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1993 NATIONAL MEETING, PRELIMINARY INFORMATION

The 1993 National Meeting of Pi Mu Epsilon will be held in Vancouver, British Columbia, in
Canada. Themeeting will be held in conjunctionswith the AMS-MAA meetings from August 15-19.
Pi Mu Epsilon will again co-host this national meeting with the MAA student chapters.

The National Council of Pi Mu Epsilon has approved,. on a temporary bask, a more generous
travel alowancefor student speakers. Thefirst speaker from a given chapter will be eligiblefor the
same travel allowance as before, but if there are more than one speaker from a given chapter, the
additional speakers (up to four) will be eligible for an alowance of 20% of what the first speaker
receives. For example, if the distance traveled (by cat or van) isover 2400 miles (round trip distance),
a single student speaker would receive $600, two student speakers would receive $720 (to sharein
any way they wish), three speakers would share $840, four speakers would share $960, and five or
more speakers ftom this single chapter would share $1080.

Thereason for trying the new scale for travel allowancesisto encourage more students to speak
at the national meeting. There was some concern that the fact that Vancouver is so far removed
ftom most of theschoolsthat have traditionally sent student speakersto the national meetings might
cause the number of speakers to fall below what it has been. This new policy hopes to encourage
chaptersto send multiple speakers.

CALL FOR NOMINATIONS

Nominations are being accepted for the office of national councilor of Pi Mu Epsilon. Please
send nominations to: Eileen Poiani, St. Peter's College, Jersey City, NJ 07306. Nominations must
be received by November 30, 1992. Elections for Pi Mu Epsilon officeswill be held in the spring of
1993. Pi Mu Epsilon sponsors will be receiving ballotsfor their chapters to usein the voting process.

STUDENT PAPERS

In each year that at least five student papers have been received by the Editor, prizes of $200,
$100, and $50 , known as Richard V. Andree Awards, are given to student authors. All students
who have not yet received a Master's Degree or higher are eligible.

There are four student papersin thisissueof the Journal. One of the papersis "Exploring Self-
Duality in Graphs," by Concetta DePaolo and Russell Martin. They prepared this paper during
the National Science Foundation's Research Experience for Undergraduates Program at \Worcester
Polytechnic Institute in the summer of 1991. At that time, Concetta was a student at \Worcester
Polytechnic Institute and Russell was a student at Syracuse University.

Thesecond paper is “Fractorials!” by Nataniel Greene. Nataniel was a junior at Carmel High
School in New Y ork when he prepared thii paper.

Thethud paper is "On the Number of Invertible MatricesOver Z,.," by Mark Lancaster. Mark
prepared this paper during his senior year at Hendrix College. .

The fina student paper k "On Transpositions Over Finite Fields" by Beth Miller. Beth
prepared this paper while she was a junior at Penn State University — New Kensington Campus.



422

EXPLORING SELF-DUALITY IN GRAPHS

Concetta DePaolo and Russell Martin
Worcester Polytechnic Institute and Symcuse University

Introduction

We define a graph G on a set of vertices and a set of edges. (For those not familiar with graph
theory, refer to a text such as Harary [2).) If G isdrawn in the plane such that there are no edge
crossings, then G is a plane graph, and we can also define a set of faces of G. For any such plane
graph G, we can construct the geometric dual of G, denoted G*, asfollows: (1) within every face f
of G, create a vertex f* of G*; (2) for each edge e separatingfaces f; and f; of G, let ¢* bean edge
joining vertices f; and f; in G*. We now make a distinction between a planar graph and a plane
graph. Planar graphsare graphsthat can be drawn in the plane without crossingsof the edges, and
plane graphs ar e drawn in the plane without crossingsof the edges. Notice we need a plane graph
in order to construct its geometric dual.

When is a plane graph "self-dua"? Since a plane graph can be defined by its vertices, edges,
and faces, it is natural to think that its dual must also be defined by exactly these if it isto be
“self-dual.” That is, not only must there be vertex and edge isomorphisms from G to G* such that
all adjacencies and incidences are preserved (we call these graphical isomorphisms), but there must
also be an isomorphism which maps faces to faces such that if two faces both border an edgein G,
they must also border the corresponding edge in G*. In other words, G and G*, in addition to being
graphically isomorphic, must aso beidentically embedded in the plane. If this occurs, we say G is
geometrically self-dual, and write G = G*.

Most people, however, would not consider the embeddings of a graph when dealing with self-
duality; a graphical isomorphism from G to G* is usualy sufficient in graph theoretical terms. If a
graph is embedded in the plane such that it is graphicaly isomorphic to its dual (whether or not
the dual is embedded differently), then we say G is combinatorially self-dud, and write G ~ G*.
Clearly, geometrical self-duality implies combinatorial self-duality.

We show that combinatorial self-duality is indeed weaker than geometric self-duality using the
plane graph H in Figure 1 (opposite).

Notice that in H, the face inside the parallel edges borders two loops which are at opposite
vertices. In H*, neither face, inside or outside the parallel edges, borders two loops at opposite
vertices. Therefore, H is not geometrically self-dual. However, by inspection, it iseasy to see that
H can be made geometrically self-dual by reembedding the bridgeon theleft into the outer face, and
reembedding one of the bridges on the right into the inner face. Therefore, the difference between
combinatorial and geometric self-duality is the graph's embedding.

There is another, still weaker, type of self-duality which we call abstract self-duality, which
occurs when a plane graph G (whether or not it is geometrically or combinatorially self-dual) is
embedded such that its collections of cycles remains unchanged in the dualization process. In other
words, there is a one-to-one correspondence between the edges of G and the edges of G* such that
the collection of cyclesis preserved. For an example of an abstractly self-dual graph, see Figure
3, graph H,. H; is not combinatorially nor geometrically self-dual because it contains a vertex of
degree six, while its dual does not. However, the sets of cyclesof Hy and H} areidentical. Clearly,
combinatorial self-duality implies abstract self-duality.

When talking about cycles, it is also natural to talk about matroids, since the "cycle matroid'"'
M(G) of G corresponds to the family of al cycles of the graph G. When two graphs G and H,
have the same collection of cycles, we say their cycle matroids are isomorphic. This is denoted as
M(G) = M(H). Thus, when wesay G is abstractly self-dual, we mean that M(G) = M(G").
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Figure |b: The dualization process

graph

Figure 1d: H’

The purpose of this paper is to examine and explore the relationship amongst these three
concepts of self-duality. In particular, we address when the concepts are or are not equivalent. Also,
we give some methods for constructing graphs with one or more of these properties. Weve found
that these topics are best explored according to the vertez connectivity (the minimum number of
vertices whose removal disconnectsthe graph) of the graphsin question. We begin with %connected

graphs.

3-connected graphs

We begin our examination of %connected graphs with the realization of two important theorems.
The first, due to Whitney (see Harary [2]), states that if G is a 3-connected planar graph, then it
has a unique plane embedding, that is, thefaces and their bordering edges are uniquely determined.
The second theorem, due to Welsh [3], states that if two 3-connected graphs without loops have
isomorphic cycle matroids, then they must be graphically isomorphic.

Let us explore what these theorems mean with regard to the relationships between geometric,
combinatorial, and abstract self-duality in 3-connected graphs. Let's begin with the assumption that
G is 3-connected and abstractly self-dual, i.e. M(G) = M(G*). Observe that G cannot contain a
loop (since G* would then have a corresponding bridge and so would be only 1-connected). By the
Welsh theorem, we see that G and G* must be graphically isomorphic. That is, abstract duality
implies combinatorial self-duality. However, the Whitney theorem assures us that the embedding of
a 3-connected graph is unique, so that G & G* implies that G = G*, Therefore, weve established
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that for 3-connected graphs, the concepts geometric, combinatorid, and abstract self-duality all
coincide.

2-connected graphs

When dealing with %connected graphs, the relationship amongst the types of sdlf-duality be-
comes more interesting. Abstract self-duality no longer implies geometric self-duality. In fact,
2-connected graphs with M(G) = M(G*) need not even be combinatorially self-dual! However,
there does exist a special relationship amongst graphs with isomorphiccycle matroids. In Whitney
(5, Sec.1] it is proved that any two graphs with isomorphic cycle matroids can be obtained from
one another by a seriesdf what are called Whitney moves. The significance of these movesis that
performing them on a graph does not change its cycle matroid. We first describe a Whitney twist
(or just twist):

Suppose verticesu and » form a cutset of the graph, G. Split G into two sections, G1 and Ga,
by cutting the graph through u and », formingtwo connected graphs, each having verticesu and ».
If there is an edgeuv in G, we arbitrarily assign it to Gi. Weform the graph G’ by re-identifying
the verticesu in Gy withv in Gg, and v in Gi with u in Gz. See Figure 2 for an exampleof this
operation. Note that G’ is still 2-connected, but it need not be isomorphic to G. See Welsh [4] and
Whitney [5] for further details on this operation.

Figure 2 Performing a Whitney Twist

We will also consider the reembedding operation to be a Whitney move, because it does not
change the cycle matroid of a graph.

We now want to explore the relationship between the two operations o twisting and reembed-
ding. The following series of diagrams (Figure 3) first show a 2- connected geometrically self-dual
graph G, the formation o its dud G*, and then a 90-degree rotation of G* so as to show that
G” = G. The next diagram shows H;, a graph obtained from G by a Whitney twist on the upper
left hand part of the graph. When the dual o H, is constructed, we find that it is graphically
hic to the dual of G; however, the cone- like section in the upper part of the graph of H; is
4 in a 5-sided facein H} rather than in a 4-d9ded face as it isin G*. Therefore, a twisting
nignal graph has led to a reembeddingof the dual.

mext graph, H., was obtained from G by reembedding the cone-like section in the upper
; k. Notice that H, and Ay areidentical. Wefind that H3 is G with a twist performed
=f hand part. Thereforre, a reembeddingd the original graph hasled to a twisting in

FIGURE 3
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Due to the interchange of faces and vertices in the dualization process, a twisting always |eads
to a reembedding of thedual, and a reembedding always leads to a twisting of the dual, asis shown
in thefollowing theorem.

Theorem 1. Let G bea plane graph and let G* beitsdual. If H isagraph obtained by a series
of Whitney twistsfrom G, then H* isa reembedding of G*. Furthermore, if H is a reembedding of
G, then H* can be obtained from G* by a series of Whitney twists. In other words, twisting and
reembedding are "' dual operations."*

Proof: For thefirst sentence, weobserve that asaresult of twisting G, none of thefacial adjacencies
have changed. To see this we argue as follows: Let f be aface of G that is bounded by edges from
both Gy and G2, where Gy and G2 are thesectionsof G created by the cutset {u,v}. Let ey, ea,...¢q
bethecycleof edgesthat bounds f. By renumbering theedges if needed, wecan say that ¢1,¢2,. .+ ¢k
isthe sequence of edges joining uand » in Gy, and cg41,¢k+2,-- », cn IS thesequenceof edges joining
v to u in Gz. When we perform the twist, we identify u in Gy tov in Gy, and v in Gy tou in Ga.
Therefore, the cycle boundiig f inH ise,...,ck,€n,6n-1,..., k41, CONtaining the same edges as
in G. We apply this same argument to each face that is bounded by edgesfrom both G; and Gs. If a
face is completely bounded by edgesin Gi or Ga, then theface will not be affected. Therefore, if two
faces shared an edge in G, they will share thesame edge in H, after the twist has been performed.
In other words, the facial adjacencies have not been altered by the twist.

We know that adjacent facesin agraph giverise to adjacent vertices in the graph's dual. H has
the same number of faces, vertices, and edges as G, so H* has the same number of faces, vertices,
and edges as G*. Furthermore, because G and H have the same adjacent faces, G* and H* have
corresponding adjacent vertices. This produces a mapping between the vertex and edge sets of G*
and H* that preserves the vertex adjacencies.

Toshow that H* is a reembedding of G*, consider the effect on the faces of H* by considering
the effect of the twist on the vertices of H. Due to the nature of the twisting operation, some of the
vertex adjacencies in H will be different from those in G. If two vertices were adjacent in G, and
are not adjacent in H, then the corresponding faces of H* will not be adjacent as they werein G*.
So, the embedding on H* will be different from that of G*.

When we perform a series of twists, we actually have a sequence of graphs G, Hi, Ha,...,
Hn_y,H. From the above argument, we know that the following are graphicaly isomorphic:
G*,H},H;,...,H;_,,H*. Since H* is graphically isomorphic to G*, it is just a planar repre-
sentation of the same graph, which as stated above, need not be embedded in the same way. The
second sentence of Theorem 1 can be proved in a similar manner. Alternatively, we can show it can
be proved using duality. We have just shown that a twist in G corresponds to a reembedding in
G*. Since thisis truefor any plane graph G, we therefore know that a twist on the plane graph G*
wrresponds to a reembedding in (G*)*. But since (G*)* is G, we havethat a twist in G* corresponds
to a reembedding in G. s

Suppose G is any 2-connected, abstractly self-dual graph, If wetwist G toget H, we have shown
that thecycle matroid has not changed, that is, M(H) = M(G), sothat (1) M(H) = M(G*), since
G is abstractly self-dual. Also, by Theorem 1, H* is merely a reembedding of G*, so that (2)
M(H*) = M(G*). Combining (1) and (2), we have M(H) = M(H*).

Therefore, if a graph is obtained from a geometrically self-dual graph by a series of Whitney
twists, then the resulting graph is still abstractly self-dual (but this does not automatically mean it
has to be geometrically, or even combinatorially self-dual).

In a similar manner, we can generate other graphs that are abstractly self-dua by using all
of the different, diitinct planar embeddings of a geometrically self-dual graph. The duals of these
graphs will be twists of the original dual. The same king of argument as before can be used to show
that the resulting graph isstill abstractly self-dual (but this does not automatically mean it has to
be geometrically, or even combinatorialy self-dual).
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We now present a theorem which asserts that any %connected abstractly self-dual graph-can
always be manipulated to form a combinatorially self-dual graph:

Theorem 2. If G isa 2-connected plane graph with M(G) = M(G*), then there exists at least
one graph H, obtained from G by afinite series of Whitney twists, such that H s~ H*.

Proof: Since G is abstractly self-dua, by the Whitney theorem {5, Sec. 1], G can be twisted to
get G*. Let us perform this twist (or series of twists) to get a new graph H graphicaly iscmorphic
to G*. When we twist G to get H, the dual of H, H*, is merely a reembedding of G*, by Theorem
1. IfH* is a reembedding of G*, then H* and G* are graphically isomorphic. By construction, we
also have that H and G* are isomorphic. Therefore, H* and H are graphically isomorp c. Thus,
H =~ H*,or H is combinatoridly self-dual. =

Conjecture: If Gisa 2-connected abstractly self-dual graph, then there existsat least one graph H;
obtained from G by a series of twistsand/or reembeddings, such that H isgeometrically self-dual. ®

This conjecture issupported by the graph G in Figure 3 which has sixteen twists (or series of
twists), and sixteen embeddings of each of these twists. We drew all 256 graphs and dualized each
one of them. We found that for each twist, there was at least one embedding of these resulting
graphs that was geometrically self-dual. This example strengthens our belief that the conjecture is
true. Our results on this example are summarized in Table I. When we perform all possible series of
twistson G, wefind that some geometrically isomorphic graphsresult from different series of twists.
The number and percentagesin parentheses indicate the results when we exclude these duplications
from our totals.

Tablel
e
Type of Graph Number of Graphs Percent of Total
Geometrically
Self-Dual 32 (20) 12.5% (12.5%)
Combinatorially
(but not Geometrically)
Self-Dud 24 (12) 9.375% (7.5%)
Abstractly Self-Dual
Only 200 (128) 78.125% (80%)
Total 256 (160) 100%

1-connected graphs

We have seen that a 2-connected abstractly self-dual graph does not necessarily have to be
combinatorially or geometrically self-dual. Thesameistruefor 1-connected graphs. However, like2-
wnnected graphs, thereexistsa special relationship among 1-connected graphswith isomorphic cycle
matroids. |n Whitney [5, Sec.1], it isproved that all pairsof 1-connected graphs whosecycle matroids
are isomorphic to one another can be obtained from one another by one of the following Whitney
movesfor 1-connected graphs: (1) rearrangement of the blocks (maximal 2-connected subgraphs;
see [2, Chapter 3]), by detaching at a cut vertex, and either leaving the graph diswnnected ‘or
reattaching the blocks at different vertices; (2) twistings performed within the blocks of the graph;
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(3) reembeddings of the graph; and (4) some combination of the first three. Notice that none of
these operations change the cycle rnatroid of the graph.

Because there areseveral Whitney movesin this case, the classification of 1- connected abstractly
self-dual graphsis much lessstructured than that of its higher connected counterparts. We now state
a theorem which serves as a means of classification and construction of 1-connected abstractly self-
dual graphs.

Theorem 3. Let G be a plane graph which consists of % (abstractly) self-dual blocks and 2m non
self-dual blocks, m of which are duals of the remaining m, joined arbitrarily at cut vertices so long
asno additional cycles are created and no block isembedded inside a bounded face of another. Then
G is abstractly self-dual.

Proof:  Since the only cycles present in G occur within the k + 2m blocks, G may be thought of
asa "pseudoforest™ whose "branches™ are the k£ + 2m blocks. Unlike a true graph-theoretical forest,
this “psendoforest” has cycles, but only the ones existing within the & + 2m blocks.

Let the k abstractly self-dual blocks be denoted by B; (i = 1,2,....k). Similarly, let the 2m
non self-dual pairs be denoted by H; and H} (j=1,2,....m). Thefacesof the plane embeddings
of G are the bounded faces of each B;, Hj;, and H}, together with one unbounded face (cal it F)
surrounding G. The vertices of G are precisely those of the blocks (counting cut vertices only once,
even though they may be in many blocks). The edges of G are precisely the edges of the blocks.
When we form G*, exch By, each Hj, and each (H})* = H; will have the vertex corresponding to
F asone of its vertices (because each has faces adjacent to F in G).

We note that G # G* unlessall k abstractly self-dual blocks are combinatorially self-dual, and
G was assembled in such a way that al of the & + 2m blocks had one common vertex. (See graph
G in Figure 4) Otherwise, at least one of the pairs of blocks are vertex disioint in &, whereas they
share a common vertex in G* (graphs H and #* in Figure 4).

Figure 4

Each of the original 2m blocks is still a block of G*. Therefore, their cycles are still intact
and S0 each of their individual cycle matroids isintact. Also, since the k blocks are abstractly self-
dual, their cycles, and therefore their cycle matroids, also remain intact in G*. The cycle matroid
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of G consists of the cycles of B;, Hj, and Hj, and no others. Furthermore, the cycle matroid of
G* is precisely the same (because every two blocks have exactly the one vertex corresponding to
F in common, so no cycles besides those inherent in the original blocks are present). Therefore,
M(G)= M(G*). =

Weseethat thistheorem also givesa method for constructing geometrically self-dual 1-connected
graphs. We do so by first asserting that the & abstractly self-dual components must be geometrically
self-dual, and second, by attaching the k+2m blockssuch that (1) they all share one common vertex,
(2) that no two share any other vertex, and (3) that no block isembedded inside the face of another.
The theorem also tells us how to construct 1-connected graphs which may not be geometricaly
sdlf-dual, but that will always be abstractly self-dual, by attaching the blocks (with no additional
restrictions on the k self-dua blocks) in a relatively arbitrary fashion, without creating any new
cycles. See Servatius and Christopher 3], and Archdeacon and Richter [1] for other methods d
creating geometrically self-dual graphs.

Since any 1-connected, but not 2-connected, abstractly self-dua graph is made up of some
collection of &+ 2m blocks, the next task is to determine which, and how many, arrangements of
these blocks will result in a graph that iseither combinatorially or geometrically self-dual. In other
words, how do we perform the Whitney operations on a 1-connected abstractly self-dual graph to
manipulate it so that it is self-dua in a stricter sense? For certain sets of blocks, there may be
several such resulting graphs. For others, there may by only the one mentioned above. Because
of the possibly large number of arrangements of the blocksof a 1-connected graph, this question is
difficult to answer in general, but also promises to be an interesting endeavor.
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FRACTOBJAL!

Nataniel S. Greene
Yeshiva University

INTRODUCTION

Thefractorial has emerged out of two separate investigations. The first was to see whether the
operation of factorial could be defined for non-integer values. If 3! = 6 and 4! = 24, then what does
3itequal? If 31! hasavalue, then mustn't there be an inversefactorial operation that could answer
questions like 2! = 29?

The second investigation involved factorial expansions. When 4! is expanded, we have 4! =
(4)(3)(2)(1); the common difference between each factor is1. The question was. how are expansions
with common differencesother that 1, such as (8)(6)(4)(2) or (10)(7)(4)(1), related to the factorial?

A study of these two questions led to a unification of ideas. Fractional factorial and products
of arithmetic sequences like the ones mentioned above can be expressed using a single notation: a!,
(read "afractorial step #”), where a and bare positive real numbers and bis the common difference
between the factors. The name "fractorial" was suggested by Mr. Paul Eckhardt, the chairman
of the mathematics department of Carmel High School, who amalgamated the words "fractional
factorial." | amgrateful to my former teachers: Mr. Eckhardt for hissuggestions, and Mr. Anthony
lannottafor his encouragement.

Using fractorial notation, the normal factorial now becomes a specific case of a!y when a isa
natural number and b= 1. From this new definition springs forth a wealth of new relationships to
explore.

Definition 1. a = a(a—1)(a—2)...(3)(2)(1). Thisisthe normal definition of factorial, where a
is a natural number.

Example. 5! = (5)(4)(3)(2)(1)
Definition 2. 0 =1
Definition 3. a!y = a(a — b)(a - 2b)..-(a — kb), where a and bare positive real numbers, a > b,

and k is the largest whole number such that 0 < k < (a/b). Once again, al; is read as "afractorial
step b,” bbeing referred to as the step. When b = 1, a!y may simply be called "afactorial.”

Examples. 22 = @IHOG) = 13
(b= GHOHG) = 1}
Sharmy = B)EHAZM)() = 38
Hago = (DE/9(1/2)(1/4) = 3/32
(3/2)ase = (3/2)(5/4)1)(3/4)(1/2)(1/4) = 45/256

Definition 4. When a and bare natural numbers, al; is called a "perfect fractorial.”*
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Examples. These numbers are perfect fractorials: 8!z = (8)(6)(4)(2) = 384
111 = (11)(8)(5)(2) = 880
913 = (9)(6)(3) = 192
51y = (8)(1) =5
4h = 41 = (4)(3)(2)(1) = 24

A multitude of notations for factorials and generalized factorials have been introduced during
the last couple of centuries. For a more detailed discussion of these notations, one can refer to
Charles Jordan's Calculus o Finite Differences(Chelsea Publishing Co., New York, 1947). The
notation used by Jordan in his book is of particular interest. He defines the "generaised factorial
of degree n':

(@)ns = a{a—b)(a—2b): -(a— bt Db
Thisisessentialy the definition of thefractorial. The way in which the two definitions differ, however,
ison their solutions to the question: How many factorsshould there bein a givenfactorial's product?
Jordan alowsthe number of factors, n, to be an arbitrary independent variable, whilein fractorial,
n is a function completely determined by the values of a and b A detailed development of this
follows below. In this development, n will refer to the number of factors in the given fractorial, and
k will refer to the number of steps.

FORMULAS FOR COMPUTATION AND SIMPLIFICATION

As we saw from the examples that followed Definition 4, the factors of a fractorial's descending
product must naturally stop before reaching zero. This is the reason for defining k < (a/b). The
last factor (a - kb) is dways > 0. This piece of information can be used to derive an important
inequality (Theorem 1) and a formula for the number of factors in a given fractorial's expansion
(Theorem 2).

If (a - kb) > 0and if a and bare restricted to the natural numbers, then the following is aso
naturally true: (a - kb) > 1. Since the last factor must be the least possible integer > 1, (a = kb)
must be < (b+ 1). These two statements can be combined to form the compound inequality:

1<(a—ko) < (bF1) (1)

This statement can be generalized for the rational expression (a/e)!s;4), whose last factor is
[a/c— (kb)/d]. Replacing a by ad and b with be, wherea, b, ¢, and d are natural numbers, inequality
(1) becomes

1 < (ad—kbe) < (be+1) 2

Dividing by cd gives the following:

1/(cd) < [a/c — (kb)/d] < [b/d + 1/(ed)] @)

Theorem 1. For al natural numbers a, &, ¢, and d, the number (n) of factors in the fractorial
expression (a/c)!sq) Stisfies the inequality n < (ad+ ke - 1)/(be) < (n+ 1).

Proof: Given 1/(ed) < [afe— (kb)/d] < [b/d T+ 1/(cd)], from (3),
(kb)/d < [afc — 1/(ed)] < [(kb)/d + b/d],
and thus k < [(ad)/(be) - 1/(bc)] < (k + 1)
(kT 1) < [(ad)/(be) = L/ (be) T 1) < (k T 2) 5
Sincen = (k +1), we have n < (ad+ bc— 1)/(be) < (nt12).
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Example 1. =zl3 has 13factors. What are the possible values for z?

n<(a+b-1)/b<(n+1),(c=d=1)
13<(z+3-1)/3<14
13<(z+2)/3<14

I9<z+2<42

T<z<40

Example 2. 99,4 has 19 factors. Find al possible valuesfor .

n < (ad T be = 1)/(be) < (nF 1)
19 < [(99)(2) t 2 - 1)/ <20
19z < (197t z) < 20z

18z < 197 < 19z

5 <z< 108

Theorem 2. Thenumber of factors (n) in the expansion of (a/ec)!(s;4) €quals int{(ad+bec—1)/(be)],
where a, b, ¢, and d are natural numbers and int(z) takesany positive real number # and truncates
its decimal mantissa. [ E.g., int(3.895) = 3]

Proof: We know that n < (ad+ ke - 1)/{be) < (n+1). The middle expression is a rational
number trapped between two whole numbers. We can makeit equal to n by chopping off its decimal
mantissa:

int(n) = int[(ad + bc — 1)/(bc)] < int(n + 1)
n = int[(ad + bc — 1) /(b))

Example.  How many factors does 97!(3/1,y have?
n = int[((97)(11) + 3 — 1) /3] = int[1069/3] = 356

Corollary 1. When a and b are natural numbers, the number o factors in al, isint[(a+ b- 1)/8}.
Example. How many factors does 89!4 have?

n=int[(89+4—1)/4] = 23
Theorem 3.  If adisdivisible by be, then the last factor in the expansion of (a/c)!s/q4y €quals the

step and the number of factors equals (ad)/(bc). Proof: Assume (ad)/(be) is an integer. Then, by
Theorem 2, if nisthe number of factors,

n = int[(ad + bc — 1)/(bc)] = int[(ad)/(bc) + 1 — 1/(bc)) = (ad)/(bc).
Thus, the last factor is
afec— (n—1)(b/d) = a/c — [(ad)/(bc) — 1])(b/d) = a/c — (adb)/(bcd) + b/d = b/d,
which is the step size. It is d so apparent, by moving backwards through the proof, that if the last

factor equals the step, then the number of factors equals (ad)/(be), and, therefore, ad is divisible by
be.
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Example. How many factors does 81!3 have?

This problem can be answered quickly upon inspection using Theorem 3. We see that 81 is
divisible by 3, and consequently the answer is 27. Therefore, if you need to know the number of
factorsin afractorial expansion, first seeif ad isdivisible by bc If it is not, only then use Theorem
2. Theorem 2 will give the correct answer in all cases, but using it to compute n can be a bit more
tedious. i

Theorem4. If a and bare real numberssuch that a > 0 and b> 0, then (a1 )% = a!b(a'l'b).
(This theorem gives us a recursive definition for the fractorial.)
Proof: (at®) = (atb)a(a—Db).. (a—kb)]=al(aTt?).

Theorem 5. |If aisa nonnegativeinteger and bisany positive real number, then (ab)!y = alb®.
Proof:
(ab)ly = ab(ab — b)(ab — 2b) - - - (30)(2b)(b)
= [a(a - 1)(a — 2)---(3)RYD]B)(®) - - (B)]
= alt®

Examples. 10L =[(6)2))2 = (5)2°  and 181 = [(6)(3)]'z = (6!)3E.

Corollary 1. bl =b.
Proof: Leta=1.

Corollary 2. 0}, =1.

Proof. Leta = 0, sothat (0! = (O)bo. Thisis a very interesting situation. When we derive 0%
from Theorem 5, we see that whether this expression has any meaning or not depends entirely on
whether @ has meaning. Since we defineQ to be 1, 0 must also = 1.

It is aso interesting to see what happens when we ask how many factors there are in 0! using
theformulan = int[(a T b- 1)/b]. Letting a = 0, we have n = int[(b— 1)/8] which is zerofor b> 1.
Therefore, this formula will give a reasonable answer to our question when b > 1. There are no
factors in 0l3’s expansion, simply because 0 has no expansion.

Corallary 3. If a> 0and (az)!z = p, then z = [p/(a))]*/°.
Proof; If (az)!, = p,then (a!)z® = p and so z = [p/(a!)]*/°.
Example. If (2z)!. = 10, then z = [(10)/(2)]"/? = /5.

Corollary 4. Ifa> 0, p>0,and (az)lz = (px)!,, then z = [(a!)/(ph]V/P~).

Proof. If (az)!, = (pz)!s, then (a)z® = (p!)zf. Thus («F)/(z*) = (a!)/(p!), which means that
2(#=9) = (al)/(p!) and s0 = = [(a!)/(p1)]/ =),
Example. If (52)!; = (9z)!z, then = = [(51)/(9!)]/(~%) = 2(189Y/4)
Theorem 6. If aand b areintegers such that a > O and b> 0 and z is any positive real number,
then (az)l= = (aly)z"™.
Proof:
(az)lyz = az(az - bz)(az - 2bz)- - (az - kbz)
= [a(a — b)(a — 2b) - (a— kB)][(=)(2) - - (=)]
= (al)z" -

Examples. 27 = [(9)(3)]!(2)(3) =(9%)3% and 3814 = [(19)(2)]\(2)(2) = (19!2)2%°
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Corollary 1. [fa> 0 and (az)he = p, then = = [p/{a%)]V/™.

Proof: K (az)hz = p, then (a%)z" = p, and o = [p/(ak)]/".

Example. If (3z)!; = 8, then = = [8/(3!2)]Y/2 = \/B/3.

Corollary 2. Ifa>0, p>0, and (az)hz = (pz)l=, then = = [(p!)/(ak)]*/**—"2), where n; and
n2 are the number of factors in (az)%- and (pz)=, respectively.

Proof:  Suppose (az)hs = (pz)lgz- Then (als)z™ = (plg)="2. Dividing both sides by "2, we have
(z™)/(z"?) = (ply)/(ak), or 2™ ~"2 = (p;)/(al). And S0 z = [(ply)/(ale)]/ ("1 —"2).
Example. Solvefor z: (17z)ls: = (122)!s,.

z = [(1215) /(17 (" ="2)

ny =int[(17F2-1)/2) = 9 nz =int[(12+5-1)/5] = 3
(n1 — n2) =6, sothat

z = [(12!)/(17)]/°

It is interesting to note that if the number of factors in (az)%: equals the number of factorsin
(pz)Y4, then (m1 — ng) = 0 and the value of = becomes undefined. In that case our original question
becomes meaningless and we realize that thereis no value for  that will make this statement true.

Theorem 7. If a, b, ¢, and dare whole numbers where a > 0 and b, ¢, and d > 0, then (a/¢)'sya =
[(ad)tsc)/[(ed)™], where n is the number of factorsin the fractorial.
Proof:

(a/c)lssa = (afc)(afc — b/d)(a/c— 2b/d)- - (a/c — kb/d)
= [(cd)*/(cd)")[(a/c)(a/c — b/d)(ac — 2b/d)---(a/c — kb/d)]
= [(ad)(ad — be)(ad — 2bc) - - - (ad — kbc)]/(cd)™
= (ad)lse/(cd)”

Thus by merely establishing a common denominator, the theorem isproved. Thisisa very important
theorem because it allows one to compute with greater ease the fractorial whose step is also a
quotient.

Corollary 1. {a/e)! = (alc)/c.

Examples.

(8/2)! = (8!2)/(2®/?) = 384/16 = 24

Blas2y = (1213)/(1201%/)) = 1944/16 = 243/2

(9/4)(23) = (27'3)/12* = 209/256

7/2) = (T2)/(2%) = 105/16

(2/3) 119y = (181)3/(27°) = ([(61)3°]/27° = (6!)/9° = 80/59049

Corollary 2. 114y = (d)/(d™).
Proof: Leta/c=1.
Examples. 1k,/s) = (5!)/(5%) = 24/625. Uezysy = (82)/(5%) = 3/25.
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Theorem 8: Suppose a and b are rational numbers and h is any natural number such that 1 <
h< a/b, then a!,, = a!,,(a - b)!bh(ﬂ - 2b)‘bh o § [ﬂ - ( h— 1)5}'51‘

Proof:  aly = a(a— b)(a - 2b)-.-(a — kb). Let h be a natural number such that 1 < h < a/b.
aly can now be rewritten as:
aly = a(a—b)a—2b)...[a— (h—1)8]-. - (a — kb).
these factors can be regrouped in the following manner:
1. Let every hthfactor, after and including a, be grouped together: a(a— bh)(a—2bk)-- - (a—kbh).
2. Let every hth factor, after and including (a— b), be grouped together: (a—b)(a — b— bh)(a —
b— 2bk)---(a—b - kbh).
3. Let the same be done to each successivefactor, up to and including the hth factor [a—( h- 1)}
For the hth factor this gives:
[a= (h=1)b][a = (h=I)b—&k][a — (h—1)b— 2bR]---[a— (h— 1)b— kbh].
We now have the following equality:
aly = [a(a — bh)(a — 2bh)- - - (e — kbh)]
[(a=b)(a — b= bh)(a — b= 2bh)-..(a— b— kbh)]
.[(a— 2b)(a — 2b — bh)(a — 2b— 2bh)- (a— 2b— kbh)]

.[(a— (h=1)b)(a — (h=I)b—k)(@a— (h=1)b—2bh)-..(a— (h=I)b— kbh)]
Which when simplified becomes:
aly = alyy (@ — b)sn(a — 26)1n -~ - [@ — (B — 1)8)ton.
What thistheorem saysisthat you can break up alargefractorial into productsof smaller fractorials,

and you can multiply smaller fractorials to create a larger fractorial.
Examples.

10! = (10%3)(9's)(8!) i.e., [(10)(9)(8)-- - ()] = [(LONTADIA(B)B)I(B)(5)(2)]
131, = (1314)(111y)
13!9y = (13H(123)
8y = BY(TINLY
33 = (31)(23D(23Y-
THE FRACTORIAL ROOT

Definition5. Inorder tosolvetheequation y!; = z for y, wherez and y are positive real numbers,
a new algebraic operation is needed to reverse or undo the fractorial process. We cal the inverse
operation of thefractorial the “fractorial root" and it isdesignated in the followingmanner: y = zjs,
read “ y = = fractorial root step B' or "y = the fractorial root of = step h" Although the fractorial
isitself a function, its inverse is only a relation. For instance, although 3! = 6, there are infinite
number of solutions to the equation z! = 6. Thesolution set is S= {3,3.4738,4.1766,...}. In this
case, 3 isreferred to as the "principal fractorial root.”

Definition 6. In general, the principal fractorial root of a positive rea number R is the smallest
value of z, where(z > b) such that zl; = R. In theexamples that follow, wewill mainly beconcerned
with solving for the principal fractorial root.



436

SOLVING FOR THE FRACTORIAL ROOT

Example 1. Solvefor z: ! = 40. In other words, we are trying to find the factorial root of 40
(thefractorial root, step 1, of 40).

STEP 1. Trap z! between two perfect fractorials,

Since 4! = 24 and 5! = 120, 4! < z! < 5!. By our definition of a principal fractorial root, it
must also be true that 4 < z < 5. What we are actually saying is that 4 plus a decimal mantissa,
m, equals z.

STEP 2. Set up an equation.
We have two alternatives. We can either solvefor m, using the equation:

(4+m)(3+ m)(2+ m)(1 +m)(m) = 40
or we can solve directly for z using an alternate equation:
(z)(z — 1)(z — 2)(z — 3)(z — 4) = 40.
| prefer this second method.

It isimportant to note that when =1, is trapped between two perfect fractorialsely and (a+ 1),
the number of factorsin itsexpansion isequal to the number of factorsin the expansion of the higher
order fractorial.

Solving for z using Newton's method, we obtain the principal fractorial root, 40)~4.5897.

In general, after finding the principal fractorial root, al other fractorial roots can be obtained
by increasing the number of factors in the expansion of #!. In thiscase, (z)(z—1)(z—2)(z—3)(= -
4)(z — 5) =40 and (z)(z — 1)(z — 2)(z — 3)(z — 4)(z — 5)(x — 6) = 40 will yield two other possible
solutions to the equation z! = 40.

Example 2. Solvefor z: z!3 = 200.
STEP 1. Trapz!; Since7l; = 105and 8!, =384, 7T, <zl <8l and7 <z <8.

STEP 2.  Set up an equation: Either (7+ m)(5+ m)(3+ m)(1+ m)=200and z = (7+ m),or
z(z — 2)(z — 4)(z — 6) = 200. Solving for z in either case gives 200;; as7.4381.

Example 3. Solvefor z: z)s9) = 20. This problem isdlightly different from thefirst two in that
in this case the step is a non- integer. Problems like this will require a little extrawork.

STEP 1. Re-expressthe problem using Theorem 7: zl(3/2) = 20 becomes {(22)!s)/(2™) = 20.

STEP2. Trap [(2z)!s])/(2") between two perfect fractorials by substituting in for  two appropriate
consecutive integers. If 2 = 4, then n = 3 and the expression becomes (8!3)/(23) = 10. If £ = 5,
then n = 4 and the expression becomes (10's)/(2*) = 35. Thus, (8!3)/8 < [(2z)!]/(2") < (10'3)/16,
and 4 < 2 <5.

STEP3. Find n. Itisstill unknown whether n =3or n=4. If welet 2 = 4%, then the expression
becomes (9'3)/(2%) = 20%. Since {(2z)'s}/(2") < 20}, we conclude that n = 3.

STEP 4. Set up an equation. {(2z)!3]/8 = 20, or (2z)!s = 160, and so 2z(2z — 8)(2z — 6) = 160,
and finally, z as 4.4899.

The FACTORIAL ROOTS OF ONE. It is interesting to solve the equation z! = 1. Since
0! = 1, one might assume that 0 is the principal fractorial root. However, by definition of the
principal fractorial root, z must be > the step. While 0 is one valuefor zj, the principal fractorial
root is 1. Solving for another possible value we have: z(z — 1) = 1 and thus z = (v/5 + 1)/2, the
golden ratio! Thus the golden ration, which has the tendency of appearing in the most unexpected
places, isafactoria root of 1.
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SOLVING FOR THE UNKNOWN STEP.

The technique for doing thisisquite similar to that of solving for the fractorial root. Although,
whilethere are an infinite number of solutionsto z!y = R, thereisonly one valueof z that will make
the equation al; = R true.

Example1l. Solvefor z: 10! = 105.

STEP 1. Trap 10! between two perfect fractorials. Since10!s = 5 = and 1014 = 120, 10!s < 10!; <
10!4. We conclude from thisthat 4 <z <5.

STEP 2. Set up an equation. Since 10(10 — z)(10 — 2z) = 105, we have 4z2 — 60z + 179 =0, and
SO z = 4.1088.

Example 2. Solvefor z: 9!, = 66.
STEP 1. 9!3= 162 and 9!4 = 45. Therefore, 94 < 9!, < 9!3 and 3< z <4.
STEP2 9(9- z)(9 — 2z) = 66, thus 6z% — 81z + 221 =0, and s0 = ~ 3.7955.

DISCONTINUITY, STIRLING'SFORMULA, AND THE GAMMA FUNCTION.

The following properties hold true, making the fractorial discontinuous when z isany multiple
(n) of the step:
1. zdim-(zh) = (nb)!b 2. z-lim+(z!b) =0

It isimportant to note that Stirling's formula, a! & v/2wa(a/e)?, is only a valid approximation for
d when aisa whole number.

The reason for thisis that , while the function f(a) = a! is discontinuous when a is a whole
number, the approximation formula is a smooth function for all positive vaues of a. It would
make an interesting problem to derive aformula to Stirling's that would approximate a!y for whole
numbers a and b.

An interesting question to consider ishow thefractorial function relates to the gammafunction.
Itistrue that T'(z + 1) = 2! for every whole number z. Nevertheless, it isimportant to realize that
these are two markedly different functions. I'(z) is continuousfor > 0, while (z! )s not. I'(z)
is defined for negative values of z, and for 0 < z < 1, while =! is not. The fact that the gamma
function has the value of the factorial for all whole numbers z, should not imply that the factorial
must naturally behave like the gamma function for fractional and negative values of z.

CONCLUSION.

We have seen that the concept of the generalized factorial operation called thefractorial implies
a number of new theoremsand algebraictechniques. Asa useful notation, thefractorial also offersthe
ability to simplify, manipulate, and compute with greater ease the long, space-consuming products
that sometimes appear in formulas. It would be interesting t o see whether, as a mathematical idea
in and of itself, the fractorial has new insights to offer to combinatoricsor the sciences.

The author prepared this paper while he was a junior at Carmel High School in Carmel, NY.
He is currently enrolled at Yeshiva University under an early admission program.



438

ON TRANSPOSITIONSOVERFINITEFIELDS

Beth Miller
Penn State University - New Kensinglion Campus

Let K denote thefinite field of order q = p”. A polynomia f (z) in K[z} representsa function
F:K — K if F(b) = f(b) for al bin K. Two polynomias f and g represent the same function F*
if and only if

f(x) Og{z) (mod z? - x) m

Further, by the Lagrange interpolation formula[2, p. 369], every function over If can be represented
by a polynomial f (x) in K[z].

Now a polynomial f (x) in K[z] iscalleda per mut at i on pol ynom al if thefunction represented
by f is one-to-one. Hence, if we identify polynomials related by (1), the permutation polynomials
over K form a group, isomorphic to the symmetric group S,. Thus every permutation polynomial
is the product (composition) of finitely many transpositions.

The purpose of this noteis to point out that transpositions over K are represented by "'nice'
polynomials. More precisdly, if T, 5 denotes the transposition over If defined by

b if z=a
Tap(z) =4 a if z=%
z otherwise.
then we will show that
Lty k 1-k
Top () = (a— b Do(a* —0)e? X (modat — x). ©
k=1

To prove equation (2), we will use an alternative method to the Lagrange formula. This second
method uses the fact that z9-! = 1 for all nonzero elements of the field K. We will also need the
fact that pz = Ofor dl z in K, where p denotes the characteristic of the field.

We are ready for our result.

THEOREM: With notation as above,

g-1
Tup(z)= (a-b) Y (a* ~ )z F 2 (mod o7 - x),
k=1

Proof:
K* = K - {0} isacyclic group of order g - 1. Hence,
-1_J0 ifr=a
e =a)? ‘{1 if z # a.
SO)
Tap(z) = (b=a)[1 = (2 —a) ']+ (e = B)[1 = (z = )" "] +2

for al = in K. Now, combining the binomial formula (r - )" = Y7, (F)r#s"~* and the fact that
pz = Ofor all zin K, we obtain:
(x—a)! = 29 —a’.
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Therefore,
Top(z) = - - (z—a) ']+ (@= B = (x= )]tz
= (@@= D —a)f "t — (2 - b +2

(a-b)[("““)"—(—”;b)i]ﬂ if 2 #a,b

z—a z—b
b fz=a
ifz=1"%

9 — a9 q b7
{g—b\[z ez b]+z ifz#£a.b
) ‘lz—a z—-Db] .o
- b ifz=a
a ifz=0b
(a=b) [Til(a* - a1+ + 2 if 2 # a,b
= b fr=a
a fz=0
g—-1
=(a—") E(a"—b")z”l"‘}‘l': for al z in K.
k=1

COROLLARY: deg(Tas(z)) =q—2

Note: The reader can find further information concerning finite fields in references [1] and [2]
and concerning permutation polynomials in [2] and [3]. Reference [3] is an exellent survey where
current open problems on the topic are discussed.
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ON THE NUMBER OF INVERTIBLE MATRICES OVER Zy.

Mark J. Lancaster
Hendriz College

Invertible matrices play an important role in cryptography and coding theory. To encode a
message from plaintext S into codetext 7', one first divides the message into blocks of length n,
using buffer characters when necessary to make al the ,bl?,CkS the same length. Let S’ be this

buffered message. Next, using S, one can create a n x -'% matrix (where |§’] is the number o

characters is §") with each column representing a block of length n. Finally, one uses an invertible
matrix M to encode this message in codetext 7. The decoding process is where the existence of
M- isessentia. To decode a message, one takes the codetext T in matrix form and multiplies it
by M-! tofind the original message S.

For example, suppose we wish to encode the message "MATHISFUN™ in blocks of length two.
Since this message is of length nine, we must add a buffer character that will not be confused with
the original message, such as “Q” or “Z.” Thus we send the message "MATHISFUNQ" in blocks of
2 using the invertible encoding matrix, for example,

2 5

5 13)°
We write the 26-letter alphabet asA =0,B=1,C = 2, ..., Z = 25. Using arithmetic modulo 26,
the encoding process for our message is

2 5] M T 1 F NJ] _J2 5] [12 19 8 5 13| _ |24 21 2 6 2
5 13 A HS UQ| "™ 13 0 7 18 20 18] — |8 4 14 25 13}°

Thus, "MATHISFUNQ" is now encoded as "YIVECOGZCN." To translate "YIVECOGZCN" back
into plaintext, we first compute the inverse of

2 5
5 13}’

13 21
21 2

which is

13 -5
13 o

] (modulo 26).

Hence, the decoding process il

13 21} (24 21 2 6 2] _ (12 19 8 5 13
21 2 8 4 14 25 13] |0 7 18 20 16)°

which is the original message "MATHISFUNQ."

If the n x n encoding matrix M is over a finite field (i.e., the alphabet's length is a prime
number), then we have an invertible matrix if, and only if, det(M) # 0. However, most alphabets
probably do not have a prime number of characters, so M isusually over a finite ring. This poses a
problem, for M may be non-invertible even though det(M) # 0. Such a result is possible due to a
ring's zero divisors.

Since we have seen that invertible matrices are necessary for the decoding process, it is nice to
know just how many we can create. An interesting result from determining the number of 1x 1
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and 2 x 2 invertible matricesis that the probability of choosing an invertible matrix from the total
number of matrices over Z, is the same as the probability of choosing an invertible matrix from the
total number of matrices possible over Zye, where p isprime and e > 1.

First, let us count the n x n matrices that are invertible over the field Zp, where p is prime.
The total number of waysto fill the entries of thefirst n x 1 column is p". However, for a matrix
to be invertible, there cannot exist a column filled with zeros. Thus, there exist p" - 1 acceptable
ways to create the first column of an invertible matrix. Again, the total number of ways tofill the
entries of the second n x 1 column is p". However, to create an invertible matrix, we cannot choose
any multiple of thefirst column. Hence, there exist a total of p" - p acceptable waysto create the
second column. Continuing in this manner, we see that the number of invertiblen x n matricesis

given by
(" = )" - p)p" = ") - (" = p"71). 6]
Hence, the probability of choosing an invertible n x n matrix from the set of all n x n matrices
possible is
(" = (" —p)(p" - p*)--- (2" —p"") @
I -

We now turn to the task of trying to determine the number of n x n invertible matrices over
thering Zpe.

Proposition 1. Let M;y, betheset of 1x 1 matrices over Zp., wherepisprimeande > 1 The
number of invertible matricesin Mix; isp (?;—’)
Proof: Obviously, a 1x 1 matrix isinvertible if, and only if, itssingle entry isinvertible over Zge.

Using Euler’s ¢-function, we see that the number of invertible elementsin Zpe (i.e. the number of
elements that are relatively prime to p* isgiven by

= () or (5

Hence, the probability that an invertible matrix is pickedis

e (=1
p(p)_p—

P° p

Interestingly enough, "%1 is also the probability of choosing an invertible matrix from M;jx; over
p
As motivation for counting the 2 x 2 invertible matrices over Z,., where p isprime and e > 1,
we will first consider the problem of counting the number of 2x 2 invertible matrices over Zs., where
e>1

Let Mayo betheset of 2 x 2 matrices over Zge.
Suppose that A 6 M32x» such that

S0 det(A) = azbs - braz. Hence, to be assured that A~! exists, we must have [det(A)]"1 6 Zs..
Notice that “a € Zq. isinvertible," "a€ Z,. isan odd number,” and "a € Z,: isrelatively prime to
2¢" areequivalent statements. Thus, to count all the invertible matrices in Max2, one only needs to
count all the differences of products a,bs - b1a2 that yield an odd number. To thisend, we see that
det(A) isan odd number when a, b, is odd and by a3 is even, or vice versa. Hence, we can create a
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sequence of independent steps that will count the number of ways in which det(A) = aibz — biaz
can be an odd number, where N = 2¢:

Step 1. Choose one of a; b, or b1aa to beodd. ( The other product is forced to be even ). There are
2 waysto do thisstep.

Step 2. For the product that is odd, choose two numbers that are relatively prime to 2¢ (i.e. odd
times odd is odd). There are [p(N)]? waysto do this step.

Step 3. For the product that is even, choose two numbers whose product is even. There are
N2 = [p(N)]* ways to do this step.

Thus the number of invertible matricesin Maxa over Zge is

2l (V) [V? = ()] 3)

Hence, the probability of choosing an invertible matrix from Maxa over Zs. is

2[p(N) [V? — [ V)] 20p(@)] [(2°) - ()]

N4 Qde

2 (2] [22c _ [2e—1]2]
- 4e

9.94e-2 [1 - 2—2]
= 94e

3

—0.9-201_9-2] =2
=2-27%[1-277 5

Notice that the probability of choosing an invertible matrix from Mzxa over Z2 is

-1’ -p) _ 2°-1)(2*-2) _3
! - 2¢ 8

This result provides a basisfor the following proposition.

Proposition 2. The probability of choosing an invertible matrix from Max2 over Z, isequal to the
probability of choosing an invertible matrix from Maxa over Zge, wherep is prime and e > 1.

Proof;  To prove this conjecture, we must determine the number of invertible matrices in Max2
over Zpe, Where pis prime, p > 2, and e > 1. For convenience of notation, let N = p°. Note
that invertible elements of Zy can now be odd or even. For instance, in Zga, both 7 and 2 are
invertible. Also note that under the constraints of N, 2[w(N))* [N2 - [sa(N)]zl counts the ways to

get an invertible number when one of a1b. or b;a; is invertible and the other is not invertible (i.e.
invertible minus non-invertible equals invertible over positive powersof asingle prime).

Hence, we now need to determine the number of differencesof productsthat are invertible where
each of ayb, and b4, isinvertible as well. Thus, we can create a sequence of independent steps that
will count the number of ways in which det(A) = a;b2 — b1a2 can be invertible when each of a1b,
and bya, isinvertible.

Step 1. Choose i to be an invertible element of Zy. There are w(N) ways to do this step.

Step 2. Suppose that a and b are invertible elements of Zy such that a—= b= 4. We know that
for each 4, there exist N ways to write ¢ as a difference. Of those N differences, we know that
a non- invertible number appears in a difference a total of 2[N - ¢(N)] times. Thus, there are
N - 2[N - (N))] choices of differencesin which both numbers of the differences are invertible.
Hence, there are [2¢(N) — N] ways to do this step.
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Step 3. For each differencea - b = ¢, where each of a and b are invertible, we need to count the
number of waysin which a could be a product of two invertible elements of Zy, call them a; and a2.
There are p(N) choicesfor ;. Notice that for any choice of a1, @2 is uniquely determined. Thus
there are only ¢(N) products that create a. Likewise, b can be determined from () products.
Hence, there are [¢(N)]* ways to do this step.

Thus, the number of ways in which det(A) = a;b; - bias can be invertible when each of aibz and

biaz isinvertible is p(N) [2¢(N) — N] [(M))?. Hence, the number of invertible matrices in Maxz
over Zy (N = p® where pisprime, p>2,and e>1) is

2[p(N)* [N? = [p(N)*] + (M) [20(N) = N] (W] (a)

When N = 2¢ for e > 1, we have ¢(2¢) = 2°~%. Thus [2¢(N) = N] = [2-2°=1 —2°] = O, which

reduces equation (4) to equation (3). Hence, wecan state that equation (4) holdsfor N = p*, where
pisprimeand e > 1 After some algebra, equation (4) simplifiesto

N [p(N)]* [2N = ¢(N)]. (5)

Thus, for p prime and e > 1, the probability of choosing an invertible matrix from Maxz over Zge is

N p(N)I* 2N — o(N)] _ p* lp(e)]” [29° — o(2)]

N4 pdc
I it it e e )
- p4e
_rl -1 [p* 4+ p°7Y]

p4e

_l-1Pp+1]
- P
_@-1H-1)
= =
_ (-1 -p)
e

This is exactly the same probability of choosing an invertible matrix from Maxz over Zp using
equation (2). This proves Proposition 2.

Using the counting techniques from the proof of Proposition 2, we can count the number of
invertible matrices that have specia forms. For example, suppose we want to count the number of
invertible matricesover Zy (N = p¢, where pis prime and e > 1) of the form

ay b) 0
A= as bz 0
0 0 C3

First, we note that det(A) = (a;by - bjaz)cs. To besure that A isinvertible, both ajbs - bya;
and cg must be invertible over Zy. From equation (5), we know that the number of waysin which
a;by — byay isinvertibleis N [p(N)]2[2N = o(N)]. Also, e has ¢(N) ways to beinvertible. Hence,
the number of invertible matrices of the form

ay bl 0
as bz 0
0 0 e3
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is N [p(N)]* [2N — p(N)] (N).
In general, the following conjecture is true:
Conjecture 8. The probability of choosing an invertible matrix from Maxa over Z, is equal to

the probability of choosing an invertible matrix from Mpxn Over Zye, where n > 3, pis prime, and
e>1

TH s conjecture can he proven using the techniques of Kohlitz [1, Exercises 16- 20, pp. 77-79].
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THE 5-STEP PROBABILITY SOLVER

Hang-Ling Chang and Paul J. Fairbanks
Bridgewater State College

A Introduction

The Monte Hall problem, which originated on the game show "Let's Make a Ded," has stirred
a renewed interest in the technique of solving prohahility problems. The authors believe their &-
step probability solver fills a gap in this area, in which intuition can often he deceiving. In the
next section, we will illustrate the procedure for using the five steps to solve two such problems. In
Section 3, the authors will use the 5-step method to show why the contestant on “Let's Makea Dea"
doubles her prohahility of winning by using what is generally considered the non-intuitive strategy.
This procedure should provide the rigorous solution of most, if not all, probability problems. It
should also eliminate any possible controversy which could arise if an intuitive procedure is applied.

2. The 5 Steps

A surprising result concerning Acquired Immunity Deficiency Syndrome (AIDS) testing will be
used to introduce the five steps.

Step I Identify all the partition rules.

Step2  Defineall basic events created by the partition rules.

Step3  Formulate dl known information using probability statements and the events defined.
Step 4. Formulate the questions using probability statements and the events defined.

Step 5 Apply prohahility formulas to find the solution(s) to the problem.

Let us assume that one percent of the US population has Human Immuno Virus (HIV). Let us
further assume that a test has been developed which gives a positive result 98% of the time when
the patient has HIV. Thissame test givesa negative result 97% of the time when the patient does
not have the virus. We assume that the test is aways conclusive; hence for patients that do not
have the virus, the test givesa positive result 3% of the time. The question we wish to answer is. «
What is the probability that a given person has HIV if he or she tests positive?"

Step I:  Partition the sample space, the population of the US, into those people that have HIV
and those that do not. We also partition the sample space into those that test positive and those
that test negative.

Step 22 Basic events are events defined in terms of exactly one partition rule. Suppose that
a person is selected at random. We define V = "people with HIV”, and T = "people that test
positive". We previously assumed that this test always gives a positive or a negative result. We
further assume that a person either has or doesn't have HIV. Therefore, V' = "people that don't
have HIV,” and T" = "people that test negative." Figure 1 summarizes the first two steps in our
procedure. USA

Figure 1= Partitioning of the Sample Space |° %, - - -
V = People with HIV
T = People who tested positive |
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Step 3  P(V) = 0.01 (by assumption), and the given conditional probabilities are P(T{V) = 0.98
and P(T'|V!) = 0.97.

Step 4  We wish to know the probability that a person who tests positive actually has HIV:
P(V|T).

Step5:  Using Bayes Rule,

P(V)P(TIV)
P(V)P(TIV)+ P(V')P(T|V')
_ (0.01)(0.98)

T (0.01)(0.98) + (0.99)(0.03)
=0.25

P(VIT) =

Hence, despite thefact that the test seems to be quite accurate based on the given information, only
one-fourth of those people who test positive actually had contracted HIV.

The next example illustrates the use of the five steps for a typica elementary probability
problem: "As the buzzer sounds at the end of a basketball game, the Celtics' center, Tom Moore, is
fouled and is awarded two free throws. Moore makes 80% of his foul shots, and since he is as cool
asice, we can safely assume that his probability of making the second one is not affected by how
he did on the first shot. The score is Pistons 100 and Celtics 99. What is the probability that the
game will be tied and go into overtime?*

Step 1:  For thefirst shot, partition the sample space into the two basic events - make it or miss
it. Do the same for the second shot.

Step 2 Let My = "makethe 1st shot,” and M, = "make the 2nd shot." Naturally, the comple-
ments will be the act of missing the respective shots.

Step 3  P(Mi)= P(M3;)=0.80
Step4  Wewish to know the probability of atie after regulation, which equates to the probability
of making exactly one of the two free throws.
Step 5:
P(My and M)t P(M] and My) = P(M;)P(M3) T P(M])P(My)
= (0.80)(0.20) + (0.20)(0.80)
=0.32

3. Resolving The Monte Hall Controversy

In one version of the Monte Hall example, the host asks the contestant to choose one of three
boxes in an attempt to find the one box which contains the key to a new car. Beforethe contestant
opens the box she chose, the host aways knowingly opens an empty box from the two that remain.
Now the contestant is offered the opportunity to trade her box for the one remaining. Should she?
Generaly, the intuitive answer is that "It doesn't matter"; but we will use the 5-step probability
solver to show why she should switch.

There are three boxesand they are equally likely to contain the key to the new car. Thus, there
should be no argument that the contestant's probability of winning is, and remains, one-third if she
has made up her mind to not switch. We will now apply our five steps to the experiment which
consists of choosing a box and then switching to the remaining box. Since we are considering the
case in which the contestant always choosesa box and then switches, this is a two-step experiment.

Step 1:  Two partition rules are evident. Thefirst one partitions the sample space of all possible
outcomes of the experiment into two events: the event of obtaining the box with the key and the
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event of obtaining an empty box. The second one partitions the sample space created by the act of
switching. In either case, two events are created: obtaining the box with the key or obtaining an
empty box.

Step2: Let Kj = "thefirst box chosen containsthe key," and K, = "the box switched to contains
the key." The other events can now be defined as complements of these two.

Step 31  Assuming that the three boxes have the same chance of being chosen by the contestant,
the known information is: P(Ky) = 1/3, P(K,[{Ky) = 0, and P(K,|K}) =1

Step 4  The answer to the question “ Should the contestant switch to the third box?" depends
solely on the values of P(K;) and P(K,). If P(K,) exceeds P(Kj), then it is to the contestant's
advantage to switch.

Step 5. Since P(K;) = 1/3 isalready given, we will derive P(K,) as follows:
P(K,) = P(K, and K;)+ P(K, and K})
= P(K;)P(K,|K;) + P(K_',)P(K, |K})
= (1/3)(0) + (2/3)(1)
=2/3

Therefore, switching doubles the contestant's chance of winning the car from 1/3 to 2/3.

4. Conclusion

Ever since its initial publication in the “ Ask Marilyn" column (Parade, Sept. 9, 1990), the
Monte Hall problem has instigated heated discussions concerning probability problems. However
simple these problems may appear, they can be very deceptive if not handled with care. We have
found throughout our years of teaching probability that the 5-step solution procedure presented here
has never failed to provide clear, non-controversial, and, most importantly, correct answers.
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ON THE MATCHI NG PROBLEM IN PROBABILITY

Bradford R. Crain
Portland State University

This paper presents standard results in the classic matching problem in probability. These
results should be a part of any good introductory course in the theory of probability, and can be
found in a number of excellent textbooks. The method of derivation employedin this article may be
original and definitely simplifies the proofs, but the main results are well known to mathematicians
and statisticians.

In the classic matching problem in probability, we imagine that n men (each wearing a hat),
arrive at a socia function, and each checks his hat at the door. At the end of the evening, the men
are given their hats back completely at random. We assume that the n men are distinct, and
that their hats are distinct. For mathematical convenience, we assume that the men are numbered
from 1 to n, and the hats are also numbered from 1 to n. When they arrived, man number i was
wearing hat number ¢, ¢ = 1,2,3,...,n. When they leave, each man will be wearing a randomly
selected hat, thereby generating a random permutation o the integers 1,2,3,...,n

In the spirit of probability, let us defineevents Ay, A, ..., A, by the following description: A;
is the event that man numbered i leaves with his own hat. If A; occurs, we will say that a match
occursat ¢, Evidently,

fori=1,2,...,n
In the material below, A B means theintersection of thesets A and B, and A¢ is the complement
of the set A.

Now A; UA;U...UA, isthe event that at |east one match occurs, and ASAj§ - .- Ag istheevent
that no matches occur; i.e., no one leaves with Hs own hat. These two events are complementary
and are related by the equation

PASAS---AS) =1- P(A; U4z U...UA,).
Using the usual counting rules, we see that

pay= 2218,

n—2)!
Py = 222
—3)
P(AAyag) = 23,
n!
and so forth. [We assume that the reader knowsthat the number of permutationsi, , iz,13,...,4, of
1,2,3,...,nisnl=n(n-1)(n-2)---3-2.1].

Now let's return to the probability of at least one match. (The following equations are a
generalization of the result P(A U B) = P(4) + P(B) — P(AB) to the union of n sets, and can be
verified by induction.)

P(at |least one match) = P(4; UA; U...UA,)

=D PA)=3 3 PAA)+Y D Y P(AidjAr) - ...
i=1

1<i<j<n 1<i<j<k<n

ot (—1)"+1P(A1A2 3R An)
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In the above equations, the first summation is over al single events, the double summation
isover al pairwise intersections, the third summation is over all triple intersections, and so forth.
Thusthesinglesum contains {}) terms, the double sum contains {3) terms, the triple sum contains
(3) terms, etc.

Now, by symmetry, P(A:) = P(A1) for al i, P(A:A;) = P(A142) for all i < j, P(A; A,A,,) =
P(A;A245) for al i < j <k, and soforth. Consequently,

P(at |east one match) = (';) @Dl ('2') (n-2)! 4 ( >(" 3 _ o 1)n+1( ) 1

n! n! n!
1 1 1 (=)H!
=pTatyooot T

where the binomial coefficient

n n!
() H(n = k)"k 0,1,2,.

Recalling that

we see that, for large n,
P(at least one match) as 1 - ™!

Actually, since we have an alternating series, n doesn't even need to be large in order for the
approximation to begood. Also, since the event "no matches occur" is the complement of the event
"at least one match occurs," we see that

P(no matches occur) = 1 - P(at |east one match occurs)as 1- (1-e™!) =¢™?
By a derangement of 1,2,3,...,n we mean a permutation of 1,2,3,...,n with no integer in its

natural position; i.e., o matches occur. [For example, 3,1,2 isaderangement of 1,2,3 ; but
1,3,2 isnot] Let D, be the number of derangementsof 1,2,3,...,n. Then

D,
P(no matchesoccur) = — =1—=+=

141 14 407
n! TRETRE TR T

Consequently,

1 1 1 (=) . Dy
D"="!{1_ﬁ+ﬁ”ﬁ+“'+_n—!*} and nan;lQ;!—-—-e

Using the concept of derangements will expedite the calculation of additional probabilities of
interest. For example:
P(exactly one match occurs) = P(A1A5-.- AS) T P(ASAzAS - AS) F ...+ P(ASAS-.- A5, Ay,).

Now, by symmetry, al of the termsin the above equation are equal, so that

Dn-—l — Dﬂ-—l
P(exactly one match occurs) = n P(A4; A5 ---Af) =n {T} =GoDn

Thislast result followed by counting the number of derangements of 2,3, ... ,=n, and dividing by n!.

Thus et
14l 1y pET

P(exactly one match) = 1 - TR Tl ATy xe
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In asimilar vein,
P(exactly two matches) = P(A1dz45-.-AS) T ... T P(AS..- AS_,An_1A,).

Theright-hand side involves (3) terms, all of which are equal. Thus, we have

Plexactly two matches) = (g) P(As Az A5 - AS) = 2.(%2). D;—!-?
- l Dn—2
= 2 n=2)]
1 111 —1)n-2
=a{l—ﬁ+ﬁ—ﬁ+...+((n_—)2)!}
e—l
%T.

In asimilar fashion, and with the help of derangements, we can see that

P(exactly k matches occur) = %%
1 1 1 1 (=1)n-*
= ® {1 ntaTmt Ym0
e—l

for 0 < k £ n. If wedefine the random variable X to be the number of matches that occur, then

e~

T, k=0,1,2,3,...

"lingc P(X=k)=
and we have found both the exact and the asymptotic distributions of X . As the reader may have
noticed, this last equation could be written

et 1k
PX =k)=~ e k=0,1,2,3,....
Thus, X is approximately Poisson distributed with a mean of one. Thisgives the result E(X)as 1
for al n; in other words, the average number of matches is aways approximately one, regardless of
how many men are present.

Interestingly enough, the average number of matchesis always one, regardless of how many men
are present; i.e., E(X) = 1for al n. This can be deduced simply asfollows. Write X = X, + X, +
... T Xy, where Xi is 1if the i-th man gets his own hat back, and 0 if not. Since the mean of X is
E(X) = E(X))+E(X2)+...+E(Xy), and since E(X;) = 0-P(X; = 0)+1-P(X; = 1) = P(Xi)=1/n
for ¢ = 1,2,3,...,n, it followsthat B(X) = 1/n T 1/n+...1/n = 1for every n. Thus, no matter
now many men are involved, on the average, one man receives his own hat.
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THE SERIESFOR LN2

Norman Schaumberger
Hofstra University

If £ > 0, then 1
z—1>hz>1-= (1)

Thissimple proposition can be used to derive the formula

1 1 1 1 1
=lm e e ——— e e 2
mg=l-—gtg—gt tm=1 2 ' @)
The left side of (1) follows immediately from the fact that f(z) = z — 1 —Inz has an absolute
minimum at z = 1, because f/(z) = 1-1/z = 0iff z = 1, and f*(z) = |/z2 >0for z > 0. If we
write 1/z for z, then the expression £ - 1> Inz becomeszlnz > z - 1, and we have (1).
The standard derivation of (2) uses the series for In(1+ ), which is normally not covered until

the second course in calculus. However, a proof based on (1) can be presented early in the first
course. Using (1), we have

ctebeleagho(hedeos )
=}12+n-1}-1+"'+2n1-1

_(n+1 1 (::i_l)+"'+(22nl"l)
>lnn:1+ln2::3+-'-+ln2—n2-§—i

-1 n+1 "+2... 2n
=M\Tn hn+l 21

n n+1 2n—1)
——t — o1
><1 n+l)+(1 n+2)+ +( o
1 1 1

aritarzt Yt

=1 DY TR
sltgtgt o+ —*a*1 b

Hence,

1 1
]n2>1—§+§—

Letting n — cc gives (2).
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PACKING PROBLEMS W THSPHERES

Joel L. Brenner
Palo Alto, CA

A dentist once wrote me to ask how it was possible to pack more that 1000 1-inch (spherical)
marbles into a right rectangular box 10" x 10" x 10". Actualy, there is room for at least 1188
marbles.

Thetwo-dimensional packing problems discussed in this note are of two types. In thefirst type,
the space to be covered is a rectangle with integral width; the "spheres” are disks of unit diameter.
In the second type, the widthis not an integer.

Case 1, integral width If the width is 1, the number of disks that fits is clearly [s], where the
"box" is arectangle of areas. If the width is 2, the arrangement of Figure 1is different.

N

Figure 1

Each even-numbered row is moved successively 1 - %\/5 = 0.134 units closer to the left-hand edge.
If there are k even-numbered rows (and thus 2k rowsin all) the packing can gain room for an extra
two disks if kislarge enough, but loses k disks when compared to the (square) lattice packing. The
loss outweighs any possible gain.

The same argument and conclusion hold for widths 3, 4, 5, 6, and 7. For width 8, there will be
a gain after 16 pairs of rows, no net loss or gain after 17 pairs of rows, a loss after 18-32 pairs of
rows, and a gain after 32 pairs of rows. Since1 - %\/5 is not rational, the pattern of net gains and
lossesis not a regular sequence of integers, but has some hiccups.

If the width of the rectangle exceeds 15 units, there is alwaysa gain from the 17th pair of rows
onwards. If the width lies between 10 and 15 units, the number of pairs of rows that entail losses
becomes sparser and sparser.

Case 2, non-integral width. If the width of the rectangle is not an integer, a simple analysis can
be used to calculate a "packing constant™ that will measure the density of the best packing. Here
are two examples.

Example 1. Suppose the width lies between 1 and 2. (See Figure 2.)

Figure 2
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If the width w is precisely 2, the packing constant is 2; this means that two disks can fit into each
integral unit of height. In thiscase, theangle # from BC (thesegment with end-pointsat the centers
of two kissing circles) to the horizontal is 0°. We shall take # as a parameter. the y-coordinate of

D (the top of the second disk) isequal to the sum of the y-components of the vectors A8, F(f,bﬁ,
that is, % +sin g+ %, or 1+sinf. A reasonable definition of “ packing constant” is 2/(1 + sine).
Thisis, to repeat, the number of disks per unit height of the rectangle.

Example 2. Suppose the width lies between 2 and 3. (See Figure 3)

Figure 3

If the width is precisely 3, the packing constant is 3. In any other case, an appropriate parameter
is the angle from the horizontal to the line segment connecting the centers of the second and third
circles. The y-coordinate of F is 1+ sind. The packing constant is, in this case, 3/(1 +sinf). (If
the width of the rectangle is between k and k + 1, the packing constant is (k +1)/(1 + sin).]

Return to Figure 2. If the height of the rectangleis lessthat 1+1+sin 8, it will not be possible
to fit more than one disk into the (truncated) space. What the packing constant measures is the
limit, asthe height of the rectangle increases indefinitely, of the number of disks per unit height.
Covering theentire plane. It has been proved that, for a two- dimensiona plane infinite in both
directions, close-packing is the densest possible disposition of disks. (See Figure 4.)

Figure 4

Paradoxically, a mathematical proof that close-packing in three dimensional space is densest
was not published until 1963. (American Mathematical Society Symposia Proceedings 7, pp. 58-71.)
In nine dimensions, the question is difficult.

The author wishes to thank J. W. Downs and the late J. D. E. Konhauser for their help with,
this paper.
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ON AN ELEMENTARY METHOD OF FINDING THE MINIMUM VALUE OF
n n

3 2§, SUBJECT TO THE CONDITION Y z;=a,
i=1 ji=1

WHERE a IS A POSITIVE INTEGER

Masakazu Nihei
Tbaraki Prefectural Fujishiro High School, Japan

We shall consider the following problem:

Problem. Find the minimum value of f(z1,...,2s) = E}‘ﬂ =, subject to the constraint condi-

tions 37 ,xy =aand z; > 0for j =1,...,n, where ais a real number greater than or equal to
one.

Although some solutions for the problem are already known (see references), they require in-
volved calculations. However, if we restrict ato be an integer, we can givea very elementary method
of finding the minimum value sought in the problem.

First, we present two lemmas.
Lemma l. If z and a are positive real numbers, then z¢+! — z* > z — 1, and the equality holds
if and only if z=1.
Proof: Let usset T =z — 2% — (zx — 1). Then T can befactored in the form (z* — 1)(x — 1).
@iy f2>1,thenz*—1>0and z— 1> 0. Hence, we have T > 0.
(i) f0<z< 1 thenz*—-1<0and z—1< 0. Hence, we also have T > 0.

By the way, we can easily check that T isequal to zero if and only if z = 1. Therefore, we have
the desired result. m

n
Lenmaz2. Ifz; >0 (j=1,...,n) and Y _z; = n, then
1=1
n n
a+1 a
CARED IS
i=1 i=1
and the equality holds if and only if z;,...,z, are al equal to 1.
Pr oof:

n n n

a+1 a _ atl o

doagtt =3 g =3 (s zf)
ji=1 i=1 i=1

> z; —1) {by Lemmal)
23 (==1)

=0.
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This provesthat 3°7_, ,,.;,x+1 > Xj=y =5 Itisclear from Lemmal that equality holds if and only if

Ty =2p=---=zn=1wm

Theorem. If zy,...,2, are positive real numbers and Z}'zl z; = a, then the minimum value of

n . e .
f(z1,...,20) = 37, 2§, where & isa positive integer, is e

Proof: If a=1, theresult istrivial. Hence, without loss of generality, we can assume that a > 2.
Since 3"3-, #; = a can be written in the form 377, 2% = n, weobtain

> (2) 25 () 22 5 ()

=1

by Lemma 2. Therefore, we have

n
flz1,...,zn) = Zx;’
j=1

Bl

As before, we can easily see, by Lemma 2, that the equality holdsif and only if z; =..- =z,
This completes the proof of the theorem. =
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INSTANTANEOUS CENTERS AND THEIR GEOMETRY

Ali R. Amir-Moéz
Texas Tech University

Consider thefollowing problem: " Definea tangent linetoa curveat a point A.” Many students,
evenin collegelevel, will respond: "A line perpendicular totheradius." Even in the case of a circle,
that statement is not a definition, but a theorem. So thisis where we would like to start.

1. THEOREM. Let (C) bea circle with center C and let A be a point on (C). Then the tangent
lineto (C) at A is perpendicular to the line segment CA.

T

B\A

Fig. 1
The proof may look convincing, but it is not easy. If fact, we rely somewhat on intuition.
Choose aline that intersects (C) at two points, A and B. (See Figure 1.) Let M be the midpoint of
the line segment AB. Then CM is perpendicular to AB. When B approaches A, the point M aso
approaches Aand CM, which is always the perpendicular bisector of AB, will remain perpendicular
to the limiting position of AB, that is, AT, the tangent line to (C).

One may ask: "Wasthisa proof?' Probably not a very good one, but it introduces the idea of
approaching a limit, which is asold as the geometry itself.

2. TANGENT LINESTO AN ELLIPSE. Let F, and F; befoci of an ellipse. (See Figure 2)

Fig. 2

Then the tangent line at a point A of the ellipseis the limiting position of aline AB when B
approaches A. One can prove that the tangent line AT is perpendicular to the bisector of the angle
F1AF,. We shall leave the proof to the reader. What may be interesting here is that this angle
bisector does not pass through a fixed point. For this reason, we can not call this angle bisector a
radius of the ellipse.

2
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3. INSTANTANEOUS CENTERS. In machinery, al sorts of wheels roll over one another;
many of them are not circular. We shall study these wheels through the concept of instantaneous
centers. Let a plane (lamina) move over a fixed plane. Then there is an instantaneous center of
rotation C. The locus of C in the fixed plane is called the base curve, and the locus of € in the
moving plane is called the rolling curve. Actually one curve rolls over the other. We shall study
these curvet geometrically. -
4. THE POSITION OF A LAMINA. The position of a plane is completely fixed if three non-
collinear points of it arefixed. Since we areinterested in a moving plane, we only need the position
of two points of the variable plane on the fixed plane. Here we rely on intuition. The reader may
supply a proof.

5. OBTAINING THE CENTERS. Let A and B be two points attached to a lamina moving
over afixed plane. (See Figure 3.) 0

Fig. 3

Let A, and B; be new positions of A and B. Then A, B, = AB. Let O be the point of intersection
of the perpendicular bisectors of AA; and BB, . (Special cases will be discussed later.) Then

0OA=04, and OB= 0B.

So we may say that AB has rotated about O through an angle BOB; = AOA,. We now define C,
the instantaneous center by
C= lim O.
Ap—A
8,—B
Special Cases. If the moving plane has afixed point C in the fixed plane, then C is the instanta-
neous center. So the variable plane rotates about C.

If every point A of the variable plane moves on a straight line parallel to afixed line d of the
base plane, then the moving lamina will be shifting parallel to d. (See Figure 4)) In this case we
may say that the instantaneous center is at infinity.

A—1—4

Fig. 4

7. THEOREM. Let a plane move so that a point A of it remainson a curve I'. Then C, the -
instantaneous center, ison the normal lineof T at A.
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Proof: Let A; be a displacement of A. (See Figure 5.) Then the center of rotation is on the
perpendicular bisector of AA;. As A, approaches A, this perpendicular becomes the normal at A.
A
r

c¢ .
Fig. 5
BASE AND ROLLING CURVES. Let a plane move over a fixed plane. Then the locus of C,
theinstantaneous center of rotation in thefixed plane, is called the base curve and locusof C in the
moving planeis called the rolling curve. We shall study the subject through examples.

9. GEOMETRIC TREATMENTS. Some examples will bestudied,

Example 1. Let A and B be two fixed points of a moving plane such that A moveson the z-axi s,
B on the y-axis, and the length of AB =1 remains constant. Obtain the base and rolling curves.

Solution. By Theorem 7, the instantaneous center of rotation C is the point of intersection of the
perpendicular to the z-axis at A and the perpendicular to the y-axisat B. (See Figure 6.) Since
OC = AB =1, thecircle of diameter { which passes through the origin rolls over the circle of center
O and radius.

Fig. 6

Example 2. In Example 1, one may substitute the y-axis by an axist and get similar results. We
shall giveafew hints. Let the angle between Ox and Ot bea. (See Figure7.)
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We draw the perpendicular line to Oz at A and the perpendicular line to Ot at B. Then the point
of intersection of these perpendicular linesis C, the instantaneous center of rotation. Note that the
four points 0, A4,C, and B are on a circle, the angle ACB is # — a and the length of AB = ! is
constant. Weleaveit to the reader to show that OC is constant and thus obtain the base and rolling
curves.

Example 3. Example 1 can be looked at in a different way. Let A move on the z-axis and D-move
on the circle of radius //2 with center at O (See Figurc 8.) Then we obtain the same result asin
Example 1. We omit the proof. Y

-
N

Fig. 8

10. ALGEBRAIC APPROACH. Weshall give an example.

A plane connected to a line segment AB = {, where the length of { is greater than r, moves
such that A isou thecircle 22+ y? = r? and B ison the z-axis. (See Figure 9).

4 Y

Fig. 9
Obtain the base and rolling curves.

Solution: Clearly C, the instantaneous center of rotation, is the point of intersection of OA and
the perpendicular to the z-axis at B. Let C = (z,y) in the base plane. Let the angle BOC = 0.

Then

1? =12 + 2% - 2rzcosd. (1)
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Since z
cosf = —\/IJT_-FTJ—; (2)
we can simplify (1) to
(22 T2 — 12 /z22 1 4% = 2rx2 (3)

Note that in the special case! = r the equation (3) changes to

224+y?=42 and z=0. 4

Now for therolling curve let AB as AX bethe X-axisand AY perpendicular to it betheY-axis
in the variable plane. (See Figure 9). Let AC = p and the angle CAB = 8. Then

X =pcosf Y =psinf (5)
Note that p isvariable. In the right triangle OBC we have
CB* = (rt+p)*-0B2. (6)
Also in the triangle ABC we have
CB? =12+ p? —2pcos B )]
In the triangle OAB the angle OAB = 7 — 8. Thus
0B% = 22+ 2rl cos 8. 8)
From (6), (7), and (8) we obtain
12+pZ—ZIpcosﬁ:(r+p)2—(r2+12+2rlcosﬂ). 9
Simplifying and letting pcosg = X and psinf =Y, we get
(= IX)VX?+Y? = (X2 TY?) - rlX (10)
which is the equation of the rolling curve. Rationalizing and simplifying, we obtain
P2(x2Ty?)? - (12 - 1X)? - 2r2X] (X2 YY)t 22X = 0. (11)

Thecase r = amy beinteresting. We leave it to the reader.
One may approach the problem by the use of polar coordinates. We leaveit to the reader.

SOME INTERESTING PROBLEMS: Let (A) and (B) be two fixed circles of equal radii in
the same plane. (See Figure 10.)

Fig. 10

A lamina movesover the plane of thecirclesso that twofixed points P and @ of it move respectively
on (A)and (B), and PQ = AB. Obtain the base and rolling curves.
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Solutions: Weshall study the case that (A)and (B )intersect. It isclear that C, the instantaneous
center of rotation, is the point of intersection of AP and B@. Let the radius of (A)and (B) be a.
Then one observes that

CA+CB=a and CQ+CP=a. (12)

Thisimplies that the base curve ison an ellipse with foci A and B, and therolling curveisan ellipse
of the same size with foci P and Q.

In our solution we have chosen two intersecting circles. Thereader may look into the case where
the circles do not intersect.

MESSAGE FROM THE SECRETARY-TREASURER
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for n> 4.

Thevideotape of Professor Joseph A. Gallian’s AMS-MAA-PMEInvited Address, " The Mathe-
matics of Identification Numbers," given as part of PME’s 75th Anniversary Celebration at Boulder,
CO, in August, 1989, isalsotill available. The tape may be borrowed free of charge by PME chap-
ters, and by others upon an advance payment of $10. Please contact my office if you desire to borrow
the tape, telling me the date on which you would like to useit. | prefer to mail the tape directly to
faculty advisors, and expect them to take tesponsibility for returningit to my office. Please submit
your request in writing and include a phone number and a time that | might reach you if there are
problems. Robert M. Woodside, Secretary-Treasurer, Department of Mathematics, East Carolina
University, Greenville, NC 27858.
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MAXIMAL ELEMENTS AND UPPERBOUNDS IN POSETS

Jayanthi Ganapathy
University d Wisconsin — Oshkosh

Thisarticleisa collection of questions about maximal elementsand upper boundsin a partially
ordered set (POSET), and answers to those questions, accompanied by proofs, and, in some cases,
examples.

The inspiration for this article is a discussion that ensued, after definitions and establiihed
results, such aa Zorn's Lemma, wereintroduced in a course taught by the author. An investigation
of answers to questions raised by the atudenta resulted in the contents of this article.

For the benefit of those readers who are unfamiliar or out of touch with this topic, some
definitions and a statement of Zorn's Lemmafollow:

Definitions: (See Abbot, 1969; Y osida, 1978; Kirilov and Guishiani, 1982; or Morash, 1987.)

I. A set Pissaid to be partially ordered by abinary relation < if, for each a, b, and c in P, we
have

(i) a<a (reflexivity)
(i)a<bandb<c = a<c (transitivity)
(#if) a<band b<a = a=b (anti-symmetry)

1. A set Pwith a partial ordering < is a partially ordered set (POSET).

IIL A partial ordering < on aset Pisa hear orderingif, for each pair of elementsaand bin P,
either a< bor b< a.

IV. A set P with alinear ordering < is a linearly ordered set (LOSET).

V. Let Sheasubset of a POSET (P, <). Anelement uin P isan upper bound for Sif s < ufor
al ses.

VI. Anelement min a poset {P, <) isa naxi nal element of Pif, foranya€e P, m<a=a=m.

VII.If (P,<)isaPOSET and a, b arein P, then the least upper bound of a and b, denoted by
aVb, is defined asfollows: a< avb, b< avband, for any element s € P such that a < s and
b<s,avd <s.

VIIL A POSET (P, <) isalatticeif, for each pair of elementsa and b in P, the least upper bound
aVbexistsin P.

Zorn's Lemma. (See Hrbacek and Jech, 1984; Morash, 1987; or Pinter, 1971.) If (P,<) isa
POSET in which every linearly ordered subset has an upper bound, then P has a maximal element.

Two questions that arise naturally from Zorn’s Lemma are the following:

Question |. Can a POSET (P, <) have a maximal element even if the hypothesisof Zorn's Lemma
is not satisfied?

The following example provides an answer:

Examplel.Let P={atbi: a2t b2 <1,a>0,b > 0} U {1} u{i}, wherei® = -1 A partial
ordering < is defined on Pas follows athi < e+diif andonly if a< c and b < d. (SeeFigure 1.)
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Figure 1
A subset Sof Pis defined as follows: S={atbi e P: a= 1}. (SeeFigure 2)

Figure 2

This set (P, <) fails to satisfy the hypothesis of Zorn's Lemma since the subset S has no upper
bound in P, although Sislinearly ordered. However, P has maximal elements1 and :.

Question II. Can a POSET (P, <) have more than one maxima element whether or not the
hypothesis of Zorn's Lemmaiis satisfied?

Example | provides part of the answer. Example I1, below, completes the answer to Question
IL

Example II. Let P = {1,2,3,4}, where a partial ordering < is defined as follows: for a, b in P,
a < hif and only if a divides b. Note that the hypothesis of Zorn's Lemma is satisfied and that there
are two maximal elements, namely 3and 4, in P.

Thenext question concerns the uniquenessof a maximal element. The examples aboveillustrate
the fact that a maximal element, when it exists, is not aways unique.

Question I11. What are some conditionson a POSET P, containing a maximal element m, that
will guarantee the uniqueness of m?

If < isalinear ordering on a set P that contains a maximal element m, then m must be
unique. For, if m’ is aso a maximal element, then either m < m' or m’ < m. Since m is maximal,
m < m! => m=m' and since m’ is maximal, m’ < m — m’ = m. Thus, in either case, m' = m,
and the maximal element is unique.

If (P,<) isa partialy ordered lattice containing a maximal element m, then again m must be *
unique. For, if m’ isalso a maximal element, then m 4 mvm’ and m’ < mv m’. Since m and
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m’ are maximal elements, the preceding observationsimply that m= mvm’ = m’, thus proving
that mis unique.

The proof of Zorn’s Lemma, which uses the Axiom of Choice, involvesconstructing a particular
linearly ordered subset d the given POSET and then establishing that an upper bound of that
subset isa maximal element of the given POSET. (See Hrbacek and Jech, 1984, or Pinter, 1971.)

In Example | of this article, neither of the two maximal elements of the set is an upper bound
for any subset that contains elements other that 1 and i.

These observations arouse one's curiosity about the possibility of a maximal element, when it
exists, being an upper bound for some or each subset of the original set. This leads to the final
question of this article:

Question IV, If a POSET (P, <) has a maximal element m, what are some situationsin which m
isan upper bound for some or all subsetsof P?

It follows easily from the proof whichimmediately follows Question III that the unique maximal
element of a LOSET, when it exist, isan upper bound for each subset of the LOSET. In fact, mis
thegreatest element of the LOSET in the sense that a< mfor all ain the LOSET.

If (P,<) isa partially ordered lattice containing a unique maximal element m, then m will be
an upper bound for each subset s of P. For, if Sisany subset of P and a€ §, then m< avm,
which, since m is maximal, implies that m= aV m. But wealso havea< avm. Thusa< m.

If (P,<) is a POSET containing a maximal element m, then m is an upper bound for any
linearly ordered subset Sof P that contains m. Thii can be proved as follows: If Sissuch a subset
of P, then, forany a€ S,a< mor m< a But m< awouldimply that m = a,since mismaximal.
Thus, in either case, a < m.

Summarizing our results, we conclude that in a partially ordered lattice or LOSET, a maximal
element, if it exists, is unique and is the upper bound for each subset of the origina set. In
an arbitrary POSET containing a maximal element, uniqueness of the maximal element is not
guaranteed. If a POSET contains a maximal element m, then for any linearly ordered subset that
contains m, m is an upper bound; in fact, m will be the only maximal element that subset will
contain. Asillustrated by the examples in this article, a POSET, in general, can have more than
one maximal element and, in general, a maximal element does not have to be an upper bound for
any subset that contains elements other than the maximal element itself.
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LETTERTOTHE EDITOR

Dear Editor: .

I'd like to make a comment on the Spring '92 issue of the Pi Mu Epsilon Journal. First,
(concerning) the article by Russell Euler, "A Closed form for a Family of Summations." It is
obvious that

o0 s e 8l [em o)

from which it follows that
(:)—!_ - (n-l)_l_(p" >_1
“p- p—1 -1

Thus the paper only gives a special case of

00 -1

when r = p.

Another comment is that Andrew Cusumano's article is really a solution to a Putnam Prob-
lem (1966) also quoted by Bender and Orszag, Advanced Mathematical Methods for Scientists and
Engineers, problem 5.59.

| would appreciate your passing these comments to your readers.
David Ivy, Baltimore, MD

ATTENTION FACULTY ADVISORS

To have your chapter's report published, send copies to Robert M. Woodside, Secretary-
Treasurer, Department of Mathematics, East Carolina University, Greenville, NC 27858 and to
Richard L. Poss, Editor, St. Norbert College, De Pere, WI 54115.
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PROBLEM DEPARTMENT
Edited by Clayton W. Dodge
University of Maine

This department welcomes problemsbelieved to be new and at a level appropriatefor the readers
of this journal. Old problems displaying novel and elegant methods of solution are also invited.
Proposals should be accompanied by solutionsif available and by any information that will assist the
editor. An asterisk (*) preceding a problem number indicates that the proposer did not submit a
solution.

Al communicationsshould be addressed to C. W. Dodge, Math. Dept., University of Maine, Orono,
ME 04469. Please submit each proposa and solution preferablytyped or clearly written on a separate
sheet (one side only) properly identified with name and address. Solutions to problemsin this issue
should be mailed by July 1, 1993.

Problemsfor Solution

777. [Spring 1992] Corrected. Proposed by Seung-Jin Bong Seoul, Korea.
It iswell known that, forn 22, In(n + 1) ¢ S, < 1 * In n, where

4 e+

S=1+-—]l+
2

n

W=
ERES

It is aso known (Crier Mothemoticomm 11 (1985) p. 109) that, for # = 2,
nn+ D" -n<S <n-(n- Do loeD,
Provethat
Inr+ D<nin+ D" -pn and n - - DV D <1 +Inn

foraln =2

Probl em 780

780. [Spring 1992] Corrected Proposedby R S. Luthar, University of Wisconsin Center, Janesville,
Wisconsin,

Let ABCD bea paralelogramwith 24 = 60°, Let the circle throughA, B, and D intersect AC
at E. Seethefigure. Provethat BD* + AB:AD = AE-AC.

784. Proposed by Alan Wayne, Holiday, Florida.
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Restore the enciphered digitsin the decima computation:
(TWOXTWO + TWO) = EIGHT.

785. Proposedby Charles Ashbacher, Cedar Rapids, Iowa, and dedicated to thememory of Joseph
Konhauser. Sudent solutions are especially olicited.

Atilirg of the plane by non-overlappiig, non-congruent rectanglesPy, Py, .. is defined in,& =-
followingway: P, is an arbitraryx by y rectangle; P,, P;, .. are al squares such that the side of each
square Py, is equal to thesum of the sidesdf the two prenous squares P, and Py, for dl k > 1. Show
thistilirg

786. Proposed by Dmitry P. Mavio, Moscow, Russia

From two towns A and B, 48 km apart, two groupsof hikersmarch toward each other starting
at the sametime. The group leaving A marchesat 4 km/hr by marchesd not more than 6 hr at one
time. Thegroupfrom B hikesat 6 km/hr for not morethan 2 hr at a time. After marching ¢ hr, the first
group must rest for at least t hr. The second group has to rest not lessthan 2¢ hr after t hr of hiking.
Find the least time until the two groups meet and describe the hiking patterns necessary for that

. A%ﬁ iiB

Problem 786

787. Proposed by R S Luthar, University of Wsconsin Center, Janesville, Wisconsin.
If @ b, ¢, d are the roots of

Prpr@dtm+s=0,
then evaluate the expression
(@+b+c-2d)b+c+d-2a)c+d+a-2b)(d+a+b-2)
in termsd p, ¢, , and 5.

788. Proposed by the late Jock Garfunkel, Flushing New York.
Given positive numbersz, y, z such thatx +y + z = 1, prove that

X+ yz+zmzxy +y? + 2% + 8gz.

789. Proposed by David Iny, Baltimore, Maryland.
Evauate the integral

e

790. Proposed by Florentin Smarandache, Phoenix, Arizona.
In base6 how meny dgts does the nth prime contain?

791. Proposed by Seung-Jin Bong Seoul, Republicof Korea
Prove that 2* *+ 1, wheren is a nonnegaive integer, is never a multiple of 143.
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792. Proposed by Seung-Jin Bang, Seoul, Republic of Karea
Given any thirteendistinct real numbers, prove that there exists at least one subset {x, y, z} of
three of them such that

0<_&-WW-29x-2 _ 1
A+0)1 +y)1+3x) 33

793. Proposad by Dieter Bennewitz, Koblenz, Germany.

Given any trapezoid, its diagonalsdivideitsinterior area into four triangular areas: A and B
adjacent to the paralel bases, and C and D adjacent to the nonpardld sides, as shown in the figure.

a) Prove that the areas C and D are equal and that A-B = C-D.

b) Find area C in terms df the lengthsdf the altitude and the bases of the trapezoid.

~a

B

Problem 793

794. Proposed by Peter A. Lindstrom, North Lake College, Inving Texes.
For -3 s x = 6, show that 2= isequal to the sum of the zeros of

fix) = sin(x + cosx).

795. Proposad by Russall Euler, Northwest Missouri State University, Maryville, Missouri.
Find al solutionson the interval [0, 2a] to

2cos’x -2cosx+1=0.

™. Proposad by Michad W. Ecker, Clarks Summit, Pennsylvania.

a) Adieis thrown until a prescribed face (e.g. sy 3) shows What is the mathematically
expected number of throws required for this to occur?

b) Same question, but suppose a throw now consists of rolling2 dice. In particular, should we
expect this expectationto be half that of part (a)?

¢) What isthesmallest whole number of dice needed to constitute one throw, if wewish to have
the mathematically expected number of throws required to roll our prescribed number not exceed 2?

6. 0.7 ~0 0.7
2% %o

o0 o o°°
o o 2

Solutions

T54. [Spring 1991, Spring 1992] Proposad by Seung-Jin Bang, Seoul. Korea.
Leta, =a,=1,a, =2 ada,,, =a -a,, *+a,,forn >3 Show that

2 2 3
a8, 5~ .0, ~ 88, , +2a aa -a,+3=0
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Additional Editor’s comment. In the Editor'scomment I stated that only Klamkin potted my erar.,.
that the problemshould read n > 3. Theword "only" should have been emitted. Thiserror wasalso spotted
by ROBERT C. GEBHARDT, Hopatcong, N7, HENRY S. LIEBERMAN, Waban, M4, WILLIAM H.
PEIRCE, Rangeley, ME, and MOHAMMAD P. SHAIKH, Western Michigan University, Kalamazoo. |
shall do my penanceyet ancther n > 3times.

758. [Fall, 1991] Proposed by Charles Ashbacher, Hiawatha, lowa. -
Solve this base ten alphametric which celebrates Leonhard Euler’s contributions to graph
theory:

E + V*GRAPH = EULER

Solution by Alma College Problem Solving Group, Alma College, Alma, Michigan.
It will be helpful to rewrite the problem in the form

GRAPH
X Vv
EULxx
E
EULER.

Theused L inline3 of thedisplayis judified by notingthat it could beL - 1 only if the E in thetens
placein line5 were O, but E cannot be zero sinceit begins a word. It is readily seen that V cannot be

0,1, 0r 9, that G = 0, that E cannot be 0, 1, or 2, and that H # 0. From the first and last columns we
see that

GxV (+carry) = E and HxV + E =R (mod 10).

Now G, R, H, E, and V are digtinct only when ¥V = 2, 3, 4, or 7 (found after testing al possble
combinationsaf G, R, and E). The one case where V = 7, the three caseswhere V = 4, and the six
caseswhereV = 3 are not solvable, leaving onlyV = 2 Then G can beonly 1, 3, or 4

IfG=1,thenE =3 andR=5,7,0r9 ThenH = 6, 7, or 8 No adlowablecombinationyields
asolution.

If G=4thenE=80r9 If E=8 thenR =0and H = 6, and no solution results. If E =
9, thenP = 4 or 9, both of which are taken.So G # 4

Wehave G =3,andE =6o0or7.IfE =7 thenP =8andR =50r9.If R =9, then U =8
or9, soR+#9 If R=5thenH = 4and U = 0 or 1. No combination of the remaining numbers w|
satisfy A and L.

ThusG = 3 and E = 6. Now the uniquesolution6 + 2x34079 = 68164 can be found.

Also solved by SCOTT H. BROWN, Suart Middle School, FL, PAUL S BRUCKMAN,
Edmonds, WA, MARK EVANS, Louisville KY, VICTORG. FESER, Universitydf Mary, Bismarck, ND,
RICHARD |. HESS, Rancho Palos Verdes, CA, REX H. WU, Brookiyn, N¥, and the PROPOSER.

799, [Fall, 1991) Proposed by John E Wetzel, Universty of Illinois, Urbana, lllinois.
Call a planearc special if it haslength 1 and lieson one side of a line through itsend points.
Show that any special arc can be contained in an isosceles right triangle of hypotenuse 1.

1. Solution by the Proposer.

Giventheplanearc PQ, lyingall on onesidein line PQ, circumscribe an isoscelesright triangle
ABC, with right angle at C and hypotenuse AB lying on line PQ, about the arc, as shown in thefigure .
for this problem. Reflect the sub-ares PR and SQ in thelegs AC and BC respectively, obtainingthesub- *
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arcsP'Rand SQ. It isnow dear that thelength of the given arc PRSQ, whichis1 unit, isequal to the
length of thearc P'RSQ’, which in turn isgreater than or equal to the length of the hypotenuse AB.
Moral: Pause and reflect.

Q :
A Problem 759 B

II. Comment by Murray S. Klamkin, Universty of Alberta, Edmonton, Alberta, Canada.

Thisisaspecial case o the"worm" problem. For rel ated resultsand references, seeH. T. Croft,
K. J Falconer, and R. K. Guy, Unsolved Problemsin Geometry, New Y ork: Springer-Verlag, 1991, pp.
129-130.

For a dosed curve of length 1 which is the boundary of a convex set T, we have that thereis
a circumscribing triangle with anglesa, 0, and y whose perimeter P satisfiesthe inequality

1 (sine +sinp + siny)?

P< - - -
2% 9na SN sny

Equality occurs if T is a circle. See H. G. Eggleston, Problemsin Euclidean Space, New York:
Pergamon, 1957, p. 157.

Also solved by MARK EVANS, Louisiille, KY; for the case wherethe arcisan arc of a cirde,
and by REX H. WU, Brooklyn, NY.

760.[F 1, 1991] Proposed by John E. Wetzdl, University of llinois, Urbana, llinois.

Napoleon's theorem is concerned with erecting equilateral triangles outwardly on the sides of
agiven triangle ABC. Then DEF isthetriangleformed by the third verticesdf theseequilateral triangles
BCD, CAE, and ABF. Lemoine asked in 1868 if one can reconstruct triangleABC when only triangle
DEF is given. Shortly afterward, Keipert showed that the constructionis to erect outward equilateral
trianglesEFX, FDY, and DEZ on triangle DEF, and then A, B, and C are the midpointsof the segments
DX, EY, and FZ. His proof was quitetedious. Find a simple proof of Keipert’s construction.
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|. Solution by the Proposer.

The accompanying figure shows a given triangle ABC, the third vertices D, E, and F of
equilateral triangles erected on its sides, and the third vertices, ¥, and Z of equilateral triangles
erected on the sides of triangle DEF. Consider the mapping a that is the product of the three 60°
counterclockwise rotationsabout points D, F, and E in that order. Then ais a halfturn. Since the three
rotationsapplied in turn map point C to B, then to A, and back to C again, we have a(C) = C and it
followsthat a is a halfturn about C. We gpply the product of the three halfturnsto point Z, noting-tha¢
Z mapsto E, then to X, and findly to F. Hence a(Z) = F, so C isthe midpoint of FZ. Smilarly A and
B are the midpointsof DX and .

1. Solution by Paul S. Bruckman, Edmonds, \Washington.
Leta, b, ¢, etc. denote the complex representations for the verticesA, B, G ec., and let 4 =
ds(n/3) = 1/2 + iv3/2. Then p* = -1/2 + iv3/2, so p - p* = 1. Now we have

d-c = p@-c), sothat d=pb + (1-puj
Similarly,
e=ypc+ (L-p)a,f=pa+ (1-wb,andx = pe + (1- p)f.
Now the &ffix of the midpoint of DX is
(A)d +x) = (%)Mub + (L-p)e + pluc + - wa] + (1-p)pa + (1-1b]}
= (%)a@u -2 + b(l-p + 1) +c(l-p + )} = a.
HenceA is the midpoint of DX. Similarly, B and C are the midpoints of EY and FZ.

Also solved by RICHARD |. HESS, Rancho Palos Verdes, C4, MURRAY S KLAMKIN,
University of Alberta, Canada, and REX H. WU, Brooklyn, NY.

Editorial comment. Wetzel noted that Kiepert’s argument is not very pretty. It used Ptolemy's
theorem on the cydic quadrilateralsBCDP, etc., where Pisthe point of intersectionof thethreelinesAD,
BE, and CF. W pointed cut the delightful article by Wetzel "Converses of Napoleon's Theorem'in The
American Mathematical Monthly, April 1992, pp. 339-351. His proof appearson p. 342,

*762. [Fll, 1991] Proposed by Hao-Nhien Qui Vu, Purdue University, Lafayette, Indiana.

Following Cantor, we assume alist of the rationalsin [0,1) can be made. Each rationd islisted
asaterminating decimdl if possible, or asa repeatingdecima. Thusnumera sendingin nonterminating
repeating9s are not permitted. Definea new number x such that thekth place of x is5if the kth place
in the k&th number in the list isnot 5, and is 4 otherwise. So, for example, If the list starts with 0.5, 0.32,
0666666, then x = 0.455....Show that the numberx must beirrational and thereforethi s processdoes
not prove the rationas are not denumerable. Saying that x is irrational because the rationals are
countable, however amusing, is not sufficient.

Solution by Charles Ashbacher, Cedar Rapids, lowa.

The proof assumesthat the phrase”a list of the rationasin [0,1) can be made’ meansthat a
completelist can be made. This assumptionis not unreasonable, given that we are following Cantor.
Thus assume that « is rationd. Since 0 < x < 1, there must be anumbery in the list suchthat x = y.
The method of construction ofx, however, guaranteesthat x and y must differ in at least one decimal
place. Since x is an infinite decimal whose digitsare d| 4sand 5s, x # y. This contradiction shows that
x cannot be rational.
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Also solved by ALMA COLLEGE PROBLEM SOLVING GROUP, MI, PAUL S
BRUCKMAN, Edmonds, WA, and VICTOR G. FESER, Universityof Mary, Bismarck, ND.

Editorial comment. This pmblemwas proposed by 1 when he was a sophomoreat Purdue. After
holding it for several years | decided torun it in hopesthat it might elicit some interestingcomments. |
recaved "The problem seemsto be incorrect” and "It seemsto be complete nonsense” Oh wel, it wasa
niceftry.

763. [Fall, 1991] Proposed by Russell Euler, Northwest Missouri State University, Maryville,
Missouri.
Find al real solutionsto the equation

(% - Tx + 11y 2 g

|. Solution by Kandasamy Muthuvel, University of Wisconsin-Oshkosh, Oshkosh, Wisconsin.
Ifa®= 1, then |a|® = 1, so let us solve

[x% - 7x + lll"""‘” =1,

and consequently,

(% - 11x + 30)In|x? - 7x + 11| = 0.

Thisimpliesthat «* - 1bx + 30 = Oor#* - 7x + 11 = +1. Hencex = 5,6, 2, 3, or 4. Each of these
vaues checksin the given equation.

I1. Solution by Barbara Lehman, Brigantine, New Jersey.

Any vaduesthat makethe exponent zero without making the basezerowill satisfy the equation.
Thussolver? - 11x + 30 = 0 and getx = 5or 6. Any vaues that make the base 1 will work, so solve
£ -7+ 11=1and getx = 20r 5. Findly, any valuesthat make the base -1.and the exponent an even
integer will also suffice,so solvex? - 7x + 11 = -1and obtainx = 3 or 4, both of which produce even
exponents. So the solutionsarex = 2,3, 4,5, 6.

Thisisan excdlent problem to solve on a graphing calculator. | plan to present it to my pre-
cdculus class.

1. Comment by the Proposer.
If one starts with

log(x® - 7x + 11)°-15% = og 1 = Q

oneis easly led to caseswherex® - 11x + 3 = 0or - 7x + 11.= 1, but not readily tox? - 7¢ + 11
=1

IV. Comment by Elizabeth Andy, Limerick, Maine.
Solvea to the b equals 1,
A problem that's easy and fun!
But base -1
Must aso be done,
Or you cannot say you have won!

So when problems seem easy to you,
Just be careful to think them all through.
When writing that letter,
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Think,"Can | do better?'
Then please write everything you need to writein that last line
to make sure you have done al that you need to do!

Gold starsto each of the following personsfor solvingthe problem correctlythe firsttime: ALMA
COLLEGE PROBLEM SOLVING GROUP, MI, CHARLES ASHBACHER, Cedar Rapids, 14,
SEUNG-JIN BANG, Seoul, Kares, BARRY BRUNSON, Western Kentucky University, Bowling Given;
JAMESE. CAMPBELL, Universityof Missouri-Columbia, ROBERT C. GEBHARDT, Hopatcong, NJ,
STEPHEN |. GENDLER, Clarion University of Pennsylvania, RICHARD |. HESS, Rancho Palos
Verdes, C4, HENRY S LIEBERMAN, Waban, MA, DAVID E. MANES, SUNY at Oneonta, BOB
PRIELIPP, Universty of Wisconsin-Oshkosh, MICHAEL A. VITALE, S. Bonaventure University, NY,
and the PROPOSER.

Slver gtars to these contributors for also obtaining all the solutions: FRANK P. BATTLES,
MassachusettsMaritime Academy, Buzzards Bay, PAUL S BRUCKMAN, Edmonds, WA, GEORGE P.
EVANOVICH, Saint Peter'sCollege, Jersey City, NJ, VICTOR G. FESER, Universityof Mary, Bismarck,
ND, JAYANTHI GANAPATHY, Universityof Wisconsin-Oshkosh, PETER A. LINDSTROM, North
Lake College, Irving, X, THOMAS MITCHELL, Southern lllinois University at Carbondale, and
YOSHINOBU MURAY OSHI, Eugene, OR, and KENNETH M. WILKE, Topeka, K.

Bronze starsto fourteen partial solverswho shall remain nameless.

Editorial comment. Most partial solversmissed the third case mentioned by the proposer, many
by using logarithms, but some overlooked that case without the aid of logarithms. A couple of people
arrived at irrational rootsby setting the base equal to 1 and setting the exponent equal to 1, and obtaining
four rooats for the two polynomial equations. The fallacy hereisthat thosetwo simultaneous equationsdo
not have a common roct asisrequired by an "and" statement, so no solution results. The pmblemwas easy
- so easy that oversghtswere inevitable.

764. [Fdl, 1991] Proposed by William X Delaney, SJ., Loyola Marymount Universty, Los

Angeles, California.
Evaluate the indefiniteintegral

f(x + 1De*Inx dx.
|. Solution by the Proposer.
Thisisan unusual instance of doubleintegration by parts. First, use partswith# = x + 1and

dv = € dx tofind that [(x + 1) ¢* dxr = xe* + C. Again integrateby parts, usngu = Inx and dv =
(x + 1) € dr thistime, to get

f(x + 1)e* Inx dx = xe* Inx - fxe“ (—i)dx
=xe*Inx - e* + C.

This approach works equally well for any integral of theform [P(x) e™ In x dx, provided x is a factor
o [P(x) e dx.

II. Solution by Kandasamy Muthuvel, University of Wisconsin-Oshkosh, Oshkosh, Wisconsin.
By lettingu = €* Inx and dv = 4z and integrating by parts, we get

cx
fc‘ Inx dx = xe* Inx - fx(? + e* Inx)dx
=xe*tax - e* - fxe‘ Inx dx.

Thus
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f(x + De*lnxdx = e*(xInx - 1) + C.
1I. Generalizationsby Murray S Klaznkin, University of Alberta, Edmonton, Alberta, Canada.
Thefollowingtwo integration formul asfollow by differentiation or by successiveintegration by
parts:

) [(n x){DxDy} dx = (Inx){xDy} -y + C,
@ [ (%) {DxDxDy} dx = (Inx){GD)Y} - 2(Inx){xDy} + % + C.
We now let y = e*F(x) to give
D) J(e= Inx){F' + aF + x(F" + 2aF' + a’F)} dx
= xe*(In x)(F' + aF) - €*F + C,
@) 1™ ) {F' + aF + 3(F" + 2aF' + a’F)
+ A(F™ + 3aF" + 3¢°F' + a°F)} dx
= e*(nX){x(F' + aF) + P(F" + 2F" + a'F)}
- 2te™(Inx)(F’ + aF) + 2¢"F + C.
Asspecid cases, welet F = 1anda = 1in(1) and(2) toobtain
J@ + DefInxde = @klnx-1)e + G
G2 + 3 + e lnrdr = {(x + PDlnx - 2cInx + 2}e* + C.
As another special case, weleta = 0 and F = exp(¥®) in(1) to give
4G + x) exp(®) Inx dx = (22 Inx - 1) exp(®) + C.
Now
©) |20™y) dz
= DY - n'Dly + n(n D)D" + .. + (DY + G
whichcan be verified by differentiation or obtained by repeated integration by parts. Tekez = Inx and
n=1o0r2in(d toget() and (2). Remember that, sincez = INx, thendz = (1/x) dx, so each D

should be replaced by xD.
If weletz = Inx andy = e“F, then(3 becomes

O] J(In%){D(D)"e™F} dx
= (In%)(xD)"e“F - n(In*'x)(xD)"'e"F + ...

Note that (D)" can be expandedin terms of x*D* [1}, ie.,
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n
GD)" = Y Six*D%,
k=1

wherethe Sk are Stirling numbersof the second kind. Also, onecan evaluate D¥(e™F) by means o the
exponential shift theorem, i.e.,

D¥(e™F) = e™(D + a)'F.
Reference
1. C. Jordan, Calculusof Finite Differences, Chelsea, NY., 1947, pp. 170, 2%

IV. Comment by David E. Penney, University of Georgia, Athens, Georgia
Theintegral f(x + a) e* | x dx appearsto be nonelementary if a # 1

Also solved by ALMA COLLEGE PROBLEM SOLVING GROUP, M|, CHARLES
ASHBACHER, Cedar Rapids, I4, MOHAMMAD K. AZARIAN, University of Evansiille, IN,
SEUNG-JIN BANG, Seoul, Korea, PRANK P. BATTLES, MassachusettsMaritime.4cadenty, Buzzards
Bay, SCOTT H. BROWN, Suart Middle School, FL, PAUL S. BRUCKMAN, Edmonds, WA, BARRY
BRUNSON, Western Kentucky University, Bowling Green, JAMES E. CAMPBELL, University of
Missouri-Columbia, RUSSELL EULER, Northwest Missouri Sate University, Maryville, GEORGE P.
EVANOVICH, Saint Peter's College, Jersey City, N, MARK EVANS, Louisville, KY, JAYANTHI
GANAPATHY, Universty d Wisconsin-Oshkosh, ROBERT C. GEBHARDT, Hopatcong, NI,
STEPHEN |. GENDLER, Clarion Universty of Pennsylvania, RICHARD |. HESS, Rancho Palos
Verdes, C4, HENRY S. LIEBERMAN, Waban, MA, PETER A LINDSTROM (2 solutions) North Lake
College, Irving, TX, CARRIE LONGSHAW, Southeast Missouri Sate University, Cape Girardeau,
DAVID E. MANES, SUNY at Oneonta, LAURA ANN MCSWEENEY, Brockton, MA, Y OSHINOBU
MURAYOSHI, Eugene, OR, WILLIAM MY ERS, Beimont Abbey College, NG, DAVID E. PENNEY,
The University of Georgia, Athens, MIKE PINTER, Belmont College, Nashville, TN, BOB PRIELIPP,
University of Wisconsin-Oshkosh, JAY SLOTNICK, Alma College, MI, MICHAEL A. VITALE, S.
Bonaventure Universty, NY, STAN WAGON, Macalester College, S. Paul, MN, and REX H. WU,
Brooklyn, #Y. One incorrect solution was received.

765. [Fdl, 1991] Proposed by the late CharlesW. Trigg, San Diego, California.
Find a squareinteger in base4 that is a concatenation of two like integers.

Solution by Kenneth M. Wilke, Topeka, Kansas.
The desired integer n must satisfy the equation

[6)) n =44 +4 =4+ 14,
wherek isthe number of digitsin A. Clearly then, 4! = A < 4. The smallest posdtiveinteger of the
form 4* + 1 that has a squarefactor is4* + 1 = 1025 = 5*-41. Thus A hasthe form 41 (2 and 256 <
41 < 1024, whichis satisfied for ¢ = 3or 4 Therefore, we have the two solutions
615° = (21213,)* = 1130111301, and 820° = (30310,)* = 210022100, .
If we dlow leading zeros, then we may taket = 1 or 2 obtaining
205% = (3031,)* = 0022100221, and 410° = (22122,)* = 0221002210,

Also solved by CHARLES ASHBACHER, Cedar Rapids, 14, SEUNG-JN BANG, Seoul,”
Korea, SCOTT H. BROWN, Suart Middle School, FL, PAUL S BRUCKMAN, Edmonds, WA, JAMES
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E. CAMPBELL, University of Missouri-Columbia, MARK EVANS, Louisville, KY, STEPHEN I.
GENDLER, Clarion University of Pennsylvania, RICHARD |. HESS, Rancho PolosVerdes, C4, REX
H. WU, Brooklyn, NY, and the PROPOSER.

766. [Fall, 1991] Proposed by Murray S Klamkin, University of Alberta. Edmonton, Alberta,

Canada.
Determine

d* 5
—(x"In“x
dx"( .

atx = e.
Solution by Seung-Jin Bang, Seoul, Republic of Korea
We introduce the differentia operatorsD = d/dx and D = d/dt. Lettingx = ¢!, then we have
Dy = ¢'Dy and x* InXx = £¢*, Now
D(x" Ink) = e'DPe™ = ™D + n)f,
DX InX) = e*?(D + n - 1)(D + n), ..,

D@ lndx) = O + 1)(D + 2){D + n - 1)(D + n)

It follows that
D" 9|, = [n!tz . mx(z% . m( -1-] »
i=1 1 > Y
L1 1F 1 2 if &9
=n!1+2E—_+[E—.] —E—=n!(1+2-—) -y =l
e S P i i=1 i2 =i i1

Also solved by CHARLES ASHBACHER, Cedar Rapids, 14, FRANK P. BATTLES,
MassachusettsMaritimeAcademy, BuzzardsBay, SCOTT H. BROWN, Suart Middle School, FL, PAUL
S. BRUCKMAN, Edmonds, WA, GEORGE P. EVANOVICH, Saint Peter's College, Jersey City, NJ,
RICHARD |. HESS Rancho PolosVerdes, C4, HENRY S LIEBERMAN, Waban, MA4, WILLIAM
H. PEIRCE, Rangeley, ME, REX H. WU, Brooklyn, NY, PAUL YIU, FloridaAtlantic University, Boca
Raton, and the PROPOSER.

767. [Fdl, 1991) Proposed by J. L. Brenner, Palo Alto, California.
Let @ and a, be pogtiveintegers, and for n = 2, define

2
G-y

an2

’

For what choicesdf g, and a, Wl dl thea, be integers?

Solution by Rube R. Czech, Atfica, New York.
The solution is that a, dividesa,. We have that

2 2 2 3

4 % ) %
a,=—=aJ—|, a=— =af—|,

4, 9 a, ay
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2 4 a
a =2 - gl2, . a =a)], -
4 az ao)’, ans,

a formulareadily verified by mathematica induction. To that end, the formulais clearly true for n =
Oand for n = 1 It isthen easy to show that, if it istruefor n = k and for n = k * 1, then it is also
trueforn =k + 2 -

If we havethat a, dividesa,, thena , / isaninteger and it follows from our formulafor a, that
a, isaninteger or a product of integers, and henceit is dwaysan integer.

Suppose now that @, does not divide a,. Then there is a prime p and natural numbersn and k
suchthat k < n, p* dividesag, p* dividesa, but p**' doesnot dividea,. Then we count the number of
factors of pin a,,,, which must be nonnegdtivefor a,,, to beaninteger. By our formulafor a, we see
therearen + 1 factorsof &, in the numerator and n factors o a, in the denominator. Thusthere are
(n+ Dk-nt<(m+ (-1 -n?= -1factorsof p in a,,, 0 @, iSafraction that, in reduced terms,
has a factor of p in its denominator.

Henceit is both necessary and sufficient that a, dividea,.

Also solved by ALMA COLLEGE PROBLEM SOLVING GROUP, MI, CHARLES
ASHBACHER, Cedar Rapids, I4, MOHAMMAD K. AZARIAN, University of Evansiille, IN,
SEUNG-JIN BANG, Seoul, Korea, FRANK P. BATTLES, MassachusettsMaritime Academy, Buzzards
Bay, PAUL S BRUCKMAN, Edmonds, WA, RUSSELL EULER, Northwest Missouri Sate University,
Maryville, GEORGE P. EVANOVICH, Saint Peter's College, Jersey City, NJ;, MARK EVANS Louisville,
KY, VICTOR G. FESER, University of Mary, Bismarck, ND, STEPHEN |. GENDLER, Clarion
Universityof Pennsylvania. RICHARD |. HESS, Rancho PolosVerdes, €4, MURRAY S KLAMKIN,
Universityof Alberta, Canada, HENRY S. LIEBERMAN,Waban, MA, PETER A. LINDSTROM, North
Lake College. Irving, 7%, DAVID E. MANES, SUNY at Oneonta, Y OSHINOBU MURAY OSHI (two
solutions), Eugene, OR, W LLI AMH. PEIRCE, Rangeley, ME, KENNETH M. WILKE, Topeka. S,
REX H. WU, Brooklyn, NY, PAUL YIU, Florida AtlanticUniversity, Boca Raton, and the PROPOSER.

768 [Fe |, 1991] Proposed by the late Jack Garfunkel, Flushing New York,
Givena triangleABC, draw raysinwardly from each vertex to form a triangleA'B'C' such that
B, C, A' lieon rays A4’, BB', CC', respectively, and
<4BAB' = 4ACA' = 4CBC' = a,
as shown in the figure. Prove that:

a) TriangleA'B'C issimilar to triangle ABC.
b) Theratioof similitudeiscosa - sina cot oo, where » isthe Brocard angle of triangleABC.

A
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Solution by Paul Yiu, FloridaAtlantic University, Boca Raton, Florida.
a) Note that
4B'A'C’ = dA'AC + dA4'CA = 4A'AC + a = 4BAC,

and smilarly €<4'B'C" = 4ABC, so trianglesABC and A'B'C are similar.
b) Apply thelaw of sinesto triangles44’C, BCC', and ABC to get

Al =

bsin(.A - a) and CC' = a sina _ b sinA sina
sind sinC sinB sinC

It follows that
A'C’ _ sin(4 - a) _ sin(C + B) sina

AC sind sinB sinC
= cosa - sinafcotd + cotB + cotC] = COSA - sina cotw,

where w isthe Brocard angle of the triangle ABC and it is well known that
oot w =cotA + cot Bt cot C.

Also solved by ALMA COLLEGE PROBLEM SOLVING GROUP, MI. CHARLES
ASHBACHER, Cedar Rapids, LA, PAUL S BRUCKMAN, Edmonds, WA, RICHARD |. HESS,
Rancho Palos Verdes, CA, MURRAY S. KLAMKIN, University of Alberta, Canada, KANDASAMY
MUTHUVEL, Universityof Wisconsin-Oshkosh, BOB PRIEL | PP, Universityof Wisconsin-Oshkosh, and
the PROPOSER.

Editorial comment. | apologize for not defining the Brocard angle in the statement of the problem.
| assumed it was more well known than it apparently is Its full definition and many properties can be
found in either referencebelow. The Brocard angle o is /MAB = /MBC = /MCA formed by the unique
point M from which such equal angles are subtended inside triangle ABC. Any triangle ABC has two
Brocard pointsM and N, the second one subtendingequal angles ZNBA = /NCB = £NAC. Furthermore,
LMAB = /NBA = 1. The Brocard point M for triangle ABC is defined asthe unique point of intersection
of thethreecirclesthrough B and C and tangent to €4, through C and A and tangent to AB, and through
A and B and tangent to BC. That cot 10 = cot A + cot B + cot Cis found in /1],

References

1 John Casey, A Sequel to Euclid, Hodges, Figgis, & Co, 1883, pp. 172, 177.
2 N. A. Court, College Geometry, Johnson Publishing Co., 1925, pp. 243-247.

769[ R |, 1991] Proposed by R. S. Luthar, Universityof Wisconsin Center, Janesville, \Wisconsin.
If ABC isatrianglein which ¢? = 4ab cos A cos B, Prove that the triangleis isosceles.

|. Solution by Bob Prielipp, University of Wisconsin-Oshkosh, Oshkosh, \Wisconsin.
By thelaw of cosineswe get

Bt at and OosB:c2+a"b’

cosd 2bc 2ca
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Now the following equalities are all equivaent:

¢* = 4ab cosA cosB,

bt + ¢ -atct+ a - b
2 - 4ab .
€ 2be 2%a

¢ = [17- @ - 00 + (@ - B,
(a5 = O,
a=>b.

Hencel ?= 4ab cos.4 cosB if and only of a = b, that is, if and onlyif the triangleisisosceleswith apex
C.

I1. Solution by George P. Evanovich, Saint Peter's College, Jersey City, New Jarsey.
Becausec isthesum o the projectionsaf sidesAC and BC on AB, thenwe havec = b cos A
+ a cosB. Then

4ab cos A cos B = ¢ = b?cos’A + 2ab cos A cos B + a* cos’ B,
0 = (b cos 4 - a cos BY,
whence AC = BC and the triangleis isosceles.

Also solved by ALMA COLLEGE PROBLEM SOLVING GROUP, MI. CHARLES
ASHBACHER, Cedar Rapids, I4, MOHAMMAD K. AZARIAN, Universty of Evansiille, IN,
SEUNG-JIN BANG, Seoul, Korea, FRANK P. BATTLES, MassachusettsMaritime Academy, Buzzards
Bay, DIETER BENNEWITZ, Koblenz, Germany, SCOTT H. BROWN, Suart Middle School, FL,
PAUL S BRUCKMAN, Edmonds, WA, DAN DIMINNIE, Allegheny College, Meadville, PA, RUSSEL L
EULER, Northwest Missouri Sate University, Maryville, JAYANTHI GANAPATHY, University of
Wisconsin-Oshkosh, RICHARD |. HESS, Rancho Palos Verdes, C4, MURRAY S KLAMKIN,
University of Alberta, Canada, HENRY S. LIEBERMAN, Waban, AM, DAVID E. NANES, SUNY at
Oneonta, YOSHINOBU MURAYOSHI (two solutions),Eugene, OR, KANDASAMY MUTHUVEL,
Universityof Wisconsin-Oshkosh, MICHAEL A. VITALE, S. Bonaventure University, NY, KENNETH
M. WILKE, Topeka, KS, REX H. WU, Brooklyn, N¥, and the PROPOSER.

*770.[ Rl |, 1991] Proposed by Robert C. Gebhardt, Hopatcong, New Jarssy.

A deck o cards, numbered from 1ton, is dedt at randomto# persons. Then a second sSimilar
deck is dedlt to the samen persons. What is the probability that at least one of then persons received
two cards with the same number?

Solution by Frank P. Battles, MassachusettsMaritime Academy, Buzzards Bay, Massachuseits.

That thefirst deck isdealt out isirrelevant; onesmply needsaset of n personsor other objects
numbered1 to a#. The problem is thenisomorphicto the "hatcheck” problem, awel known problem of
matchings and derangements. See, for example, Applied Combinatoricshy Fred Roberts, pp. 203-205.
The desired probabilityis

. _ryr L
g( Y 7
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which approaches1- 1/e asn = .

Also solved by CHARLES ASHBACHER (computer solution), Cedar Rapids, 4, PAUL S.
BRUCKMAN, Edmonds, WA, GEORGE P. EVANOVICH, Saint Peter's College, Jarsey City, NJ,
MARK EVANS (computer solution), Louisville, K¥, RICHARD |. HESS, Rancho Palos Verdes, C4,
MURRAY S. KLAMKIN, University of Alberta, Canada, and REX H. WU, Brooklyn, NY. One incorrect
solution was received.

Evanovich gave the reference Niven, Mathematics of Choice, pp. 78-80; Hess listed W. W. Rouse
Ball, Mathematical Essays; Klamkin found David and Bart on, Combinatorial Chance, P. 105; Wu |ocated
Constantine, Combinatorial Theory and Statistical Design, and the editor used Munroe, Theory of
Probability, pp. 70-72.

The Pi Mu Epsilon Journal wasfounded in 1949 and is dedicated to undergraduate and begin-
ning graduate students interested in mathematics. Submitted articles, announcements, and contri-
butions to the Puzzle Section and Problem Department of the Journal should be directed toward
this group.

Undergraduates and beginning graduate students are urged to submit papersto the Journal for
consideration and possible publication. Student papers are given top priority. Expository articles
by professionalsin all areas of mathematics are especialy welcome. Some guidelines are:

1. Papers must be correct and honest.

2. Most readers of the Pi Mu Epsilon Journal are undergraduates; papers should be directed to
them.

3. With rare exceptions, papersshould be of general interest.

4. Assumed definitions, concepts, theorems, and notations should be part of the average under-
graduate curriculum.

5. Papers should not exceed 10 pages in length.
6. Figures provided by the author should be camera-ready.
7. Papersshould be submitted in duplicate to the Editor.

RALPH P. BOAS - IN MEMORI AM

Ralph P. Boas, Jr., died in Seattle on July 25, 1992. He was a former President of the MAA
and a former editor of The American Mathematical Monthly. He was a distinguished research
mathematician, publishing many articles and several books. He taught at Northwestern University
for many years and was quite active in MAA matters. This Editor is grateful to him for his help in
reviewing papers and his valuable insights into editing a mathematics journal. For a more complete
biography, see FOCUS, the newsletter of the MAA, September, 1992.
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PUZZLE SECTION

The Editor thanks all those who sent in solutions to Joe Konhauser's puzzles that appeared in
the Spring, 1992, issue of the Journal. Since the solutions had already appeared in earlier issues of
the Journal, the newly submitted solutions and the names of the solvers will not be printed.

SOLUTION TO MATHACROSTIC NO. 34 (SPRING, 1992)

WORDS:
A.  cooeebird M. the monster
B. abyselpha N. eviscerate
C. semeiosis 0. Rosamond’s Bower
D. Theaetetus of Athens P. episode
E. intention Q. airtight
F. aceinthehole R. lightship
G. leitmotiv S. in the limelight
H. tensegrity T. tooth and nail
. even vertex U. inedited
J.  reverie V. ergonomics
K. neve W. string theory
L. ana

AUTHOR AND TITLE: CASTI - ALTERNATE REALITIES

QUOTATION: Inscience, thereisamethod to get at the schemeaof things - observation, hypothesis,
and experiment. In religion, there is a method too - divine enlightenment. However, the religious
method is not repeatable nor isit necessarily available to every interested investigator.

SOLVERS: THOMAS F. BANCHOFF, Brown University; JEANETTE BICKLEY, St. Louis
Community College at Meramec, MO; CHARLES R. DIMINNIE, St. Bonaventure University, NY;
META HARRSEN, New Hope, PA; TED KAUFMAN, Brooklyn, NY; CHARLOTTE MAINES,
Rochester, NY; STEPHANIE SLOY AN, Georgian Court College, NJ; JOSEPH C. TESTEN, Mobile,
AL;

MATHACROSTIC NO. 35
Proposed by the late Joseph D. E. Konhauser. This is the last known acrostic that he constructed,

The 227 letters to be entered in the numbered spaces in the grid will be identical to those in
the 28 keyed words at the matching numbers. The key numbers have been entered in the diagram
toassist in constructing the solution. When completed, theinitial letterson the Words will give the
name of an author and the title of a book; the completed grid will be a quotation from that book.

Solutions to Mathacrostic No. 35 should be sent to: Richard Pess, Pi Mu Epsilon Journal, St.
Norbert College, 100 Grant Street, De Pere, WI 54115. Solutions must be received by March 1.



DEFINITIONS
Alice B. Toklas said it has "the pungency
of a high-born radish bred to a Tow-brow
cucumber”

rising

flip

crisscross

to ‘redden

first two words of English title of
Marcel Duchamp’s controversial 1912
painting {2 ids.)

medley

laughing jackass

raucous noise; squawk
a whitefish of Irish lakes
composite plant having heads with both

disk and ray flowers

billingsgate

good for nothing
a moral or an emotional pang

layer of earth called "zone of mobility"

comet with period 17.97 years, first
observed in 1913

tenor

times past (2 ids.)

The Scar, Caroline Bird's
fascinating look at the Great Depression
it was discovered by the French.
glamorized by Times Square, and

immortalized by Las Vegas (2 wds.)

sensation

to fidget

to cover here and there

a pool or puddle

platelike

not connected by conjunctions
friendly goblin or brownie of
Scandinavian folklore

last song jointly written by Richard
Rogers and Oscar Hammerstein I1

147 192

177 195

11 X

12 Y
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18 P |19 E

20 K

25 R

26 X

27 E j28 0 [29 Y |30 J 31 &

H |52 R |53 D |54 Z 55 0
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43 K 44 N
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37 H
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140 F [141 0 142 S

K |77 ¢ [78 0 {79 H [80 R 81F|BZJ 83 C
F (90 Q 91 D [92 A [93 O |94 H |95 N

96 U [97 P [98 Y |99 F

100 6

38 C

50 J

101 B

104 0 |1056 }106 H

107 M |108 ¥

109P |110S 1112 |112a 1137

114 F

115D

116 A [117L |118T |119F J120R

121 Q

1227 123b [124 1 (1251Z

126 M

127 A

128 X 129 b |1306 [131 0

132 M (133D

134 7 |135 N |136 F 137 b

138 A

138 Q

1430 [144 Z

145 H 146 Y

147 b (148 F 149 E 150 T

151 L

153 B

154 Y 155D (156 U |157 6 {158 R

159 A {160 I

166 ¥V

167 L 168 N [169 0 [170 A

msz

161 E [162R [163S |164 6

165 ¥

1729 |173B 174 Z 1715 X

176 §

152 0

177 ¥

178 b

179J 1800 (181 B 182 U

191 8

203 K [204 P

192b 1937 194D [195Y

205 H 206 M 207 S 208 a

215 ¥

216 L 2170 |218 F 219 Y

183 a 184 T

188 Z

185 6 |186 P [187 ¥

196 V

197 L 198 s [199 N ]200 J

189 F

209 E

220 R

210Z [211 b 212 L

190 C

221 E |222a [223C (224 S
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THE 1992 NATIONAL Pl MU EPSILON MEETING

This year's national meeting was held in conjunction with the national meeting of the Math-
ematical Association of America's Student Sections. The reason for this departure from tradition
wasthat, because of ICME having its meeting in Quebec, Canada, the MAA and AMSdid not hold
their usual combined summer meeting. Pi Mu Epsilon hosted the meeting on the campus of Miami
University, in Oxford, Ohio. The meeting ran from August 5 through 8.

The J. Sutherland Frame Lecturer was Underwood Dudley, from DePauw University. The
title of histalk was "Angle Trisectors.” The MAA Invited Address was by Peter Hilton, from the
State University of New York at Binghamton. He provided "Another Look at Fibonacci and Lucas
Numbers.” In addition to these invited addresses, there were three minicourses available to the
students and faculty who attended the meeting. These were: “Tilings by Hand and Computer,"
by Doris Schattschneider of Moravian University; "Variations on a Spira," by David Kullman of
Miami University (this minicourse was presented twice); and " Environmental Mathematics,” by Ben
A. Fusaro of Salisbury State University.

At theannual Pi Mu Epsilon banquet, David Ballew, President of B Mu Epsilon, gavetributeto
Joseph D. E. Konhauser, who passed away last February. Joe, aformer editor of this Journal, passed
away in February. Hewas a National Councilor for Pi Mu Epsilon at the time of his death. (Seethe
Spring, 1992, issue of this Journal, page 349.) Joe's unexpired term on the national council is being
filled by Robert S. Smith, from Miami University (Ohio). In addition to his other contributions to
Pi Mu Epsilon, Robert Smith wasin charge of all the local arrangements for this year's meeting
at Miami University. President Ballew also introduced J. Kevin Colligan, a representative of the
National Security Agency. The NSA has again given Pi Mu Epsilon a generous grant to distribute
to student speakers to help defray the cost of their travel to the national meeting.

The Pi Mu Epsilon Council held its annual meeting on Friday, August 7. The Council noted
that thisfirst joint meeting with the MAA student chapters was quite successful and agreed to wark
with the MAA student chapters to again co-host the meeting in 1993. Because the 1993 summer
meeting will be in Vancouver, British Columbia, Canada, and this site is so far from most of the
schools which have usually sent student speakers, the Council approved, on a temporary basis, a
more generous travel allowance for student speakers. (See note on page 421.) The Council hopes
that this experimental plan will help to continue the large number of student speakers at the national
meetings. There were a total of 31 Pi Mu Epsilon student speakers at this year's meeting.

PROGRAM - STUDENT PAPER SESSIONS

Interesting Properties of Some Graph Products Ray Adams

Massachusetts Alpha
Worcester Polytechnic Institute
On Maximizing the Product of Partitions Jeffery John Boats

New York Omega

St. Bonaventure University
On Directed A-Cydesin n-Tournaments John Davenport
Ohio Delta

Miami University

Grassman Algebras, Functional Integrals,
and the Hubbard Model

Two Dimensional Analysis of Heat Flux
in a Copper Plate
Using the Finite Difference Method

Elaboration on Usefulnessof Constructively

Limited and Irresolvable Demonstrations

JMP-ing into Data Analysis and Exploration
A Number-Theoretic Identity Arising from

Burnside's Orbit Formula

A Generating Function for Nilpotent Pairs

in a Finite Group

On the Packing Graph

Elements of Hyperbolic Geometry

Mathematics in Advanced Macro-Economics

Primitive Pythagorean Triples

The Connectivity of Interior of 3-Regular

3-Connected Bipartite Planar Graphs

Buffon’s Needle Problem

An Introduction to Elliptic Integrals
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Anthony F, DeLia
Florida Theta
University of Central Florida

James A. DiLellio
Ohio Nu
University of Akron

Vladimir Dimitrijevic
Ohio Xi
Y oungstown State University

William Duckworth
Ohio Delta
Miami University

Francis Fling
Kansas Beta
Kansas State University

Mike Galloy
Indiana Gamma
Rose-Hulman Institute of Technology

Raitis Grinsbergs
Minnesota Gamma
Macalester College

Tony Hinrichs
Indiana Gamma
Rose-Hulman Institute of Technology

Barry E. Jones
Ohio Delta
Miami University

Dennis Keeler
Ohio Delta
Miami University

Dylan T. G. KhooLim
Ohio Delta
Miami University

Susan Koppenol
Louisiana Delta
Southeastern Louisiana University

Amy Krebsbach
Wisconsin Delta
St. Norbert College
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Cooperative Learning in Mathematics Education

A SLATEC Compatible Subroutine
for Spline Approximation
Using General Basis Functions and Constraints

Patchwork Mathematics

Some Combinatorial Results Arising
from Complete Digestion of Proteins

Development of a Power Outage
Emergency Response System

A Numerica Model Including PID Control

of a Multizone Crystal Growth Furnace

Completely Positive Matrices

Bounding the Sneech Population

Patterns of Periodicity in the Mandelbrot Set

Probabilities Associated with Plinko

A Tool for Solving 2-Dimensiona

Systems of Equations

Fluid Diffusionin the Brain

Crystallographic Groupsin the Plane

Elizabeth Kuehner
Pennsylvania Omicron
Moravian College

Mark P. Kust
Michigan Epsilon
Western Michigan University

Shelly L. Martin
Ohio Xi
Y oungstown State University

Jennifer Miners
Arkansas Beta
Hendrix College

Mike Ochrtman
Oklahoma Beta
Oklahoma State University

Charles H. Panzarella
Ohio Nu
University of Akron

Keith Rhodes
Ohio Delta
Miami University

Melissa A. Smith
Ohio Lambda
John Carroll University

Michael J. South
Georgia Epsilon
Valdosta State College

Traca E. Tithof
Ohio Xi
Y oungstown State University

Christina T. Tsiaparas
Ohio Xi
Y oungstown State University

David D. Turner
Washington Zeta
Eastern Washington University

Linda M. Vargo
Ilinois lota
Ilinois Benedictine College
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John Napier and Hs Definition of Logarithm Daniel L. Viar
Arkansas Alpha
University of Arkansas
Dynamicsof a Quadratic Family * In Pictures* Connie Yarema
Texas Mu -

East Texas State University -

For the fourth consecutive year, the American Mathematical Society has given Pi Mu
Epsilon agrant to be used as prize money for excellent student presentations. As aways, there were
many excellent presentations, and four of them were selected to receive prizes of $100 each. The
winning speakers were:

Jeffery John Boats, St. Bonaventure University
On Maximizing the Product of Partitions

Franeis Fung, Kansas State University
A Number-Theoretic Identity Arising from Burnside's Orbit Formula

Susan Koppenol, Southeastern Louisiana University
Buffon’s Needle Problem

Daniel L. Viar, University of Arkansas
John Napier and His Definition of Logarithm

Pi Mu Epsilon is again grateful to the American Mathematical Society for the generous gift
that has made these awards possible.
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GLEANINGS FROM THE CHAPTER REPORTS

MICHIGAN ZETA (University of Michigan, Dearborn) We continued our Focus on Faculty series
for athird year. Three faculty members of the Mathematics Department presented lectures: on the
future of computers in college mathematics, Rivest’s coin tossing problem, and geometric modeling.
To assist students of al levels, The Chapter sponsored two math advising sessions. Professors
representing the areas of sewndary education, statistics, computer science, and applied mathematics
aided studentsin future course selection and possible career and graduate school paths. In addition,
a representative from the University's Career Planning and Placement Office was on hand to advise
prospective graduates on possible careers which utilize a mathematics degree. We sponsored two
student/faculty mixers this past year. The April mixer was a faculty thank-you luncheon. To aid
those students that might pursue more advanced degrees, the chapter organized a graduate school
announcement library. On a social level, the chapter had two game nights with pizza and other
refreshments. The chapter also sponsored a dinner at the end of each semester.

NEW MEXICO ALPHA (New Mexico State University) The chapter conducted its fourth annual
NMSU Math Challenge on Saturday, April 4, 1992. This contest, taken by high school students
from around the region, had three strands: an individual contest, a team bowl contest, and a team
modelling contest. In the Individual Contest, 181 students took the qualifying round & their own
high schools. Forty-four students were invited to take the second round on campus. Thefirst place
winner, Russell Kehl, received an HP 48S calculator. The two second place winners, Jeffrey
Miller and Xin Wang, were given TI-81 calculators. The third place winner, Charles Hardin,
and the two fourth place winners, Michael Martinez and Tim Fox, received books. Nine four-
member teams took part in the Team Competition. First place winners were the Cruces Conics.
The Ream Modelling Competition was new this year. Two faculty members wrote an original
problem Monttoring Meteor | mpacts on the Moon. Eleven 2-4 membersfrom four area high schools
spent a weekend solving it. The top five team were invited to present their solutions orally to the
judges and interested spectators on Team Day. The top team received a plaque for their school and
the members (Jeff Miller, Charles Hardin, and Steven Bennett) wereeach given asubscription
to Quantum magazine.

OHIO ZETA (The University of Dayton) The chapter was very active this year. Some of the
highlights are as follows: At the Annual Pi Mu Epsilon Regiona Conference held in September,
1991, at Miami University, Oxford, OH, three students gave talks. They were David Jessup.
David Kass, and Kristine Fromm. A Number of students attended and gave talks at the spring
meeting of the Ohio Section of the MAA held at the University of Dayton. Thestudentsare David
Jessup, David Kass, Kristine Fromm, Kristen Toft, Marni Ryder, and Thomas Szendrey.
David Jessup gave a talk at the Summer AMS-MAA meeting held in Orono, ME. David Jessup
and David Kass jointly received this year's Faculty Award for Excellence in Mathematics. Jeff
Oliver was the recipient of this year's Sophomore Class Award.

OHIO NU (The University of Akron) The chapter held its annual induction banquet on April 24,
1992. A number of awards were presented at this banquet. David Johnson, Brian Van Pelt,
and Asim Yarkan received one-year memberships in the American Society. Jayashree Dorairaj,
Polychronis Papageras, and Lucy Pramudji received one-year memberships to the Society of
Industrial and Applied Mathematics. Jan Spears received a one-year membership to the American
Statistical Association. Melissa Jolly and Kelly Kerata received one-year memberships to the
Mathematical Association of America. The Samuel Selby Scholarships ($500 each) were awarded to
James Dilellio and Zhaolin Mao. The William Beyer Statistics Scholarship ($400) was awarded
to William Blue. The Mary Maxwell Memorial Scholarships in Mathematics ($400 each) were
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awarded to Dawn Holgate, Joseph Ramey, Carl Stitz, and Gary Traicoff. Jonobie Baker,
the Western Reserve Science Day Winner - Mathematical Sciences Category, received a $50 U.S.
savings bond.

OHIO XI (Youngstown State University) Eleven students attended the National Pi Mu Epsilon
Meeting at Orono, ME. Eight of these students presented papers: Jim Baglama, James Bangczi,
Hester Brosag, Sharyn Campbell, Dimitros Chalop, Heather DeSimone, Linda Hughes,
and Marguerite Nedreberg. Three of the speakers received prizes: Heather DeSimone, Linda
Hughes, and Marguerite Nedreberg. The chapter had itsinitiation of new memberson Novem-
ber 6. On November 20 we had our annual book sale. The books were donated by professors. The
chapter made a profit of $260. We had a Christmas party on December 15. There was another
initiation of new members at the meeting of January 29. Other activities during the year were: a
second book sale and a sweatshirt sale. Thefind initiation of new members was held on April 15.

TENNESSEE GAMMA (Middle Tennessee State University) The chapter began the 1991-92 year
with its semi-annual pizza party. New members were initiated and officers elected. In October,
Tom Ingram, University of Missouri at Raleigh, gave a presentation on “Dynamical Systems."
The semester ended with a combined Christmas party with the two other mathematics clubs. At
the March 12 meeting, there was a panel discussion titled "Is There Life After a Master's Degreein
Mathematics?' The five panelists were al former MTSU Master of Science degree students. They
were Joy Whitenack (who is working on an Ed. D. at Vanderbilt), Lori Henslee, Amy Wild-
smith, Michael Mogensen Vermillion (who are currently workingon Ph. D.’s at VVanderbilt),
and Susan Calvert (instructor at Motlow State Community College).

For the 1992 Tom Vickrey Mathematics Project Competition, Dawn Woodard (first place)
gave her paper titled “Automorphism Groups of the Hasse Subgroup Diagrams for Cyclic Groups
with Order Divisible by Exactly Two Primes." Gary Estep (sewnd Place) presented his project
Application of Infinite Seriesto Fractals." Dawn Lunaand Robert Ral ston presented their paper
"Two Finite Self-Dual Geometries,"” and Kevin Gipson gave his paper "Minimal Surfaces.” We
also had four of our members present their papers at the Hendrix-Rhodes-Sewanee Undergraduate
Mathematics Symposium at Memphis. Finaly, in April, we proctored the Junior High Contest
held at MTSU, which is our annual fundraiser. The year ended with another combined picnic with
members of the other two mathematics clubs.

St. John's Universty / College of St. Benedict
Annua Pi Mu Epslon Student Conference

Tom Banchoff

Brown University

March 26-27, 1993

For mor e infor mation contact: Dave Hartz

Department of Mathematics ‘
College of St. Benedict *
St. Joseph, MN 56374

(612) 363-5804



Seventh Annual
MORAVIAN COLLEGE
STUDENT MATHEMATICS CONFERENCIE
Bethlehem, Pennsylvania
Saturday, February 13, 1993

V\& invite you to join us, whether to present a talk or just to listen any
socialize. The conference will begin at 9:00 a.m. and continue into
late afternoon. After an invited address, the remainder of the day will
be devoted to undergraduate student talks. Talks may be fifteen or
thirty minutes long. They may be on any topic related to
mathematics, operations research! statistics or computing. We
Lencourage students doing research or honors work to present their
work here. We also welcome expository talks, talks about
interesting problems or applications and talks about internships, field
studies and summer employment. We need your title, time of
presentation (15 or 30 minutes) and a 50 word (approximate)
bstract by February5, 1993.

Sponsored by the Moravian College Chapter of Pi Mu Epsilon

and the Lehigh Valley Association of Independent Colleges.

Please contact: Fred Schultheis

Department of Mathematics, Moravian College
1200 Main St. Bethlehem! PA 18018
(Telephone: (215) 861-3925)

I
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Announcing the 10th Annual
Rose-Hulmaninstitute of Technology
Conference on Undergraduate Mathematics

Friday and Saturday, March 19th and 20th, 1993
on the Rose-Hulman campusin TerreHaute, Indiana

Featuring Keynote Speaker

Carla Savage
of North Carolina State University

and

A CAYLEY SHORTCOURSE
offered by

Gary Sherman
of the Rose-Hulman | nstituteof Technology

Carla Savage has been studying Gray codes, and variants, and their
relationship to graph theory, group theory, and discrete mathematics. Gray
codes are schemes for listing combinatorial objects so that successive
objects differ in asmall, specified way. Professor Savage has also worked
inthearea of paralel agorithmsand architectures. Sheisa popular speaker,
whose work has been partially supported by NSFand NSA.

Gary Sherman directs a Summer NSF-REU program, which features
computational group theory. CAYLEY is a software package which allows
the user to do computationsin groups, rings, and fields. Anyoneinterested
in computational algebra or discrete mathematics will find this shortcourse
of interest.

Undergraduatestudents are encouraged to submit abstractsof papers, in
any areaof the mathematical sciences, for presentation.

For moreinformation, contact: Bart Goddard
Departmentof Mathematics
Rose-Hulman I nstituteof Technology
Terre Haute, IN 47803
(812) 877-8486
goddard @nextwork.rose-hulman.edu
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Then consider joining a highly talented group of
mathematicians whose job it is to deduce structure where
structure is not apparent, to find patterns in seemingly
random sets, to create order cut of chaos.

These are the mathematicians of the National Security
Agency. They contribute to the solution of crypiologic
problems using Number Theory, Group Theory, Finite Field
Theory, Linear Algebra, Probability Theory, Mathematical

Statistics, Combinatorics and more. And they function as a
true community, exchanging ideas and working with some of
the finest minds—and most powerful in the country.

If you love problem-solving and like the idea that those
solutions will be applied to real world problems, look into a
career with NBA. Send your resume to 385 P National
the address below or contact your 4 é‘ Security
campus placement office. N2 Agency

Ry
Altn M322 (AFQ), Ft, Meade. Maryland 207556000 The Opporturities of a Lifeume
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