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1993 NATIONAL MEETING, PRELIMINARY INFORMATION 

The 1993 National Meeting of Pi Mu Epsilon will be held in Vancouver, British columbia, in 
Canada. The meeting will be held in conjunctions with the AMS-MAA meetings from August 15-19. 
Pi Mu Epsilon will again co-host this national meeting with the MAA student chapters. 

The National Council of P i  Mu Epsilon has approved,. on a temporary bask, a more generous 
travel allowance for student speakers. The first speaker !?om a given chapter will be eligible for the 
same travel allowance as before, but if there are more than one speaker from a given chapter, the 
additional speakers (up to  four) will be eligible for an allowance of 20% of what the first speaker 
receives. For example, if the diitance traveled (by cat or van) is over 2400 milea (round trip diitance), 
a single student speaker would receive $600, two student speakers would receive $720 (to share in 
any way they wish), three speakers would share $840, four speakers would share $960, and five or 
more speakers ftom thii single chapter would share $1080. 

The reason for trying the new scale for travel allowances is to  encourage more students to speak 
a t  the national meeting. There was some concern that the fact that Vancouver is so far removed 
ftom most of the schools that have traditionally sent student speakers to  the national meetings might 
cause the number of speakers to fall below what it has been. This new policy hopes to encourage 
chapters to  send multiple speakers. 

CALL FOR NOMINATIONS 

Nominations are being accepted for the office of national councilor of Pi Mu Epsilon. Please 
send nominations to: Eileen Poiani, St. Peter's College, Jersey City, NJ 07306. Nominations must 
be received by November 30, 1992. Elections for Pi Mu Epsilon offices will be held in the spring of 
1993. Pi Mu Epsilon sponsors will be receiving ballots for their chapters to use in the voting process. 

STUDENT PAPERS 

In each year that at  least five student papers have been received by the Editor, prizes of $200, 
$100, and $50 , known as Richard V. Andree Awards, are given to student authors. All students 
who have not yet received a Master's Degree or higher are eligible. 

There are four student papers in this issue of the Journal. One of the papers is "Exploring Self- 
Duality in Graphs," by Concetta DePaolo and Russell Mattin. They prepared this paper during 
the National Science Foundation's Research Experience for Undergraduates Progam at  Worcester 
Polytechnic Institute in the summer of 1991. At that time, Concetta was a student at  Worcester 
Polytechnic Institute and Russell was a student at  Syracuse University. 

The second paper is 'Ttactorids!" by Nataniel Greene. Nataniel was a junior a t  Camel  High 
School in New York when he prepared thii paper. 

The thud paper is "On the Number of Invertible Matrices Over Zp," by Mark Lancaster. Mark 
prepared this paper during his senior year at  Hendrix College. .. 

The final student paper k "On Ttanspositions Over Finite Fields," by Beth Miller. Beth 
prepared this paper while she was a junior at  Penn State University - New Kensington Campus. 



EXPLORING SELF-DUALITY IN GFUPHS 

Concetta DePaolo and Russell Martin 
Worcester Polytechnic Institute and Symcuse University 

Introduction 

We define a graph G on a set of vertices and a set of edges. (For those not familiar with graph 
theory, refer to a text such as Harary [2].) If G is drawn in the plane such that there are no edge 
crasings, then G is a plane graph, and we can also define a set of faces of G. For any such plane 
graph G, we can construct the geometric dual of G,  denoted G*, as follows: (1) within every face f 
of G, create a vertex f' of G'; (2) for each edge e separating faces fi and fj of G, let e* be an edge 
joining vertices f; and fi in G'. We now make a distinction between a planar graph and a plane 
graph. Planar graphs are graphs that can be drawn in the plane without crossings of the edgea, and 
plane graphs are drawn in the plane without crossings of the edges. Notice we need a plane graph 
in order to  construct its geometric dual. 

When is a plane graph "self-dual"? Since a plane graph can be defined by its vertices, edges, 
and faces, it is natural to think that its dual must also be defined by exactly these if i t  is to  be 
"self-dual." That  is, not only must there be vertex and edge isomorphisms tiom G to G* such that 
all adjacencies and incidences are preserved (we call these gmphical isomorphisms), but there must 
also be an isomorphism which maps faces to faces such that if two faces both border an edge in G, 
they must also border the corresponding edge in G*. In other words, G and G*, in addition to  being 
graphically isomorphic, must also be identically embedded in the plane. If this occurs, we say G is 
geometrically self-dual, and write G C. 

Most people, however, would not consider the embeddings of a graph when dealing with sew- 
duality; a graphical isomorphism from G to G' is usually sufficient in graph theoretical terms. If a 
graph is embedded in the plane such that it is graphically isomorphic to its dual (whether or not 
the dual is embedded differently), then we say G is combinatorially self-dual, and write G M P.  
Clearly, geometrical self-duality implies combinatorial self-duality. 

We show that combinatorial self-duality is indeed weaker than geometric self-duality using the 
plane graph H in Figure 1 (opposite). 

Notice that in H ,  the face inside the patallel edges borders two loops which are at opposite 
vertices. In H * ,  neither face, inside or outside the parallel edges, borders two loops at oppo~ite 
vertices. Therefore, H is not geometrically self-dual. However, by inspection, it is easy to see that 
H can be made geometrically self-dual by reembedding the bridge on the left into the outer face, and 
reembedding one of the bridges on the right into the inner face. Therefore, the difference between 
combinatorial and geometric self-duality is the graph's embedding. 

There is another, still weaker, type of self-duality which we call abstmct self-duality, which 
occurs when a plane graph G (whether or not it is geometrically or combinatorially self-dual) is 
embedded such that its collections of cycles remains unchanged in the dualization process. In other 
words, there is a one-to-one correspondence between the edges of G and the edges of G* such that 
the collection of cycles is preserved. For an example of an abstractly self-dual graph, see Figure 
3, graph HI.  Hl is not combinatorially nor geometrically self-dual because it contains a vertex of 
degree six, while its dual does not. However, the sets of cycles of HI and Hi are identical. Clearly, 
combinatorial self-duality implies abstract self-duality. 

When talking about cycles, it is also natural to talk about matroids, since the "cycle matroid"' 
M(G) of G corresponds to the family of all cycles of the graph G. When two graphs G and H ,  
have the same collection of cycles, we say their cycle matroids are isomorphic. This is denoted as 
M(G) E M(H).  Thus, when we say G is abstractly self-dual, we mean that M(G) M ( C ) .  

I 
Figure la: A combinatonally self-dual 
gnph 

L Figure lc: The dual of H 

2igure lb: The dualization process 

The purpose of this paper is to examine and explore the relationship amongst these three 
concepts of self-duality. In particular, we address when the concepts are or are not equivalent. Also, 
we give some methods for constructing graphs with one or more of these properties. We've found 
that these topics are best explored according to the vertez connectivity (the minimum number of 
vertices whose removal disconnects the graph) ofthe graphs in question. We begin with %connected 
graphs. 

3-connected graphs  

We begin our examination of %connected graphs with the realization oftwo important theorems. 
The f i ~ ~ t ,  due to Whitney (see Harary [2]), states that if G is a 3-connected planar graph, then it 
has a unique plane embeddimg, that is, the faces and their bordering edges are uniquely determined. 
The second theorem, due to  Welsh [3], states that if two 3-connected graphs without loops have 
isomotphic cycle matroids, then they must be graphically isomorphic. 

Let us explore what these theorem mean with regard to the relationships between geometric, 
combinatorial, and abstract self-duality in 3-connected graphs. Let's begin with the assumption that 
G is 3-connected and abstractly self-dual, i.e. M(G) E M(G*). Observe that G cannot contain a 
loop (since G' would then have a corresponding bridge and so would be only 1-connected). By the 
Welsh theorem, we see that G and G* must be graphically isomorphic. That is, abstract duality 
implies wmbinatorial self-duality. However, the Whitney theorem assures us that the embedding of 
a 3-connected graph is unique, EO that G G* implies that G % G' . Therefore, we've established 
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When dealing with %connected graphs, the relationship amongst the types of self-duality be- 
comes more interesting. Abstract self-duality no longer implies geometric seK-duality. In fact, 
%connected graph with M(G) Z M(P) need not even be mmbinatorially self-dual! However, 
there does exist a specid relationship amongst graphs with isomorphic cycle matroids. In Whitney 
[5, Sec.11 it is proved that any two graphs with isomorphic cycle matroids can be obtained from 
one another by a series of what are called Whitney moves. The significance of these moves is that 
performing them on a graph does not change its cycle matroid. We first describe a Whjiney twist 
(or just twist): 

Suppose vertices u and v form a cutset of the graph, G. Split G into two secttons, GI and G2, 
by cutting the graph through u and v ,  forming two connected graphs, each having vertices u and v.  
If there is an edge uv in G, we arbitrarily assign it to GI. We form the graph G' by re-identifying 
the vertices u in GI with v in G2, and v in GI with u in G2. See Figure 2 for an example of this 
operation. Note that G' is still 2-connected, but it need not be isomorphic to G. See Welsh [4] and 
Whitney [5] for further details on this operation. 

T i  2 Performing a Whitney Twist 

We will also consider the reembedding operation to be a Whitney move, because it does not 
change the cycle matroid of a graph. 
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We now want to explore the relationship between the two operations of twisting and reembed- 
w (Figure 3) first show a % connected geometrically self-dud 
G*, and then a 90-degree rotation of G' so a to  how that 
rl, a graph obtained from G by a Whitney twist on the upper 
the dual of HI is constructed, we find that it is graphically 
., the cone- like section in the upper part of the graph of HI is 
ther than in a 4-sided face as it is in G*. Therefore, a twisting 
mbedding of the dual. 

bed from G by reembedding the cone-like section in the upper 
1 Hi are identical. We find that H i  is G with a twist performed 
re, a reembedding of the original graph has led to a twisting in 



Due ta the interchange of faces and vertices in the dualiiation process, a twisting always leads 
ta a reembedding of the dual, and a reembedding always leads to a twisting of the dual, as  is shown 
in the following theorem. 

Theorem 1 .  Let G be a plane graph and let G' be its dual. If H is a graph obtained by a series 
of Whitney twists from G, then H *  is a reembedding of G". hrthermore, if H is a reembedding of 
G, then H* can be obtained from G" by a seriea of Whitney twists. In other words, twisting and 
reembedding are "dual operations." 

P m o E  For the fimt sentence, we observe that as a result of twisting G, none of the facial adjacencies 
have changed. To see this we argue as follows: Let f be a face of G that is bounded by edges from 
both G l  and G2, where Gl and Gz are the sections of G created by the cutset { u , v ) .  Let cl,cz,. . .c,, 
be the cycle of edges that bounds f. By renumbering the edges if needed, we can say that cl, CZ, . . . ck 
is the sequence of edges joining u and v in GI, and ck+l, ck+z,. . , , c,, is the sequence of edges joining 
v  to  u in G2. When we perform the twist, we identify u in GI to v  in G2, and v in Gl to u in G2. 
Therefore, the cycle boundiig f in H is cl, . . . ,ck,cn,cn-1,. . . , ck+l, containing the same edges as 
in G. We apply this same argument to each face that is bounded by edges from both GI and G2. If a 
face is completely bounded by edges in GI or GZ, then the face will not be affected. Therefore, if two 
faces shared an edge in G, they will share the same edge in H ,  after the twist has been performed. 
In other words, the facial adjacencies have not been altered by the twist. 

We know that adjacent faces in a graph give rise to adjacent vertices in the graph's dual. H has 
the same number of faces, vertices, and edges as G, so H* has the same number of faces, vertices, 
and edges as G*. Furthermore, because G and H have the same adjacent faces, G* and H* have 
corresponding adjacent vertices. This produces a mapping between the vertex and edge sets of G* 
and H* that preserves the vertex adjacencies. 

To show that H* is a reembedding of G", consider the effect on the faces of H* by considering 
the effect of the twist on the vertices of H.  Due to the nature of the twisting operation, some of the 
vertex adjacencies in H will be different from those in G. If two vertices were adjacent in G, and 
are not adjacent in H ,  then the corresponding faces of H* will not be adjacent a they were in G*. 
So, the embedding on H* will be different from that of G'. 

When we perform a series of twists, we actually have a sequence of graphs G, HI, HZ, .  . . , 
Hn-l, H .  F'rom the above argument, we know that the following are graphically isomorphic: 
G*, H i ,  H:, . . . , Hi-l, H*. Since H* is graphically isomorphic to G*, it is just a planar repre 
sentation of the same graph, which as stated above, need not be embedded in the same way. The 
second sentence of Theorem 1 can be proved in a similar manner. Alternatively, we can show it can 
be proved using duality. We have just shown that a twist in G corresponds to a reembedding in 
G*. Since this is true for any plane graph G, we therefore know that a twist on the plane graph G' 
wrresponds to a reembedding in (G*)'. But since (G*)* is G, we have that a twist in G' corresponds 
to  a reembedding in G. a 

Suppose G is any 2-connected, abstractly self-dual graph, If we twist G to get H ,  we have shown 
that the cycle matroid has not changed, that is, M(H)  M(G), so that (I) M(H) E M(G*), since 
G is abstractly self-dual. Also, by Theorem 1, H* is merely a reembedding of Go, so that (2) 
M(H*) 2 M(G*). Combining (I)  and (21, we have M(H) E M(H*). 

Therefore, if a graph is obtained from a geometrically self-dual graph by a series of Whitney 
twists, then the resulting graph is still abstractly self-dual (but this does not automatically mean it 
has to  be geometrically, or even combinatorially self-dual). 

In a similar manner, we can generate other graphs that are abstractly self-dual by using all 
of the different, diitinct planar embeddings of a geometrically self-dual graph. The duals of these 
graphs will be twists of the original dual. The same king of argument as before can be used to show 
that the resulting graph is still abstractly self-dual (but this does not automatically mean it has to 
be geometrically, or even combinatorially self-dual). 

We now present a theorem which asserts that any %connected abstractly self-dual graph-can 
always be manipulated to form a combinatorially self-dual graph: 

T h e o r e m  2. If G is a 2-connected plane graph with M(G) E! M(G*), then there exists a t  least 
one graph H ,  obtained from G by a finite series of Whitney twists, such that H = H*. 

P m o t  Since G is abstractly self-dual, by the Whitney theorem [5, Sec. 11, G can be twisted to 
get Go. Let us perform this twist (or series of twists) to  get a new graph H graphically isoXori5hic 
to G". When we twist G to get H ,  the dual of H, H*, is merely a reembedding of G*, by Theorem 
1. IfH* is a reembedding of Go,  then H' and G* are graphically isomorphic. By construction, we 
also have that H and G" are isomorphic. Therefore, H* and H are graphically isomorp

hi

c. Thus, 
H B H*, or H is combinatoridly self-dual. = 

Conjecture: If G is a 2-connected abstractly self-dual graph, then there exists at  least one ~ a p h  H ,  
obtained from G by a series of twists and/or reembeddings, such that H is geometrically self-dual. 

This conjecture is supported by the graph G in Figure 3 which h a  sixteen twists (or seriea of 
twists), and sixteen embeddings of each of these twists. We drew all 256 graphs and dualized each 
one of them. We found that for each twist, there was at  least one embedding of these resulting 
graphs that was geometrically self-dual. This example strengthens our belief that the conjecture is 
true. Our results on this example are summarized in Table I. When we perform all possible series of 
twists on G, we find that some geometrically isomorphic graphs result from different aeriea of twists. 
The number and percentages in parentheses indicate the results when we exclude these duplications 
from our totals. 

Table I 

Type of Graph Number of Graphs Percent of Total 

Geometrically 
Sdf-Dud 32 (20) 12.5% (12.5%) 

Combinatonally 
(but not Geometrically) 

Self-Dud 24 (12) 9.375% (7.5%) 

Abstmctly Self-Dual 
O ~ Y  200 (128) 78.125% (80%) 

Total 256 (160) 100% 

1-connected graphs  

We have seen that a 2-connected abstractly self-dual graph does not necessarily have to be 
combinatorially or geometrically self-dual. The same is true for 1-connected graphs. However, like 2- 
wnnected graphs, there exists a special relationship among 1-connected graphs with isomorphic cycle 
matroids. In Whitney [5, Sec.11, it is proved that all pairs of 1-connected graphs whose cycle matroids 
are isomorphic to  one another can be obtained from one another by one of the following Whitney 
moves for 1-connected graphs: (1) rearrangement of the blocks (maximal 2-connected subgraphs; 
see [2, Chapter 311, by detaching at a cut vertex, and either leaving the graph diswnnected k r  
reattaching the blocks a t  different vertices; (2) tw~stings performed within the blocks of the graph; 



(3) reembeddings of the graph; and (4) some combination of the first three. Notice that none of 
these operations change the cycle rnatroid of the graph. 

Because there are several Whitney moves in this case, the classification of 1- connected abstractly 
self-dual graphs is much less structured than that of its higher connected counterparts. We now state 
a theorem which serves as a means of classification and construction of 1-connected abstractly self- 
dual graphs. 

Theorem 3. Let G be a plane graph which consists of k (abstractly) self-dual blocks and 2m non 
self-dual blocks, m of which are duals of the remaining m, joined arbitrarily a t  cut vertices so long 
as no additional cycles are created and no block is embedded inside a bounded face of another. Then 
G is abstractly self-dual. 

Proof: Since the only cycles present in G occur within the k + 2m blocks, G may be thought of 
as a "pseudoforest" whose "branches" are the k+ 2m blocks. Unlike a true graph-theoretical forest, 
this "pseudoforest" has cycles, but only the ones existing within the k + 2m blocks. 

... Let the k abstractly self-dual blocks be denoted by Bi ( i  = 1,2,. k). Similarly, let the 2m 
... non self-dual pairs be denoted by H j  and H; (j  = 1,2,. m). The faces of the plane embeddings 

of G are the bounded faces of each Bi, Hj, and H;, together with one unbounded face (call it  F )  
surrounding G. The vertices of G are precisely those of the blocks (counting cut vertices only once, 
even though they may be in many blocks). The edges of G are precisely the edges of the blocks. 
When we form G *  each B,*, each H;, and each (HT)* 3' H j  will have the vertex corresponding to 
F as one of its vertices (because each has faces adjacent to F in G). 

We note that G fh G' unless all k abstractly self-dual blocks are combinatorially self-dual, and 
G was assembled in such a way that all of the k + 2m blocks had one common vertex. (See graph 
G in Figure 4.) Otherwise, at least one of the pairs of blocks are vertex disjoint in G, whereas they 
share acommhn vertex i n ~  (graphs H and H' in Figure 4). 

gure 4 

Each of the original 2m blocks is still a block of G*. Therefore, their cycles are still intact 
and so each of their individual cycle matroids is intact. Also, since the k blocks are abstractly self- 
dual, their cycles, and therefore their cycle matroids, also remain intact in Go. The cycle matroid 

of G consists of the cycles of Bi, Hj,  and H i ,  and no others. Furthermore, the cycle matroid of 
G" is precisely the same (because every two blocks have exactly the one vertex corresponding to 
F in common, so no cycles besides those inherent in the original blocks are present). Therefore, 
M(G) Â M(G'). 

We see that this theorem also gives a method for constructing geometrically self-dual 1-connected 
graphs. We do so by first asserting that the k abstractly self-dual components must be geom~trically 
self-dual, and second, by attaching the k+2m blocks such that (1) they all share one common vertex, 
(2) that no two share any other vertex, and (3) that no block is embedded inside the face of another. 
The theorem also tells us how to construct 1-connected graphs which may not be geometrically 
self-dual, but that will always be abstractly self-dual, by attaching the blocks (with no additional 
restrictions on the k self-dual blocks) in a relatively arbitrary fashion, without creating any new 
cycles. See Servatius and Christopher [3], and Archdeacon and Richter [I] for other methods of 
creating geometrically self-dual graphs. 

Since any 1-connected, but not 2-connected, abstractly self-dual graph is made up of some 
collection of k + 2m blocks, the next task is to determine which, and how many, arrangements of 
these blocks will result in a graph that is either combinatorially or geometrically self-dual. In other 
words, how do we perform the Whitney operations on a 1-connected abstractly self-dual graph to 
manipulate it so that it is self-dual in a stricter sense? For certain sets of blocks, there may be 
several such resulting graphs. For others, there may by only the one mentioned above. Because 
of the possibly large number of arrangements of the blocks of a 1-connected graph, this question is 
difficult to answer in general, but also promises to be an interesting endeavor. 
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FRACTOBJAL! 

Nataniel S. Greene 
Yeshiva University 

INTRODUCTION 

The fractorial has emerged out of two separate investigations. The first was to see whether the 
operation of factorial could be defined for non-integer values. If 3! = 6 and 4! = 24, then what does 
3$! equal? If 3-! has a value, then mustn't there be an inverse factorial operation that could answer 
questions like z! = 29? 

The second investigation involved factorial expansions. When 4! is expanded, we have 4! = 
(4)(3)(2)(1); the common difference between each factor is 1. The question was: how are expansions 
with common differences other that 1, such as (8)(6)(4)(2) or (10)(7)(4)(1), related to the factorial? 

A study of these two questions led to a unification of ideas. Fractional factorial and products 
of arithmetic sequences like the ones mentioned above can be expressed using a single notation: a!b 
(read "a fractorial step b"), where a and b are positive real numbers and b is the common difference 
between the factors. The name "fractorial" was suggested by Mr. Paul Eckhardt, the chairman 
of the mathematics department of Carmel High School, who amalgamated the words "fractional 
factorial." I am grateful to my former teachers: Mr. Eckhardt for his suggestions, and Mr. Anthony 
Iannotta for his encouragement. 

Using fractorial notation, the normal factorial now becomes a specific case of a!( when a is a 
natural number and b = 1. From this new definition springs forth a wealth of new relationships to 
explore. 

Definition 1. a! = a(a - l)(a - 2). . . (3)(2)(1). This is the normal definition of factorial, where a 
is a natural number. 

Example. 5! = (5) (4)(3)(2)(1) 

Definition 2. O! = 1 

Definition 3. a!b = a(a - b)(a - 26) . . .(a - kb), where a and b are positive real numbers, a > b, 
and k is the largest whole number such that 0 < k < (alb). Once again, a!( is read as "a fractorial 
step b," b being referred to as the step. When b = 1, may simply be called "a factorial." 

Definition 4. When a and b are natural numbers, a!b is called a "perfect fractorial." 

Examples. These numbers are perfect fractorials: 8'2 = (8)(6)(4)(2) = 384 

Ill3 = (11)(8)(5)(2) = 880 

9 ! ~  = (9)(6)(3) = 192 

5i4 = (5)(1) = 5 

4!1 = 4! = (4)(3)(2)(1) = 24 - - 

A multitude of notations for factorials and generalized factorials have been introduced during 
the last couple of centuries. For a more detailed discussion of these notations, one can refer to 
Charles Jordan's Calculus of Finite Differences (Chelsea Publishing Co., New York, 1947). The 
notation used by Jordan in his book is of particular interest. He defines the "generalised factorial 
of degree n": 

= a(a - b)(a - 26). .(a - nb + b) 

This is essentially the definition of the fractorial. The way in which the two definitions differ, however, 
is on their solutions to the question: How many factors should there be in a given factorial's product? 
Jordan allows the number of factors, n, to be an arbitrary independent variable, while in fractorial, 
n is a function completely determined by the values of a and b. A detailed development of this 
follows below. In this development, n will refer to the number of factors in the given fractorial, and 
k will refer to  the number of steps. 

FORMULAS FOR COMPUTATION AND SIMPLIFICATION 

As we saw from the examples that followed Definition 4, the factors of a fractorial's descending 
product must naturally stop before reaching zero. This is the reason for defining k < (a/b). The 
last factor (a - kt) is always > 0. This piece of information can be used to derive an important 
inequality (Theorem 1) and a formula for the number of factors in a given fractorial's expansion 
(Theorem 2). 

If (a - kb) > 0 and if a and b are restricted to  the natural numbers, then the following is also 
naturally true: (a - kb) > 1. Since the last factor must be the least possible integer > 1, (a - kb) 
must be < (b + 1). These two statements can be combined to form the compound inequality: 

1 (a - kb) < (b + 1) (1) 

This statement can be generalized for the rational expression (U/C)!(~/~),  whose last factor is 
[a/c- (kb)/<l\. Replacing a by ad and b with be, where a, b, c, and d are natural numbers, inequality 
(1) becomes 

15 (ad-  kbc) < (bc+ 1) (2) 

Dividing by cd gives the following: 

Theorem 1. For all natural numbers a, b, c, and d, the number (n) of factors in the fractorial 
expression (a/c)!(bId) satisfies the inequality n < (ad + bc - l)/(bc) < (n + 1). 

Proof: Given l/(cd) < [a/c - (kb)/q < [b/d + l/(cd)], from (3), 

(kb)/d 5 [aft - I/(cd)I < [(kb)/d + b/dI, 

and thus k 5 [(ad)/(k) - l/(bc)I < (k + 1) 

(k + 1) < [(ad)/(bc) - l/(bc) + 11 < (k + 2) 

Since n = (k + l ) ,  we have n < (ad + bc - l ) / ( k )  < (n + 1). 



Example 1. has 13 factors. What are the possible values for z? 

Example 2. 99!(,/;) has 19 factors. Find all possible values for z. 

n < (ad + be - l)/(bc) < (n + 1) 
19 <. [(99)(2) + z - l]/z < 20 
192 < (197 + z)  < 202 

182 < 197 < 192 

10- < z < :  log 

Theorem 2. The number of factors (n) in the expansion of ( a / ~ ) ! ( ~ / ~ )  equals int[(ad+bc-l)/(bc)], 
where a, b, c, and d are natural numbers and int(z) takes any positive real number z and truncates 
its decimal mantissa. [ E.g., int(3.895) = 3.1 
Proof: We know that n < (ad + bc - l)/(bc) < (n + 1). The middle expression is a rational 
number trapped between two whole numbers. We can make it equal to n by chopping off its decimal 
mantissa: 

Example. How many factors does 97!(3111) have? 

Corollary 1. When a and b are natural numbers, the number of factors in a!b is int[(a + b - l)/b]. 

Example. How many factors does 89!4 have? 

Theorem 3. If ad is divisible by be, then the last factor in the expansion of ( a / ~ ) ! ( ~ ; ~ )  equals the 
step and the number of factors equals (ad)/(bc). Proof: Assume (ad)/(bc) is an integer. Then, by 
Theorem 2, if n is the number of factors, 

Thus, the last factor is 

which is the step size. I t  is also apparent, by moving backwards through the proof, that if the last 
factor equals the step, then the number of factors equals (ad)/(bc), and, therefore, ad is divisible by 
be. 

Example. How many factors does 81!3 have? 

This problem can be answered quickly upon inspection using Theorem 3. We see that 81 is 
divisible by 3, and consequently the answer is 27. Therefore, if you need to know the number of 
factors in a fractorial expansion, first see if ad is divisible by bc. If it is not, only then use Theorem 
2. Theorem 2 will give the correct answer in all cases, but using it to compute n can be a bit more 
tedious. ... - 

Theorem 4. If a and b are real numbers such that a > 0 and b > 0, then (a + b)!b = a!b(a + b]. 
(This theorem gives us a recursive definition for the fractorial.) 

Proof: (a + b)!b = (a + b)[a(a - b) . . .(a - kb)] = a!b(a + 6). 

Theorem 5. If a is a nonnegative integer and b is any positive real number, then (ab)!b = a!ba. 

Examples. lo!; = [(5)(2)]!2 = (5!)2' and 18!3 = [(6)(3)]!; = (6!)36. 

Corollary 1. b!b = b. 

Proof: Let a = 1. 

Corollary 2. 0!b = 1. 

Proof. Let a = 0, so that (0!b = (O!)bo. This is a very interesting situation. When we derive 0!b 
from Theorem 5, we see that whether this expression has any meaning or not depends entirely on 
whether O! has meaning. Since we define O! to be 1, 0!b must also = 1. 

It is also interesting to see what happens when we ask how many factors there are in 0!b using 
the formula n = int[(a + b - I)/&]. Letting a = 0, we have n = int[(b- l)/b] which is zero for b > 1. 
Therefore, this formula will give a reasonable answer to our question when b > 1. There are no 
factors in 0!b7s expansion, simply because 0!b has no expansion. 

Corollary 3. If a > 0 and (ax)\= = p, then z = [p/(a!)I1/". 

Proof; If (az)!, = p, then (a!)za = p and so z = [p/(a!)]l/u. 

Example. If (2z)!, = 10, then z = [(10)/(2!)]~/~ = 6. 

Corollary 4. If a > 0, p > 0, and (ad!, = (px)!,, then z = [(a!)/(p!)]l/@-"\ 

Proof. If (az)!, = (pz)!,, then (a!)zn = (p!)zp. Thus (zP)/(za) = (a!)/(p!), which means that 

Z(PÃ‘ = (a!)/(p!) and so z = [(a!)/(p!)]l/(J'-n). 

Example. If (5z)!= = (gz)!,, then z = [(5!)/(9!)]11(9-5) = 2(189'14) 

Theorem 6. If a and b are integers such that a > 0 and b > 0 and z is any positive real number, 
then ( Q Z ) ! ~ ~  = (a!b)zn. 

Proof: 

(az)!b, = az(az - bz)(az - 2bz). Â¥. (a  - kbz) 
= [a(a - b)(a - 2b). - - (a - kb)][(z)(z) - - - (z)] 
= (a!b)zn J 

Examples. 27!6 = [(9)(3)]!(2)(3) = (9!2)3' and 38!4 = [(19)(2)]!(2)(2) = (19!~)2~O 



Corollary 1. I f  a > 0 and (ax)k ,  = p, then z = [p/(a!b)]l/n. 

proof: ~f (az)lb,: = p, then (a!b)zn = p, and so z = [(Â¥/(aib)llJn 

Example. If (SZ)!;,: = 8 ,  then z = [8/(3!;)I1l2 = ̂ /6/3. 
Corollary 2. If a > 0, p > 0,  and (az ) ! i i  = (pa;)!,,,:, then z = [(p!q)/(a!b)]lfinl-n^, where n l  and 
n2 are the number of factors in and ( p ~ ) ! , ~ ,  respectively. 

Proof: Suppose (az)!b= = (pz)!,,:. Then (a!b)znl = (p!,)zn'. Dividing both sides by zna, we have 
( zn l ) / ( zna )  = (p!,)/(a!b), or znl-na = (p!,)/(a!b). And so z = [(p!q)/(a!b)]l/(nl-na).  

Example. Solve for z :  (17z)!;= = (12z)!&. 

z = [(12!s)/(17!2)]1J(n'-n" 
ni = int[(17 + 2 - 1)/2] = 9 n; = int[(12 + 5 - 1)/5]  = 3 
( n l  - n 2 )  = 6 ,  so that 
z = [ (12 !5 ) / (17 !2 ) ]~ /~  

I t  is interesting to note that if the number of factors in ( a ~ ) ! ~ , :  equals the number of factors in 
(pa;)!,,=, then ( n l  - n;)  = 0 and the value of 2 becomes undefined. In that case our original question 
becomes meaningless and we realize that there is no value for z that will make this statement true. 

Theorem 7. If a ,  b, c ,  and d a r e  whole numbers where a > 0 and b, c,  and d > 0, then (a/c)!b/,i = 
[(ad)!bc]/[(cd)n], where n is the number of factors in the fractorial. 

Proof: 

Thus by merely establishing a common denominator, the theorem is proved. This is a very important 
theorem because i t  allows one to compute with greater ease the fractorial whose step is also a 
quotient. 

Corollary 1. (a / c ) !  = (a!c) /cn.  

Examples. 

Corollary 2. = (d! i ) / (d") .  

Proof: Let a / c  = 1. 

Examples. l!(iI5) = (5!)/(5')  = 241625. = ( 5 ! ~ ) / ( 5 ~ )  = 3/25. 

Theorem 8: Suppose a and b are rational numbers and h is any natural number such that 1 < 
h < a/b,  then a!b = a!b(a - b)!m(a - 2b)!bh Â ¥  Â ¥ [  - ( h  - l)b]!bh. 

Proof: a!b = a(a - b)(a - 26) .  . . (a  - kb). Let h be a natural number such that 1 < h < a/b. 
a!b can now be rewritten as: 

a!b = a(a - b)(a - 26) . . . [a - ( h  - l ) b ] .  . . (a  - kb). - -  - 
these factors can be regrouped in the following manner: 

1. Let every hth factor, after and including a ,  be grouped together: a(a-bh)(a-2bh) - - - ( a -  kbh). 

2. Let every hth factor, after and including ( a  - b), be grouped together: ( a  - b)(a - b - bh)(a - 
b - 2bh) - - - ( a  - b - kbh). 

3. Let the same be done to each successive factor, up to and including the hth factor [a - ( h  - l)b].  
For the hth factor this gives: 

[a - ( h  - l)b][a - ( h  - l ) b  - bh][a - ( h  - l )b  - 2bh]. Â ¥  [a - ( h  - 1)b - kbh]. 

We now have the following equality: 

a!b = [a(a - bh)(a - 2bh). . .(a - kbh)] 
[ (a  - b)(a - b - bh)(a - b - 2bh) .  . . ( a  - b - kbh)] 
, [(a - 2b)(a - 26 - bh)(a - 26 - 2bh). ( a  - 26 - kbh)] 

. [(a  - ( h  - l )b)(a  - ( h  - l ) b  - bh)(a - ( h  - l ) b  - 2bh) .  . . ( a  - ( h  - l ) b  - kbh)] 

Which when simplified becomes: 

What this theorem says is that you can break up a large fractorial into products of smaller fractorials, 
and you can multiply smaller fractorials to create a larger fractorial. 

Examples. 

T H E  F R A C T O R I A L  R O O T  

Definition 5. In order to  solve the equation y!b = z for y, where z and y are positive real numbers, 
a new algebraic operation is needed to reverse or undo the fractorial process. We call the inverse 
operation of the fractorial the 'Tractorial root" and it is designated in the following manner: y = zib, 
read " y = z fractorial root step b" or " y  = the fractorial root of x step b." Although the fractorial 
is itself a function, its inverse is only a relation. For instance, although 3! = 6 ,  there are infinite 
number of solutions to the equation z !  = 6. The solution set is S = {3,3.4738,4.1766,. . .}. In this 
case, 3 is referred to  as the "principal fractorial root." 

Definition 6. In general, the principal fractorial root of a positive real number R is the smallest 
value of z ,  where ( 2  > b)  such that z!b = R. In the examples that follow, we will mainly be concerned 
with solving for the principal fractorial root. 



SOLVING FOR THE FRACTOBJAL ROOT 

Example 1. Solve for z :  z !  = 40. In other words, we are trying to find the factorial root of 40 
(the fractorial root, step 1, of 40). 

STEP 1. Trap z! between two perfect fractorials, 

Since 4! = 24 and 5! = 120, 4! < z!  < 5!. By our definition of a principal fractorial root, it  
must also be true that 4 < z < 5.  What we are actually saying is that 4 plus a decimal mantissa, 
m ,  equals z .  

STEP 2.  Set up an equation. 

We have two alternatives. We can either solve for m ,  using the equation: 

or we can solve directly for z using an alternate equation: 

I prefer this second method. 

It is important to note that when z ! b  is trapped between two perfect fractorials a!b and (a+  l )!b ,  
the number of factors in its expansion is equal to the number of factors in the expansion of the higher 
order fractorial. 

Solving for z using Newton's method, we obtain the principal fractorial root, 40) ~ 4 . 5 8 9 7 .  

In general, after finding the principal fractorial root, all other fractorial roots can be obtained 
by increasing the number of factors in the expansion of Z!b. In this case, ( z ) ( z  - l ) ( z Ã ‘ 2 ) (  - 3 ) ( z  - 
4 ) ( z  - 5 )  = 40 and ( z ) ( z  - l ) ( z  - 2 ) ( z  - 3) ( z  - 4 ) ( z  - 5 ) ( z  - 6 )  = 40 will yield two other possible 
solutions to the equation z! = 40. 

Example 2. Solve for z:  z ! ~  = 200. 

STEP 1. Trap Since 7!2 = 105 and 8!2 = 384, 7!2 < z ! ~  < 8!2 and 7 < z < 8 .  

STEP 2. Set up an equation: Either (7 + m)(5  + m)(3  + m ) ( l  + m )  = 200 and z = (7 + m ) ,  or 
z ( z  - 2 ) ( z  - 4 ) ( z  - 6 )  = 200. Solving for z in either case gives 200j2 as 7.4381. 

Example 3. Solve for z: x\(3/2) = 20. This problem is slightly different from the first two in that 
in this case the step is a non- integer. Problems like this will require a little extra work. 

STEP 1. Re-express the problem using Theorem 7 :  = 20 becomes [ (2z)!3] / (2")  = 20. 

STEP 2. Trap [ (2z)!3] / (2")  between two perfect fractorials by substituting in for z two appropriate 
consecutive integers. If a: = 4 ,  then n = 3 and the expression becomes (8!s) / (Z3)  = 10. If 2 = 5, 
then n = 4 and the expression becomes ( 1 0 ! ~ ) / ( 2 ~ )  = 35. Thus, (8!3) /8  < [ (2z)!3] / (2")  < (10!3)/16, 
and 4 <  z < 5 .  

STEP 3. Find n. It is still unknown whether n = 3 or n = 4 .  If we let z = 4 -  then the expression 
becomes (9!3)/(2=) = 2 0 -  Since [ (2z)!s] / (2")  < 2 0 -  we conclude that n = 3. 

STEP 4 .  Set up an equation. [ (2z)!3] /8  = 20, or (2z ) !3  = 160, and so 2z(2x - 3) (2z  - 6 )  = 160, 
and finally, z as 4.4899. 

The FACTORIAL ROOTS OF ONE. It is interesting to solve the equation z! = 1. Since 
O !  = 1, one might assume that 0 is the principal fractorial root. However, by definition of the 
principal fractorial root, z must be > the step. While 0 is one value for xi, the principal fractorial 
root is 1. Solving for another possible value we have: z(z  - 1)  = 1 and thus z = (&+ 1) /2 ,  the 
golden ratio! Thus the golden ration, which has the tendency of appearing in the most unexpected 
places, is a factorial root of 1. 

SOLVING FOR THE UNKNOWN STEP. 

The technique for doing this is quite similar to that of solving for the fractorial root. Although, 
while there are an infinite number of solutions to z ! b  = R, there is only one value of z that will make 
the equation a!= = R true. 

Example 1. Solve for z:  lo!= = 105. - - 

STEP 1. Trap lo!= between two perfect fractorials. Since 10!s = 5 = and 10.4 = 120, l o ! ~ ,  < lo!= < 
We conclude from this that 4 < z < 5 .  

STEP 2. Set up an equation. Since lO(10 - z ) (10  - 22)  = 105, we have 4z 2  - 602 + 179 = 0 ,  and 
so z w 4.1088. 

Example 2. Solve for z: 9!= = 66. 

STEP 1. 9!3 = 162 and 9!4 = 45. Therefore, 9!.4 < 9!= < 9!3 and 3 < z < 4 .  

STEP 2 9(9 - z ) ( 9  - 22)  = 66,  thus 6z2  - 812 + 221 = 0 ,  and so z s~ 3.7955. 

DISCONTINUITY, STIRLING'S FORMULA, AND THE GAMMA FUNCTION. 

The follow in^ properties hold true, making the fractorial discontinuous when z is any multiple - -  - 
( n )  of the step: 

1. z-nb- lim ( z !b )  = (nb)!b 2. =-nb+ lim ( z ! ~ )  = 0 

It is important to note that Stirling's formula, a! w e ( a / e ) Â ¡  is only a valid approximation for 
a! when a is a whole number. 

The reason for this is that , while the function f (a )  = a! is discontinuous when a is a whole 
number, the approximation formula is a smooth function for all positive values of a .  It would 
make an interesting problem to derive a formula to Stirling's that would approximate a!b for whole 
numbers a and b. 

An interesting question to consider is how the fractorial function relates to the gamma function. 
It is true that T ( z  + 1)  = z! for every whole number z .  Nevertheless, it is important to realize that 
these are two markedly different functions. T ( z )  is continuous for z > 0,  while (z!)  is not. T ( z )  
is defined for negative values of z ,  and for 0 < z < 1,  while z!  is not. The fact that the gamma 
function has the value of the factorial for all whole numbers z ,  should not imply that the factorial 
must naturally behave like the gamma function for fractional and negative values of z .  

CONCLUSION. 

We have seen that the concept of the generalized factorial operation called the fractorial implies 
a number of new theorems and algebraic techniques. As a useful notation, the fractorial also offers the 
ability to simplify, manipulate, and compute with greater ease the long, space-consuming products 
that sometimes appear in formulas. It would be interesting t o  see whether, as a mathematical idea 
in and of itself, the fractorial has new insights to offer to combinatorics or the sciences. 

The author prepared this paper while he was a junior at Carmel High School in C a m e l ,  NY.  
He is currently enrolled at Yeshiva University under an early admission program. 



O N  T R A N S P O S I T I O N S  O V E R  F I N I T E  FIELDS 

Beth Miller 
Penn State University - New Kensington Campus 

Let K denote the finite field of order q = p". A polynomial f (z) in K[x] represents a function 
F : K + K if F(b) = f(b) for all b in K. Two polynomials f and g represent the same function F 
if and only if 

f (x) g(x) ( mod 2 9  - x) (1) 

Further, by the Lagrange interpolation formula [2, p. 3691, every function over If can be represented 
by a polynomial f (x) in K[x]. 

Now a polynomial f (x) in K[x] is called a permutation polynomial if the function represented 
by f is one-to-one. Hence, if we identify polynomials related by (I), the permutation polynomials 
over K form a group, isomorphic to the symmetric group Sq. Thus every permutation polynomial 
is the product (composition) of finitely many transpositions. 

The purpose of this note is to point out that transpositions over I{ are represented by "nice" 
polynomials. More precisely, if Ta,b denotes the transposition over If defined by 

if z = a  
if z = b  
otherwise. 

then we will show that 

9-1 

Ta ,b  (x) = (a - b) - bk)zq-I-' + x (mods- - x). 
k = l  

(2) 

To prove equation (2), we will use an alternative method to  the Lagrange formula. This second 
method uses the fact that xq-I = 1 for all nonzero elements of the field I<. We will also need the 
fact that pz = 0 for all z in K,  where p denotes the characteristic of the field. 

We are ready for our result. 

T H E O R E M :  With notation as above, 

9-1 

T,,b(z) = (a - b) - bk)zg-I-* + 1 (mod x" - x). 
k= 1 

Proof: 

K* = K - {O} is a cyclic group of order q - 1. Hence, 

for all r in K. Now, combining the binomial formula ( r  - s)" = xy=o (3~'s""' and the fact that 
px = 0 for all z in K ,  we obtain: 

(x - a)Â = xq - aq. 

Therefore, 

T,,t(x) = (b - a)[l - (z - + (a - b)[l - (x - b)q-'] + z 

' ' 1  z - a  z- b  J ' , . 
b i f z = a  

- b ^ ~ g - ~ - '  + z for all z in I<. I 
COROLLARY: deg(Tab(z)) = q - 2. 

Note: The reader can find further information concerning finite fields in references [I] and [2] 
and concerning permutation polynomials in [2] and [3]. Reference [3] is an exellent survey where 
current open problems on the topic are discussed. 
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ON THE NUMBER OF INVERTIBLE MATRICES OVER Zpa 

Mark J. Lancaster 
Eendriz College 

Invertible matrices play an important role in cryptography and coding theory. To encode a 
message fiom plaintext S into codetext T, one first divides the message into blocks of length n, 
using buffer characters when necessary to make all the b),cks the same length. Let 5' be this 

buffered message. Next, using S', one can create a n x matrix (where IS'I is the number of 

characters is 5') with each column representing a block of length n. Finally, one uses an invertible 
matrix M to encode this message in codetext T. The decoding process is where the existence of 
M-l  is essential. To decode a message, one takes the codetext T in matrix form and multiplies it 
by M-I to  find the original message S. 

For example, suppose we wish to encode the message "MATHISFUN" in blocks of length two. 
Since this message is of length nine, we must add a buffer character that will not be confused with 
the original message, such as "Qn or "Z." Thus we send the message "MATHISFUNQ" in blocks of 
2 using the invertible encoding matrix, for example, 

We write the 26-letter alphabet as A = 0, B = 1, C = 2, ..., Z = 25. Using arithmetic modulo 26, 
the encoding process for our message is 

M T I F N  12 19 8 5 13 24 21 2 6 2 [: :3].[A H S U Q] = [: :3 ] ' [0  7 18 20 161 = [ 8  4 14 25 131 '  

Thus, "MATHISFUNQ" is now encoded as "YIVECOGZCN." To translate "YIVECOGZCN" back 
into plaintext, we first compute the inverse of 

which is 
13 -5 

[-5 
] = [g ';I (modulo 26). 

Hence, the decoding process is 

which is the original message "MATHISFUNQ." 

If the n x n encoding matrix M is over a finite field (i.e., the alphabet's length is a prime 
number), then we have an invertible matrix if, and only if, det(M) # 0. However, most alphabets 
probably do not have a prime number of characters, so M is usually over a finite ring. This poses a 
problem, for M may be non-invertible even though det(M) # 0. Such a result is possible due to  a 
ring's zero divisors. 

Since we have seen that invertible matrices are necessary for the decoding process, it is nice to 
know just how many we can create. An interesting result from determining the number of 1 x 1 

and 2 x 2 invertible matrices is that the probability of choosing an invertible matrix from the total 
number of matrices over Zp is the same as  the probability of choosing an invertible matrix from the 
total number of matrices possible over Znc, where p is prime and e > 1. 

First, let us count the n x n matrices that are invertible over the field Zp, where p is prime. 
The total number of ways to  fill the entries of the first n x 1 column is pn. However, for a matrix 
to be invertible, there cannot exist a column filled with zeros. Thus, there exist pn - 1 acce@able 
ways to  create the first column of an invertible matrix. Again, the total number of ways to fill the 
entries of the second n x 1 column is pn. However, to create an invertible matrix, we cannot choose 
any multiple of the first column. Hence, there exist a total of pn - p acceptable ways to create the 
second column. Continuing in this manner, we see that the number of invertible n x n matrices is 
given by 

Hence, the probability of choosing an invertible n x n matrix from the set of all n x n matrices 
possible is 

We now turn to the task of trying to determine the number of n x n invertible matrices over 
the ring ZP.. 

Proposition 1. Let Mlxl  be the set of 1 x 1 matrices over Zp., where p i s  prime and e > 1. The 

number of invertible matrices in Mixi is p' (y). 
Proof: Obviously, a 1 x 1 matrix is invertible if, and only if, its single entry is invertible over ZPÃ§ 
Using Euler's y-function, we see that the number of invertible elements in Zp= (i.e. the number of 
elements that are relatively prime to pe is given by 

Hence, the probability that an invertible matrix is picked is 

Interestingly enough, is also the probability of choosing an invertible matrix from Mixi over 

ZP. 
As motivation for counting the 2 x 2 invertible matrices over Zps, where p is prime and e > 1, 

we will first consider the problem of counting the number of 2 x 2 invertible matrices over Z2=, where 
e >  1. 

Let MZx2 be the set of 2 x 2 matrices over Z2=. 

Suppose that A 6 Mixi such that 

so det(A) = a\bt - bla2. Hence, to be assured that A""l exists, we must have [det(~)]-I  6 %. 
Notice that "a E Z2. is invertible," "a 6 Zy is an odd number," and "a E Zy is relatively prime to 
2''' are equivalent statements. Thus, to count all the invertible matrices in Max;, one only needs to 
count all the differences of products a1b2 - blaa that yield an odd number. To this end, we see that 
det(A) is an odd number when a1b2 is odd and b1a2 is even, or vice versa. Hence, we can create a 



sequence of independent steps that will count the number of ways in which det(A) = alb2 - bia; 
can be an odd number, where N = 2': 

S t e p  1. Choose one of alb2 or b1a2 to be odd. ( The other product is forced t o  be even ). There are 
2 ways to do this step. 

S t e p  2. For the product that is odd, choose two numbers that are relatively prime to 2e (i.e. odd 
times odd is odd). There are [ p ( ~ ) ] ~  ways to  do this step. 

S t e p  3. For the product that is even, choose two numbers whose product is even. There are 
N 2  - [p(N)12 ways to do this step. 

Thus the number of invertible matrices in MZx2 over Z2= is 

Hence, the probability of choosing an invertible matrix from Mzx2 over Z2- is 

Notice that the probability of choosing an invertible matrix from Mzx2 over Z; is 

This result provides a basis for the following proposition. 

Proposit ion 2. The probability of choosing an invertible matrix from Mixi over Zp is equal to the 
probability of choosing an invertible matrix from Mm over Zpe, where p is prime and e > 1. 

Proof; To prove this conjecture, we must determine the number of invertible matrices in Maxa 
over ZpÃ§ where p is prime, p > 2, and e > 1. For convenience of notation, let N = pe.  Note 
that invertible elements of ZN can now be odd or even. For instance, in Z3!, both 7 and 2 are 
invertible. Also note that under the constraints of N ,  2 [ y ( ~ ) ] '  b2 - [ p ( ~ ) ] ~  counts the ways to 

get an invertible number when one of nib2 or bin2 is invertible and the other is not invertible (i.e. 
invertible minus non-invertible equals invertible over positive powers of a single prime). 

Hence, we now need to determine the number of differences of products that are invertible where 
each of a1b2 and b1a2 is invertible as well. Thus, we can create a sequence of independent steps that 
will count the number of ways in which det(A) = nib2 - b1a2 can be invertible when each of a 1 4  
and bla2 is invertible. 

S t e p  1. Choose i to be an invertible element of ZN. There are y(N) ways to do this step. 

S t e p  2. Suppose that a and b are invertible elements of ZN such that a - b = i. We know that 
for each i, there exist N ways to write i as a difference. Of those N differences, we know that 
a non- invertible number appears in a difference a total of 2 [N - p(N)] times. Thus, there are 
N - 2 [N - p(N)] choices of differences in which both numbers of the differences are invertible. 
Hence, there are [2p(N) - N] ways to do this step. 

S t e p  3. For each difference a - b = 2 ,  where each of a and b are invertible, we need to count t h e  
number of ways in which a could be a product of two invertible elements of ZN, call them a1 and w. 
There are p(N)  choices for a]. Notice that for any choice of a\, as is uniquely determined. Thus 
there are only p(N) products that create a. Likewise, b can be determined from p(N) products. 
Hence, there are [p(N)12 ways to do this step. 

Thus, the number of ways in which det(A) = nib2 - 6102 can be invertible when each of <Cib2 and 
bla2 is invertible is p(N) [2p(N) - N] [p(N)12. Hence, the number of invertible matrices in Mzx2 
over ZN ( N  = pe,  where p is prime, p > 2, and e > 1) is 

(4) 

When N = 2" for e > 1, we have p(Ze) = 2'-l. Thus [2y(N) - N] = [2. Ze-l - 2'1 = 0, which 
reduces equation (4) to equation (3). Hence, we can state that equation (4) holds for N = pe,  where 
p is prime and e > 1. After some algebra, equation (4) simplifies to  

Thus, for p prime and e > 1, the probability of choosing an invertible matrix from Mm over Zpi is 

This is exactly the same probability of choosing an invertible matrix from MW over Zp using 
equation (2). This proves Proposition 2. 

Using the counting techniques from the proof of Proposition 2, we can count the number of 
invertible matrices that have special forms. For example, suppose we want to count the number of 
invertible matrices over ZN ( N  = pe,  where p is prime and e > 1) of the form 

First, we note that det(A) = (a1b2 - b1a2)c3. To be sure that A is invertible, both a1b2 - b1a2 
and 03 must be invertible over ZN. From equation (5), we know that the number of ways in which 
aids -bias is invertible is N [ p ( ~ ) ]  [2N - p(N)]. Also, c3 has p(N) ways to be invertible. Hence, 
the number of invertible matrices of the form 



is N [~(AoI- [2  ̂ - v(JV)l v W .  
In general, the following conjecture is true: 

Conjecture 3. The probability of choosing an invertible matrix from Mnxn over Zn is equal to 
the probability of choosing an invertible matrix from Mnxn over Zn., where n > 3, p is prime, and 
e > 1. 

This conjecture can he proven using the techniques of Kohlitz [I, Exercises 16-20, pp. 77-78]. 
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THE 5-STEP PROBABILITY SOLVER 

Hang-Ling Chang and Paul J.  Fairbanks 
Bridgewater State College 

1. Int roduct ion  

The Monte Hall problem, which originated on the game show "Let's Make a Deal," has stirred 
a renewed interest in the technique of solving prohahility problems. The authors believe their 5- 
step probability solver fills a gap in this area, in which intuition can often he deceiving. In the 
next section, we will illustrate the procedure for using the five steps to  solve two such problems. In 
Section 3, the authors will use the 5-step method to show why the contestant on "Let's Make a Deal" 
doubles her prohahility of winning by using what is generally considered the non-intuitive strategy. 
This procedure should provide the rigorous solution of most, if not all, probability problems. It 
should also eliminate any possible controversy which could arise if an intuitive procedure is applied. 

2. T h e  5 Steps  

A surprising result concerning Acquired Immunity Deficiency Syndrome (AIDS) testing will be 
used to introduce the five steps. 

Step 1: Identify all the partition rules. 

Step 2: Define all basic events created by the partition rules. 

Step 3: Formulate all known information using probability statements and the events defined. 

Step 4: Formulate the questions using probability statements and the events defined. 

Step 5: Apply prohahility formulas to find the solution(s) to the problem. 

Let us assume that one percent of the US population has Human Immuno Virus (HIV), Let us 
further assume that a test has been developed which gives a positive result 98% of the time when 
the patient has HIV. This same test gives a negative result 97% of the time when the patient does 
not have the virus. We assume that the test is always conclusive; hence for patients that do not 
have the virus, the test gives a positive result 3% of the time. The question we wish to answer is: 
What is the   rob ability that a given person has HIV if he or she tests positive?" 

Step 1: Partition the sample space, the population of the US, into those people that have HIV 
and those that do not. We also partition the sample space into those that test positive and those 
that test negative. 

Step 2: Basic events are events defined in terms of exactly one partition rule. Suppose that 
a person is selected at random. We define V = "people with HIV", and T = "people that test 
positive". We previously assumed that this test always gives a positive or a negative result. We 
further assume that a person either has or doesn't have HIV. Therefore, V' = "people that don't 
have HIV," and 7" = "people that test negative." Figure 1 summarizes the first two steps in our 
procedure. USA 

I i 

Figure 1: Partitioning of the Sample Space 

V = People with HIV 

T = People who tested positive 

V 1  



Step 3: P(V) = 0.01 (by assumption), and the given conditional probabilities are P(T\V) = 0.98 
and P(T'\V) = 0.97. 

Step 4: We wish to  know the probability that a person who tests positive actually has HIV: 
P(VlT). 
Step 5: Using Bayes' Rule, 

Hence, despite the fact that the test seems to be quite accurate based on the given information, only 
one-fourth of those people who test positive actually had contracted HIV. 

The next example illustrates the use of the five steps for a typical elementary probability 
problem: "As the buzzer sounds at the end of a basketball game, the Celtics' center, Tom Moore, is 
fouled and is awarded two free throws. Moore makes 80% of his foul shots, and since he is as cool 
as ice, we can safely assume that his probability of making the second one is not affected by how 
he did on the first shot. The score is Pistons 100 and Celtics 99. What is the probability that the 
game will be tied and go into overtime?" 

Step 1: For the first shot, partition the sample space into the two basic events - make it or miss 
it. Do the same for the second shot. 

Step 2: Let MI = "make the 1st shot," and My = "make the 2nd shot." Naturally, the comple- 
ments will be the act of missing the respective shots. 

Step 3: P(Mi) = P(Mi) = 0.80 

Step 4: We wish to know the probability of a tie after regulation, which equates to the probability 
of making exactly one of the two free throws. 

Step 5: 

P(Ml and Mi) + P(Mi and Mi) = P(Mi)P(Mk) + P(M;)P(M2) 

3. Resolving The M o n t e  Hall Controversy 

In one version of the Monte Hall example, the host asks the contestant to choose one of three 
boxes in an attempt to find the one box which contains the key to a new car. Before the contestant 
opens the box she chose, the host always knowingly opens an empty box from the two that remain. 
Now the contestant is offered the opportunity to trade her box for the one remaining. Should she? 
Generally, the intuitive answer is that "It doesn't matter"; but we will use the 5-step probability 
solver to show why she should switch. 

There are three boxes and they are equally likely to contain the key to the new car. Thus, there 
should be no argument that the contestant's probability of winning is, and remains, one-third if she 
has made up her mind to not switch. We will now apply our five steps to the experiment which 
consists of choosing a box and then switching to  the remaining box. Since we are considering the 
case in which the contestant always chooses a box and then switches, this is a two-step experiment. 

Step 1: Two partition rules are evident. The first one partitions the sample space of all possible 
outcomes of the experiment into two events: the event of obtaining the box with the key and the 

event of obtaining an empty box. The second one partitions the sample space created by the act of 
switching. In either case, two events are created: obtaining the box with the key or obtaining an 
empty box. 

Step 2: Let K j  = "the first box chosen contains the key," and K, = "the box switched to contains 
the key." The other events can now be defined as complements of these two. 

Step 3: Assuming that the three boxes have the same chance of being chosen by the contestant, 
the known information is: P(Kt)  = 113, P(K,\K,) = 0, and P(K, \ K i )  = 1. 

Step 4: The answer to the question " Should the contestant switch to the third box?" depends 
solely on the values of P(Kj)  and P(K,). If P(K,) exceeds P(Kj) ,  then it is to the contestant's 
advantage to switch. 

Step 5: Since P ( K j )  = 113 is already given, we will derive P(K,) as follows: 

Therefore, switching doubles the contestant's chance of winning the car from 113 to 213. 

4. Conclusion 

Ever since its initial publication in the " Ask Marilyn" column (Parade, Sept. 9, 1990), the 
Monte Hall problem has instigated heated discussions concerning probability problems. However 
simple these problems may appear, they can be very deceptive if not handled with care. We have 
found throughout our years of teaching probability that the 5-step solution procedure presented here 
has never failed to provide clear, non-controversial, and, most importantly, correct answers. 
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In the above equations, the first summation is over all single events, the double summation 
is over all pairwise intersections, the third summation is over all triple intersections, and so forth. 
Thus the single sum contains (3 terms, the double sum contains (3 terms, the triple sum contains 
(3 terms, etc. 

Now, by symmetry, P(Ai) = P(Al) for all i, P(AiA,) = P(AlA2) for all i < j, P(AiAjAki = 
P(A1A2As) for all i < j < k, and so forth. Consequently, - - 

ON THE MATCHING PROBLEM IN PROBABILITY 

Bradford R. Crain 
Portland State University 

This paper presents standard results in the classic matching problem in probability. These 
results should be a part of any good introductory course in the theory of probability, and can be 
found in a number of excellent textbooks. The method of derivation employed in this article may be 
original and definitely simplifies the proofs, but the main results are well known to mathematicians 
and statisticians. 

P(at  least one match) = 

In the classic matching problem in probability, we imagine that n men (each wearing a hat), 
arrive at a social function, and each checks his hat at  the door. At the end of the evening, the men 
are given their hats back completely at random. We assume that the n men are distinct, and 
that their hats are distinct. For mathematical convenience, we assume that the men are numbered 
from 1 to n, and the hats are also numbered from 1 to n. When they arrived, man number i was 
wearing hat number i,  i = l ,2 ,3 , .  . . , n. When they leave, each man will be wearing a randomly 
selected hat, thereby generating a random permutation of the integers 1,2,3,. . . , n. 

where the binomial coefficient 

Recalling that 

In the spirit of probability, let us define events Al,Aa,. . . ,An by the following description: Ai 
is the event that man numbered i leaves with his own hat. If Ai occurs, we will say that a match 
occurs a t  i. Evidentlv. 

we see that, for large n, 
P(at  least one match) as 1 - e-I 

Actually, since we have an alternating series, n doesn't even need to be large in order for the 
approximation to  be good. Also, since the event "no matches occur" is the complement of the event 
"at least one match occurs," we see that for i =  l , 2  ,..., n. 

In the material below, AB means the intersection of the sets A and B, and A" is the complement 
of the set A. P(no matches occur) = 1 - P(a t  least one match occurs) as 1 - (1 - e-l) = e l .  

Now Al UA; U. . . UAn is the event that at  least one match occurs, and AiA;. . .A'-, is the event 
that no matches occur; i.e., no one leaves with his own hat. These two events are complementary 
and are related by the equation 

By a derangement of 1,2,3,. . . , n we mean a permutation of 1,2,3,. . . , n with no integer in its 
natural position; i.e., no matches occur. [For example, 3,1,2 is a derangement of 1,2,3 ; but 
1,3,2 is not.] Let Dn be the number of derangements of 1,2,3,. . . , n. Then 

P(A;A;.--AÂ¡ = I -  P(Ai UA2 U. .  . U An). 
Dn 1 1  1 (-1)" P(no matches occur) = - = 1 - - + - - - + . . . + - 
n ! I! 2! 3! n! ' Using the usual counting rules, we see that 

Consequently, 

Using the concept of derangements will expedite the calculation of additional probabilities of 
interest. For example: 

and so forth. [We assume that the reader knows that the number of permutations i l ,  i;, 13,. . . , in  of 
l , 2 , 3  ,..., n i s n ! = n ( n - l ) ( n - 2 ) . - - 3 . 2 . 1 1 .  P(exact1y one match occurs) = P(AIA;. . .AÂ¡ + P(A1A2Ag .. .A;) + . . . + P(A\A^. . .A>). 

Now let's return to the probability of at  least one match. (The following equations are a 
generalization of the result P(A U B) = P(A) + P(B)  - P(AB) to the union of n sets, and can be 
verified by induction.) 

P i a t  least one match) = P(Al U A; U . . . U An) 

n 

Now, by symmetry, all of the terms in the above equation are equal, so that 

P(exact1y one match occurs) = n P(AIAi. .  .A;) = n 

This last result followed by counting the number of derangements of 2,3,. . . , n, and dividing by n!. 
Thus 

1 1  1 (-I)"-1 
P(exactly one match) = 1 - - + - - - + . . . + - w eel. 

I! 2! 3! (n - l)! 



In a similar vein, 

P(exactly two matches) = P(AIAzA;. . -AÂ¡ + . . . + P(A; . . .A-aAn-lAn). 

The right-hand side involves (") terms, all of which are equal. Thus, we have 

n' Dn-2 
P(exact1y two matches) = P(AlA2Ai. -.A:) = -- 

2!(n - 2)! n! 

- 1 Dn-2 - -- 
2! (n- 2)! 

In a similar fashion, and with the help of derangements, we can see that 

P(exact1y k matches occur) = Ã‘Ã‘" 
k! (n - k)! 

for 0 < k < n. If we define the random variable X to  be the number of matches that occur, then 

and we have found both the exact and the asymptotic distributions of X .  As the reader may have 
noticed, this last equation could be written 

Thus, X is approximately Poisson distributed with a mean of one. This gives the result E(X)  as 1 
for all n; in other words, the average number of matches is always approximately one, regardless of 
how many men are present. 

Interestingly enough, the average number of matches is always one, regardless of how many men 
are present; i.e., E(X)  = 1 for all n. This can be deduced simply as follows. Write X = Xi + X2 + 
. . . + Xn,  where Xi is 1 if the i-th man gets his own hat back, and 0 if not. Since the mean of X is 
E(X)  = E(Xi)+E(Xz)+. . .+E(Xn), and since E(Xi) = 0-P(Xj = O)+lP(Xi = 1) = P(Xi) = 1/n 
for f = 1,2,3,. . . , n, it follows that E(X)  = 1/n + 1/n + . . .1/n = 1 for every n. Thus, no matter 
now many men are involved, on the average, one man receives his own hat. 
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THE SERIES FOR LN 2 

Norman Schaumbeqer 
Hofstm University 

If z > 0, then 
1 

z - l > l n z > l - -  

This simple proposition can be used to derive the formula 

The left side of (1) follows immediately from the fact that f(z)  = z - 1 - l n z  has an absolute 
minimum at  z = 1, because f'(z) = 1 - l / z  = 0 iff z = 1, and fl'(z) = l / z 2  > 0 for z > 0. If we 
write l / z  for z ,  then the expression z - 1 > In a; becomes z In z > z - 1, and we have (1). 

The standard derivation of (2) uses the series for ln(1 + z), which is normally not covered until 
the second course in calculus. However, a proof based on (1) can be presented early in the first 
course. Using (I), we have 

Hence, 
1 1 1  1 1  l n 2 > 1  - -+-- -+. . .+-- -  1 
2 3 4  

> ln2-  -. 
2n-  1 2n 2n 

Letting n -P oo gives (2). 



P A C K I N G  P R O B L E M S  WITH S P H E R E S  

Joel L. Brenner 
Palo Alto, CA 

A dentist once wrote me to ask how it was possible to pack more that 1000 1-inch (spherical) 
marbles into a right rectangular box 10" x 10" x 10". Actually, there is room for at  least 1188 
marbles. 

The two-dimensional packing problems discussed in this note are of two types. In the first type, 
the space to be covered is a rectangle with integral width; the "spheresn are disks of unit diameter. 
In the second type, the width is not an integer. 

Case  1, integral  wid th  If the width is 1, the number of disks that fits is clearly [s], where the 
"box" is a rectangle of area s .  If the width is 2, the arrangement of Figure 1 is different. 

Figure 1 

Each even-numbered row is moved successively 1 - $\/S su 0.134 units closer to the left-hand edge. 
If there are k even-numbered rows (and thus 2k rows in all) the packing can gain room for an extra 
two disks if k is large enough, but loses k disks when compared to  the (square) lattice packing. The 
loss outweighs any possible gain. 

The same argument and conclusion hold for widths 3,4,  5,6, and 7. For width 8, there will be 
a gain after 16 pairs of rows, no net loss or gain after 17 pairs of rows, a loss after 18-32 pairs of 
rows, and a gain after 32 pairs of rows. Since 1 - $\/3 is not rational, the pattern of net gains and 
losses is not a regular sequence of integers, but has some hiccups. 

If the width of the rectangle exceeds 15 units, there is always a gain from the 17th pair of rows 
onwards. If the width lies between 10 and 15 units, the number of pairs of rows that entail losses 
becomes sparser and sparser. 

Case  2, non-integral width.  If the width of the rectangle is not an integer, a simple analysis can 
be used to calculate a "packing constant" that will measure the density of the best packing. Here 
are two examples. 

Example  1. Suppose the width lies between 1 and 2. (See Figure 2.) 

. - 
Figure 2 

If the width w is precisely 2, the packing constant is 2; this means that two disks can fit into each 
integral unit of height. In this case, the angle 9 from BC (the segment with end-points at  the centers 
of two kissing circles) to the horizontal is 0'. We shall take 9 as a parameter the y-coordinate of " 
D (the top of the second disk) is equal to the sum of the y-components of the vectors z, BC?,B, 
that is- +sin 9 + 4, or 1 +sine. A reasonable definition of " packing constant" is 2/(1+ sine). 
This is, to repeat, the number of disks per unit height of the rectangle. - - . . 

Example  2. Suppose the width lies between 2 and 3. (See Figure 3.) 

Figure 3 

If the width is precisely 3, the packing constant is 3. In any other case, an appropriate parameter 
is the angle from the horizontal to the line segment connecting the centers of the second and third 
circles. The y-coordinate of F is 1 +sine. The packing constant is, in this case, 3/(l +sine). (If 
the width of the rectangle is between k and k + 1, the packing constant is (k + l ) / ( l  +sine).] 

Return to Figure 2. If the height of the rectangle is less that 1 + 1 +sin 0, it will not be possible 
to fit more than one disk into the (truncated) space. What the packing constant measures is the 
limit, as the height of the rectangle increases indefinitely, of the number of disks per unit height. 

Covering the ent i re  plane. It has been proved that, for a two- dimensional plane infinite in both 
directions, close-packing is the densest possible disposition of disks. (See Figure 4.) 

Figure 4 

CT Paradoxically, a mathematical proof that close-packing in three dimensional space is densest 
was not published until 1963. (American Mathematical Society Symposia Proceedings 7 ,  pp. 58-71.) 
In nine dimensions, the question is difficult. 

The author wishes to  thank J. W.  Downs and the late J. D. E. Konhauser for their help with, 
this paper. 



ON AN ELEMENTARY METHOD OF FINDING THE MINIMUM VALUE OF 
n n x z?, SUBJECT TO THE CONDITION zj = a ,  

j=l j=l 

WHERE a IS A POSITIVE INTEGER 

Masakazu Nihei 
Ibamki Prefectural Fvjishiro High School, Japan 

We shall consider the following problem: 

Problem. Find the minimum value of f(zl,. . . ,zn) = ss1 z?, subject to the constraint condi- 

tions ^GI z j  = a and zj  > 0 for j = 1 , .  . . ,n ,  where a is a real number greater than or equal to 

one. 

Although some solutions for the problem are already known (see references), they require in- 
volved calculations. However, if we restrict a to be an integer, we can give a very elementary method 
of finding the minimum value sought in the problem. 

First, we present two lemmas. 

Lemma 1. If z and a are positive real numbers, then z d l  - z" > z - I ,  and the equality holds 
if and only if z = 1. 

Proof: Let us set T = zU+' - z" - (z - 1). Then T can be factored in the form (2" - l)(z - 1). 

(i) If z > 1, then z" - 1 > 0 and z - 1 > 0. Hence, we have T > 0. 

(ii) If 0 < z < 1, then z0 - 1 < 0 and z - 1 < 0. Hence, we also have T > 0. 

By the way, we can easily check that T is equal to  zero if and only if z = 1. Therefore, we have 
the desired result. 

n 

Lemma 2. If zj > 0 ( j  = 1, .  . . , n) and Ŷ  zJ = n, then 
3 =1 

and the equality holds if and only if 21, . . . , zn are all equal to 1. 

Proof: 

n 

> x ( z j  - 1) (by Lemma 1) 
j=l 

This proves that zf*' > 2;. It is clear from Lemma 1 that equality holds if and only if 

Z ] = Q = . . . = z  n -1.m - 

Theorem. If 21,. . . , z,, are positive real numbers and zj = a ,  then the minimum value of 

am 
f (z1, . . . , zn ) = xJ"=I z& where a is a positive integer, is a. * - 

Proof: If a = 1, the result is trivial. Hence, without loss of generality, we can assume that a > 2. 

Since zj = a can be written in the form % = n, we obtain 

by Lemma 2. Therefore, we have 

As before, we can easily see, by Lemma 2, that the equality holds if and only if x\ = . . = a 

This completes the proof of the theorem. 
zn = ;. 
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INSTANTANEOUS CENTERS AND THEIR GEOMETRY 

Ali R. Amir-Molz 
Texas Tech University 

Consider the following problem: "Define a tangent line to a curve a t  a point A." Many students, 
even in college level, will respond: "A line perpendicular to  the radius." Even in the case of a circle, 
that statement is not a definition, but a theorem. So this is where we would like to start. 

1. THEOREM. Let (C) be a circle with center C and let A be a point on (C). Then the tangent 
line t o  (C) at  A is perpendicular to the line segment CA. 

m \ 

The proof may look convincing, but it is not easy. If fact, we rely somewhat on intuition. 
Choose a line that intersects (C) a t  two points, A and B. (See Figure 1.) Let M be the midpoint of 
the line segment AB. Then C M  is perpendicular to AB. When B approaches A, the point M also 
approaches A and C M ,  which is always the perpendicular bisector of AB, will remain perpendicular 
to the limiting position of AB, that is, AT, the tangent line to (C). 

One may ask: "Was this a proof?" Probably not a very good one, but it introduces the idea of 
approaching a limit, which is as old as the geometry itself. 

2. TANGENT LINES TO AN ELLIPSE. Let Fl and & be foci of an ellipse. (See Figure 2.) 

T 

Then the tangent line at  a point A of the ellipse is the limiting position of a line AB when B 
approaches A. One can prove that the tangent line AT is perpendicular to the bisector of the angle 
FIAFa. We shall leave the proof to the reader. What may be interesting here is that this angle 
bisector does not pass through a fixed point. For this reason, we can not call this angle bisector a 
radius of thf ellipse. 

3. INSTANTANEOUS CENTERS. In machinery, all sorts of wheels roll over one another; 
many of them are not circular. We shall study these wheels through the concept of instantaneous 
centers. Let a plane (lamina) move over a fixed plane. Then there is an instantaneous center of 
rotation C. The locus of C in the fixed plane is called the base curve, and the locus of C in the 
moving plane is called the rolling curve. Actually one curve rolls over the other. We shall study 1 these curvet geometrically. .. -- --- .- 
4. THE POSITION OF A LAMINA. The position of a plane is completely fixed if three non- 
collinear points of it are fixed. Since we are interested in a moving plane, we only need the position 
of two points of the variable plane on the fixed plane. Here we rely on intuition. The reader may 
supply a proof. 

5. OBTAINING THE CENTERS. Let A and B be two points attached to a lamina moving 
over a fixed plane. (See Figure 3.) 0 

Fig. 3 

Let Al and Bl be new positions of A and B. Then AIBl = AB. Let 0 be the point of intersection 
of the perpendicular bisectors of AAl and B E l .  (Special cases will be discussed later.) Then 

O A = O A i ,  and O B =  OBI .  

So we may say that AB has rotated about 0 through an angle BOBl = AOAi. We now define C, 
the instantaneous center by 

C = Jim* 0. 
8,-8 

Special Cases. If the moving plane has a fixed point C in the fixed plane, then C is the instanta- 
neous center. So the variable plane rotates about C. 

If every point A of the variable plane moves on a straight line parallel to  a fixed line d of the 
base plane, then the moving lamina will be shifting parallel to d. (See Figure 4.) In this case we 
may say that the instantaneous center is at infinity. 

Fig. 4 

1 7. THEOREM. Let a plane move so that a point A of it remains on a curve I'. Then C ,  the ' 
instantaneous center, is on the normal line of F at  A. 



P m o E  Let Al be a displacement of A. (See Figure 5.)  Then the center of rotation is on the 
perpendicular bisector of AAl.  As A, approaches A, this perpendicular becomes the normal at  A. 

/ c 
Fig. 5 

B A S E  A N D  ROLLING CURVES. Let a plane move over a bed plane. Then the locus of C, 
the instantaneous center of rotation in the fixed plane, is called the base curue and locus of C in the 
moving plane is called the d i n g  curue. We shall study the subject through examples. 

We draw the perpendicular line to Oz at  A and the perpendicular line to Ot at  B.  Then the point 
of intersection of these perpendicular lines is C ,  the instantaneous center of rotation. Note that the 
four points O,A,C ,  and B are on a circle, the angle ACE is u - a and the length of AB = I is 
constant. We leave it to the reader to show that OC is constant and thus obtain the base and rolling 
curves. 

Example  3. Example 1 can be looked at  in a different way. Let A move on the x-axis and D-move 
on the circle of radius 112 with center at  0 (See Figurc 8.)  Then we obtain the same result as in 
Example 1. We omit the proof. Y c 

9. G E O M E T R I C  T R E A T M E N T S .  Some examples will be studied, 

Example 1. Let A and B be two fixed points of a moving plane such that A moves on the z-axis, 
B on the pxis, and the length of AB = 1 remains constant. Obtain the base and rolling curves. 

Solution. By Theorem 7, the instantaneous center of rotation C is the point of intersection of the 
perpendicular to the z-axis a t  A and the perpendicular to the y-axis at  B.  (See Figure 6.) Since 
OC = AB = 1, the circle of diameter 1 which passes through the origin rolls over the circle of center 
0 and radius 1. 

10. A L G E B R A I C  A P P R O A C H .  We shall give an example. 

A plane connected to a line segment AB = 1, where the length of 1 is greater than r, moves 
such that A is ou the circle z2  + y2 = r2  and B is on the z-axis. (See Figure 9). 

1 Fig. 6 

Example 2. In Example 1, one may substitute the y-axis by an axis t and get similar results. We 
shall give a few hints. Let the angle between Ox and Ot be a. (See Figure 7.) 1 Fig. 9 

Obtain the base and rolling curves. 

Solution: Clearly C ,  the instantaneous center of rotation, is the point of intersection of OA and 
the perpendicular to the z-axis at B. Let C = (z, y) in the base plane. Let the angle BOC = 0. 

Then 

l2 = r 2 + z 2 - ~ r z c o a ~ .  (1) 



Since 
c m e =  ,/m 

we can simplify (1)  to 
(2 + r2 - 12),/W = 2rx2 

Note that in the special case 1 = r the equation (3)  changes to 

z 2 + v 2 = 4 r 2  and z = O .  (4)  

Now for the rolling curve let AB as AX be the X-axis and AY perpendicular to it  be the Y-axis 
in the variable plane. (See Figure 9). Let AC = p and the angle CAB = p. Then 

X = p c o s p  Y = p s i n f l  (5)  

Note that p is variable. In the right triangle OBC we have 

CB' = ( T  + - OB'. (6)  

Also in the triangle ABC we have 

c B 2 =  12+p2-21pcos~  (7) 

In the triangle OAB the angle OAB = ?r - fl. Thus 
OB' = r2 + l2 + 21-1 cosp. (8)  

horn  (61, (71, and ( 8 )  we obtain 
l2 + p2 - 2lpcosp = ( r  + P ) ~  - (r2 + l2 + 2rl cos p). (9)  

Simplifying and letting pcos fl = X and psin p = Y ,  we get 

(12 - /x),/- = r ( x 2  + y2) - r l x  (10) 
which is the equation of the rolling curve. Rationalizing and simplifying, we obtain 

r 2 ( x Z  + Y 2 ) 2  - [ (12  - 1x12 - 2r21x] (x2  + y2) + r212X2 = 0. (11) 
The case r = 1 m y  be interesting. We leave it to the reader. 

One may approach the problem by the use of polar coordinates. We leave it to the reader. 

S O M E  I N T E R E S T I N G  PROBLEMS:  Let (A)  and ( B )  be two fixed circles 
the same plane. 

of equal radii in 

Fig. 10 

A lamina moves over the plane of the circles so that two fixed points P and Q of it move respectively 
on ( A )  and ( B ) ,  and PQ = AB. Obtain the base and rolling curves. 

Solutions: We shall study the case that ( A )  and ( B )  intersect. It is clear that C ,  the instantaneous 
center of rotation, is the point of intersection of AP and BQ. Let the radius of ( A )  and ( B )  be a. 
Then one observes that 

C A + C B = a  and C Q + C P = a .  (12) 

This implies that the base curve is on an ellipse with foci A and B ,  and the rolling curve is an elljpse 
of the same size with foci P and Q .  a - 

In our solution we have chosen two intersecting circles. The reader may look into the case where 
the circles do not intersect. 
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M A X I M A L  ELEMENTS A N D  U P P E R  B O U N D S  IN P O S E T S  

Jayanthi Ganapathy 
University of Wisconsin - Oshkosh 

This article is a collection of question8 about maximal elements and upper bounds in a partially 
ordered aet (POSET), and answers to thwe questions, accompanied by proofs, and, in some cases, 
examples. 

The inspiration for this article is a diicussion that ensued, after definitions and establiihed 
results, such aa Zorn's Lemma, were introduced in a course taught by the author. An investigation 
of answers to  questions raised by the atudenta resulted in the contents of this article. 

For the benefit of thme readers who are unfamiliar or out of touch with this topic, some 
definitions and a statement of Zorn's Lemma follow: 

D d n i t i o n s :  (See Abbot, 196% Yosida, 1978; Kirilov and Guishiani, 1982; or Morash, 1987.) 

I. A set P is said to be partially ordered by a binary relation 4 if, for each a, b, and c in P ,  we 
have 

(i) a 4 a (reflexivity) 

(ii) a 4 b and b 4 c * a 4 c (transitivity) 
(iii) a 4 b and b 4 a a a = b (anti-symmetry) 

II. A set P with a partial ordering 4 is a partially ordered  se t  (POSET).  

III. A partial ordering 4 on a set P is a hea r  ordering if, for each pair of elements a and b in P, 
either a 4 b or b 4 a. 

IV. A set P with a linear ordering 4 is a linearly ordered se t  (LOSET). 

V. Let S be a subset of a POSET (P, 4 ) .  An element u in P is an u p p e r  b o u n d  for S if s 4 u for 
all s E S .  

VI. An element m in a poset (P, 4 )  is a maximal element of P if, for any a â P, m 4 a a = m. 

VII. If (P, 4 )  is a POSET and a, b are in P,  then the least u p p e r  bound of a and b, denoted by 
a V b, is defined as follows: a 4 a V b, b 4 a V b and, for any element s E P such that a 4 s and 
b + s , a V b  4s.  

VIII. A POSET (P,+) is a lat t ice if, for each pair of elements a and b in P, the least upper bound 
a V b exists in P. 

Zorn's Lemma. (See Hrbacek and Jech, 1984; Morash, 1987; or Pinter, 1971.) If (P,+) is a 
POSET in which every linearly ordered subset has an upper bound, then P has a maximal element. 

Two questions that arise naturally from Zorn's Lemma are the following: 

Quest ion I. Can a POSET (P, 4 )  have a maximal element even if the hypothesis of Zorn's Lemma 
is not satisfied? 

The following example provides an answer: 

Example  I. Let P = {a + bi : a2 + b2 < 1, a > 0,b > O} U {I} U {i}, where i2 = -1. A partial 
ordering 4 is defined on P aa follows: a + b i 4 c+ d i if and only if a 5 c a n d  b 5 d. (See Figure 1.) 

Figure 1 

A subset S of P is defined as follows: S = {a + b i E P : a = 41. (See Figure 2.) 

Figure 2 

This set (P,+) fails to satisfy the hypothesis of Zorn's Lemma since the subset S haa no upper 
bound in P,  although S is linearly ordered. However, P has maximal elements 1 and i. 

Question 11. Can a POSET ( P , 4 )  have more than one maximal element whether or not the 
hypothesis of Zorn's Lemma is satisfied? 

Example I provides part of the answer. Example 11, below, completes the answer to Question 
11. 

Example  II. Let P = {1,2,3,4}, where a partial ordering 4 is defined as follows: for a, b in P, 
a 4 b if and only if a divides b. Note that the hypothesis of Zorn's Lemma is satisfied and that there 
are two maximal elements, namely 3 and 4, in P. 

The next question concerns the uniqueness of a maximal element. The examples above illustrate 
the fact that a maximal element, when it exists, is not always unique. 

Quest ion III. What are some conditions on a POSET P, containing a maximal element m, that 
will guarantee the uniqueness of m? 

If 4 is a linear ordering on a set P that contains a maximal element m, then m must be 
unique. For, if m1 is also a maximal element, then either m 4 m1 or m1 4 m. Since m is maximal, 
m 4 m1 m = m' and since m1 is maximal, m' 4 m - m1 = m. Thus, in either case, m1 = m, 
and the maximal element is unique. 

If (P, 4 )  is a partially ordered lattice containing a maximal element m, then again m must be 
unique. For, if m1 is also a maximal element, then m 4 m V m1 and m1 4 m V ml. Since m and 



m' are maximal elements, the preceding observations imply that m = m V m1 = ml, thus proving 
that m is unique. 

The proof of Zorn's Lemma, which usw the Axiom of Choice, involves constructing a particular 
linearly ordered subset of the given POSET and then establishing that an upper bound of that 
subset is a maximal element of the given POSET. (See Hrbacek and Jech, 1984, or Pinter, 1971.) 

In &ample I of this article, neither of the two m&mal elements of the set is an upper bound 
for any subset that contains elements other that 1 and i. 

These observations arouse one's curiosity about the possibility of a maximal element, when it 
exists, being an upper bound for some or each subset of the original set. This leads to the final 
question of thii article: 

Question IV. If a POSET (P, 4) has a maximal element m, what are some situations in which m 
is an upper bound for mme or all subsets of P ?  

It follows easily from the proof which immediately follows Question 111 that the unique maximal 
element of a LOSET, when it exist, is an upper bound for each subset of the LOSET. In fact, m is 
the greatest element of the LOSET in the sense that a < m for all a in the LOSET. 

If (P,  <) is a partially ordered lattice containing a unique maximal element m, then m will be 
an upper bound for each subset s of P .  For, if S is any subset of P and a â S, then m < a V m, 
which, since m is maximal, implies that m = a V m. But we also have a < a V m. Thus a < m. 

If (P ,<)  is a POSET containing a maximal element m, then m is an upper bound for any 
linearly ordered subset S of P that contains m. Thii can be proved as follows: If S is such a subset 
of P ,  then, for any a E S, a 4 m or m < a. But m < a would imply that m = a, since m is maximal. 
Thus, in either case, a < m. 

Summarizing our results, we conclude that in a partially ordered lattice or LOSET, a maximal 
element, if it  exists, is unique and is the upper bound for each subset of the original set. In 
an arbitrary POSET containing a maximal element, uniqueness of the maximal element is not 
guaranteed. If a POSET contains a maximal element m, then for any linearly ordered subset that 
contains m, m is an upper bound; in fact, m will be the only maximal element that subset will 
contain. As illustrated by the examples in this article, a POSET, in general, can have more than 
one maximal element and, in general, a maximal element does not have to be an upper bound for 
any subset that contains elements other than the maximal element itself. 
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L E T T E R  T O  T H E  E D I T O R  

* 
Dear Editor: - - 

I'd like to make a comment on the Spring '92 issue of the Pi Mu Epsilon Journal. First, 
(concerning) the article by Russell Euler, "A Closed form for a Family of Summations." It is 

from which it follows that 

Thus the paper only gives a special case of 

when r = p. 

Another comment is that Andrew Cusumano's article is really a solution to a Putnam Prob- 
lem (1966) also quoted by Bender and Orszag, Advanced Mathematzcal Methods for Scientists and 
Engineers, problem 5.59. 

I would appreciate your passing these comments to your readers. 

David Ivy, Baltimore, MD 

ATTENTION FACULTY ADVISORS 

To have your chapter's report published, send copies to Robert M. Woodside, Secretary- 
Treasurer, Department of Mathematics, East Carolina University, Greenville, NC 27858 and to 
Richard L. Poss, Editor, St. Norbert College, De Pere, WI 54115. 



PROBrnM DEPARTMENT 
Edited by Clayton W. Dodge 

University of Maine 

This department welcomes problems believed to be new and at a level appropriate for the readers 
of this journal. Old problems displaying novel and elegant methods of solution are also invited. 
Proposals should be accompanied by solutions if available and by any information that will assist the 
editor. An asterisk p) preceding a problem number indicates that the proposer did not submit a 
~lut ion.  

All communications should be addressed to C. W. Dodge, Math. Dept., University of Maine, Orono, 
ME 04469. Please submit each proposal and solution preferably typed or clearly written on a separate 
sheet (one side only) properly identified with name and address. Solutions to problems in this issue 
should be mailed by July 1,1993. 

Problems for Solution 

777. [Spring 19921 Cotrected Proposed by SeungJin Bong SeouL Koreo, 
It is well known that, for n 2 2,ln(n + 1) c Sm c 1 + ln n, where 

It is also known (m Mothemoticomm 11 (19m p. 109) that, for n 2 2, 

Prove that 

for all n 2 2. 

Problem 7 8 0  

780. [Sprhg 19921 Corrected Proposed by R S. Luthm Universiy of Wscmsin Centec Jonesville, 
Wsconsin. 

Let ABCD be a parallelogram with LA = 60". Let the circle through A, B, and D intersect AC 
at E. See the figure. Prove that ED2 + ,@-AD = A??-AC. 

784. Proposed by Alon Woyne, Holidoy, Florida. 

Restore the enciphered digits in the decimal computation: 

(WO)(WO + W O )  = EIGH7'. 

785. Proposed by Chorles Ashbochq C e h  Rapids, Iowu, ond dedicated to the memoty of Joseph 
Konhouser. Student soIutions om especiolIy solicited. 

A tiling of the plane by non-overlappiig, non-congruent rectangles PI, Pa ... is &rued in,&=- 
following way: PI is an arbitraryx by y rectangle; P2, P,, ... are all squares such that the side of each 
square Pk+2 is equal to the sum of thc sides of the two prenous squares P,. and Pk+, for all k > 1. Show 
this tiling. 

786. Pmposed by Dmitry P. Mavlo, Moscow, Russia 
From two toms A and B, 48 km apart, two groups of hikers march toward each other starting 

at the same time. The group leaving A marches at 4 h / h r  by marches of not more than 6 hr at one 
time. The group from B hikes at 6 h / h r  for not more than 2 hr at a time. After marching t hr, the fust 
group must rest for at least t hr. The second group has to rest not less than 2 hr aFter t hr of hiking. 
Find the least time until the two groups meet and describe the hiking patterns necessary for that 
solution. 

A B 
Problem 786 

787. Proposed by R S. Luthor, University of Wsconsin Center, JonesviIIe, Wsconsin. 
If u, b, c, d are the roots of 

then evaluate the expression 

in terms of p, q, r, and s. 

788. Proposed by the late Jock GorfmkeI, Flushing New Y o k  
Given positive numbers .q y, z such that x + y + z = 1, prove that 

789. Proposed by David Iny, BoItimore, Mqlond 
Evaluate the integral 

790. Roposed by FIorentin Smomdoche, Phoenk Arkono. 
In base 6 how many digits does the nth prime contain? 

791. Roposed by SeuneJin Bong SeouL Republic of Korea 
Prove that F + 1, where n is a nonnegative integer, is never a multiple of 143. 



792. Proposed by SeungJin Bang, Seoul, Republic of Korea 
Given any thirteen distinct real numbers, prove that there exists at least one subset {x, y, z} of 

:e of them such that 

793. Proposed by Dieter Bennewitz, Koblenz, Germany. 
Given any trapezoid, its diagonals divide its interior area into four triangular areas: A and B 

adjacent to the parallel bases, and C and D adjacent to the nonparallel sides, as shown in the figure. 
a) Prove that the areas C and D are equal and that A -B  = C-D. 
b) Find area C in terms of the lengths of the altitude and the bases of the trapezoid. 

Problem 793 

794. Proposed by Peter A. Lindstrom, North Lake College, Irving, Texas. 
For -3 s x 5 6, show that 271 is equal to the sum of the zeros of 

fix) = sin@ + a x ) .  

795. Proposed by Russell Euler, Northwest Missouri State University, M ~ & ,  Missouri. 
Find all solutions on the interval [O, 2711 to 

7%. Proposed by Michael W. Ecker, Clarks Summit, Pennsylvania. 
a) A die is thrown until a prescribed face (e.g. say 3) shows. What is the mathematically 

expected number of throws required for this to occur? 
b) Same question, but suppose a throw now consists of rolling 2 dice. In particular, should we 

expect this expectation to be half that of part (a)? 
c) What is the smallest whole number of dice needed to constitute one throw, if we wish to have 

the mathematically expected number of throws required to roll our prescribed number not exceed 2? 

Solutions 

754. [Spring 1991, Spring 19921 Proposed by Seung-.Cn Bang, Seoul. Korea. 
Let at = a, = 1, a, = 2, and am+, = a. - a*, + a*, for n > 3. Show that 

AdditionalEditor's comment. In the Editor's comment Istated that only Klamkin spotted my error,. 
that the problem should read n > 3. The word "only" should have been omitted. This error was also spotted 
by ROBERT C. GEBHARDT, Hopatcong, NJ, HENRYS. UEBERMAN, Waban, MA, W I L W  H. 
PEIRCE, Rangeley, ME, and MOHAMMAD P. SHAIKH, Western Michigan University, Kalamazoo. I 
shall do my penance yet another n > 3 times. 

758. [Fall, 19911 Proposed by Charles Ashbacher, Hiawatha, Iowa. 
- - 

Solve this base ten alphametric which celebrates Leonhard Euler's contributions to graph 
theory: 

E + VGRAPH = EULER. 

Solution by Alma College Problem Solving Group, Alma College, Alma, Michigan. 
It will be helpful to rewrite the problem in the form 

GRAPH 

+ E 
EULER . 

The use of L in line 3 of the display is justified by noting that it could be L - 1 only if the E in the tens 
place in line 5 were 0, but E cannot be zero since it begins a word. It is readily seen that V cannot be 
0, 1, or 9, that G * 0, that E cannot be 0, 1, or 2, and that H * 0. From the first and last columns we 
see that 

G x V ( +  carry) = E and H x V +  E s R  (modlo). 

Now G, R, H, E, and V are distinct only when V = 2, 3, 4, or 7 (found after testing all possible 
combinations of G, R, and E). The one case where V = 7, the three cases where V = 4, and the six 
cases where V = 3 are not solvable, leaving only V = 2. Then G can be only 1,3, or 4. 

If G = 1, then E = 3, and R = 5,7, or 9. Then H = 6,7, or 8. No allowable combination yields 
a solution. 

If G = 4, then E = 8 or 9. If E = 8, then R = 0 and H = 6, and no solution results. If E = 
9, then P = 4 or 9, both of which are taken. So G * 4. 

WehaveG = 3,andE = 6or7 . I fE  = 7, then/'= 8andR = 5or9 . l fR  = 9, thenU= 8 
or 9, so R * 9. If R = 5, then H = 4 and U = 0 or 1. No combination of the remaining numbers will 
satisfy A and L. 

Thus G = 3 and E = 6. Now the unique solution 6 + 2x34079 = 68164 can be found. 

Also solved by SCOTT H. BROWN, Stuart Middle School, FL, PAUL S. BRUCKMAN, 
Edmonds, WA, MARK EVANS, Louisville, KY, VICTOR G. FESER, University of Mary, Bismarck, ND, 
RICHARD I. HESS, Rancho Palos Verdes, &4, REX H. WU, Brooklyn, NY, and the PROPOSER. 

759. [Fall, 19911 Proposed by John E. Wekel, University of Illinois, Urbana, Illinois. 
Call a plane arc special if it has length 1 and lies on one side of a line through its end points. 

Show that any special arc can be contained in an isosceles right triangle of hypotenuse 1. 

I. Solution by the Proposer. 
Given the plane arc PQ, lying all on one side in line PQ, circumscribe an isosceles right triangle 

ABC, with right angle at C and hypotenuse AB lying on line PQ, about the arc, as shown in the figure . 
for this problem. Reflect the sub-arcs PR and SQ in the IegsACand BC respectively, obtaining the sub- 



arcs P'R and S'Q. It is now dear that the length of the given arc PRSQ, which is 1 unit, is equal to the 
length of the arc P'RSQ', which in turn is greater than or equal to the length of the hypotenuse AB. 

Moral: Pause and reflect. 

L 
A Problem 759 B 

II. Comment by Mumy S. Klamkin, University of Alberta, Edmonton, Albe~ta, Canada. 
This is a special case of the "worm" problem. For related results and references, see H. T. Croft, 

K. J. Falconer, and R. K Guy, Unsolved Problems in Geomeby, New York: Springer-Verlag, 1991, pp. 
129-130. 

For a dosed curve of length 1 which is the boundary of a convex set r, we have that there is 
a circumscribing triangle with angles a, 0, and y whose perimeter P satisfies the inequality 

1 (sina + sinp + sin-# P s -  
27i sin a sin p sin y 

Equality occurs if r is a circle. See H. G. Eggleston, Problems in Euclidean Space, New York: 
Pergamon, 1957, p. 157. 

Also solved by MARK EVANS, Louisville, KY, for the case where the arc is an arc of a circle, 
and by REX H. WU, Brooklyn, NY. 

760. [Fall, 19911 Proposed by John E. Wetzel, University of Illinois, Urbona, Illinois. 
Napoleon's theorem is concerned with erecting equilateral triangles outwardly on the sides of 

a given triangleABC. Then DEF is the triangle formed by the third vertices of these equilateral triangles 
BCD, CAE, and ABF. Lemoine asked in 1868 if one can reconstruct triangle ABC when only triangle 
DEF is given. Shortly afterward, Keipert showed that the construction is to erect outward equilateral 
triangles EFX, FDY, and DEZ on triangle DEF, and then A ,  B, and C are the midpoints of the segments 
DX, N, and FZ. His proof was quite tedious. Find a simple proof of Keipert's construction. 

Problem 760 

I. Solution by the Proposer. 
The accompanying figure shows a given triangle ABC, the third vertices D, E, and F of 

equilateral triangles erected on its sides, and the third vertices X, and Z of equilateral triangles 
erected on the sides of triangle DEF. Consider the mapping a that is the product of the three 60Â 
counterclockwise rotations about points D, F, and E in that order. Then a is a halfturn. Since the three 
rotations applied in turn map point C to B, then to A ,  and back to C again, we have a(C) = C and it 
follows that a is a halfturn about C. We apply the product of the three halfturns to point Z, notingthaf 
Z maps to E, then to X, and finally to F. Hence a(Z) = F, so C is the midpoint of FZ. Similarly A and 
B are the midpoints of DX and N. 

II. Solution by Paul S. Bmckman, Edmonds, Washington. 
Let a, b, c, etc. denote the complex representations for the vertices A, B, C, etc., and let p = 

cis (w/3) = 112 + i<3/2 Then Ã  ̂= -1/2 + iV3/2, so p - p2 = 1. Now we have 

d - c = p(b - c), so that d = fib + (1 - p)c. 

Similarly, 

Now the affix of the midpoint of DX is 

Hence A is the midpoint of DX. Similarly, B and C are the midpoints of EY and FZ. 

Also solved by RICHARD I. HFSS, Rancho Polos Verdes, CA, MURRAY S. KLAMKIN, 
University ofAlberta, Canada, and REX H. WU, Brooklyn, t fy .  

Editorial comment. Wetzel noted that Kiepert's merit is not very pretty. It used Ptolemy's 
theorem on the cyclic quadrilaterals BCDP, etc., where Pis the point of intersection of the three lines AD, 
BE, and CF. Wu pointed cut the delightful article by Wetzel "Converses of Napoleon's Theorem" in The 
American Mathematical Monthly, April 1992, pp. 339-351. His proof appears on p. 342. 

*762. [Fall, 19911 Proposed by Hao-Nhien Qui Vu, Purdue University, Lafayette, Indiana. 
Following Cantor, we assume a list of the rationals in [OJ) can be made. Each rational is listed 

as a terminating decimal if possible, or as a repeating decimal. Thus numerals ending in nonterminating 
repeating 9's are not permitted. Define a new number x such that the kth place of x is 5 if the kth place 
in the kth number in the list is not 5, and is 4 otherwise. So, for example, if the list starts with 0.5.0.32, 
0.666666, then x = 0.455 .... Show that the numberx must be irrational and therefore this process does 
not prove the rationals are not denumerable. Saying that x is irrational because the rationals are 
countable, however amusing, is not sufficient. 

Solution by Chartes Ashbacher, Cedar Rapids, Iowa. 
The proof assumes that the phrase "a list of the rationals in [OJ) can be maden means that a 

complete list can be made. This assumption is not unreasonable, given that we are following Cantor. 
Thus assume that x is rational. Since 0 < x < 1, there must be a number y in the list such that x = y. 
The method of construction ofx, however, guarantees that x and y must differ in at least one decimal 
place. Since x is an infinite decimal whose digits are all 4s and 5s, x * y. This contradiction shows that 
x cannot be rational. 

A 



Also solved by ALMA COLLEGE PROBLEM SOLVING GROUP, MI, PAUL S. 
BRUCKMAN, Edmonds, WA, and VICTOR G. PESER, University of Mary, Bismarck, ND. 

Editorial comment. This pmblem was proposed by Vu when he was a sophomore at Pwdue. After 
holding it for several years, I decided to run it in hopes that it might elicit some interesting comments. I 
received "The problem seems to be incorrect" and "It seems to be complete nonsense." Oh well, it was a 
nice try. 

763. [Fall, 19911 Proposed by Russell Euler, Northwest Missouri State Univemity, Mayville, 
Missouri. 

Find all real solutions to the equation 

(x2 - 7x + 11V'-l̂ 'O = 1. 

I. Solution by Kandasamy Muthuve4 University of Wisconsin-Oshkosh, Oshkosh, Wisconsin. 
I f a b  = 1,then Ialb = 1,solet ussolve 

and consequently, 

This implies that x' - llr + 30 = 0 or J? - 7x + 11 = Â±I Hence x = 5, 6, 2, 3, or 4. Each of these 
values checks in the given equation. 

II.  Solution by Barbara Lehman, Brigantine, New Jersey. 
Any values that make the exponent zero without making the base zero will satisfy the equation. 

Thus solve x' - llr + 30 = 0 and get x = 5 or 6. Any values that make the base 1 will work, so solve 
x' - 7x + 11 = 1 and get x = 2 or 5. Finally, any values that make the base -1 and the exponent an even 
integer will also suffice, so solve J? - 7x + 11 = -1 and obtain x = 3 or 4, both of which produce even 
exponents. So the solutions are x = 2, 3, 4, 5, 6. 

This is an excellent problem to solve on a graphing calculator. I plan to present it to my pre- 
calculus class. 

HI. Comment by the Proposer. 
I f  one starts with 

log(x2 - 7x + lip- = log 1 = 0, 

one is easily led to cases where J? - llx + 30 = 0 or 2 - 7x + 11 = 1, but not readily to J? - 7x + 11 
= -1. 

IV. Comment by Elizabeth Andy, Limerick, Maine. 
Solve a to the b equals 1, 
A problem that's easy and fun! 

But base -1 
Must also be done, 

Or you cannot say you have won! 

So when problems seem easy to you, 
Just be careful to think them all through. 

When writing that letter, 

Think, "Can I do better?" 
Then please write everything you need to write in that last line 

to make sure you have done all that you need to do! 

Gold stars to each of the following persons for solving the problem correctly the first time: ALMA 
COLLEGE PROBLEM SOLVING GROUP, MI, CHARLES ASHBACHER, Cedar Rapids, -U, 
SEUNG-JIN BANG, Seoul, Korea, BARRY BRUNSON, Western Kentucky University, Bowling Given; 
JAMES E. CAMPBELL, University of Missouri-Columbia, ROBERT C. GEBHARDT, Hopatcong, NJ. 
STEPHEN I. GENDLER, Clarion University of Pennsylvania, RICHARD I.  HESS, Rancho Palos 
Verdes, CA, HENRY S. LIEBERMAN, Waban, MA, DAVID E. MANES, SUNY at Oneonta, BOB 
PRIELIPP, University of Wsconsin-Oshkosh, MICHAEL A. VITALE, St. Bonaventwe University, NY, 
and the PROPOSER. 

Silver stars to these contributors for also obtaining all the solutions: FRANK P. BATTLES, 
Massachusetts Maritime Academy, Buzzards Bay, PAUL S. BRUCKMAN, Edmonds, WA, GEORGE P. 
EVANOVICH, Saint Peter's College, Jersey City, NJ, VICTOR G. FESER, University of Mmy. Bismarck, 
ND, JAYANTHI GANAPATHY, University of Wisconsin-Oshkosh, PETER A. LINDSTROM, North 
Lake College, Irving, TX, THOMAS MITCHELL, Southern Illinois University at Carbondale, and 
YOSHINOBU MURAYOSHI, Eugene, OR, and KENNETH M. WILKE, Topeka, KS. 

Bronze stars to fourteen partial solvers who shall remain nameless. 
Editorial comment. Most partial solvers missed the third case mentioned by the proposer, many 

by using logarithms, but some overlooked that case without the aid of logarithms. A couple of people 
arrived at irrational roots by setting the base equal to 1 and setting the exponent equal to 1, and obtaining 
four roots for the two polynomial equations. The fallacy here is that those two simultaneous equations do 
not have a common root as is required by an "and"statement, so no solution results. The pmblem was easy 
- so easy that oversights were inevitable. 

764. [Fall, 19911 Proposed by William K Delaney, SJ., Loyola Marymount University, Los 
Angeles, California. 

Evaluate the indefinite integral 

f (x + 1)e' la.x &. 

I .  Solution by the Proposer. 
This is an unusual instance of double integration by parts. First, use parts with u = x + 1 and 

dv = ex & to find that ((x + 1) e' dx = xe' + C. Again integrate by parts, using u = Inx and dv = 

(x + 1) e* A this time, to get 

This approach works equally well for any integral of the form $P@) e" In x dr, provided x is a factor 
of p(x) en dr. 

II. Solution by Kandasamy Muthuvel, University of Wisconsin-Oshkosh, Oshkosh, Wisconsin. 
By letting u = e' In x and dv = & and integrating by parts, we get 

= xe' tax - e x  - xes tax &. / 
Thus 



in. Generalizations by Murray S. Humkin, University of Alberta, Edmonton, Alberta, Canada. 
The following two integration formulas follow by differentiation or by successive integration by 

parts: 

As special cases, we let F = 1 and a = 1 in (1') and (2') to obtain 

As another special case, we let a = 0 and F = exp(2) in (1') to give 

Now 

which can be verified by differentiation or obtained by repeated integration by parts. Take z = lax and 
n = 1 or 2 in (3) to get (1) and (2). Remember that, since z = In x, then & = (1/x) dx, so each D 
should be replaced by xD. 

If we let z = Inx and y = e"F, then (3) becomes 

(4) fi\nÂ¡x){D(xD)'e"F dc 

Note that {(D)Â can be expanded in terms of [I], i.e., 

where the 51 are Stirling numbers of the second kind. Also, one can evaluate Dk(eÂ¡F by means of the 
exponential shift theorem, i.e., 

Reference 

1. C. Jordan, Calculus of Finite Differences, Chelsea, N.Y., 1947, pp. 170, 1%. 

IV. Comment by David E. Penney, University of Geoma, Athens, Georgia 
The integral J(x + a )  e' In x dx appears to be nonelementary if a * 1. 
Also solved by ALMA COLLEGE PROBLEM SOLVING GROUP, MI, CHAULES 

ASHBACHER, Cedar Rapids, IA, MOHAMMAD K. AZARIAN, University of Evansville, IN, 
SEUNG-JIN BANG, Seoul, Korea, PRANK P. BATTLES, Massachusetts Maritime Acadany, Buzzards 
Bay, SCOTT H. BROWN, Stuart Middle School, FL, PAUL S. BRUCKMAN, Edmonds, WA, BARRY 
BRUNSON, Western Kentucky University, Bowling Green, JAMES E. CAMPBELL, University of 
MissouriXolumbia, RUSSELL EULER, Northwest Missouri State University, Maryville, GEORGE P. 
EVANOVICH, Saint Peter's College, Jersey City, NJ, MARK EVANS, Louisville, KY, JAYANTHI 
GANAPATHY, University of Wisconsin-Oshkosh, ROBERT C. GEBHARDT, Hopatcong, NJ 
STEPHEN I. GENDLER, Clarion University of Pennsylvania, RICHARD I. HESS, Rancho Pdos 
Verdes, CA, HENRYS. LIEBERMAN, Waban, MA, PETER A. LINDSTROM (2solutions) North Lake 
College, Irving, TX, CARRIE LONGSHAW, Southeast Missouri State University, Cape Gimrdeau, 
DAVID E. MANES, S W a t  Oneonta, LAURA ANN MCSWEENEY, Brockton, MA, YOSHINOBU 
MURAYOSHI, Eugene, OR, WILLIAM MYERS, Belmont Abbey College, NC, DAVID E. PENNEY, 
The University of Georgia, Athens, MIKE PINTER, Belmont College, Nashville, TN, BOB PRIELIPP, 
University of Wisconsin-Oshkosh, JAY SLOTNICK, Alma College, MI, MICHAEL A. VITALE, St. 
Bonaventure University, NY, STAN WAGON, Macalester College, St. Paul, MN, and REX H. WU, 
Brooklyn, W. One incorrect solution was received. 

765. [Fall, 19911 Proposed by the late Charles W. T r i ~  San Diego, California. 
Find a square integer in base 4 that is a concatenation of two like integers. 

Solution by Kenneth M. Wilke, Topeka, Kansas. 
The desired integer n must satisfy the equation 

where k is the number of digits in A. Clearly then, 4k"' -s. A < 4". The smallest positive integer of the 
form 4" + 1 that has a square factor is 4' + 1 = 1025 = 5'-41. Thus A has the form 41 (2 and 256 5 

41(2 < 1024, which is satisfied for t = 3 or 4. Therefore, we have the two solutions 

615' = (21213J2 = 11301113014 and 820' = (30310~)' = 2210022100,. 

If we allow leading zeros, then we may take t = 1 or 2, obtaining 

20s2 = (3031~)~ = 00221002~1~ and 4i02 = (~2122,)~ = 0221002210<. 

Also solved by CHARLES ASHBACHER, Cedar Rapids, IA, SEUNG-JIN BANG, ~eoul," 
Korea, SCOTT H. BROWN, Stuart Middle School, FL, PAUL S. BRUCKMAN, Edmonds, WA, JAMES 



E. CAMPBELL, University of Missouri-Columbia. MARK EVANS, Louisville, a STEPHEN I. 
GENDLER, Clarion University of Pennsylvania, RICHARD I. HESS, Rancho Polos Verdes, CA, REX 
H. WU, Brooklyn, NY, and the PROPOSER. 

766. [Fall, 19911 Proposed by Murray S. Klamkin, University of Alberta. Edmonton, Alberta, 
Canado. 

Determine 

a tx  = e. 

Solution by Seung-Jin Bang, Seoul, Republic of Korea 
We introduce the differential operators D = dl& and D = d/dt. Lettingx = el, then we have 

Dy = e'Dy and-i" In% = t??. Now 

D2(-i" In%) = eCQ"Â¥( + n - 1)(D + n)?, ..., 
D W  I&) = (D + 1)(D + 2)-<D + n - 1)(D + n)? 

It follows that 

Also solved by CHARLES ASHBACHER, Cedar Rapids, IA, FRANK P. BATTLES, 
Massachusetts Maritime Academy, Buzzards Bay, SCOTT H. BROWN, Stuart Middle School, FL, PAUL 
S. BRUCKMAN, Edmonds, WA, GEORGE P. EVANOVICH, Saint Peter's College, Jersey City, NJ, 
RICHARD I. HESS, Rancho Polos Verdes, CA, HENRY S. LIEBERMAN, Waban, MA, WILLIAM 
H. PEIRCE, Rangeley, ME, REX H. WU, Brooklyn, NY, PAUL YIU, Florida Atlantic University, Boca 
Raton, and the PROPOSER. 

767. [Fall, 19911 Proposed by J. L. Brenner, Polo Alto, California. 
Let a. and a, be positive integers, and for n a 2, define 

2 
"11-1 a,, = -. 
an-2 

For what choices of a, and a, will all the an be integers? 

Solution by Rube R. Czech, Atlica. New York. 
The solution is that an divides a,. We have that 

a formula readily verified by mathematical induction. To that end, the formula is clearly true for n = 
0 and for n = 1. It is then easy to show that, if it is true for n = k and for n = k + 1, then it is& 
true for n = k + 2. - - .- 

If we have that a, divides a,, then a , / ~ ~  is an integer and it follows from our formula for a, that 
a, is an integer or a product of integers, and hence it is always an integer. 

Suppose now that a, does not divide a,. Then there is a primep and natural numbers n and k 
such that k < n, pn divides ~ o ,  pk divides a, but pk+'" does not divide a,. Then we count the number of 
factors ofp  in a,+,, which must be nonnegative for an+, to be an integer. By our formula for a,, we see 
there are n + 1 factors of 0, in the numerator and n factors of a. in the denominator. Thus there are 
(n t 1)k - n2 s (n + l)(n - 1) - n2 = -1 factors ofp in a,+,, so a,,+, is a fraction that, in reduced terms, 
has a factor of p in its denominator. 

Hence it is both necessary and sufficient that a, divide a,. 

Also solved by ALMA COLLEGE PROBLEM SOLVING GROUP, MI, CHARLES 
ASHBACHER, Cedar Rapids, IA, MOHAMMAD K. AZARIAN, University of Evansville, IN, 
SEUNG-JIN BANG, Seoul, Korea, FRANK P. BATTLES, Massachusetts Maritime Academy, Buzzards 
Bay, PAUL S. BRUCKMAN, Edmonds, WA, RUSSELL EULER, Northwest Missouri State University, 
Mwyville, GEORGE P. EVANOVICH, Saint Peter's College, Jersey City, NJ, MARK EVANS, Louisville, 
KY, VICTOR G. FESER, University of Mwy, Bismarck, ND, STEPHEN I. GENDLER, Clarion 
University of Pennsylvania. RICHARD I. HESS, Rancho Polos Verdes, CA, MURRAY S. KLAMKIN, 
University ofAlberta. Canah, HENRYS. LIEBERMAN, Waban, MA, PETER A. LINDSTROM, North 
Lake College. Irving, TX, DAVID E. MANES, SUNY at Oneonto, YOSHINOBU MURAYOSHI (two 
solutions), Eugene, OR, WILLIAM H. PEIRCE, Rangeley, ME, KENNETH M. WILKE, Topeka. KS, 
REX H. WU, Brooklyn, NY, PAUL XU,  Florida Atlantic University, Boca Roton, and the PROPOSER. 

768. [Fall, 19911 Proposed by the late Jack Garfunkel, Flushing New York. 
Given a triangle ABC, draw rays inwardly from each vertex to form a triangle A'B'C' such that 

B', C', A' lie on raysAA1, BE', CC', respectively, and 

as shown in the figure. Prove that: 
a) Triangle A'B'C is similar to triangle ABC. 
b) The ratio of similitude is cos a - sin a cot CD, where CD is the Brocard angle of triangle ABC. 



Solution by Paul Yiu, Florida Atlantic University, Boca Raton, Florida. 

a) Note that 

and similarly <A'B'C1 = W C ,  so triangles ABC and A'B'C are similar. 
b) Apply the law of sines to triangles AA'C, BCC', and ABC to get 

It follows that 

A'C' sin@ - a) - sin(C + B) &a - =  
AC svaA SinB siuC 

= cosa - sina[cotA + m t B  + mtq = cosa - sina cotu, 

where u is the Brocard angle of the triangle ABC and it is well known that 

cot Q) = cotA + cotB + cotC. 

Also solved by ALMA COLLEGE PROBLEM SOLVING GROUP, MI. CHARLES 
ASHBACHER, Cedar Rapids, LA, PAUL S. BRUCKMAN, Edmonds, WA, RICHARD I. HESS, 
Rancho Palos Verdes, CA, MURRAY S. KLAMKIN, University of Alberta, Canada, KANDASAMY 
MUTHUVEL, University of Wisconsin-Oshkosh, BOB PRIELIPP, University of Wisconsin-Oshkosh, and 
the PROPOSER. 

Editon.al comment. I apologize for not defining the Brocwd angle in the statement of the problem. 
I assumed it was more well known than it apparently is. Its full definition and many properties can be 
found in either reference below. The Brocard angle ID is /MAB = fMBC = ZMCA formed by the unique 
point M from which such equal angles are subtended inside triangle ABC. Any triangle ABC has two 
Brocard points M and N, the second one subtending equal angles LNBA = ZNCB = /NAC. Furthermore, 
/MAS = /NBA = ID. The Brocardpoint M for triangleABCis defined as the unique point of intersection 
of the three circles through B and C and tangent to CA, through C and A and tangent to AB, and through 
A and B and tangent to BC. That cot ID = cot A + cot B t cot C i s  found in [ I ] .  

References 

1. John Casey, A Sequel to Euclid, Hodges, Figgis, & Co., 1888, pp. 172, 177. 
2. N. A. Court, College Geometry, Johnson Publishing Co., 1925, pp. 243-247. 

769. [Pall, 19911 Proposed by R. S. Luthw, University of Wisconsin Center, Janesville, Wisconsin. 
If ABC is a triangle in which c2 = 4ab cos A cos 5, Prove that the triangle is isosceles. 

I. Solution by Bob Prielipp, University of Wsconsin-Oshkosh, Oshkosh, Wisconsin. 
By the law of cosines we get 

b2 + c2 - a2 cosA = 
c2 + a2 - b2 and cosB = 

2bc 2ca ' 

Now the following equalities are all equivalent: 

c2 = 4ob cos A cos B, 

c4 = [I? - (a2 - bl)][c2 + (a2 - b2)], 

(a2 - = 0, 

Hence I? = 4ab cosA cos B if and only of a = b, that is, if and only if the triangle is isosceles with apex 
c. 

II. Solution by George P. Evanovich, Saint Peter's College, Jersey City, New Jersey. 
Because c is the sum of the projections of sides AC and BC on AB, then we have c = b cos A 

+ a cos B. Then 

whence AC = BC and the triangle is isosceles. 

Also solved by ALMA COLLEGE PROBLEM SOLVING GROUP, MI. CHARLES 
ASHBACHER, Cedar Rapids, L4, MOHAMMAD K. AZARIAN, University of Evansville, IN, 
SEUNG-JIN BANG, Seoul, Korea, FRANK P. BATTLES, Massachusetts Man.time Academy, Bukzurds 
Bay, DIETER BENNEWTTZ, Koblenz, Germany, SCOTT H. BROWN, Stuart Middle School, FL, 
PAUL S. BRUCKMAN, Edmonds, WA, DAN DIMINNIE,Allegheny College, Meadville, PA, RUSSELL 
EULER, Northwest Missouri State University, Maryville, JAYANTHI GANAPATHY, University of 
Wisconsin-Oshkosh, RICHARD I. HESS, Rancho Palos Verdes, CA, MURRAY S. KLAMKIN, 
University ofAlberta, Canada, HENRY S. LIEBERMAN, Waban, AM, DAVID E. MANES, SUNYat 
Oneonta, YOSHINOBU MURAYOSHI (two solutions), Eugene, OR, KANDASAMY MUTHUVEL, 
University of Wisconsin-Oshkosh, MICHAEL A. VITALE, St. Bonaventure University, NY, KENNETH 
M. WILKE, Topeka, KS, REX H. WU, Brooklyn, NY, and the PROPOSER. 

*no. [Pall, 19911 Proposed by Robert C. Gebhordt, Hopatcon& New Jersey. 
A deck of cards, numbered from 1 to n, is dealt at random to n persons. Then a second similar 

deck is dealt to the same n persons. What is the probability that at least one of then persons received 
two cards with the same number? 

Solution by Frank P. Battles, Massachusetts Maritime Academy, Buzzards Bay, Massachusetts. 
That the first deck is dealt out is irrelevant; one simply needs a set of n persons or other objects 

numbered I to n. The problem is then isomorphic to the "hatcheck" problem, a well known problem of 
matchings and derangements. See, for example, Applied Combinatorics by Fred Roberts, pp. 203-205. 
The desired probability is 



which approaches 1 - 1/e as n -Ã m. 

Also solved by CHARLES ASHBACHER (computer solution), Cedar Rapids, IA, PAUL S. 
BRUCKMAN, Edmonds, WA, GEORGE P. EVANOVICH, Saint Peter's College, Jersey City, NJ, 
MARK EVANS (computer solution), Louisville, KY, RICHARD I. HESS, Rancho Pdos Verdes, CA, 
MURRAY S.  KLAMKIN, University ofAlberta, Canada, and REX H. WU, Brooklyn, NY. One incorrect 
solution was received. 

Evanovich gave the reference Niven, Mathematics of Choice, pp. 78-80; Hess listed W. W Rouse 
Ball, Mathematical Essays; Klamkin found David and Barton, Combinatorial Chance, P. 105; Wu located 
Constantine, Combinatorial Theory and Statistical Design, and the editor used Munroe, Theory of 
Probability, pp. 70-72. 

The Pi Mu Epsilon Journal was founded in 1949 and is dedicated to undergraduate and begin- 
ning graduate students interested in mathematics. Submitted articles, announcements, and contri- 
butions to  the Puzzle Section and Problem Department of the Journal should be directed toward 
this group. 

Undergraduates and beginning graduate students are urged to submit papers to the Journal for 
consideration and possible publication. Student papers are given top priority. Expository articles 
by professionals in all areas of mathematics are especially welcome. Some guidelines are: 

1. Papers must be correct and honest. 

2. Most readers of the Pi Mu Epsilon Journal are undergraduates; papers should be directed to 
them. 

3. With rare exceptions, papers should be of general interest. 

4. Assumed definitions, concepts, theorems, and notations should be part of the average under- 
graduate curriculum. 

5. Papers should not exceed 10 pages in length. 

6. Figures provided by the author should be camera-ready. 

7. Papers should be submitted in duplicate to the Editor. 

RALPH P. BOAS - IN MEMORIAM 

Ralph P. Boas, Jr., died in Seattle on July 25, 1992. He was a former President of the MAA 
and a former editor of The American Mathematical Monthly. He was a distinguished research 
mathematician, publishing many articles and several books. He taught at Northwestern University 
for many years and was quite active in MAA matters. This Editor is grateful to him for his help in 
reviewing papers and his valuable insights into editing a mathematics journal. For a more complete 
biography, see FOCUS, the newsletter of the MAA, September, 1992. 

PUZZLE SECTION 

The Editor thanks all those who sent in solutions to Joe Konhauser's puzzles that appeared in 
the Spring, 1992, issue of the Journal. Since the solutions had already appeared in earlier issues of 
the Journal, the newly submitted solutions and the names of the solvers will not be printed. 

SOLUTION T O  MATHACROSTIC NO. 34 (SPRING, 1992) 

WORDS: 

A. cooeebird 
B. abyselpha 
C. semeiosis 
D. Theaetetus of Athens 
E. intention 
F. ace in the hole 
G. leitmotiv 
H. tensegrity 
I. even vertex 
J. reverie 
K. neve 
L. ana 

the monster 
eviscerate 
Rosamond's Bower 
episode 
airtight 
lightship 
in the limelight 
tooth and nail 
inedited 
ergonomics 
string theory 

AUTHOR AND TITLE: CAST1 - ALTERNATE REALITIES 

QUOTATION: In science, there is a method to get at the scheme of things - observation, hypothesis, 
and experiment. In religion, there is a method too - divine enlightenment. However, the religious 
method is not repeatable nor is it necessarily available to every interested investigator. 

SOLVERS: THOMAS F. BANCHOFF, Brown University; JEANETTE BICKLEY, St. Louis 
Community College at  Meramec, MO; CHARLES R. DIMINNIE, St. Bonaventure University, NY; 
META HARRSEN, New Hope, PA; TED KAUFMAN, Brooklyn, NY; CHARLOTTE MAINES, 
Rochester, NY; STEPHANIE SLOYAN, Georgian Court College, NJ; JOSEPH C. TESTEN, Mobile, 
AL; 

MATHACROSTIC NO. 35 

Proposed by the late Joseph D. E. Konhauser. This is the last known acrostic that he constructed, 

The 227 letters to be entered in the numbered spaces in the grid will be identical to those in 
the 28 keyed words at  the matching numbers. The key numbers have been entered in the diagram 
to assist in constructing the solution. When completed, the initial letters on the Words will give the 
name of an author and the title of a book; the completed grid will be a quotation from that book. 

Solutions to  Mathacrostic No. 35 should be sent to: Richard Poss, Pi Mu Epsilon Journal, St. 
Norbert College, 100 Grant Street, De Pere, WI 54115. Solutions must be received by March 1. 



X. a pool or puddle 

DEFINITIONS 

A. Alice 0. Toklas said it has "the pungency 
o f  a high-born radish bred t o  a lox-brox 
cucugber" 

8. r is ing 

WORDS 

Y. platel ike 

C. f l i p  

- - 

2. not connected by conjunctions - -' - 
1 3 4 5 4 1 7 4 2 1 0 1 1 1 1 Z 5 1 8 8 8 5 1 4 4  0 crisscross 

a. fr iendly goblin or  browlie o f  - 
Scandinavian folklore 56 E208183E E. t o -  

last  song jo in t ly  wri t ten by Richard - 
Rogers and Oscar Hamnerstein 11 1 7 8 2 1 1 6 9 1 Z 9 1 3 7 1 4 7 1 9 2 1 2 3 6  

F. f i r s t  two words of  English t i t l e  o f  
Karcel Duchamp's controversial 1912 
painting (2 ids.) 

6. d l e y  

H. laughing jackass 

I .  raucous noise; squank 

J. a whitefish o f  I r i s h  lakes 

K. composite plant having heads mi  t h  both 
disk and ray flowers 

L. bill ingsgate 

U good fo r  nothing 

N. a moral or an emotional pang 

0. layer of  earth called "zone of  mobility" 

P. comet with period 17.97 years, f i r s t  
observed i n  1913 

Q. tenor 

R. times past (2 ids.) 

S. The Scar, Caroline Bird's 
fascinating look a t  the Great Depression 

T. it was discovered by the French. 
glamorized by Times Square, and 
innortal ized by Las Vegas (2 wds.) 

U. sensation 

V. t o f i dge t  

W. t o  cover here and there 



Anthony F. DeLia 
Florida Theta 
University of Central Florida 

Grassman Algebras, Functional Intepals, 
and the Hubbard Model 

THE 1992 NATIONAL PI M U  EPSILON M E E T I N G  
J a m e s  A. DiLellio 
Ohio Nu 
University of Akron 

Two Dimensional Analysis of Heat Flux 
in a Copper Plate 
Using the Finite Difference Method This year's national meeting was held in conjunction with the national meeting of the Math- 

ematical Association of America's Student Sections. The reason for this departure from tradition 
was that, because of ICME having its meeting in Quebec, Canada, the MAA and AMS did not hold 
their usual combined summer meeting. Pi Mu Epsilon hosted the meeting on the campus of Miami 
University, in Oxford, Ohio. The meeting ran from August 5 through 8. 

Elaboration on Usefulness of Constructively 
Limited and Irresolvable Demonstrations 

Vladimir  Dimitrijevic 
Ohio Xi 
Youngstown State University 

The J .  Sutherland Frame Lecturer was Underwood Dudley, from DePauw University. The 
title of his talk was "Angle lyisectors." The MAA Invited Address was by Peter Hilton, from the 
State University of New York a t  Binghamton. He provided "Another Look at  Fibonacci and Lucas 
Numbers." In addition to these invited addresses, there were three minicourses available to the 
students and faculty who attended the meeting. These were: "Tilings by Hand and Computer," 
by Doris Schattschneider of Moravian University; "Variations on a Spiral," by David Kullrnan of 
Miami University (this minicourse was presented twice); and "Environmental Mathematics," by Ben 
A. Fusaro of Salisbury State University. 

Will iam Duckworth 
Ohio Delta 
Miami University 

JMP-ing into Data Analysis and Exploration 

Francis Fling 
Kansas Beta 
Kansas State University 

A Number-Theoretic Identity Arising from 
Burnside's Orbit Formula 

At the annual Pi  Mu Epsilon banquet, David Ballew, President of Pi Mu Epsilon, gave tribute to 
Joseph D. E. Konhauser, who passed away last February. Joe, a former editor of this Journal, passed 
away in February. He was a National Councilor for Pi  Mu Epsilon at  the time of his death. (See the 
Spring, 1992, issue of this Journal, page 349.) Joe's unexpired term on the national council is being 
filled by Robert S. Smith, from Miami University (Ohio). In addition to his other contributions to 
Pi Mu Epsilon, Robert Smith was in charge of all the local arrangements for this year's meeting 
a t  Miami University. President Ballew also introduced J .  Kevin Colligan, a representative of the 
National Security Agency. The NSA has again given Pi Mu Epsilon a generous grant to distribute 
to student speakers to help defray the cost of their travel to the national meeting. 

A Generating Function for Nilpotent Pairs 
in a Finite Group 

Mike Galloy 
Indiana Gamma 
Rose-Hulman Institute of Technology 

Rait is  Grinsbergs 
Minnesota Gamma 
Macalester College 

On the Packing Graph 

Tony Hinrichs 
Indiana Gamma 
Rose-Hulman Institute of Technology 

Elements of Hyperbolic Geometry 
The Pi  Mu Epsilon Council held its annual meeting on Friday, August 7. The Council noted 

that this first joint meeting with the MAA student chapters was quite successful and agreed to work 
with the MAA student chapters to  again co-host the meeting in 1993. Because the 1993 summer 
meeting will be in Vancouver, British Columbia, Canada, and this site is so far from most of the 
schools which have usually sent student speakers, the Council approved, on a temporary basis, a 
more generous travel allowance for student speakers. (See note on page 421.) The Council hopes 
that this experimental plan will help to  continue the large number of student speakers at the national 
meetings. There were a total of 31 Pi Mu Epsilon student speakers at  this year's meeting. 

Mathematics in Advanced Macro-Economics Barry E. Jones  
Ohio Delta 
Miami University 

Primitive Pythagorean Triples Dennis Keeler  
Ohio Delta 
Miami University 

P R O G R A M  - S T U D E N T  P A P E R  SESSIONS 
Dylan  T. G. KhooLim 
Ohio Delta 
Miami University 

The Connectivity of Interior of 3-Regular 
3-Connected Bipartite Planar Graphs 

Interesting Properties of Some Graph Products R a y  Adams 
Massachusetts Alpha 
Worcester Polytechnic Institute Susan K o ~ p e n o l  

Louisiana Delta 
Southeastern Louisiana University 

Buffon's Needle Problem 

An Introduction to Elliptic Integrals 

On Maximizing the Product of Partitions Jeffery J o h n  Boats  
New York Omega 
St. Bonaventure University A m y  Krebsbach 

Wisconsin Delta 
St. Norbert College On Directed A-Cycles in n-Tournaments J o h n  Davenport  

Ohio Delta 
Miami University 



Cooperative Learning in Mathematics Education 

A SLATEC Compatible Subroutine 
for Spline Approximation 
Using General Basis Functions and Constraints 

Patchwork Mathematics 

Some Combinatorial Results Arising 
from Complete Digestion of Proteins 

Development of a Power Outage 
Emergency Response System 

A Numerical Model Including PID Control 
of a Multizone Crystal Growth Furnace 

Completely Positive Matrices 

Bounding the Sneech Population 

Patterns of Periodicity in the Mandelbrot Set 

Probabilities Associated with Plinko 

A Tool for Solving 2-Dimensional 
Systems of Equations 

Fluid Diffusion in the Brain 

Crystallographic Groups in the Plane 

Elizabeth Kuehner  
Pennsylvania Omicron 
Moravian College 

M a r k  P. K u s t  
Michigan Epsilon 
Western Michigan University 

Shelly L. M a r t i n  
Ohio XI 
Youngstown State University 

Jennifer  Miners 
Arkansas Beta 
Hendrix College 

Mike Ochr tman 
Oklahoma Beta 
Oklahoma State University 

Charles H. Panzarel la  
Ohio Nu 
University of Akron 

Kei th  Rhodes 
Ohio Delta 
Miami University 

Melissa A. Smi th  
Ohio Lambda 
John Carroll University 

Michael J. S o u t h  
Georgia Epsilon 
Valdosta State College 

Traca  E. Tithof 
Ohio Xi 
Youngstown State University 

Christ ina T.  Tsiaparas 
Ohio Xi 
Youngstown State University 

David D.  Turner  
Washington Zeta 
Eastern Washington University 

Linda M. Vargo 
Illinois Iota 
Illinois Benedictine College 

John Napier and His Definition of Logarithm Daniel  L. Viar  
Arkansas Alpha 
University of Arkansas 

Dynamics of a Quadratic Family * In Pictures * Connie Yarema 
Texas Mu - -- 
East Texas State University - -- - 

For the fourth consecutive year, the American Mathematical  Society has given Pi Mu 
Epsilon a grant to be used as prize money for excellent student presentations. As always, there were 
many excellent presentations, and four of them were selected to receive prizes of $100 each. The 
winning speakers were: 

Jeffery J o h n  Boats ,  St. Bonaventure University 
On Maximizing the Product of Partitions 

Francis Fung, Kansas State University 
A Number-Theoretic Identity Arising from Burnside's Orbit Formula 

Susan  Koppenol, Southeastern Louisiana University 
Buffon's Needle Problem 

Daniel L. Viar ,  University of Arkansas 
John Napier and His Definition of Logarithm 

Pi Mu Epsilon is again grateful to the American Mathematical Society for the generous gift 
that has made these awards possible. 



GLEANINGS F R O M  T H E  C H A P T E R  R E P O R T S  

MICHIGAN ZETA (University of Michigan, Dearborn) We continued our Focus on Faculty series 
for a third year. Three faculty members of the Mathematics Department presented lectures: on the 
future of computers in college mathematics, FLivest's coin tossing problem, and geometric modeling. 
To assist students of all levels, The Chapter sponsored two math advising sessions. Professors 
representing the areas of sewndary education, statistics, computer science, and applied mathematics 
aided students in future course selection and possible career and graduate school paths. In addition, 
a representative b m  the University's Career Planning and Placement Office was on hand to advise 
prospective graduates on possible careers which utilize a mathemati- degree. We sponsored two 
student/faculty mixers this past year. The April mixer was a faculty thank-you luncheon. To aid 
those students that might pursue more advanced degrees, the chapter organized a graduate school 
announcement library. On a social level, the chapter had two game nights with pizza and other 
refreshments. The chapter also sponsored a dinner at  the end of each semester. 

NEW MEXICO ALPHA (New Mexico State University) The chapter conducted its fourth annual 
NMSU Math Challenge on Saturday, April 4, 1992. This contat, taken by high school students 
from around the region, had three strands: an individual contest, a team bowl contest, and a team 
modelling contest. In the Individual Contest, 181 students took the qualifying round at their own 
high schools. Forty-four students were invited to take the second round on campus. The first place 
winner, Russell Kehl, received an HP 48s calculator. The two second place winners, Jeffrey 
Miller and X i n  Wang,  were given T I 4 1  calculators. The third place winner, Charles Hardin,  
and the two fourth place winners, Michael Mart inez and T i m  Fox, received books. Nine four- 
member teams took part in the Team Competition. First place winners were the Cruces Conics. 
The %am Modelling Competition was new this year. Two faculty members wrote an original 
problem Monttoring Meteor Impacts on the Moon. Eleven 2-4 members from four area high schools 
spent a weekend solving it. The top five t e a m  were invited to present their solutions orally to the 
judges and interested spectators on Team Day. The top team received a plaque for their school and 
the members (Jeff Miller, Charles Hardin,  and Steven Bennet t )  were each given asubscription 
to Quantum magazine. 

OHIO ZETA (The University of Dayton) The chapter was very active this year. Some of the 
highlights are as follows: At the Annual Pi Mu Epsilon Regional Conference held in September, 
1991, at  Miami University, Oxford, OH, three students gave talks. They were David Jessup. 
David Kass, and Krist ine Fromm. A Number of students attended and gave talks at the spring 
meeting of the Ohio Section of the MAA held at the University of Dayton. The students are David 
Jessup,  David Kass,  Krist ine Fromm, Kristen Toft, M a r n i  Ryder ,  and Thomas  Szendrey. 
David Jessup  gave a talk at  the Summer AMS-MAA meeting held in Orono, ME. David Jessup  
and David Kass jointly received this year's Faculty Award for Excellence in Mathematics. Jeff 
Oliver was the recipient of this year's Sophomore Class Award. 

OHIO NU (The University of Akron) The chapter held its annual induction banquet on April 24, 
1992. A number of awards were presented at  this banquet. David Johnson,  Br ian  Van Pelt ,  
and A s h  Yarkan received one-year memberships in the American Society. Jayashree Dorairaj, 
Polychronis Papageras,  and Lucy Pramudj i  received one-year memberships to the Society of 
Industrial and Applied Mathematics. J a n  Spears received a one-year membership to the American 
Statistical Association. Melissa Jolly and Kelly K e r a t a  received one-year memberships to the 
Mathematical Association of America. The Samuel Selby Scholarships ($500 each) were awarded to 
J a m e s  Dilellio and Zhaolin Mao.  The William Beyer Statistics Scholarship ($400) was awarded 
to William Blue. The Mary Maxwell Memorial Scholarships in Mathematics ($400 each) were 

awarded to Dawn Holgate, Joseph  b e y ,  C a r l  St i tz ,  and G a r y  Traicoff. Jonobie  Baker, 
the Western Reserve Science Day Winner - Mathematical Sciences Category, received a $50 U.S. 
savings bond. 

OHIO XI (Youngstown State University) Eleven students attended the National Pi Mu Epsilon 
Meeting at  Orono, ME. Eight of these students presented papers: J i m  Baglama, J a m e s  Bwtic&i, 
Hes te r  Brosag, Sharyn  Campbell ,  D h i t r o s  Chalop, Hea ther  DeSimone, Linda Hughes,  
and Marguer i te  Nedreberg.  Three of the speakers received prizes: Hea ther  DeSimone, Linda 
Hughes, and Margueri te  Nedreberg. The chapter had its initiation of new members on Novem- 
ber 6. On November 20 we had our annual book sale. The books were donated by professors. The 
chapter made a profit of $260. We had a Christmas party on December 15. There was another 
initiation of new members at the meeting of January 29. Other activities during the year were: a 
second book sale and a sweatshirt sale. The final initiation of new members was held on April 15. 

TENNESSEE GAMMA (Middle Tennessee State University) The chapter began the 199i-92 year 
with its semi-annual pizza party. New members were initiated and officers elected. In October, 
T o m  Ingram,  University of Missouri at h le igh ,  gave a presentation on "Dynamical Systems." 
The semester ended with a combined Christmas party with the two other mathematics clubs. At 
the March 12 meeting, there was a panel discussion titled "Is There L'lfe After a Master's Degree in 
Mathematics?" The five panelists were all former MTSU Master of Science degree students. They 
were J o y  Whitenack (who is working on an Ed. D. at Vanderbilt), Lori  Henslee, Amy Wild- 
smi th ,  Michael Mogensen Vermillion (who are currently working on Ph. D.'s at Vanderbilt), 
and Susan Calvert  (instructor at Motlow State Community College). 

For the 1992 Tom Vickrey Mathematics Project Competition, Dawn Woodard  (first place) 
gave her paper titled "Automorphiim Groups of the Hasse Subgoup D~agrams for Cyclic Groups 
with Order Divisible by Exactly Two Primes.'' G a r y  Es tep  (sewnd Place) presented his project 
Application of Infinite Series to Fractals.'' Dawn Luna and R o b e r t  Ralston presented their papet 
"TWO Finite Self-Dual Geometries," and Kevin Gipson gave his paper "Minimal Surfaces." We 
also had four of our members present their papers at the Hendrix-Rhodes-Sewanee Undergraduate 
Mathematics Symposium at Memphis. Finally, in April, we proctored the Junior High Conteat 
held at  MTSU, which is our annual fundraiser. The year ended with another combined picnic with 
members of the other two mathematics clubs. 

St. John's University I College of St. Benedict 
Annual Pi Mu Epsilon Student Conference 

Tom Banchoff 
Brown University 

For more information contack 

March 26-27, 1993 

Dave Hartz 
Department of Mathematics 
College of St. Benedict 
St. Joseph, MN 56374 
(612) 363-5804 



Ve invite you to join us, whether to present a talk or just to listen an( 
ocialize. The conference will begin at 9100 a.m. and continue into 
ate afternoon. After an invited address, the remainder of the day will 
le devoted to undergraduate student talks. Talks may be fifieen or 
iirty minutes long. They may be on any topic related to 
iathematics, operations research! statistics or computing. We 
ncourage students doing research or honors work to present their 
fork here. We also welcome expository talks, talks about 
~teresting problems or applications and talks about internships, field 
tudies and summer employment. We need your title, time of 
resentation (15 or 30 minutes) and a 50 word (approximate) 
bstract by February 5, 1993. 

ponsored by the Moravian College Chapter of Pi Mu Epsilon 
nd the Lehigh Valley Association of Independent Colleges. 

lease contact: Fred Schultheis 
Department of Mathematics, Moravian College 
1200 Main St. Bethlehem! PA 18018 
(Telephone: (21 5) 861 -3925) 

Announcing the 10th Annual 
Rose-Hulman Institute o f  Technology 

Conference on Undergraduate Mathematics - * . 

Friday and Saturday, March 19th and 20th, 1993 
on the Rose-Hulman campus in Terre Haute, Indiana 

Featuring Keynote Speaker 
Carla Savage 

of North Carolina State University 

and 
A CAYLEY SHORTCOURSE 

offered by 
Gary Sherman 

of the Rose-Hulmn Institute of Technology 

Carla Savage has been studying Gray codes, and variants, and their 
relationship to graph theory, group theory, and discrete mathematics. Gray 
codes are schemes for listing combinatonal objects so that successive 
objects differ in a small, specified way. Professor Savage has also worked 
in the area of parallel algorithms and architectures. She is a popular speaker, 
whose work has been partially supported by NSF and NSA. 

Gary Sherman directs a Summer NSF-REU program, which features 
computational group theory. CAYLEY is a softwm package which allows 
the user to do computations in groups, rings, and fields. Anyone interested 
in computational algebra or discrete mathematics will find this shortcourse 
of interest. 

Undergraduate students are encouraged to submit abstracts of papers, in 
any area of the mathematical sciences, for presentation. 

For more information, contact: Bart Goddard 
Department of Mathematics 
Rose-Hulman Institute of Technology 
Terre Haute, IN 47803 
(812) 877-8486 
goddard@nextwork.rose-hulman.edu 
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