [1], p. 116, one wiil find an Interesting proof of the cos (a - B) identity,
which Is done by comparing chord lengths of a circle. To the best of our knowledge, no
construction proof of the cos (a - B) identity has been given in texts on trigonometry. So we
present one.

In Figure 1, one sees the following:

OT _ OR+RT _ OR , RT
‘oP oP ©OP 0P
- OR,OW _RTWR __
v oP W oP

cos (a - B8)

OR, OW . WL, WP
OW OP WP ©OP

= cosa cosfl + sina sing.

Then, in [2], Guetter presents formulas for the sin(e = B) identities, using areas of triangles.
We will present a constructionderivation of the sin(e = B) identities.
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R
Q
First consider Figure 2: «
5 N
(o)
F M
sin(a+ B) - FQ _FS+38SQ _ MN+38Q

oQ 00 oQ

- MN oON _ S0 ON
ON og N oQ

= sina cosp + cosa sinfl.

N
Now consider Figure 3:
M
«
T P
(]
a-p
0
R Q
: _ _PQ _ MR- M
sin (a-fl) = op oP
_ MR oM _ MT MP
OM OP MP OP
= sina cosfl - cosa sing.
References:

m K J. Smith, Trigonometry for College Students, Fifth Edition, Brooks/Cole, 1991, Pacific

Grove, CA -
2 A Guetter, PiMu Epsilon Journal, Vo/ 9, No. 1, Fall, 1989, pp. 30-31.
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YETANOTHER DAYATWERACES

John C. Fay
St. Paul's College

in preparing a presentation of the betting method described in "A Day at the Races* by
William Tomcsanyi (Pi Mu Epsilon Journal, Spring 1882) for the Georgia Epsilon chapter of Pi Mu
Epsilon, there occurred to me some considerations not touched upon by Mr. Tomcsanyior Mr.
Edward Anderson ("Ancther Day at the Races," PiMu Epsilon Journal, Fall 1983).

In Mr. Tomcsanyi's system, he chooses to make a profit, P, by betting on a number of
horsesin the samerace. He settles on three as the best number. Say these horses are paying
a:1,b:1,andc:1 odds, respectively. The profit will be made if one of the three horses selected
wins. Determininghow to make this profit requires finding the amounts to bet on each of the three
horses, say X, X5, and 3. To find these amounts he solves the simultaneous equations

2ax; - 2, -2 =P
2 + 2bxy -2 =P
2 - 20 + 2cx3 = P.

The factors of 2 are because $2 is the minimum bet.

As Mr. Anderson noted, the method fails to work if we try to bet on all the horsesin a race,
which would ensure that we bet on the winner. The amountsto bet are sure to come out negative.
(it would also be a much bigger system to solve.) In fact, the method may fail to work even when
betting on a subset of the field of horses. Mr. Anderson then simplifies the computations for cases
where fewer than the total number of horses are bet on.

What is neglected are the probabilisticaspects of the situation. Mr. Tomcsanyiclaims that
the three-by-three (betting on the three horses with the shortest cdds) produces a winner 70% of
thetime. He gives an example of betting on three horses payingodds of 3:1,3:2,and 4:1. In
this situation, he eams $50 on $283 bet. However, if we assume a 70% probability of winning (as
he does) and say we bet on ten such races, winning 7 and losing 3, we will win $350 (7 - 50) and
lose $849 (3 - 282). This is a net loss of $499. More formally, the expected retum is .7(50) +
.3 (-238) = -49.90, a loss of nearly $50.

if we assume that odds are fairly set (i.e., they correspond to probabilities which are
proportionalto the true probabilitiesof winning), then we can replace Mr. Tomcsanyi's 70% by the
probability for the given situation. We need only note that the constant of proportionality will be
1 - s, where s is the percentage which the track skims off the top of the handle (betting pool). Thus
ahorse at 3: 1 odds has probability (1-s) /4 of winning. (3 : 1 odds imply a 1/4 chance of winning
if there is no skim.) in general:

A horse payinga: 1 odds has probabiiity (1-s)/(a+1) of winning.

Working with the above example and letting s = .2 (as Mr. Anderson suggests), the
probabilities of the three horses winning are 0.8/4 = 02, 0.8/2.5 = 0.32, and 0815 = 0.16. Thus
the probabiiity of winning the bet is 0.2 + 0.32 + 016 = 068 and the expected returnis 0.68 (50)
+ 032 (-283) = -56.56.
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If the odds are shorter so that there is a higher probability of winning,there will be a higher
bet required to achieve the $50 win. Thus the expected return remains negative. In fact, under
these fair game assumptions:

The expected loss will be the product of the skim percentage and the total wager.

Thus the way to maximize expected value is to eliminatethe track's percentage. This is not
likely to happen since the tracks are run to make a profit.
How, then, do we make a profit? The answer may lie in knowing (or perhaps ensuring) that
a certain horse will not win. Say, for instance a horse, D, going off at d: 1 odds Is eliminated (from
winning). Then (by the definition of conditional probability)
P(we win|D loses) = P(we win and D loses)/P(D loses)
P(we win)/[1 - P(D wins)]
P(we win)/[1 - (1-s)/(d+1)]
= P(we win)[(d+1)/(d+5)].
To make our expected value positive, we need to have the factor
(@+1)/(d+s) > 1/(1-s).
This is to counteract the proportionality constant introduced by the skimming. Then we see that
d < (1-2s)/s.
For s = .2, we must haved < 3. So we need to eliminatea horse going off & odds no longer than
3:1.
Similarly, we can compute how to choose to eliminate alarger number of lower probability
(hence lower profile) horses.
So, unfortunately, the way to win betting on horses is to know what others do not,possibly

by engineeringit. This is not somethingthat law enforcement officials look kindly upon. Perhaps
the track does not free us from making an honest living after all!

i

CHANGES OF ADDRESS

Subscribersto the Journal should keep the Editor informed of changes in mailingaddress.
Journals are mailed at bulk rate and are not forwarded by the postal system. The o8t of sending
replacement copies by first class mail is prohibitive.

INQUIRIES

Inquiries about certificates, pins, posters, matching prize funds, support for regional
meetings, and travel support for national meetings should be directed to the Secretary-Treasurer,
Robert M. Woodside, Department of Mathematics, East Carolina University, Greenviile, NC 27858,
919-757-6414, :
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HIPPOCRATES REVISITED

RichardLL Francis
Southeast Missouri State University

Ancient attempts to square the cirde were motivated in part by long-ago success in
squaring certain contoured areas. That s, it was possible in some cases to construct squares
having areas equal to those of curved regions. Notable among these successesis the figure often
called "the lune of Hippocrates." Such a figure suggests a modem day look in the form of a
generalization.

in the figure below, two circles, one with center at O and the other with chord QP as a
diameter, form a shaded region which is lunar in shape. Such a lunar region has an area equal
exactly to that of triangle POQ. As any polygoncan be squared, it followsthat this distinctly curved,
lunar area can also be squared.

Y

A LUNE OF HIPPOCRATES

The squaring problem associated with the lune of Hippocrates gives rise to an intriguing
pursuit in the case for ellipses in general. Suppose thus that the two circles in the drawing above

are replaced by ellipses of equal eccentricity. in particular, consider the elipse
2 2
5_2. + X_ = 1 andthe upper semi-ellipseon QP with the same eccentricity. 1f APOQ
a b?

and the shaded lunar region PQ have the same area, is it true that each ellipse is a circle? The
powerful tools of analytic geometry suffice in answering the question.
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in the smaller ellipse of the figure below, let &, which is AP, be the semi-major axis and
let b’, which is RS, be the semi-minor axis.

mtd‘ NN
+
N

b? = a?-c?

eccentricity e = c/a

if ¢ is a focal segment of the larger ellipse, then

2 2 _ 2 2
bt _a’-c®_,_c -1 e2,
a2 a

If ¢’ is a focal segment of the smaller eliipse, then

pH2 _@h?r-ehHh? (), 2
(a’)? (al)? (a’)?2
Sob /a = b'/a’, or a’b = ab’.
The area of APOQ = (1/2)ab. The area of the lune is:
Ta'p! -|Tap - Eab .
2 4 2
Suppose that the two areas are equal; Le.,
Talp! - |[Tap - Lap|= Lab
2 4 2 2
Then (x/2)a’b' = (x/4)ab, or 2a’b’ = ab. Note that: 2
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2a’p/ _ ab . 2b/ _ b
a’b ab’ b B
2 2
Thus, b, =2 = a
(")2 (a’)?

or, b=b/J2__, and a=a’\/5—.

/
Accordingly, cos (LOPQ) = a2 =av2 _y2

’
Va2 + b2 2a’ £

meaning that right triangle POQ Is isosceles. Hence, b = a and b' = @' and the ellipses are
circles. The eccentricity is of course zero in each case.

it is only in the circular case that lunar-triangular area equality hdds among ellipses. The
resolution invdved an easily visualized relationship as well as the application of readily available
formulas. Such a generaliiation and many more quite like it pose challenging and instructive
activitiesin the teaching-learning situation of mathematics. Students may find it fascinating that the
formula for the area of an ellipse reduces nicely to that for the area of a circle simply by letting a
equal b.

The three famous problems of antiquity concern angle trisection, cube duplication, and
circle squaring. Varied but unsuccessfulattempts to sdve these problems contain an assortment
of configurations and relationships which pose interesting generalizations. The two-dimensional
generallzation involving iunes and conic sections fails into such a category. Spherical and
elipsoidai counterparts are areas of further exploration which the reader may wish to pursue.

References:

[11 H. W. Eves, AnIntroduction to the History of Mathematics, Saunders College
Publishing,Philadelphia, 1990.

[2] R. L Francis, "Just How Impossible Is It?" Journal of RecreationalMathematics, Voiume 20,
Number 4, 1988.

[3] R.L Francis, "Long-Ago Problems for the Student of Today,” Missouri Journal of
Mathematical Sciences, Vdume 2, Number 2, 1990.

WHAT ST. AUGUSTINE DIDN'T SAY ABOUT MATHEMATICIANS

Ralph P. Boas
Northwestern University

At about the time when | was becoming seriously interestedin mathematics, 1 had a friend
whowas more interestedin theology. He once confronted me with awarning by St. Augustine, who
wrote, "A good Christian must beware of mathematicians and those soothsayers who make
predictions by unholy methods, especially when their predictions come true, lest they ensnare the
soul through association with demons.’ (The original was, of course, in Latin [1], and |.have given
a rather free translation; the original dates from around A.D. 400.) The same sentiment was
repeated, in a somewhat different form, in Augustine’s Confessions [2], and it still gets quoted from
time to time. (See, for example, [3], p.167.) If you happento come acrossit, you should be aware
that, in Augustine's day, "mathematicians® meant what we now call "astrologers.” [3]. The old usage
seems to have occurred occaslonally as recently as the 1700’s, although the modern meaning goes
back to around 1400.

Notes:

[1] Quapropter bono christianosive thathematici sive quilibet inpie divinantium, maxime dicentes
vera, cavendisunt, ne consortl0 daemoniorum animam deceplam pacto quodam socletas
inretiant. (De genesi ad litteram, Book 11, chap. xwvii, in vol. 3, part 1 of Augustine's works,
edited by J. Zycha, Prague, Vienna, and Leipzig, 1894, pp. 61-62.

[2] Book 4, chap. 1

[3] M. Greenberg, Euclidean and Non-Euclidean Geometries, 2nd ed., W. H. Freeman & Co.,
1980.

[4] Compare the modern slang use of "mathematician” to mean "card sharp."

Remember: the 1992 Pi Mu Epsilon National Meeting will be held August 6-8 at Miami
University in Oxford, Ohio. See the Spring, 1992, issue of this Journal for further information.
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PUZZLE SECTION

Edited by Joseph D. E. Xonhauser
Macalester College

The PUZZLE SECTION is for the enjoyment of those readers who are addicted to
working doublecrostics or who find an occasional mathematical puzzle or word puzzle
attractive. We consider mathematical puzzles to be problems whose solutions consist of
answers immediately recognizable as correct by simple observation and requiring little
formal proof. Material submitted and not used here will be sent to the Problem Editor if
deemed suitable for the PROBLEM DEPARTMENT.

Address all proposed puzzles and puzzle solutions to Professor Joseph D. E.
Konhauser, Mathematics and Computer Science Department, Macalester College, St.
Paul, MN 55105. Deadlines for puzzles appearing in the Fall Issue will be the next
March 1, and for the puzzles in the Spring issue will be the next September 1.

PUZZLES FOR SOLUTION

1. Proposed by the Editor of the Puzzle Section.

What is a property shared by all triangles which have numerically equal
perimeters and areas?

2. Proposed by Christian Bronzebach, St. Paul, MN.

Can every positive integer greater than 6 be written as a sum of two relatively
prime integers each greater than or equal to 2?

3. Proposed by the Editor of the Puzzle Section.

It is easy to square LINE:

prPrmz
ZID>m

|
D

E

A

mz—r

Are you able to square CIRCLE?

4. Proposed by P. O. T. Week, Macalester College, St. Paul, MN.

There are several ways of arranging the positive integers 1 through 15 into five
sets of three members each so that the sums of the numbers in each of the five sets are
equal. In all possible such arrangements, is there one in which one of the five sets is
{7, 8, 9)?

5. Proposed by P. O. T. Week, Macalester College, St. Paul, MN.
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A rectangular candy bar is thinly coated with chocolate on all six faces. Cut the
candy bar into three pieces so that each piece has the same volume and so that each piece
contains the same amount of chocolate. Neglect the thickness of the chocolate.

6. Proposed by Clark Kinnaird, Flemington, N. J.

The vertices and the points of intersection of the sides of two overlapping i
triangles comprise a set of twelve points with four points on each of six lines. Are you
able to find an essentially different configuration of twelve points with the same
property?

7. An Oldie Which Resists Permanent Banishment.

An infinite number of unit resistors are connected in a network as shown below:

J\/\/‘l\

o AAY

Calculate the resistance of the network.

COMMENTS ON PUZZLES 1-7, SPRING 1991

For Puzzle #1, a solution easily obtained by inspection is a=28 , b=26and ¢
=25. MARK EVANS and CHARLES ASHBACHER provided the family of solutions a =2,
b=2n¢=2P, where 3m=4n=5p-1,p=5+12k k=0, 1,2, 3, ... RICHARD L
HESS supplied a different family of solutions. He said, "Pick x and y so that z = x5 -4
is positive. Then x5 = y4 + z implies x5220 = y#220 + 221 whence ¢ = a3 + b%, where
c=xz% b=yz5 and a= 2. Example, 35 = 24 + 227 yields [302274)% = [242275]4 +
[2277]3.“ One respondent claimed that there were no solutions. For Puzzle #2, EMIL
SLOWINSKI and the proposer, BASIL RENNIE, gave n/2 for the expected area, arguing
that "each angle of the random spherical triangle is uniformly distributed in (0,x) and,
therefore, has expectation n/2, so

area of triangle = sum of angles - © = 3n/2 - © = n/2."

Proposer RENNIE gave the following second solution: "Take three points A, Band C and
the diametrically opposite points A% B'and C'. Then the triangles ABC, ABC, AB'C, ABC',
AB'C', A'BC', AB'C and A'B'C'just cover the sphere and so have total area 4n. Eachisa
random triangle, so 8 x (expectation of area) = 4n." CHARLES ASHBACHER provided a
computer program that simulated the problem. EMIL SLOWINSKI and RICHARD 1. HESS
submitted solutions for Puzzle #3. In addition to the regular octahedron there are five
other arrangements of six points in 3-space such that the distances between pairs of
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points fall just into two classes. These arrangements are sketched below.

<

The first is square-faced triangular prism. The remaining four are obtained by making
judicious selections of six vertices of a regular.icosahedron. The Einhorn-Schoenberg
paper in which the result of Puzzle #3 appears as a special result is from the
Proceedings, Series A, 69, No. 4 and Indag. Math., 28, No. 4, 1966 of the Koninkl.
Nederl. Akademie van Wetenschappen - Amsterdam. For Puzzle #4, the correct
response that the area of the octagon is one-sixth that of the square was submitted by
EMIL SLOWINSKI, CHARLES ASHBACHER, ROBERT C. GEBHARDT and MARK EVANS.
Contrary to the claims of some respondents, the octagon is not regular. The solution by
ASHBACHER involved a little trig, those of EVANS and GEBHARDT some easy analytical
geometry. The result generalizes to a parallelogram. A complete discussion of the
generalization appears in Mathematical Problems and Puzzles by S. Straszewicz,
Pergamon Press, 1965, where a synthetic treatment is given. Puzzle #5 drew the

following response from EMIL SLOWINSKI, CHARLES ASHBACHER, RICHARD {. HESS and
MARK EVANS:

S ={14,6,7 10, 11, 13, 16} and T = {2, 3, 5, 8, 9, 12, 14, 15}.

Sets Sand T have identical pairwise sums. The resultis a special case of a more general
result, established by the method of generating functions, in 'On Some Two-way
Classifications of Integers" by J. Lambek and Leo Moser, Can. Math. Bull., Vol. 2, No. 2,
May 1959. No finite set {1, 2, 3, ..., n} can be split into two classes such that the sets
of pairwise products are the same. For Puzzle #6, EMIL SLOWINSKI provided an Initial
arrangement of 31524. HESS provided that solution and four others. MARK EVANS and
CHARLES ASHBACHER produced that solution and five others, namely 31452, 41532,
51423, 31542 and 41235. EVANS gave a kind of recipe for finding solutions beginning
with the final arrangment. ASHBACHER provided a computer program which examined
all 120 possible initial arrangements.  Only HUGH L. PACKER and RICHARD |. HESS
responded to Puzzle #7. PACKER'S analysis is too lengthy to reproduce here but his
final result is "the number of triangles whose vertices are vertices of a regular polygon
of 2k + 1 sides and contain the center of the polygon is

124+ 22 + 32 & .+ K2 = k(k + 1)(2k + 1)/6."
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Editorial note. BOB PRIELIPP has pointed out that Puzzle #5, Fall, 1990, appeared as
Problem 1339 in Mathematics Magazine and that a complete solution appeared on page
63 of the February, 1991, Vol. 64, No.1 issue of that journal. The problem is much
older. This Editor used it as a Problem of the Week in March 1977. Unfortunately, he
cannot remember the source.

Solution to Mathacrostic No. 32 (Spring 1991)

WORDS:

A Ideate J. Randomness S. Dymaxion

B. Van Dyke K. Sweet potato T. Stella octangula

C. Alpha helix L. One-eyes u. Olympus Mons

D. Rift-sawed M. Newton V. Feigenvalue

E N. lapetus w. The Dot and the Line
F. Primordial soup Q Snow job X Rattailed

G Etruscan Venus P. Loveknot Y. Upshot

H. Table of chords Q Affined Z The Scottish Book

I. Epenthesis R. Natty a. Hatchetfish

AUTHOR AND TITLE:  IVARS PETERSONISLANDSOFTRUTH

QUOTATION:  Studies show that chess experts look at only a handful of moves and
evaluate deeply just a few of them. They tend to rely on an instantaneous perception of a
chess posiiton as a whole. And the human mind's remarkable agility enables it to respond
to expected situations. Computers don't have this kind of global view.

SOVERS THOMAS F. BANCHOFF, Brown University, Providence, Rl; JEANETTE
BICKLEY, St. Louis Community College at Meramec, MO; CHARLES R. DIMINNIE, St.
Bonaventure University, NY; ROBERT FORSBERG, Lexington, MA; ROBERT C.
GEBHARDT,County College of Morris, Randolph, NJ; MICHELE HEIBERG, Herman, MN;
DR. THEODOR KAUFMAN, Brooklyn, NY; HENRYS. LIEBERMAN, Waban, MA; CHARLOTTE
MAINES, Rochester, NY; and STEPHANIE SLOYAN, Georgian Court College, Lakewood, NJ.

Mathacrostic No. 33
Proposed by Joseph D. E. Konhauser

The 273 letters to be entered in the numbered spaces in the grid will be identical
to those in the 30 keyed words at the matching numbers. The key numbers have been
entered in the diagram to assist in constructing the solution. When completed, the initial
letters of the Words will give the name and an author and the title of a book; the
completed grid will be a quotation from that book.
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Definitions

anon-intrinsicproperty of a set

Raymond Postgate’s 1940 classic of its
genre (3 wds)

whitewash

. curves with polar equation r = asinn® or

r = acosn@ (3 wds.)

spots of light that appear to encirclethe moon
Immediately beforeand aftertotality duringa
solar eclipse (2 wids.)

idle chatter (slang; 2 wds.)

. magnitude; measure

a substancesuch as clay or cementfor packing
ajoint

where hit recordingsare found (3 wds.)

the absolute limit (slang)

attribute objective existence to (rare)

oblique (comp.)

. in Scandinavian mythology, the progenitor of

the giants

be irresolute (3 wds.)

That point equallynear to heaven and to the
infinite." Henry F. Amiel

pseudonymDirector'sGuildattaches to a film

fromwhich originaldirectorwants his name
removed (2 wds.)

, devoid of bends or curves

. whatBroadway int he Times Square areais

often cailed (4 wds.)

. ashift from one to another

implication

Viviani's problem of perforating a hemispheri-
cal dome with four equai windows so that the
residual surface can be squared (2 wds.)

the Ether Wave Musicinstrument, played with-
out being touched, inventedin 1928

field which offers methods of "seeing' what has
been considered non-visuaiizabie

tied (2 wds.; sometimes comp.}

254 96 144 237 69

213 116 47 232

56 78 201 154 74

195 243 210

. move spirally

. aword of approximation used with a whole num-

ber and precededby a hyphen

a continuousassemblage of points

virtually silent satireon the mechanical age and
individual's plight therein, 1936 (2 wds.)

first musical awarded the Pulitzer Prize for
drama (4 wds.)

whimsicalname for problem-solvin?approach
whichinvolvesthe stripping away o
unnecessary detail (2 wds.)

86 128 247 71 101 98 113 7 48
101 93 135
147 B4 37 270 58 215

1 Gj2 L|3 4 B|s Ple U7 Y8 E9 D 10 TH1 L 12 J

13 afisa ulis Efte Blt7 P18 bji9 1120 X 21 §j22 N|23 W 24 D|25 A

26 K|27 R|28 V|29 Pj30 U 31 B|32 W|33 M[34 F 35 T|36 Aj37 al|38 K
39 L|40 Ql41 S[42 U 43 E|44 Cl45 P 46 M|47 | 48 Y|49 W]

50 D 51 K|52 G 53 Hj54 1|55 E|56 R 57 B|58 a|59 d|60 U

61 Pl62 b|63 X|64 S|65 E|66 T 67 dles B|69 F|70 W|71 Y 72 D{73 K
74 R|75 U|76 P[F7 L 78 R|79 c|so His1 O|82 T 83 E|B4 a|B5 F|

86 Y|87 b 88 D|s9 d|e0 Uj91 N|e2 x|z Z 94 c|95 J|96 Fl97 T

98 Y|98 N[1o0 R[101 Z|102 P 103 L[104 X|105 B 106 O[107 S[108 L 109 A

110 W[111 dft12 U113 Y[114 V|i15 b 116 1117 E[118 Aj119 Q 120 R|i21 W22 T

123 P 124 1|125 F[126 Ufi27 M[i28 Y[128 DJ130 BJ131 C[132 J 133 H|134 L[135 Z|

136 D[137 B|138 P[139 V[140 |[141 E 142 Up43 B 144 F145 X[146 D 147 a

148 F[149 bfiso ulis1 Klis2 G[153 V[154 R|155 D[156 X 157 d]158 N[159 b[160 c

161 vlie2 cfi63 Uj164 A[165 d|166 N[167 R}168 L 169 b[170 Bft71 Q172 X 173 d

178 S[179 N

180 Cl181 Gj182 H|183 Rl 184 c|185 w186 F|187 T

190 | [191 Y

203 Aj204 W

216 B|

192 C| 193 B[194 N[195 U[196 W|197 ¢ 198 K|

205 V|206 C|207 df208 Aj209 Ri210 Uj211 Gj212 L]

217 X|218 c|219 d|220 w]221 F|222 Rj223 E|224 J|225 ¢

229 W

230 b|231 D|232 1233 J|234 E[235 L|236 B 237 F

241 B|242 O

238 W|239 R|240 C|

243 U 244 S|245 b|246 dj247 Y|248 X|249 V

250 D|250 ¢ 252 R|253 W|254 F

255 X|256 D{257 Q|258 M 259 P|260 cp61 b

262 R|263 C|264 Q|265 c|266 |]267 d

268 N|269 B{270 a 271 Uj272 D{273 E
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PROBLEM DEPARTMENT

Editedby Clayton W Dodge
University of Maine

This department welcomes problems believed to be new and at a level appropriate for the
readers of this journal. Old problems displaying novel and elegant methods of solution are also
invited. Proposals should be accompaniedby solutions if available and by any information that will
assist the editor. An asterisk (*) preceding a problem number indicates that the proposer did not
submit a solution.

All communications should be addressed to C. W. Dodge, Math. Dept., University of Maine,
Orono, ME 04469. Please submit each proposal and solution preferably typed or clearly written on
a separate sheet (one side only) properly identified with name and address. Solutionsto problems
in this issue should be mailed by July 1, 1992.

PROBLEMS FOR SOLUTION

758. Proposed by Charles Ashbacher, Hiawatha, lowa.
Solve this base ten alphametric which celebrates Leonhard Euler’s contributionsto graph
theory:

E t Ve GRAPH = EULER.

759. Proposed by John E. Wetzel, University of lllinois, Urbana, lllinois.
Cali a plane arc special if it has length 1 and lies on one side of a line through its end
points. Show that any speclal arc can be contained in an isoscelesright triangle of hypotenuse 1.

760. Proposedby John E Wetzel, University of lllinois, Urbana, lllinols.

Napoleon'stheoremis concerned with erecting equilateraltriangles outwardly on the sides
of a given triangle ABC. Then DEF is the triangle formed by the third vertices of these equilateral
trianglesBCD, CAE, and ABF. Lemoine asked in 1868 if one canreconstructtriangle ABC when only
triangle DEF is given. Shortly afterward, Keipert showed that the constructionis to erect outward
equilateral triangles EFX, FDY, and DEZ on triangle DEF, and then A B, and C are the midpoints of
the segments DX, £Y, and FZ His proof was quite tedious. Find a simple proof of Keipert's
construction.

761. Proposed by Murray S Klamkin, University of Alberta, Edmonton, Alberta, Canada.
Determine all functions f{x) such that

£ = - n d 1 = - ~1)n+l n
(x) ’;anx an o Ig( 1)™lg x
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*762. Proposed by Hao-NhienQu/ My Purdue University, Lafayette, Indiana.

Following Cantor, we assume a list of the rationals in [0,1) can be made. Each rational is
listed as a terminating decimal if possible, or as a repeating decimal. Thus numerals ending in
nonterminating repeating 9's are not permitted. Define a new number x such that the kth place of
xis 5 if the kth place in the kth number in the list is not 5, andis 4 otherwise. So, for example, if the
list starts with 0.5, 0.32, 0.666666. then x = 0.455.... Show that the numberx must be irrationaland
therefore this process does not prove the rationals are not denumerable. Saying that x is Irratiorial
because the ratlonals are countable, however amusing, is not sufficient.

763. Proposed by Russell Eufer, Northwest Missouri State University, Maryville, Missouri.

3 30 _,
Find all real solutions to the equation (X2 = 7x + 11)* 730 = 1

764. Proposed by Wiliam K. Delaney, SJ, Loyola Marymount University, Los Angeles,
California.

Evaluate the indefinite integral
f(x + 1) e*lnx dx.

765. Proposedby the late Charles W Trigg, San Diego, California.
Find a square integer in base 4 that is a concatenation of two like integers.

766. Proposed by Murray S. Klamkin, University of Alberta, Edmonton, Alberta, Canada.
) d® n|n2 _

Determine SeE (X"In?x) ax =e

767. Proposedby J L. Brenner, Palo Alto, California.

Let a5 and a, be positive integers, and for n 2 2, define

2
n-1

a, = P
Qpa

For what choices of ay and a, will allthe g be integers?

768. Proposed by the late Jack Garfunkel, Flushing, New York.

Given a triangle ABC, draw rays inwardly from each vertex to form a triangle AB‘C” such
that B/, C, A’lie on rays AA’, BB*, CC', respectively, and

<BAB’ = 4ACA’ = 4CBC’ = 3,

as shown in the figure. Prove that:

a) Triangle AB‘Cis similar to triangle ABC.

b) The ratio of similitude is cos & - sin a cot w, where @ is the Brocard angle of triangle
ABC. A
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769.Proposedby R. S Luﬂraré University of Wisconsin Center, Janesville, \Wisconsin.
If ABC is a triangle in which c“ = 4ab cos A cos B, Prove that the triangle Is isosceles.

*770. Proposed by Robert C Gebhardt, Hopatcong, New Jersey.

A deck of cards, numbered from 1 to n, is dealt at random to n persons. Then a second
similar deck Is dealtto the same n persons. What is the probabilitythat at least one of then persons
received two cards with the same number?

SOLUTIONS

419. [Spring 1978, Spring 1979, Fall 1983] Proposedby Michael W Ecker, City University
of New Yok

Seventy-five bails are numbered 1 to 75 and are partitioned into sets of 15 elements each,
as follows: B = {1, ..., 16}, I = {16, .., 30}, N = {31, ..., 45}, G = {46, ..., 60}, and O = {61, ...,
75}, as in Bingo.

Balls are chosen at random, one at a time. until one of the following occurs: At least one
from each of the sets B, I, G, O has been chosen, or four of the chosen numbers are from the set
N or five of the numbers are from one of the sets 8, /, G, O.

Problem: Find the probability that. of these possible results, four Ns are chosen first.
(Comment: The result will be approximated by the situation of a very crowded bingo hall and will
give the likelihood of what bingo players call "an N game,” that is, bingo won with the winning line
being the middle column N.)

Solution RICHARD 1 HESS, Rancho Palos Verdes, California.
Let @, denote the probability that from the first k draws exactly 4 are N's. Then we have

Q|=Q2=Q3=0,

o, - 15°14:13-12  7.13

| = e T3 s = 537-7ae = ©-001123040849,
o, = -89 5, = 0.00474524
=220 =o. 3024,
0 = 239 o = 0.01199868
=22 0= 0. 593,
0, = 238 o = 0.0235336
=12 g = o. 5453,
0 = 2.57 5 - 0.0394534

g = e 0, = 0. 7966,
0, = 228 o = 0.0593568768

°® 567 " " o
00 = 255 o - 0.082440

o= oo 0 = 0. 10675,

11 54

Qu = =25 Qo = 0.1076251064,
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0, = 1%-2% 0, = 0.1336905619,
Q5 = ]%2% Q,, = 0.1593912166,
Qu = %2—;‘ Q,; = 0.1835569817,
0 = 31%'2% 0,, = 0.2051680123,
0 = %‘:% 0, = 0.2234051690,
Q= i’%'g Qs = 0.2376774679.

Next we let P, be the probability that the fourth N is drawn on the kth draw. Then P, =
Q, - Qi1 and we have

P, = Py=Py=0, P4= 0001123040849,
P = 0.003622202175, Pg = 0.007253442908,
P, = 001153496860, Pg = 001591982513,
Py = 0.01990339720, Py = 0.02308322989,
P,, = 002518499965, Py, = 0.02606545546,
Ps = 002570065475, P14 = 0.02416576510,
P,s = 0.02161103063, Psg = 0.01823715665.

Now let B, designatethe probabditythat another bingo does not occur before the kth draw,
given that the fourthN does occur on the kth draw. Then

Ry=Rg=Rg=R,=1
For Ry we can have 3N's and 4 other letters before the last N. There are
60 -59 -58 - 57

waysto pick the four other letters. The table below sorts these ways, where (14,72.73,14,) represents
the numbers of elements taken from the sets B, /, G, O in all possible orders.

Frequen- Sample Ways to Permuta- Ways t o pick
cies (F) combi- pick letter tions of letters (M)
nation types (M) letters (M;)
(a) (1,1,1,1) BIGO 1 24 15:
(b) (2,1,1,0) BBIG 12 12 151'142
(c) (2,2,0,0) BBII 6 6 15> 14
(d)  (3,1,0,0) BBBI 12 4 15%-14:13 .

(e) (4,0,0,0) BBBB 4 1 15-14-13-12
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The five row products add to 60 +59 +58 -57. Rows (b)through (e) contributeto

Ry = i—;%;—?%;— = 0.8961825959.

More generally,for Ry the frequencies (1,,1,13,1,,) are all the cases where ny + n, + ng
+ ng = k -4, each m; <4, and ny = 0. The "Ways to pick letter types" column M, Is
24/ (folf \E M1, 1), where f; Is the number of times the number 7 appears among the numbers ny, ny,
ny, n,. The "Permutations of letters” column M, is (k - 4)1/(nyInglngln,Y). Finally the "Ways to pick
letters’ column M, is given by

15 BBt fy g p LBt gt b o f

For Rgwe can have 3 N's and 5 other letters before the last N. There are 6059585756
waysto pick the five other letters. The Rg table Is:

F My M, .3
(2,2,1,0) 12 30 153 142
(3,1,1,0) 12 20 15%- 1413
(3,2,0,0) 12 10 152:14% 13
(4,1,0,0) 12 5 152 14-13-12

We get that Rg = 0. 7382570980.
For Rygwe have 3 N's and 6 other letters before the last N. There are 605958575655
ways to pick the six other letters. The Ryq table is:

F M, M, M,

(2,2,2,0) 4 90 15% 143
(3,2,1,0) 24 60 15314213
(3,3,0,0) 6 20 152. 142132
(4,1,1,0) 12 30 15%14-13-12
(4,2,0,0) 12 15 152 1421312

We get that Ry = 0. 5688145101
For Ry there are 3 N's, 7 other letters, and 60595857565554 ways. The Ry, table

is:
F M, M, M,
(3,2,2,0) 12 210 15% 143 13
(3,3,1,0) 12 140 15% 14% 132
(4,2,1,0) 24 105 15%14% 1312
(4,3,0,0) 12 35 152:142-13% 12

We get that Ry = 0. 4052514129,
For Rypthere are 3 Ns, 8 other letters, and 6069--63 ways. The table is:

F M, M, M;
(3,3,2,0) 12 560 15% 143 13?
(4,2,2,0) 12 420 1514313+ 12
(4,3,1,0) 24 280 15% 14213212
(4,4,0,0) 6 70 152 142 13- 122

We get that Ry, = 0. 2642858755.

For Ryzthere are 3 N's, 9 other letters, and 6059++52 ways. The table is:

F M, M, M,
(3,3,3,0) 4 1680 153 14% 133

(4,3,2,0) 24 1260 15% 143 13% 12
(4,4,1,0) 12 630 15% 142132122

We get that Ryg = 0. 1540453916.
Now R4 has 3 N’s, 10 other letters, and 6069+61 ways. The table is:

F M, M, '3
(4,3,3,0) 12 4200 15%-14%-13%-12
(4141210) 12 3150 153’ 143‘132' 122

We get that Ry, = 0.07611654643.
Now Ryg has 3 N's, L1 other letters, and 6059-+50 ways. The table is:

F M, M, M,
(4,4,3,0) 12 11550 157 14% 13% 12?

We get that R,5 = 0. 0206854531 L
Also Ryg has 3 N's, 12 other letters, and 6059-49 ways. The table is:

F M, M, M,
(4,4,4,0) 4 24650 153143 13%12°
We get that R, = 0. 007269906884. Finally, R, = O for all k > 17.
Let T, = PR, symbolizethe probability that a fourth N is drawn on the kth draw and no
other bingo has come earlier. Then we have

T,=T,=T,=0, T, = Q.00 123040849,
Tg = 0.003622202175, T = 0. 007253442908,

> = 0.0 153496860, Ty = 0. 01426707020,
Ty = 0. 01469382426, T, = 0. 01313007610,
T,y = 0.01020625669, T, = 0. 008888731715,

T, = 0.008950067425, T, = 0. 001839414581,
T,s = 0.0006415332365, T, = 0. 0001325824307,

so the probability of an N bingo is Z T, = 0. 08929221117.

Editorial comment. In the Spring 1979 Issue it was stated that no solution to this problem
had been received. The solution printed here was sent In March 1980. Somehow it became lost
In the pile of material shipped to me when | assumed this column from Leon Bankoff. In cleaning
outmy old correspondencefiles earlier this year f ran across the letter containingthis submission.
So here, eleven years late and with the deepest apologies from the editor to Mr. Hess, is the
solution to the bingo problem.

719 [Spring 1990, Fall 1990]. Corrected. Proposed by the late John M. Howell,

Littlerock, California. )
Professor E. P. B. Umbuglo translated Problem 626 [Fall 1986, Fall 1987] into Spanish, as
shown below. Since he didn't like zeros because they reminded him of his score on an IQ test, he
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used only the nine nonzerodigits. He found solutions in which 2 divides DOS. 3 divides TRES, and
6 divides SEIS. Find that solutionin which also 7 divides SEIS and 9 divides DOS.

UNO t DOS + TRES = SEIS.

1. Solution by JBFFREY BOATS and MICHAEL A. VITALE, SaintBonaventureUniversity, Saint
Bonaventure, New York.

For the additionto hold in the units column, the sum of O and § must equal 10. Since DOS
is divisible by 2, then both O and S are even. There are then only two possibilitiesin which DOS Is
divisible by 9 846 and 864.

To evaluate SEIS we note that any multiple of 1001 is divisible by 7, so the number El must
be divisible by 7. Since D, O and S are 8. 4and 6, then El must be taken from 21, 35, and91L Then
SEIS is divisible by 3 only for 4914 and 6216.

IfDOS = 846 and SEIS = 6216, thenN = 4 and 4 is alreadytaken. So we have DOS = 864
and SEIS = 4914. ThenN =5, T= 3, and finallyl = 7and R = 2 The solution is

756 + 864 + 3294 = 4914.

Il. Commentby Elizabeth Andy, Limerick, Maine.
To the editor:
My counsel to you is to shun
A change in a problem or function.
Your action precocious
Makes problems atrocious.
And then they don't have no solution.

Alsosolvedby ALMA COLLEGE PROBLEM SOLVING GROUP, M, CHARLES ASHBACHER,
Hiawatha IA. SEUNGJIN BANG. Seoul, Korea, FRANK P. BATTLES. Massachusetts Maritime
Academy. Buzzards Bay, GREGORY A CANNON, Texas A and M University, College Station,
CAVELAND MATH GROUP, Westem Kentucky University, Bowling Green, KAREN L COOK, Royal
PalmBeach, H, MARK EVANS, Louisville, KY, VICTOR G. FESER, UniversityofMary, Bismarck, ND,
HOWARD FORMAN, Parsippany, NJ, S. GENDLER, Clarion University of Pennsyivania, RICHARD
I. HESS, RanchoPalos Verdes, CA NATHAN JASPEN, Stevenslnstitute of Technology, Hoboken,
NJ, CARL LIBIS, GranadaHills, CA MIKE PINTER, Belmont College, Nashville, TN L J. UPTON,
Mississauga, Ontario, Canada. KENNETH M. WILKE, Topeka, KS and the PROPOSER.

Many solvers sentproofs or comments that the originalproblemhadno solution and then
solvedthe correctedproblem, too. As originallyproposed, the problemhad four solutions, so the
editor made a 'slight change' to make the solution unique. Unfortunately, the editor's ‘'unique
solution' used the digitQ so all went for nought.

732 [Fall 1990] Proposed by Alan Wayne, Holiday, Florida.
The following is a partially enciphered multiplication:

(AY)(HARD) = 21340.
Restore the digits. Of whom might it have been said that his mathematicswas "AY HARD?"

I. Solutionby KENNETH M. WAKE, Topeka, Kansas.
Since 21340 = 2254197, its only two-digit divisors that produce a fourdigit quotient are
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10, 11, and 20, which produce the quotients 2134, 1940, and 1067 respectively. The only possibility
is AY = 10, HARD = 2134, and the mathematicianis 21430 = HARDY.

Il. Solution by the PROPOSER.
Letb be the base of numeration and let x denote the number HARD. Then

Ab + Y)x = 2134D.
It followsthat Y = 0 and A = 1, sox = 2134 in any baseb > 4 and 102134 = HARDY.

Also solvedby ALMA COLLEGE PROBLEM SOLVING GROUP, M, CHARLES ASHBACHER,
Hiawatha, /A, SEUNGJIN BANG, Seoul, Korea, JEFFERY JOHN BOATS and MICHAEL A VITALE,
St Bonaventure University, NY, MARTIN J. BROWN, Jefferson Community College, Louisville, KY,
SCOTT H. BROWN, Stuart Middle School, FL, MARK EVANS, Loulsville, KY, VICTOR ‘G. FESER,
University of Mary, Bismarck, ND, HOWARD FORMAN, Parsippany, NJ, RICHARD I. HESS, Rancho
Palos Verdes, CA CARL UBIS, Granada Hills, CA° MOHAMMAD P. SHAIKH, Westem Michigan
University, Kalamazoo, and DAVID S. SHOBE, New Haven, CT.

733. [Fall 1990] Proposed by Roger Pinkham, Stevens Institute of Technology, Hoboken,
New Jersey.
If p(x) is a polynomial and p{x) 2 O for all x, then
p+p +p'+ .20

for all x

I. Solution by MURRAY S. KLAMKIN, University of Alberta, Edmonton, Alberta, Canada.
Letting

fica) = p/a + p'/a® + p*/a® + -,

where a Is an arbitrary positive constant, it follows by integration by parts that
f (x,Q) = e‘“‘fe'“p( £)dt = fe‘“p(x + t)dt.
x 0

It now follows more generallythat f(x,a) 2 0 for alla > 0 and for all x. Also it follows that If
pbx) 20 for allX = k, thenf(x,a) 20 for all X 2 k
Similarly, If p¢) < 0 for all X = &, then by considering

x [¢]
e"”‘f edtp(t) dt = fe“p(x + t) dt,

it follows that p/a - p’/a2 + p"/a3 -« < 0 for all X 2 k. Furthermore, since G{x) = f(x,1) 2 O for
allx,thenG+ G + G" + 20, or

pt2p t3p"tap”+ 20foralx



324

In similar fashion we have

p+3p +5p" +7p" + 20, p+4p' +8p" + 120" + =20,
etc., for all x.

11 Solution by ALMA COLLEGE PROBLEM SOLVING GROUP, Alma College, Ama,
Michigan.

Let S = pb) + p'p) *+ p') + - so that §'¢) = p') + p"() + pmE) +
Then

pi) = S -S'M) a0, sothat Sp) a S'(x) for allx

Since p{x) 2 0, then its leading term must be of even degree and have a positive coefficient. Since
this term is also the leading term of §(x), then lim_,,., S¢) = +=. Therefore, if there is any point
Xp such that S{x;) < 0, the intermediate value theorem guarantees that S(x) has at least two real
roots a and b. Then, by Rolle’s theorem, there is c e (a,b) such that §'(c) = 0 and S(e) < 0, which
violates the statement that S(x) 2 §’(x). The contradiction proves that S(x) 2 O for all x.

ll. Comment submitted Independently by Seung-Jin Bang, Seoul, Republic of Korea, and
Bob Prielipp, University of Wisconsin-Oshkosh, Oshkash, Wisconsin.

This problem and two solutions, similar to those above but without the generalization,
appeared in MathematicalSpectrum 1(1968-1969)60.

Also solved by SEUNG-JIN BANG, Seoul, Korea, G. G BILODEAU, Boston College,
ChestnutHill, AV, HENRY S LIEBERMAN, Waban, MA, and the PROPOSER.

734. [Fall 1990] Proposed by Mohammad K. Azarian, University of Evansville, Evansville,
Indiana.

Let f and g be two real-valued functions defined on the set of positive Integers with the
following properties:

a) (1) = g(I) and f(2) = g(2);

b) f(n) > g(n) forn = 3,

c) there are Infinitely many pairs (m,n) such that f(m) = g(n) andm > n > 2, and

d) }liﬂf (n) = }111.2 g(m) =L, afinite real number.
Show that there are infinitely many functions f and g satisfying these conditionsand find formulas
for them.

1. Solution by CHARLES ASHBACHER, Hiawatha. lowa.
Let 3 b, c be any real constants with ¢ > 0. Define f(1) = g(l) = a, f(2) = g(2) = b, and
forn > 2 letf{n) = ¢/(n - /) and g(n) = ¢/(n - 1), where 0 <i </ < 2 are integers.

Il. Solutionby RICHARD I.HESS, Rancho Palos Verdes, California.

Leta and b be any real numbers. Letk = 1 or 2 and choose any real number r such that
0 <r < 3-k. Definef(1) = g(1) = a, f(2) = g(2) = b.andforn > 2 letf(n) = (n-k)/(n -k - r) and
g() = nf(n-1).
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1. Solutionby DAVID S SHOBE, New Haven, Connecticut.

Let F(x) be any monotone decreasing real function with finite limit L as x ~ «=. (Examples
would include Ffx) = L + Bx™ form, B > 0) Let G be a function from the positive integers to the
positive integers with G(l) = 1, G(2) = 2, and for x > 2, G{x) > x. Take f(n) = F(n) and g(n) =
F(G(n)).

IV. Solution by the PROPOSER.
Clearly, for any real number k, fn) -k + n'/ and gn) =k + (nl)'/ n! satisfy the given
conditions.

One other near solution was submitted. This editor tries to catch faulty solutions as they
arrive and note any problems on a reply card. Unfortunately, when It arrived I did not check this
one carefully enough to findits error. Sorry about thatl Minor oversights are generally corrected
without comment.

*735, [Fall 1990] Proposed by Robert C. Gebhardt, Hopatcong, New Jersey.
If a and b are roots of the equationx 2 + x - 3 = 0, prove that

ad+b3+7@2+b%-3@+b)=0
and, without sdving the equation, find the values of
0] a3+b53

and

a+2  b+2
(i) b+ 1 a+1°

This problem was taken from the Pure Mathematics section of the Intermediate Examinations in
Engineering, Mining and Metallurgy, given by the University of London, November 1946.

Solution by HOWARD FORMAN, Parsippany, New Jersey.
Since a and b are roots of the given equation, then we have

a2+7a-3=0 and b2+75-3=0,

whence
a®+7a2-32a=0 and b¥+7b2-3b =0,
and finally
m a®+b3+t7@2+Db?)-3@+h) =0

Since a and b are roots of the given equation, then we have
(-a)ix-b) =x2-(a + bjx+ ab = x 2+ 7x - 3,

which Implies that



326

atb=-7 and ab = -3,
and also
a2+b2+7@+b)-6=0, whence a2+b2=55.
Substituting into Equation (1) above we find that
a3+ b3 = 406

For Expression (i) we get that

a+2 b+2 _ (a+2)(a+1) + (b+2)(b+1)
b+1 a+ 1 (a+1)(b+1)

(a2+b2)+3(a+b)+4+55+3(—7)+4 38

# 22

ab+ (a+b) +1 -3-7+1 9

Also solvedby ALMA COLLEGEPROBLEM SOLVING GROUP, M{, CHARLES ASHBACHER,
Hiawatha, /A, SEUNGJIN BANG, Seoul, Korea, FRANK P. BATTLES, Massachusetts Maritime
Academy, Buzzards Bay, MARTIN J. BROWN, Jefferson Community College, Louisville, KY, SCOTT
H. BROWN. StuartMiddle School, FL, KAREN L. COOK. RoyalPalm Beach, FL, RUSSELL EULER,
NorthwestMissouri State University, Maryville, GEORGE P. EVANOVICH, Saint Peter's College,
Jersey City, NJ, VICTOR G. FESER, University of Mary, Bismarck, ND, SEAN FORBES, Drake
University. Des Moines, 1A, S GENDLER, Clarion University of Pennsylvania, RICHARD 1. HESS,
Rancho Palos Verdes, CA CARL LIBIS, Granada Hills, CA HENRY S. UEBERMAN, Waban, AV|
PETER A LINDSTROM, North Lake Colege. living, TX, G. MAVRIGIAN, Youngstown State
University, OH, YOSHINOBU MURAYOSHI, Eugene, OR, OXFORD RUNNING CLUB, University of
Mississippi, University, MIKE PINTER, Belmont College, Nashville, TN BOB PRIELIPP, University
of Wisconsin-Oshkosh, GEORGE W. RAINEY, Los Angeles, CA, MOHAMMAD P. SHAIKH, Westem
Michigan University, Kalamazoo, WADE H. SHERARD, Furman University, Greenville, SC, DAVID S
SHOBE, New Haven, €T, and KENNETH M. WILKE, Topeka, KS.

Lindstrom pointed out the caution that to obtaina + b = -7 and ab = -3 one must not
solve the general quadratic, in violation of the conditions of the problem. The published solution
answers this objection by showinghow these equations are obtained without finding any solution.

*736. [Fall 1990] Proposed by Willie Yong, Singapore, Republic of Singapore.

Into a rectangle with sides 20 and 25 units, 120 squares are thrown, each with side 1. Show
that inside the rectangle a circle of unit diameter may be drawn which does not intersect any of the
squares. This is a 10th class problem from the 24th Mathematics Olympiad organized by Moscow
State University, 1961.

Solution by MARK EVANS, Louisville, Kentucky.

Place the rectangle on the Cartesian plane with comers at (0,0), (0,25), (20,25), and (20,0).
Then consider the region near the origin as shown In the accompanying figure. Intuitively, the
arrangement shown, If continued throughout the rectangle, would provide the optimum arrangement
of unit squares.
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31 R

21 22

21 22 23

1 12

11 12 13

The lower left corner of square 11 is at ((2 + v2)/4,(2 + v2)/4) and Its lower right corner
Is at (6 + v2)/4,(2 + v2)/4), so the center of circle 12 is at ((3 + v2)/2,1/2). The distance
between the centers of circles 11 and 12is 1 * v2/2. The number of circles that could fit alongthe
x-axis Is given by n, where

25:-]2—'+(n—1)(1+-3£22:)+—;—, so n=15.1.

Hence we need more than 14 squares to separate these circles. Similarly we need more than 11
squares in the ydirection. Since more than 154 squares are required to separate the indicated
cirdes, 120 squares will not suffice.

737. [Fall 1990] Proposed by Timothy Sipka, Alma College, Aima, Michigan.

The Californialottery offers a daily card game called Decco, where a player selects 4 cards
from a standard deck, one from each suit. It costs $1 to play, and prizes are awarded according
to the number of cards that match the state's randomly selected set of four. One match gives a free
replay ticket, two matches earn $5, three yield $50, and four matches produce $5000. Determine
the expectation, the average profit or loss, for this game of chance.

Solutionby S GENDLER, Clarion University, Clarion, Pennsylvania.
The value v of the ticket is the sum of the products of the payoffs and their probabilities

- ERY NERVEY: 1\y12)2 L\L2y
v_5ooo(—l—5-) +504(13)(13)+56(13)(13) +"'11(13)(13)'

which gives rise to

11720

——— = 0.541
21649 0-34136

v =

so the expectation E = $1 - v = -$0.45864 for each play of the game.

Alsosolvedby ALMA COLLEGE PROBLEM SOLVING GROUP, Mi, CHARLES ASHBACHER,
Hiawatha, /A, MARK EVANS, Louisville, KY, BOB PRIEUPP (two solutions), University of
Wisconsin-Oshkosh, and the PROPOSER.

By assuming the value of a replay ticket was Its cost of &, instead of $v, the followirig
solvers arrived at an expectation of -$0.3476: SCOTT H. BROWN, Stuart Middle School, FL,
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GEORGE P. EVANOVICH. Saint Peter's College, Jersey City, NJ, HOWARD FORMAN, Parsippany,
NJ, RICHARD I. HESS, Rancho Palos Verdes, CA, MIKE PINTER, Beimont Coilege, Nashville, TN,
WADE H. SHERARD, Furman University, Greenville, SC, DAVID S. SHOBE, New Haven, CT, and
TIMOTHY SIPKA, Aima Coilege, M.

MARTIN BAZANT, Tucson, AZ, arrived at an expectation of -$0.2487 by assuming that the
prizes are cumulative. That s, for example, if you get 3 matches, then you receive $50 plus $5 plus
a free ticket.

738. [Fall 1990] Proposed by Alan Wayne, Holiday, Florida.
ff [x] denotesthe greatest Integer less than or equal to x, prove that for any nonnegative
Integer n,

2 + (0 + 1)'2] = [(an + 1)2).

Solution by BOB PRIELIPP, University of Wisconsin-Oshkosh, Oshkosh, Wisconsin.
We shall show that, for every nonnegative integer n,

™ 02+ (0 + 1)'2] = [(an + 1)) = [(4n + 2)'/2] = [(an + 3)/2).

Clearly (*) holds for n = 0. F a is an even integer,then a 2 s of the form 4j, and If a Is odd, then
a?is of the form 4f + 1. Thus there are no squares of the forms 4f + 2 and 4f + 3. Therefore,

(**) [(n + 1)'/2] = [(@n + 2)'/2] = [(an + 3)'/2].
Now we have, for n > 0, that
n2<n?+n<n?+2n+1,

n<@?+n)2<n+1,

an+t1<n+202+m2sn+1<an+3,

@n+ 1)"2 <n'2 4 (n+ )12 < (an + 3)'2
The theorem follows from Equation (**).

Also solved by SEUNGJIN BANG, Seoul, Korea, SCOTT H. BROWN, Stuart Middle School,
FL, RICHARD I. HESS, Rancho Palos Verdes, CA, HENRY 8. LIEBERMAN, Waban, MA, DAVID S.
SHOBE, New Haven, CT7, and the PROPOSER.

Bang found this problem in the form proved by Prielipp as Problem 5 of the 19th Canadian
Mathematical Olympiad. Brown referred to the similar problem £3010 in the AmericanMathematical
Monthly 95(1988)133.
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739. [Fall 1990] Proposed by R. S. Luthar, University of Wisconsin Center, Janesville,
Wisconsin.
Solve the equatlon

Yx3 F2x7 - 11x + 12 - fx? + x2 - 13x+ 11 = x + L.

I. Solution by MARK EVANS, Louisville, Kentucky.
Let

y=x¥+x%-1+11 and z=x+1.

Then the given equatlon becomes

Vy + 22 - Jy = z.

Now square both sides of this equation and then simplify to get

v =¥y + 22, y%=y?+yz?,

and
0=yz

Hence either
y=x3+x?2 13+ 1M =(-)x2+2-11) =0 or z=x+1=0,

whose roots are 1, -1 + 2v3, -1 - 2V3, and -1.
Thus there are four possible solutions. However, x = -1 - 2V8 yields 2/3 on the left hand
side of the equation and -2v/3 on the right. The solution then becomes

x=-1,10r-1%2v3.

Il. Comment by Jeffery Boats and Michael A. Vitale, Saint Bonaventure University, Saint
Bonaventure, New York.

The November 1989 version of Mathematica lists the threevalid roots and the extraneous
one, too. Derive lists only the valid roots. Perhaps Mathematica does not check its roots.

Also solvedby ALMACOLLEGE PROBLEM SOLVING GROUP, Mi, CHARLES ASHBACHER,
Hiawatha, IA, SEUNGJIN BANG, Seoul, Korea, FRANK P. BATTLES, Massachusetts Maritime
Academy, Buzzards Bay, JEFFERY JOHN BOATS and MICHAEL A. VITALE, St. Bonaventure
University, NY, MARTIN J. BROWN, Jefferson Community Coilege, Louisville, KY, SCOTT H.
BROWN, Stuart Middle Schooi, FL, KAREN L COOK, Royal Palm Beach, FL, RUSSELL EULER,
Northwest Missouri State University, Maryville, GEORGE P. EVANOVICH, Saint Peter's Coilege,
Jersey City, NJ, VICTOR G. FESER, University of Mary, Bismarck, ND, SEAN FORBES, Drake
University, Des Moines, |1A, HOWARD FORMAN, Parsippany, NJ, S. GENDER, Clarion University
of Pennsylvania, RICHARD I. HESS, Rancho Palos Verdes, CA, HENRY S. LIEBERMAN,Waban, MA,
PETER A. LINDSTROM, North Lake College, living, TX, G. MAVRIGIAN, Youngstown State
University, OH, YOSHINOBU MURAYOSHI, Eugene, OR, OXFORD RUNNING CLUB, University of
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Mississippi, University, WILLIAM H. PEIRCE, Stonington, CI, BOB PRIEUPP, University of
Wisconsin-Oshkosh, MOHAMMAD P. SHAIKH, WestemMichigan University, Kaiamazoo, WADE H.
SHERARD, Furman University, Greenville, SC DAVID S. SHOBE, New Haven, CT, KENNETH M.
WILKE, Topeka, KS, and the PROPOSER.

Fifty lashes with a wet noodle go to 40% of the solvers, including the proposer, for not
checkingtheir solutionsandlistingal four values as roots. Most of the weywadsolvers corrected
that omission when it was pointed out to them.

740. [Fall 1990] Proposed by J. S. Frame, Michigan State University. East Lansing,
Michigan.
The Euler numbers E; may be defined by the series

secx = E, ——.
,Z,; T2

The first few Euler numbers are
E,=E;=1E,=5E; =61 E, = 1385, and Eg = 50521.

Prove that, for all | > O, the E; satisfy the congruences

Eyger =1 + 60k (mod 1440) and E,,, =5 - 60k (mod 1440).

Solution by the PROPOSER.
A set of generating functions for the E, namely
2 2n
Y (-1 j(zj)Ej =0 forn>0; E, =1,

J=1

Is obtained by multiplyingthe two MacLaurin series for secx and cosx, and equating coefficients
of x2/@n)! Inthe identity secx cosx = 1. We combine the two congruences into one as follows:

E, " 18643, + (-1)/(47 - 30) (mod 1440)

and prove this congruence by mathematical induction on n by proving that f(n) = 0 (mod 2535)
if we define

f(n) = 2(21?)[(-1) I(18 - 648;,) + 47 - 3031,
F=0 \éJ

= *\ 2n '\ 2n -1 - 2n -1
f(n) =9[(1 + 1)27 + (1 - 1)20] - 64 + 944" -30n; 25 - 1)
=1 -

f(n) =922[i®+ (-1)"] +64(47 - 1) + 30(1 - n) 471,
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We compute the values f(l) = f(2) =f(3) = 0, f(4) = -1440 = -2 5325 Clearly 32 divides Fn) when
n > 4 We also have

f) = (1 + 3™ -1-3( - 1)(1 + 3™ = 0 (mod 9).
We note that 4™ "~ 1 (mod 5) for odd n, and check that -
fim) = 4" 2(-1)" + 1-42™" 22 + 1-4 =0 (mod 5).
Thus 25325 = 1440 divides {n), and the congruence s proved.

741. [Fall 1990] Proposed by the late John M. Howell, Littlerock, California.

*a) What numbers cannot be a leg of a Pythagorean triangle?

*b) What numbers cannot be a hypotenuse of a Pythagorean triangle?

¢) What numbers can be neither a leg nor a hypotenuse of a Pythagoreantriangle?

Solutionby KENNETHM. WAKE, Topeka, Kansas.

We write @ b c) to denote thata b, c are positive integersand a 2+p2=c2For part
(@) we note that, whenn is an odd integer greater than 1, we have (n, (n2 -1)/2, (7 + 1)/2) and,
whenn > 2is even, then (n, n 2/4 -1,n%4+ 1). Hence any integer greater than 2 can serve as
a leg of a Pythagorean triangle.

Suppose now thatx? = z2-y2 = (z-1)(z + y) withx = 1 or 2. Since we are dealing with
Integers, if x = 1,thenz -y =1andz +y = 1,s0z = 1andy = 0. Therefore, there is no
Pythagoreantriple with a leg of length 1. If x = 2, then 4 = (z - y){z + ¥). Now eitherz -y = 1 and
z+y=4orz-y=2andz +y = 2 Neither of these sets of equations has a solutionin positive
Integers, so 2 cannot be a leg, either. For part (a), then, each integer greater than 2 and only such
an integer can serve as a leg of a Pythagorean triangle.

Since the general form for all Pythagorean triples|s (2pgt, t (o 2. gd.te%+gq 2)), where
p > gare relatively prime integers of opposite par'ty and t is a positive integer, then the hypotenuse
must be a multiple of an odd positive integer that is expressible as a sum of two positive integral
squares. An odd prime is so expressibleif and only if it is of the form 4k + 1 (see, for example,
Burton, Elementary Number Theory, Allyn & Bacon, 1976, p.264). Hence, for part (), if an integer
z Is to be the hypotenuse of a Pythagorean triangle. it must containat least one odd prime factor
of the form 4k * 1, the smallest of which are 5, 13, and 17.

For part (c) we combine the results of parts (@) and (b), finding that the only natural num-
bers that can serve as neither a leg nor a hypotenuse in some Pythagoreantriangle are 1 and 2.

Also solvedby CHARLES ASHBACHER,Hiawatha, /A, SEUNGJ I N BANG, Seoul, Korea, and
BOB PRIEUPP, University of Wisconsin-Oshkosh. Partial solutions were submitted by ALMA
COLLEGE PROBLEM SOLVING GROUP. M, and the PROPOSER.

Prielipp foundpart (o) as a corollaryin Sierpinski, Elementary Theory of Numbers, Hafner,
1964, p. 361.

*742. [Fall 1990} Proposedby the late Jack Garfunkel, Flushing, New York.

Construct squares outwardly on the sides of a triangle ABC. Prove or disprove that the
centersA ', B, and C' of these squares form a triangle that is closer to being equilateral than
Is ABC. A proof would show that if the process were repeated on triangle A ‘8 'C ', etc., that
triangle A "8 "C " would approach equilateralas n approached infinity.
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I. Solutionby RICHARD 1 HESS, Rancho Palos Verdes, California.

Label the triangle ABC so thata < b < ¢ and place Cartesian coordinates so that A(0,0),
B(1,0), and C{xy) withx = 1/2. Thenalsox? + y2 < 1 See the figure. In the square on side BC
let the vertex opposite B have the coordinates {u,v). Thenv-y = 1 -xand ¢ -x =y - 0, fromwhich
it followsthat A * has coordinates ((x + y + 1)/2, (x +y * 1)/2). Simllatiy, B ‘((x - y)/2,
x +y)/2) and C'(1/2, -1/2).

NowcZ-a2=1-(x-1)2-y2=2¢-x2-y2 Also
42'2=(-y-)2+x+y+1)2=202+ 292+ 2 + 4y,
' 2=+N2+@-x+N2=x+292+ 4-4x+ gy,
4c'2=(1+2)2+(1-292=ax2+ ay? + 2 + 4y - 4x,
from which it followsthata’ ab’ ac’ since 2-4x < 0 and 2 a 2x2 + 2y 2 Then
4a'2-c'¥-ax-x%-2y2=2(c2-3?,
so the difference between the squares of the longest and shortest sides Is halved with each
formation of another triangle. Hence, as n - «, that difference becomes zero and the triangle
becomes equilateral.
ll. Solutionby MURRAY S. KLAMKIN, University of Alberta, Edmonton, Alberta, Canada.
Take the origin at the centroid of the giventriangleand let ag,bg,c4 be the complex numbers

representing tsvertices. Leta", b ", ¢ " be the affixes of the nth triangleformed by the process. We
then have

8p41 = 1By + ¢, + 1A, -c)}/2
where here A = 1, However, we will let A be any positive number, which corresponds to

constructing similar isosceles triangles instead of squares outwardly on the sides of the triangles
and taking the three new vertices of these triangles as our next triangle. Then

m 849 =1by +sC,,
2 by, =rc, +sap,
@ Cpyy =ra, +sby,

wherer = (L+tia)/2ands = (1-i1)/2. Sincer + s = 1, it follows that
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a,+b,+c,=ay+by+cy=0,

so the new triangle has the same centroid as the original one. Next replace ¢, by &, - b, In (1) and
(2) to get

(4) (r-s)b, =a,,4 +sa,

(5) (s-r)a, =by,q trb,
Eliminate b, between these two equationsto get

®) 8pup+ 8neq + {rs + (r-s)%a, = 0.

We search for a representation of the form a, = x". Since rs + (r-s) 2 = (1-829/4, the
characteristic equation for (6) is

w2 rax+1-32=0,
whose roots are r; = (-1 + Av3)/2 andr, = (-1 - Av3)/2. Hence
a, = ar" + pr,".
Because &, is knownand a, = rby * s ¢q, We have
8, = {{rbg T sCo - rogry" - (rby + s Co - ryaghts "My - ).
Then
a(ry - r)/rby + sy - ragty" = 1,

assuming the coefficient of r2" + 0. If it is, we then use the r.n term which cannot also vanish. Then
from (4),

balry - ro)/(rbg + s€o-riagry" - (rp + S)/(r-s) = (-1 + V3)/2

Independentlyof A. Consequently, a,, b,, ¢ are asymptotic to the vertices of an equilateraltriangle.

Note that the isoscelestriangles can be constructed inwardly instead of outwardly with the
same result. Also, if A = 0O, the result Is false since each of the new triangles formed is similar to
the original triangle. For a closely related result, see the proposer's problem 1179, Crux
Mathematicorum 14 (1988) 22-24.

Also solved by HENRY S. LIEBERMAN, Waben, MA.

743. [Fall 1990] Proposed by R. S Luthar, University of Wisconsin Center, Janesville,
Wisconsin.

Let A and B be the ends of the diameter of a semicircle of radiusrand let P be any point
on the semicircle. Let / be the incenter of triangle APB. Find the locus of / as P moves along the
semicircle.
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Solutionby HENRYS. LIEBERMAN, Waban, Massachusetts.
Since P bisects angle APB, it passes throughthe midpointM of the opposite semicircle AB.
See the figure.

M

Because angie MIB is an exterior angie to triangle /BP, Pl and Bl are angle bisectors, and
angles APM and ABM are inscribed in the same arc AM, we have that

<MIB = <IBP + <4IPB = {BA + 4API = <JBA + <APM = <UBA + <ABM = <UBM.

Thus triangle MIB is isosceles and M/ = MB = rv/2. The locus of I is thus the arc A8 of the circie
with center M and radius rv2.

More generally, if A8 is not a diameter of the circumcircle, the locus of 1is still the arc AB
of the cirde with center M and radius of length MB.

Also solved by CHARLES ASHBACHER, Hiawatha, /A, SEUNGJIN BANG, Seoul, Korea,
RICHARD 1 HESS, Rancho Palos Verdes, CA and the PROPOSER.

744. [Fall 1990] Proposedby the late Jack Garfunkel, Flushing, New York

Let triangle ABC be inscribed in a cirde. Draw a line through A to intersect side BC at D
and the circle (again) at E. Without resorting to the calculus, prove that AD /DE is a minimum when
AD bisects angie A

I. Solutionby HENRYS. LIEBERMAN, \Waban, Massachusetts.

Let theline ADE be the bisector of angle BAC, so that E is the midpoint of arc BC. Let X be
any point other that D on side BC and let AX cut the circie again at Y. Draw the chord through ¥ that
is paraltel to BC to cut AE at E ‘. See the figure.

From similar triangles AXD and AYE ' we get that AX/XY = AD/AE ', which is a minimum
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when AE ' is a maximum, that is. when £ ' = E. Hence the bisector of angle A produces the
minimum ratio.

Il. Solutionby AL T. TUDE, Veazie Heights, Maine.

As shown in the figure above, let h and k be the altitudes from A and from E to BC. By
similar right triangles, AD/DE = h/k, whichis a minimum whenk is a maximum since h is fixed, that
is, when E is the midpoint of arc BC. But then, AE bisectsangle A

Also solved by RICHARD 1 HESS, Rancho Pales Verdes, CA, MURRAY S. KLAMKIN,
University of Alberta, Canada, MOHAMMAD P. SHAIKH, WestemMichigan University, Kalamazoo,
and the PROPOSER.

The Pi Mu Epsilon Journal was founded in 1949 and is dedicated to undergraduate and
beginning graduate students interested in mathematics. Submitted articles, announcements, and
contributions to the Puzzle Section and Problem Department of the Journal should be directed
toward this group.

Undergraduatesand beginning graduate students are urgedto submit papersto the Journal
for consideration and possible publication. Student papers are given top priority. Expository
articles by professionalsin all areas of mathematics are especially welcome. Some guidelinesare:

1 Papers must be correct and honest.

2. Most readers of the PiMu Epsilon Journal are undergraduates; papers should be
directed to them.

3 With rare exceptions, papers should be of general interest.

4. Assumed definitions, concepts, theorems, and notations should be part of the
average undergraduate curriculum.

5. Papers should not exceed 10 pages in length.

6. Figures provided by the author should be camera-ready.

7. Papers should be submitted in duplicate to the Editor.
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THE 1991 NATIONAL PI MU EPSILON MEETING

The Annual Meeting of the Pi Mu Epsilon NationalHonorary Mathematics Society was held
at the University of Maine in Orono, August 7 through9. The meetingwas held in conjunction with
the national meetings of the American Mathematical Society and the Mathematical Association of

America.

The J. Sutherland Frame Lecturer was Henry O. Pollak, Bell Communications Research and
Teacher's College of Columbia University. He presented "Some Mathematics of Baseball."

The Pi Mu Epsilon Council at its annual meeting, voted to held the 1992 Pi Mu Epsilon
National Meeting from August 6 through August 8 at Miami University in Oxford, Ohio. (See note
on page 277) The Council also approvedthe refunding of registrationfees and the cost of the Pi
Mu Epsilon Banquet for student speakers. The Council made this decision In the hopes of
encouraging even more students to speak at the future national meetings. There were 45 student

presentations at the meeting.

PROGRAM — STUDENT PAPER SESSIONS

History: From Newtonto Point Set Topology

CharacterizingFinite Groups That Are The Union
of a Few Subgroups

En Route to Steiner Triple Systems

Approximating ™ Using Chebyshw Polynomials

Global Climate Modeling

Metaphors for Mathematics

Rebecca Adams
Ohio Delta
Miami University

Jonathan Atkins

Indiana Gamma

Rose-Hulman Institute of
Technology

Jonathan Atkins
Indiana Gamma

Jim Baglama
Ohio Xi
Youngstown State University

James M. Banoczi
Ohio Xi
Youngstown State University

Carol Brennan
New York Upsilon
Ithaca College

Easy Calculations

Rearrangements of the Alternating Harmonic Series

The Allometry of Richard Ili

Zeno's Arrow Paradox: The Disproof

Dimitros Drives You Nuts

On Maximizing Directed k-cycles in n-tournaments

Numerical Simulations of Solvent
Penetration into Glassy Polymers

A New Approach to the Feynman Path Integral:

Vector-Valued Danieii Type Integrals

Graphs with Isomorphic Cycle and Cocycle Matroids

Change Ringing

Some CombinatorialResults Arising From Complete
Digestion of Proteins
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Hester Brothag
Ohio Xi
Youngstown State University

James F Burke, Jr.
lllinois lota
lllinois Benedictine College

Sharyn Campbell
Ohio Xi
Youngstown State Univers'ty

Bufty Cashell
Ohio Delta
Miami University

Dimitros Chalop
Ohio Xi
Youngstown State Univers’ty

John Davenport
Ohio Delta
Miami University

Joseph M. Deitzel
E.Von Merrwall
Ohio Nu

Akron University

Anthony F. DeLia
Florida Theta
Universty of Central Florida

Concetta DePaolo

Massachusetts Alpha

Worcester Polytechnical
Institute

Heather DeSimone
Ohio Xi
Youngstown State University

Matthew Dalby
Jennifer Miners
Arkansas Beta

Hendrix College
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A Note on the Intermediate Value Theorem

On Kronecker's Theorem Concerning the Fastest Euclidean

Algorithm

Statistical Process Control for the Department of Defense

Tricks and Traps in the Use of Pseudo-RandomNumber

Generators

A Survey of the Theory of Coxeter Groups

Approximation for the Unknown Parameter of a Distribution

Based on a Random Sample Taken from It

Bits 'n Bytes

Quality Control: A Necessary Revolution

Anatomy of a Perfect Pitch

Pushing the Pebbling Number Over the Edge

Hyperbolic Trigonometry

Just An Average Integral

Mark Dobner
lllinois lota
Elmhurst Cdlege

Paul Dufresne, Jr.
Massachusetts Gamma
Bridgewater State College

Joseph Fousek
Wisconsin Alpha
Marquette University

Mike Fuller
Ohio Nu
Akron University

Francis YC. Fung
Kansas Beta
Kansas State University

Anna Georgieva
Ohio lota
Denison University

Sandra Gestl
Wisconsin Delta
St. Norbert College

Nancy Leigh Griffin
Ohio Delta
Miami University

Linda Hughes
Ohio Xi

Youngstown State University

David Jessup
Ohio Zeta
University of Dayton

Barry E Jones
Ohio Delta
Miami University

Amy Krebsbach
Wisconsin Delta
St Norbert College

Singular Value Decay in the Numerical Inversion of the

Weierstrass Transform

The Schradinger Equation and the Hydrogen Atom

Universal Binary Quadratic Forms

Subgroups of Finite Abelian Groups and Hasse Diagrams
of Representative Subgroups

The Data Encryption Standard: Description and Analysis

Numerical Approximation of the Solution to the

One-Dimensional Thermoelastic Equation

Statistical Testing of Random Number Generators

Problem Solving and Paper Towels

The Markov Process in Clinical Decision Making

The Relationships Between Game Theory and

Pseudo-BooleanFunctions

On the Chain Rule

Symmetries of Generalized Mandeibrot Sets and Their
Julia Sets
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Mark Kust
Michigan Epsilon
Western Michigan University

Michael Lang
Wisconsin Delta
St. Norbert College

AlbertJ. Lee
California lota
University of Southern California

Jae S. Lee

Tennessee Gamma

Middle Tennessee State
University

Ted J. Mallo
Ohio Nu
University of Akron

Kathleen A MecTavish
Minnesota Eta
University of Minnesota-Duluth

Peter Morris

South Dakota Beta

South Dakota School of Mines
and Technology

Linda Mueller
Wisconsin Delta
St Norbert College

Marguerite Nedreberg
Ohio Xi
Youngstown State University

David J. Rader, Jr.
Virginia Alpha
University of Richmond

Ursula Sallinger
Louisiana Alpha
Louisiana State University

Xiang Sheng
North Carolina Delta
East Carolina University



Chaos in Number Theory: Extending the 3n+1 Problem Joshua Tempkin
Virginia Beta
Virginia Polytechnic Institute

On the Division Properties of the Fibonacci Numbers Daniel Viar
Arkansas Alpha
University of Arkansas

Deterministic Fractals in Mathematics Kirk Wallace
New York Upsilon
ithaca Coilege

Pearls, Sham Pearls and DUDENEY. Marc Wallace
Missouri Beta
Washington University-St. Louis

ATTENTION FACULTY ADVISORS

To have your chapter's report published, send copies to Robert M. Woodside, Secretary-Treasurer,
Departmentof Mathematics, East Carolina University, Greenville, NC 27858 and to Richard L Poss,
Editor, St. Norbert College, De Pere, Wl 54115.

Message from the Secretary-Treasurer

Copies of the new, revised Constitutionand Bylaws are now availabie. The prices are: $1.50
for each of the first four copies and $1for each copy thereafter. I.e., $(1.50 n) for n < 4 and
$(n+ 2 forn=z4

The videotape of Professor Joseph A Gallian's AMS-MAA-PME Invited Address, The
Mathematics of Identification Numbers," given as part of PME’s 75th Anniversary Celebration at
Boulder, CO, in August, 1989, is also now availabie. The tape may be borrowed free of charge by
PME chapters, and by others upon an advance payment of $10. Please contact my office if you
desire to borrow the tape, tellingme the date on which you would like to useit. | prefer to mail the
tape directly to faculty advisors, and expect themto take responsibility for returning it to my office.
Please submit your request in writing and include a phone number and a time that I might reach
you ifthere are problems. Robert M. Woodside, Secretary-Treasurer, Department of Mathematics,
East Carolina University, Greenville, NC 27858.
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For the third consecutive year, the American Mathematical Society has given Pi Mu
Epsilon a grant to be used as prize money for excellent student presentations. There were many
excellent presentations, and eight of them were singled out to receive prizes of $100 each. The
winning speakers were:

Anthony F. DeLia, University of Central Florida
A New Approach to the Feynman Path Integral: Vector-Valued Daniell Type Integrals

Heather DeSimone, Youngstown State Univers'ty
Change Ringing

Mark Dobner, EImhurst College
A Note on the Intermediate Value Theorem

Mike Fuller, Akron University
Tricks and Traps in the Use of Pseudo-Random Number Generators

Linda Hughes, Youngstown State University
Anatomy of a Perfect Pitch

Marguerite Nedreberg, Youngstown State University
The Markov Process in Clinical Decision Making

Joshua T. Tempkin, Virginia Polytechnic institute
Chaos in Number Theory: Extending the 3n+1 Problem

Marc Wallace, Washington University- St. Louis
Pearls, Sham Pearls and D.U.D.E.N.E.Y

P1Mu Epsilon wishes to thank the American Mathematical Society for its continued support
for student speakers.
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GLEANINGS FROM THE CHAPTER REPORTS

FLORIDA KAPPA (University of West Florida) This is one of the newest chapters In Pl Mu Epsilon.
(It was installed In early 1990). Rene Hawkins represented the chapter at the 1990 summer
meeting in Columbus, Ohio. Most of the activities have focused on bullding membership. These
efforts paid off with 13 new members being initiated at the April Induction banquet.

GEORGIA BETA (Georgia Institute of Technology) At the 1991 Honors Program at Georgia Tech,
the chapter presentedbook awards to outstanding graduates in mathematics. Those receiving the
awards were students earningthe degree of BS. in Applied Mathematicswith a grade point average
of at least 3.9 (out of 4) in all mathematics courses taken. The recipients were Cheri L. Gatland-
Llightner, Steven F. Grondin, and David G. Grupta. The awards were mathematicsbooks of the
recipient's choice.

MICHIGAN ZETA (University of Michigan - Dearborn) We continued our Focus on Faculty series
for the second year. We had three facultymembers present lectures as part of this series. Lectures
were presented on the following topics: intermediate differential equations,classical and statistical
tolerance limits and the mathematics software MATHEMATICA. As a special presentation, one of
our student members presented an informal discussion which was titled "Introductionto Quasi-
Empiricism". Another project which we engaged in this year was our math advising session. We
sponsored two of these sessions, one each semester. We had three professors from the
mathematicsdepartmentrepresentingthree areas includingmathematics, computers, and statistics.
These professors discussed possible careers in these fields, graduate school opportunities, and
basic course advising for University of Michigan-Dearborn. They also held a question and answer
period at the end of the session. This event was open to all students in the university. We
sponsoredtwo faculty/student mixers, in December and April. The April mixer was a faculty thank-
you luncheonwhere the students of Pi Mu Epsilon were able to thank the faculty membersfor their
support overthe past year. Ona social level, we had two game nightswith pizza and refreshments.
One of the nights included a mathematics quiz bowl. We also had a Christmas party for our
members over winter break and sponsored a hayride and bon fire in the fall.

MINNESOTADELTA (St. John's Universityand College of St Benedict) This year the Math Society
had a variety of speakers and events, with speakers in fields ranging from actuaries to computer
science, and events such as math volleyball and the science picnic. In the fall Ed Banach, Vice
President and Chief Actuary of North American Life and Casualty Company, came and spoke about
his actuarial profession. Professor Jerry Lenz of the math department at St. John's Universityalso
spoke about his field of interest, the history of women in mathematics, and Gary Brown, a math
professor at the College of St. Benedict, spoke on the Axiom of Choice. Two students, Bob Hesse
and Judy Kenney, gave talks about their summer research programs which they presented at the
Pi Mu Epsilon Conference at St. Norbert College. Hesse studied numerical methods at the
University of Colorado and Kenny studied conformal mapping in the complex plane at Washington
University in St. Louis. Once again, the Math Society had a cookie bake sale in the fall to raise
money for the Christmas Party, when we went bowling. The spring was filled with events also. We
had two outside speakers, three faculty speakers, and two student speakers. Cheri Shakibahn
from St. Thomas University spoke on the computer program Mathematics, and Mike Heroux from
Cray Computers came to speak about numerical analysis and computers. Three math professors
from the College of St. Benedict and St. John's University, Ben Collins, Dave Hartz, and Mike
Tangredi, each gave talks in the spring. The two student speakers were Bob Hesse and Mike
Witham, each preparing for the Pi Mu Epsilon Conference at St. John's University. Hesse spoke
about the probability of winning in the game Jai-Alai, and Witham talked about fractals. The
featured speaker at the Pi Mu Epsilon Conference was Raymond Smullyan, the logician and
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philosopher. He gave two talks entitled "Puzzles & Paradoxes" and "Logic and Infinity". For the
fundraiser, Math Society sold T-shirts, which were a big success. For the second year all of the
sciences had combined picnic; once agaln, the Math Society "womped® the other sciences at
volleyball. Math Society had a very successful year in 1990-91!

NEW YORK PHI (Potsdam College of the SUNY) Paula Golding was elected the 1991 PI Mu
Epsilon award winner by the members of the chapter. The election was based on contributionsto
the Mathematics Department. The award consists of $100 in mathematics books of her choice.

NEW YORK OMEGA (St. Bonaventure University) The Chapter held five meetingsthis year. These
were devoted to planning activities, selecting new members, and electing officers for next year. We
have beenworkingin close cooperation with the St. Bonaventure University Student Chapter of the
MAA in trying to offer a broad range of activities for mathematics students. This year's program
consisted of a bi-weekly forum featuring speakers from our own faculty, our second annual
Mathematics Awareness Week celebration, and a problem competition run in conjunctionwith this
celebration. Once again, we were able to Invite a speaker from Syracuse University as part of their
visiting lecturers program. Steven Diaz provided a stimulating"Pointsand Curves -An Introduction
to Geometry." We were able to schedulefivetalks in the forum series: 'The Mystique of Mersenne
Numbers", Charles R. Diminnie; "Inclusion-Exclusion”, Douglas L. Cashing; ‘'Taxi-cab Geometry",
Francis C. Leary; "Maximums and Minimums: A Variatlonal Approach”, Harry Sedinger; These
talks were aimedat an undergraduate audience and were well received. We are looking forward
to running the forum series again next year. Mathematics Awareness Week activities included
a film on the work of MC. Escher, a talk by Jeffrey Boats on the use of complex analysis in the
evaluation of certain real integrals, Sedinger's talk and the Pi Mu Epsilon ceremony. The problem
competition offered a cash prize of $25 to the solver of the following problem:

If S = {(xy): x| <1 and |y| s 1}, evaluate ljemaX{x'Y} da

The winning solution belonged to sophomore, Rochelle Ellis.

TENNESSEE GAMMA (Middle Tennessee State University) Pi Mu Epsilon began the 1990-91 year
with its semi-annual pizza party on October 1. We had another pizza party/initiation again in the
spring semester. On October 22, Mike Pinter from Belmont College gave a presentation entitled
"Graphs in the Plane and on a Torus." Dr. Tom Cheatham, chairperson of the MTSU Department
of Computer Science, spoke on "Paradox Lost" on November 19. For our March 11 meeting, we
had a panel discussion on graduate school. Dr. James Lea gave insight into the advantages and
disadvantages of the Ph.D., Ed.D., and D.A. programs; Dr. Vatsala Krishnamani spoke about
choosingan appropriategraduate school; Mr. Kevin Shirley talked about choosingan area of study
and a related topic; and Ms. Dovie Kimmins discussed math education. On April 16, Ms. Lora
Brewer from the MTSU Department of Mathematics and Statistics gave a presentation on the
highlights of her dissertation. During February, Pi Mu Epsilon sold T-shirts with a math oriented
design to students and faculty. Later, the shirts were available for sale at the Tennessee
Mathematics Teachers Association high school math contest. For Mathematics Awareness Week,
four studentspresented their undergraduateresearchprojectson April 25. Amy Pinegar, last year's
winner, presented a continuation of her paper entitled"Inversions and Adjacent Transpositions." For
this year's Tom Vickery Mathematics Project competition, Jae Lee (first place) gave his paper
entitled "Subgroups of Finite Abelian Groups and Hasse Diagrams of Representative Subgroups."
Carol Clifton (second place) presented her project, "Some Operations on Matrix Valued
Expressions." Michael Darrell discussed his paper entitled "An Introductionto Cryptography." The
week (and year) ended with a combined BBQ picnic with members of the other two mathematics
clubs and ACM.



Sixth Annual
MORAVIAN COLLEGE
STUDENT MATREMATICS CONRPERENGCE

Bethlehem, Pennsylvania
Saturday, February 15,1992

We invite you to join us, whether to presenta talk or just to listen and socialize.,
The conference willbeginat 8:00 am. andcontinue into late afternoon.After
aninvitedaddress, the remainder of the day will be devoted to undergraduate
student talks. Talks may be fifteen or thirty minutes long. They may be on any
topic related to mathematics, operationsresearch, statisticsor computing.
We encourage students doing research or honorswork to present their work
here. e also welcome expository talks, talks aboutinterestingproblemsor
applications and talks aboutinterships, field studies and summer
employment. We need your title, time of presentation (15 or 30 minutes) and
a 50 word (approximate) abstractby February 7,1992.

Sponsored by the Moravian College Chapter of Pi Mu Epsilon and

the Lehigh Valley Association of Independent Colleges,

Flease contact: Alicia Sevilla, Department of Mathematics, Moravian College
1200 Main St. Bethlehem, PA 18018

(Telephone:(215) 867-1787)

NINTH ANNUAL ROSE-HULMAN CONFERENCE
ON
UNDERGRADUATE MATHEMATICS

Friday and Saturday
March 13 and 14, 1992

You arecordialy invited to attend thisevent. Undergraduate studentsare
encouraged to submit abstracts of papers, in any area of the mathematical
sciences, for presentation.

Invited Speakers

William Dunham
Professor of Mathematics
Hanover College

Joseph Gallian
Professor of Mathematics
University of Minnesota - Duluth

William Dunham is widely recognized for his research in the history
of mathematicsand as an enthusiastic speaker and writer. He has conducted
an NEH Summer Seminar on mathematics in historical context and is author
of the book Journey Through Genius- The Great Theoremsof Mathematics.

Joseph Gallian is a distinguished expositor of mathematics. His
publications include the textbook Contemporary Abstract Algebra, and he
has directed a successful undergraduate research summer program at UMD
for many years.

For more information contact: Steve Carlson
Department of Mathematics
Rose-Hulman Institute of Technology
Terre Haute, IN 47803
(812) 877-8458
CARLSON®@ROSEVC.Rose-Hulman.edu




St. John'sUniversity/College of St. Benedict
Annual Pi Mu Epsilon Student Conference

JUDITH GRABINER

Professor & Mathematics
Pitzer College

" Descartesand Problem Solving'
Friday, April 3, 1992
8:00 p.m.

'"How Did We Cometo Li ve in aNon-Eudidean Waorld'
Saturday, April 4, 1992
10:00 a.m.

The A Mu Epsilon Conference serves as a forum for undergraduates to
present origind mathematics and/or papers o an expository nature.
Student talks precede the guest speaker both days.

Judith Grabiner is a historian  mathematics. She has written two books
on the history of calculus. Origins ¢ Cauchy’'s Rgorous Calculus and
Gl cul us as Algebra J.L Lagrange 1736-1813.

For more information contact; Mike Zielinski, Shoba Gulati, or Jerry Lenz,
Department of Mathematics, St. John's Lhi versity, Collegeville, MN 56321,
Phone612-363- 3094
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Then consider joining a highly talented group of Statistics, Combinatorics and more. And they functionasa
mathematicianswhose jab it is to deducestructurewhere true community, exchanging idess and working with somed
structureis not apparent, to find patternsin ssemingly thefinest minds—and most ponvefu computers—in the country.
random sets, to createorder out of chaos. f you love problemrsolvingand like theidea that those

Theseare the mathematiciansd the Nationd Security  solutionswill be gpplied to real world problemslook intoa

gay. They contribute to thesolution d eryptologic career with NSA. Send your resumeto

p 0 i using Number Theory, Group Theory, Finite Fed the address beow or contact our
Theory, Linear Algebra Probability Theory, Mathematicd campus placement office.

An: M322 (AEG), Ft. Nbde. Maryland 207556000 The Opportunitiesof aL ifetime
An equat opportunity employer US. citizenship required far applicant and immediate family members.
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ERRATA
There were two errors in Volume 9, Number 4, of the PiMu Epsilon Journal (spring, 1991).

In Russell Euler's article "A Note on (1 + k/m)",* on page 233, there is a reference to the
parameter k before it is given a definition.

In Norman Schaumberger's article "Using the MVT to Complete the Basic Integration
Formula," on page 226, several lines of print were permuted. The middle part of the article should

have read:

Furthermore, the relation

1n(§)=Zx-1dx, b>a>o0 (3)

can readily be derived from (2). Equation (1) is still meaningless when
n = -1, but (3) does suggest that it is reasonable to expect that the
expression

1 +
TR (b™1 - gm1)

approaches In{(b/a) as n tends to -1. This point, although rarely
discussed in standard texts, can be made plausible by considering
values of n close to -1. Thus, for example,

3
[xodx = 2o (3001 - 2:91) = g058....
J :

and In(3/2) = .4054..

Both of the above errors were the sole responsibil‘ty of the Editor. The Editor apologizes
for any confusion that the errors may have caused.

@ printed on recycled paper.




