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THERICHARD V. ANDREE AWARDS

Richard V. Andree was, until his death in 1987, Professor Emeritus at the University of Okla-
homa. Professor Andree had served Pi Mu Epsilon in many capacities: as President, as Secretary-
General, and as Editor of the Pi Mu Epsilon Journal. The Council has designated the prizesin the
National Student Paper Competition as Richard V. Andree Awards.

First prize winner for 1992 is Nataniel Greene, for his paper "Fractorial!" which appeared in
the fal issue of the Journal. Nataniel prepared this paper while he was a junior at Carmel High
School in Carmel, NY. Heis currently enrolled at Y eshivaUniversity. Nataniel will receive $200.

Second prize winner is Michael Lin, for his paper "Rings of Small Order,” which appeared in
the spring issue. Michael prepared his paper while he wasa senior at Meorhead Senior High School,
in Moorhead, MN. He now attends Stanford University. Michael will receive $100.

Third prize winner is Mark Lancaster, for his paper "On the Number of Invertible Matrices
Over Zy.,” which appeared in the fall issue. Mark prepared his paper while he was a senior at
Hendrix College; his work on related topics continued into the followingsummer at the University
of Tennessee (Knoxville) with Dr. David E. Dobbs as his advisor. Mark will receive $50.

There were three other student-written papers that appeared in 1992:

"Exploring Self-Duality in Graphs,” the result of joint research between Concetta DePaolo and
Russell Martin during the National Science Foundation's Research Experience for Undergraduates
Program, which was held at Worcester Polytechnic Institute in the summer of 1991. At that time,
Concetta had been a student at Worcester Polytechnic Institute and Russell a student at Syracuse
University. Both authors are currently in graduate school: Concetta at Rutgers and Russell at
Clemson.

'‘Change Ringing: Mathematical Music,” by Heather DeSimone, of Youngstown State University.
Sheis currently attending graduate school at the College of William and Mary.

"On Transpositions Over Finite Fields,” by Beth Miller, of Pennsylvania State University - New
Kensington Campus. Beth prepared the paper under the supervision of Professor Javier Gomez-
Calderon.

The current issue of the Journal contains four papers with student authors:

"Some Operations on Matrix-Valued Expressions,” by Carol Clifton of Middle Tennessee State
University. Carol completed this paper during her senior year under the direction of Dr. Kevin
Shirley.

"QOuterplanar Graphs and Matroid Isomorphism,” by Jeremy M. Dover while he was a student at
Worcester Polytechnic Institute. He currently attends graduate school at the University of Delaware.

"Uniform Embeddingsof Graphs," by James R. Murphy and Mohammed P. Shaikh while they were
students at Western Michigan University.

"Intrinsic Reaction Coordinate Methodologies: Comparative Analyses,"” by Lisa Pederson (while a
student at North Dakota State University) and Kim Baldridge (on the staff of the San Diego Super-
computer Center). Lisais currently a graduate student in chemistry at Johns Hopkins University. .
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SOME OPERATIONS ON MATRIX-VALUED EXPRESSIONS

Carol Clifton
Middle Tennessee State University

Consider the matrix equation eX + I = O, where | isthe identity matrix, Ois the zero matrix,

and X hasfour variableentries, z;;, for i,j = 1,2. We can solve for z; in the following manner:
I3y ZI)2 _ l —b 0
(xm 1!22) T a ( 0 —b)' (1)
By (1), we obtain #11 = —b/a,z12 = 0,221 = 0,22z = —bfa. As we will see, solving equations

with matrix-valued expressionswill involve performing operations on these expressions. To solve
the linear equation above, for example, we apply the operation (X — bI) to both sides of the
equation. However, that method will only work when the operation is defined for suitable matrix-
vaued expressions. To see where some difficulty might occur, we need only try to solve a quadratic
equation. We can begin to solve the second degree matrix equation aX2? +bX + ¢l = O, for
zi;, i,j = 1,2 by completing the square.

X2+£X= -y
a a
b b2 —c b2
2,9 2 r Cpa
st +ax+4a21 aI+4a2I
b \? b2 —dac
<X+%I) = @)

It would now be desirable to take the square root of each term in (2). However, if B2 —4ac # 0, we
first need to investigate the square root of 1. If b? — 4ae = 0, we need to investigate the square root
o the zero matrix.

The squareroot of | should be a matrix, A, such that A2 = | . If
a b
a=(2 )

a®>+bc ab+bd) _ (1 0
ac+cd be+d?) T \O0O 1/)°

We obtain the following equations from the above equality:

then

a?+bc=1 3)
ac+cd=0 4)
ab+bd=0 ()
bet+d®=1 (6)

We may consider two distinct cases. First, assumethat ¢ = 0. From (3), a = 1. From (6),
d = 1. From (5), a = —d when b# 0, and the solutions are

(@) (51 o
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Now assume that b= 0. The solutions become:

(1) o) i) 6 2)

The last two of these solutions are contained in the solutionsin (7).
Now we may assume that c# 0. From (4), a = —d. From (3), a= %1 — be. So, the solutions

Noticethat the solutionsin (7) are containedin (8).
So, the solutions of the square root of | are the following:

10 -1 0 V1-bc b —/1—be b ©)
0 1)’ 0 -1/’ c —/1=bc)’ c V1—be :
Thus, the square root o | has an infinite number of solutions, wherel is the principal root.
A sguare root o the zero matrix should be a matrix which satisfiesthe equation
A2 =0. (10)

From (10) and properties o determinants, it is clear that the det A = 0. From (10), we obtain the
following system of equations:

a’+bc=0 (11)
ac+cd=0
ab+bd=0
be+d2 =0 (12)

where i
a
2= 2)
Sincedet A = 0, we know ad = be. So, (11) and (12) become a(a+d) =0 and d(a+d) =0,

respectively. By adding (11) and (12), we obtain a = —d, or ttA = 0. Conversely, we can show that
detA =0 and trA =0 implies that A2 = O. Thus, we can parametrize the solutionsto (10) in the

following way:
a b . — a2
{(c _a).bc_ a} (13)
Now that we know the solutions for A2 = | and A2 = O, we may solve the equation
aXx?+ X+ el = 0. When b2 — 4ac # 0, then

m\,

—b
X= g2 I 1,

where v/ isan element o the solution set in (9). When b? — 4ac = 0, then
X = 191:1:\/5,
2a

where VO is an dement of the solution set in (13). Thefact that in complex algebra a polynomial
equation of degreen in asingle unknown z has exactly n solutions, therefore, does not hold true in"
matrix algebra.
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After studying the square root of |, one may now want to investigate the square root of
A, where A # I1,0. First notice that for a diagonal matrix D = diag(d;,ds,..-,d,), Where
diag(dl,ds,...,ds) meansthat d;,ds, ...,d, areentries aong the principal diagonal and only zeros
are elsawhere, D'/2 = diag(v/dy, Vda, -- ., Vds). Recall that if A €C (the set of complex numbers)
and there exists a nonzero vector z such that Az = Az, then A is said to be an eigenvalue for
the matrix A, and a is an eigenvector corresponding to A. In certain cases, an n X n matrix can
be factored by using its eigenvectors. That is, A = PDP~1, where D is a diagonal matrix where
the eigenvalues of A are placed aong the principal diagonal each according to its multiplicity, and
P is a matrix whose columns are eigenvectors appearing in the same order as their corresponding
eigenvalues appear on the diagonal of D. If A = PDP-!, then A issaid to be diagonaliiable. If
A is a matrix with complex entries, then the adjoint of A is the conjugate transpose of A, given
by A* = ‘. Note that P* = P-1 for the matrix which diagonalizes a matrix A. A matrix U
with the property that /* = U~! issaid to be unitary. It can be shown that every unitary matrix
can be diagonalized. If A = PDP-!, then we can define what is meant by the principal square
root of A. Notice that if A= PDP-!, then A" = PD"P-! for any n @ Z*. One can see that
A = (PDY2p-1)(PDV/2p-1), Itfollowsthat AY/2 = PDY/2P-1. |t isinteresting to note that A1/2
does not exist for just any matrix A. For example,

(1 =)

Proposition A If det A = 0 and trA = 0, then X2 = A has no solution for a 2 x 2 matrix A # O.

Proof: Suppose there exists a matrix X such that X2 = A where not al z;; = 0, £,j=1,2. We
have

has no square root, as seen below.

2

11 + 212221 = any
11212 + Z12T22 = a12
1% + 221%22 = an

2
T12T21 + Thy = G20,

However, (det X)? = det A =0, Thus, 232221 = z11222. SO, We have

z1(z11 + 22) = ayy (14)
z12(T11 + z22) = a1z
z21(z11 + 222) = an
Z99(Z11 + T22) = agy. (15)

By adding (14) and (15), wesee that (1 + z9)? = ap + a2, = 0. Therefore, trX = 0and A isthe
zero matrix as seen from the four equations above, a contradiction. A characterization of a matrix
A for which the equation X2 = A has a solution is given in texts, particularly [4] (Lancaster, p.
95). From the discussion above, it is sufficient for the equation X2 = A to have a solution if A is
diagonalizable. The question arises: "Which matrices are diagonalizable?"

Besides unitary matrices, another category of diagonalizable matrices is the collection of Her-
mitian matrices, named after the French mathematician Charles Hermite (1822-1901). A square
matrix A is called Hermitian provided that A =A* . In thereal case, a Hermitian matrix issaid to
be symmetric.

Theorem 1. If A is Hermitian, then A isdiagonalizable. (See Hohn, p. 472.)

The proof can be found in most texts of linear algebra. In proving this theorem, one finds
that the eigenvaluesof a Hermitian matrix are necessarily real. Also, eigenvectors corresponding to
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different eigenvalues are orthogonal. If A = A*, (A;1....As) are the eigenvalues corresponding to A
repeated as often as their multiplicity, and (vy, ..., v,) isthe corresponding set of eigenvectors, then
we can recover A asfollows:

A=) Mww, = PDP*.

A less common topic in elementary linear algebra is simultaneous diagonaization. Two-n X
n matrices A and B are said to be simultaneously diagonalizable if they have a common set of
eigenvectors which diagonalize both A and B; (i.e., A = PDP' and B = PD'P*). The following
theorem about the simultaneous diagonalization of two Hermitian matrices is useful.

Theorem 2. Let A and B be n x n Hermitian matrices. Then, AB = BA if and only if there exists
alinearly independent set of vectors {vg }2_; such that Avg = axvx and Bug = vy fork =1,...,n.

Any matrix A can be decomposed into its real and imaginary parts by defining
X = 2(A+A%)  and Y= 2(A-A%).
2 2i
It iseasy to see that
A=X+iY. (16)

This is analogous to writing a complex number = as = = z + iy, where z,y € R. From (16) we
compute
A"A— AA" = %(XY = YX). (17)

The following theorem characterizes matrices which can be diagonalized,

Theorem 3. (Spectral Theorem) Annxn matrix A can bediagonalized if and only if A*A = AA*.
Such a matrix issaid to be normal. (See Hohn, p. 405.)

Proof: From (16), A can be diagonalized if and only if X and Y can besimultaneously diagonalized.
SinceX = X*andY = Y*,X and Y can be simultaneously diagonalized if and only if XY =Y X,
by Theorem 2. By (17), XY = Y X if and only if A isnormal =

For example, we may use the Spectral Theorem to show that M can be diagonalized, where

3 -1
w=(1 )
Computing M M* and M*M, we obtain

e e (100
MM_MM_(O 10)

By the Spectral Theorem, M can be diagonalized. However, note that M is neither Hermitian
(because M # M*) nor unitary (since M* # M~1).

Similarly, we may use the Spectral Theorem to illustrate the Q cannot be diagonalized, where

31
0= (_2 2).
Computing Q@Q* and Q*Q, we obtain
. 10 -1
QQ*:(IIO ;) and QQz(_l 5)'

By the Spectral Theorem, Q cannot be diagonaliied since QQ@* # Q*Q.
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Now that we know an easy test to determine if a matrix is diagonalizable or not, we may
investigate applications of diagonalizable matrices. We have seen previoudly that if A is diag-
onalizable, then X2 = A has at least one solution, so that A% can be defined. We consider

f(2) = anz" Faa_1z"~1+. ..+ aq for asingle unknown z. The question arises: "What about f (A)
where A is a matrix?* Substituting A into f(z), we obtain

f(A) = anAN T ap 4™t Faol. (18)
Since we know that A" = PD"P~!, weobtain

f(A) = @, PD"P~ 4 a, 1 PD" 1P 4 .. 4 aoPP}.
Factoring, we have
f(A)=P(a,D"ta, D" ' +... + ag)P~ L.
Thus,
f(4) = PF(D)PL.

Notice that f{A) is defined for any matrix A, as seen in (18). We have seen that if f(z) = z'/?
then f(A) cannot be defined for all 2 x 2 matrices A. However, recall that if f(z) is analytic at a
point A, then it can be expanded in a Taylor series about Ay with a positive radius of convergence.
If the eigenvaluesof a matrix A are contained in thisdisk of convergence, then f (A) can be defined
using the Taylor's series expansion for f (z) as seen in the following theorem.

Theorem 4. (See Lancaster, p. 183) Let matrix A €Cnxn have eigenvalues Ay, Az, ..., As. If the
function f hasa Taylor series about Ag,

N =) (A=)
=0

with circle of convergence |A — do| = r, and if |A; = Ag| <r, J = 1,2,...,n, then f(A) is defined
and

FA) =3 ap(A= oD,
p=0

Other techniques for defining the value of a function applied to a matrix can befound in texts,
particularly [1] (Grantmacher, Chapter V). If f(z) is analytic at every point in the complex plane
(entire) and A is diagonalizable and A = PDP-1, then f (A) = Pf(D)P~! provides an equivaent
definition for the expression in Theorem 4. One class of entire functions are the trigonometric
functions. Therefore, we can define

sin(A) = Psin(D)P~!
where
sin(D) = diag(sin A1,...,sin A,).
It iseasy to see without justifying all the interchanges of limits that if A is normal, the two repre-
sentations of the sin(A4) are equival ent.
A2k+l

sinA = ]lm Z( 1) Z(TI)

PD2k+1P—1
— k—
N, Z( V@

(i g oo i)

=P (Z( )k(2k1+ i Z( l)k(2k+1)') P
(smA;,...,smA,,)P" :

1]

1
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In the same way, we may define cos(A), where A is normal. We notice below that the tangent does
not exist for certain normal matrices.

tan A = Pdiag(tanAy,...,tan A,)P"
= Pdiag(sin A1/ cosAy,...,sinAa/ cosAn) P*
= Pdiag(sin Ay, ..., SiNA,)P*Pdiag(1/ cos Ay, ..., 1/ cos A, )P*.

Thustan A = sin A/ cosA existsonly if cos); is nonzerofori = 1,...,n

The trigonometric identities can now be provenon matrices by using the trigonometric identities
from trigonometric functions defined on complex variables. For example,

sin? A+ cos?A = Pdiag(sin?}y,...,sin2A,)P* + Pdiag(cos® Ay, . .. ,co8* A, ) P*
P[diag (sin?Ay,...,sin2),) + diag(cos® Ay,...,cos? A, )] P*

= Pdiag(sin?A, + cos? Ay, ....,sin2 A, T cos2 A, ) P*

= Pdiag(l,...,1)P*

=PIP

=1.

Also, an example of a cofunction identity is given by:

sin(A+ ZI) = sin(PDP T 1))
=sin(PDP~' + zPIP-)
=sinP(Dt+ P!
= Psin(diag(M T Z,..., 0. T Z))P!
= Pdiag(sin(», T 2),...,sin(3, T Z))P~?
= Pdiag(cos Ay, ... ,coSA,) Pt
= COSA.

In summary, my work investigates the solutions to equations and identities containing matrix-
valued expressions. This investigation leads to a study of unitary, Hermitian, and normal matrices.
Last, theimplications of replacing the complex arguments of polynomial and trigonometric functions
with matrix-valued arguments are explored.
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OUTERPLANARGRAPHSAND MATROID ISOMORPHISM

Jeremy M. Dover
Worcester Polytechnic Institute and The University of Delaware

Thegoal of this paper is to present a method for counting the number of matroids which arethe
cycle matroids of outerplanar graphs. For those who are not familiar with matroids, we begin with
a brief introduction to some of the basic concepts and definitions of matroid theory. From there, we
introduce the fractured dual and discuss some of its properties. Finally, we use this fractured dual
to answer some questions about the number of matroids and matroid isomorphism.

What is a Matroid?

Consider the group of real numbers under addition. When considering the reals in this light,
we completely blind ourselves to their multiplicative properties, but we can apply al of the results

of group theory to the addition of reds. So, by restricting our attention, we have gained some
knowledge.

Now, in matroid theory, we attempt to do the same thing. With a matroid, the concept we
focus on is "independence,”" in one form or another, of subsets of a given universa set.

The concept of a matroid was introduced in 1935 in a paper by Hassler Whitney ("On the
Abstract Properties of Linear Dependence," Amer. J. Math., 57 (1935), pp 509-533). In this paper,
he looked at the set of columns of a matrix. A given subset of these columns, when considered as
vectors, iseither linearly independent of linearly dependent. Now, Whitney noticed that the sets of
columns which are linearly independent satisfy the following properties:

a) The empty set islinearly independent,
b) Subsets of linearly independent sets are independent, and

¢) Given two linearly independent sets, one smaller than the other, then some element of the larger
may be added to the smaller such that the resulting set will be linearly independent.

This motivates the following definition:

Definition. A maireid isa pair (E,I), where E is afinite, non-empty set, and | is a collection of
subsets of E which satisfy the above three properties. Thesetsin | are called independent sets.

Now we can definesevera important matroid concepts. A base of a matroid isa maximal inde-
pendent subset of F; i.e., an independent set which is not properly a subset of another independent
set. A circuit of a matroid isa minimal dependent subset of E; i.e., the removal of any element from
acircuit yields an independent set. If A isasubset of E, then therank o A is the cardinality of the
largest independent set contained in A. And, finally, the closure of A isthe largest set containing A
such that the rank of A equals the rank of the closure.

Now, what have we gained in going from the vector space to the matroid? It may not be imme-
diately clear, but we have made our definitions of "'independence"-related concepts much simpler.
For example, a set is linearly independent if and only if it isin the set |. Also, the operation of
closure is entirely analogous to taking spans in the vector space. However, we have lost the opera-
tions of addition and scalar multiplication; but, if one is interested in the independence properties
of vector spaces, matroids are a useful tool.

We have chosen to define a matroid in terms of independent sets. We could, however, have
chosen differently. Every matroid concept defined above, along with appropriate axioms, can be
used to define a matroid. In graph theory, it is most useful to define a matroid in terms of its
circuits:
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A matroid is a pair (E;C), where E is afinite, non-empty set, and C is a collection of subsets
of £, caled circuits, which satisfy:

i) no circuit contains another circuit (except itself), and

i) if ¢; and e are distinct circuitssuch that z € ¢; and z € cq, then there isa circuit in ¢y U cy
which does not contain z.

This definition of a matroid is equivalent to the previously given definition. For more details
on this and other definitions of a matroid, see [4] or [2].

Cycle Matroids

Consider a graph G. A subset of its edgesis, in some sense, dependent if it contains a cycle.
This motivates the following definition. The cycle matroid of a graph, denoted M(G), is a matroid
(E;C), where E isthe set of edges of G and C isthe set of dl cyclesof G, which are the circuits of
the matroid.

Why make this definition? One use of cycle matroids is to get a better handle on dualization
processes. The geometric dual of a plane graph is given by the following process:

1. Place a vertex in each face (including the infinite face) of the graph.

2. Across each edge of the graph, draw a new edge between the vertices of the two faces to which
the edge of the graph is adjacent.

The graph given by these new vertices and edges is the geometric dual. Now, the geometric
dual of a graph can change as one changes its embedding, so it does not make sense to talk about
the geometric dual. However, the dual of a matroid is defined only if the graph is a plane, while
the dual of a matroid is defined for al matroids. To make a connection between these dualization
processes, we note that if a graph G has a geometric dual H, then the dual matroid of M(G) is
M(H). Anyone interested in a thorough introduction to matroid theory and its applications should
consult the very readable article by Wilson {3].

The Fractured Dual

(Note: to avoid questions about existence and connectivity of dual graphs, we now restrict our
attention to graphs which are both planar and 2-connected.)

While cycle matroids are a useful tool, they have the unfortunate property that they do not
uniquely determine a graph for which they are the cycle matroid; i.e., several nonisomorphic graphs
may haveisomorphic cycle matroids. So, given two embedded graphs, G and H, the question arises:
Is M(G) isomorphic to M(H)? It turnsout that the geometric duals, provided that they exist, can
often shed some light on this question. However, when dealing with large graphs, the duals are just
as difficult to deal with as the origina graphs. In this section, we discuss a way to simplify the
structure of the dual graph without losing any information we may obtain about the cycle matroid.
First, however, we need some definitions.

Let G be a graph, with v a vertex in G. Assume the degree of v is n. The fracture of G at »
isformed by deleting the vertex v, and replacing it with n new vertices ¥1.,...,y2, and adding the
following edges. Consider the set {{z;,V} € E(G) : z; € V(G)}. Since vertex v has degree n, the
subscript ¢ variesfrom 1 to n. (Note that the z;’s need not bedistinct.) Further, each of these edges
is removed when v is deleted. Now to the graph, add the edges {z1,1},...,{2n,¥s}. this process
results in the fracture.

The fractured dual, G°, of an embedded plane block G is obtained by taking the geometric dual
of G and fracturing the vertex corresponding to the infinite face of G. For a fixed embedding of a
graph, thefractured dual is unique, and is thus well-defined, but, as with the regular geometric dual,
since there is nothing special about the infinite face, the fractured dual is not unique for a general.
graph. However, if the fractured dual is a tree, there are some things which we can say about the"
fractured dual. Some examples of fractured duals are given below in Figure 1L
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A W A
Q /\: G° :‘.’ |\ v}‘a
(2) ()
)

Figure 1. ) L&

We now wish to prove a theorem which classifies those graphs which have a tree as a possible
fractured dual. First, however, we need to state a theorem about outerplanarity. From Harary [1],
we know that a graph is outerplanar if and only if it contains no subgraph homeomorphic to K4 or
K3, with the exception of Ky — z, i.e., K4 with an edge deleted, which is homeomorphic to Ky 3,
but has an outerplanar embedding.

Theorem 1. A graph has an outerplanar embedding if and only if it has an embedding for which
itsfractured dual is a tree.

Proof: Assume that G is not in an outerplanar embedding. Then there is a vertex v which does
not lie on the infinite face.

The faces containing v will form a cyclein the dual, and since v is not on the infinite face, this
cycle will not be broken by the fracture of the vertex corresponding to the infinite face. Thus the
fractured dual of this embedding will contain a cycle, and thus not be a tree.

Conversely, if G isin an outerplanar embedding, every vertex will lieon theinfinite face. Then,
in the dual, every cycle in the dua will pass through the vertex in the infinite face. So, in the
fractured dual, when the vertex in the infinite face is fractured, all of the cycles will be broken.
Thus, thefractured dual will contain no cycles, and thus will be a tree. u

Matroid Isomorphism

We now wish to prove two theorems about the relationship between cycle matroidsand fractured
duals. With these theorems, we wish to address two questions. One, how does one determine when
the cycle matroids of two given graphs are isomorphic? Second, how many graphic matroids are
there? (A graphic matroid is a matroid which is the cycle matroid of some graph.)

Theorem 2. If G and H are plane blocks and G° is isomorphic to H®, then M(G) is isomorphic
to M(H).

The proof of this fact is a straightforward but technical argument, which uses more matroid
theory than has been introduced here. Thus, the proof is omitted.

What does this tell us? If G and H are two blocks with outerplanar embeddings, and their
fractured duals are isomorphic trees, then their cycle matroids are isomorphic. However, this only
tells us what happens when the fractured duals are isomorphic; it does not tell us what happens
when the fractured duals are not isomorphic.

The reason for thisisthat Theorem 2 is an implication and not an equivalence. The converse
of Theorem 2 is not true in general. However, we now wish to prove the conversefor a specia case,
that of G® and H° being nonisomorphic trees.

Before proving this theorem, we need one more definition. A twisting of a graph is defined as
follows: Consider a minimal cutset of a graph of connectivity 2, {u,v}. The removal of these two
vertices disconnects the graph into several components. Using these components, we wish to form
two subgraphs, GI' and G2'. We do this by dividing the remaining components up between the
two subgraphs such that each component appears in exactly one of GI' and G2'. Now let Gl be
GI' joined with {u,v} and any edges between {u,v} and the vertices of G1’, and define G2 in an
analogous way. The twisting of G is the graph formed by attaching G2 to GI such that uin Gl is
identified with v in G2 and v in G1 isidentified with u in G2.
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Theorem 3. Let G and H be blocks with outerplanar embeddings. Then M(G) =~ M(H) if and
only if G° as H® for the outerplanar embeddings.

Proof: The reverse direction is equivalent to Theorem 2. If M(G) ~ M(H), we have a theorem
from Welsh [2], due to Whitney, which says that G can be obtained by a series of twistingsfrom H.
An example of thisis shown below in Figure 2.

Now, in a series of twistings, we do not change the structure of the fractured dual, since-wé
are only changing the spatial arrangement of the graph, and are not changing any adjacencies.
Therefore, the fractured dual is unchanged under a series of twistings. Thus G® ~ H°. ®

G, <Q G2

Figure 2 Twistings on a graph and itsfractured dual.

!
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Now this theorem gives us the second part of what we sought earlier. If we have two blocks
with outerplanar embeddings, and their fractured duals for those particular embeddings are noniso-
morphic, then their cycle matroids are nonisomorphic.

Corollary. All outerplanar embeddings of a given outerplanar block have the same fractured dual.

Proof: From Theorem 3, we showed that if G and H are outerplanar blocks and M(G) ~ M(H),
then G® a H®, regardless of embedding. Now, just take H = G, and we have the results

Due to this corollary, when we talk about the fractured dual of an outerplanar embedding, this
is the fractured dual of every outerplanar embedding of G. Note that if G is not in an outerplanar
embedding, its fractured dual need not be a tree, so we cannot talk about a unique fractured dual.

Now, we can make thefollowingstatement: If G and H aregraphsin an outerplanar embedding,
then every cycle matroid isomorphism is equivalent to fractured dual isomorphism.

These technical results adlow us to address our second question. Since fractured dual isomor-
phism is equivalent to cycle matroid isomorphism, we can take the set of al trees with n edges and
invert the fractured dual process. (This can be done by identifying al vertices of degree onein the
tree and dualizing the resulting graph.) All members of this set of graphs have nonisomorphic cycle
matroids, by construction. So, the number of matroids on n elements (i.e., the size of theset Eisn)
which are the cycle matroids of outerplanar, 2-connected graphsis given by the number of treeson
n edges. In fact, thisisa very poor estimatefor the actual number of matroids, as this count ignores
many large classes of matroids. However, this technique combined with other counting techniques,
does give a fair lower bound on the number of matroids which are both graphic and cographic.
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UNIFORM EMBEDDINGS OF GRAPHS

James R. Murphy, Michigan State University
Mohammad P. Shaikh, Western Michigan University

1. Introduction In the first book written on graph theory (published in 1936), Dénes Konig
[3] described a procedure where, given any graph G with maximum degree A(G) = d, a d-regular
graph H can be constructed so that G is an induced subgraph of H. (A graph G is an induced
subgraph of H if H isobtained by adding edges and vertices (possibly none) to G such that no new
edges join two vertices of G.) It will be advantageous for us to describe this technique.

Let G beagraph with A(G) = d. If Gisaregular graph, then take H = G. Otherwise, we take
a new copy of G, which we denote by G”, and join corresponding vertices of G and G’ whose degrees
arelessthat d. Werefer to the resulting graph as G,. If G1 is d-regular, then take H = Gi. If not,
we continue this process until a d-regular graph G, isobtained. Figure 1 illustrates this process.

G: G": G

HH]

Figure 1. Anillustration of Konig's method
Konig's technique, therefore, has the following consegquence.

Theorem. (Konig) For every graph G and every integer » > A(G), there exists an r-regular
graph H containing G as an induced subgraph.

From Konig's technique, we can aso see that for every vertex v of H, there exists an induced
subgraph of H that isisomorphic to G and contains v. This leads us into the main topic of this
article. A graph G issaid to be uniformly embeddedin a graph H if, for every vertex v of H, there
exists an induced subgraph of H isomorphic to G that contains v. It followsfrom the proof of the
theorem that every graph G is uniformly embedded in some r-regular graph for each » > A(G).
This technique, however, does not guarantee that the graph H produced has minimum order. In
fact, for the graph G of Figure 1, the graph H of Figure 1 has order 16, while the minimum order
of a 2-regular graph containing G as an induced subgraph is only 6. The graph H’ of Figure 1 has
this property.

In 1963, Erdos and Kelly [2] developed a formula for determining the minimum order of a d-
regular graph H containing a given graph G (with A{(G) = d) as an induced subgraph. We describe
thisformula. Let G be a graph with maximum degree d whose vertex set is V(G) = {v1,v2,...,vn}.
Let d; denote thedegree of v; and let ¢; = d - d; (1< ¢ < n) denote the deficiency of v;. Further,
let e = max{e,} represent the maximum deficiency and s = 37, e; the total deficiency. We can
now state the theorem of Erdos and Kelly.

Theorem. (Erdés and Kelly) Let G be a graph of order n and let » be an integer such that
r > A(G). A necessary and sufficient condition that m + n be the least order of an r-regular graph

H containing G as an induced subgraph is that m be the least integer satisfying the following four
conditions:

(1) mr > s,

2 m?*=(F+1)m+s>0,
() m2e,

(4) (m+n)riseven.

Figure 2 shows examples of graphs G; and H;(1 < i < 4) such that H; is A(G;i)-regular, has
minimum order, and contains G; as an induced subgraph. The solid vertices in each graph H;
indicate the vertices added to G;, while the edges incident to each solid vertex are the added edges.

Gy Hy:

o
(2%
Gy o—o0—0
(o]
Gy

Figure 2. Smallest regular graphs containing a given graph as an induced subgraph

In Figure 2, G; is uniformly embedded in H;, for i = 1,2,3. However,G4 is not uniformly
embedded in H,4 since there does not exist an induced subgraph of H4 that contains z and is
isomorphicto G4. We verify thisfact next. Suppose, to the contrary, that G4 is uniformly embedded
in Hy. Thegraph G4 contains no 3-cycles, so either a or b must be removed, as well as one of ¢, d,
and y. Since G4 contains no vertex of degree 1, the vertex ¥ cannot be removed. However, if a or
b is removed, then the resulting graph has three consecutive vertices of degree 2, and this graph is
not isomorphic to G4. This produces a contradiction.

2. The Uniformity Number of a Graph Let G beagraph and r an integer with r > d =
A(G). Then we define the r-uniformity number u,.(G) of G as the minimum number of vertices
needed to be added to G to produce an r-regular graph H in which G is uniformly embedded.
We write u(G) for u4(G) and cal it simpI-I\_/ the uniformity number of G. For a given graph G of
order p, an r-regular graph H of order pT u,.(G) in which G is uniformly embedded is called an’
r-uniformity graph of G while a d-uniformity graph is called more simply a uniformity graph. The
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set of r-uniformity graphs will be denoted by U, (G) and the set of uniformity graphs by U(G).

We now illustrate the above concepts. For a positive integer n, let P, denote the path with n
vertices and for n > 3, let G, denote the cycle with n vertices. Then A(P,) = 2if n > 3 Thus,
for n > 3, the uniformity number u(P,) = 1since we need only add one vertex to P, to produce
a 2-regular graph in which P, can be uniformly embedded. Since Cn41 istheonly graph with this
property (see Figure 3),it follows that U(P,) = {Cn41}-

P

1 2 3 n-1 n
n+1
Cast’
1 2 3 n-1 n

Figure 3. The path P,(n > 3) and its uniformity graph Chr41

It is now useful to describe some classes of graphs which we will encounter soon. The complete
graph K, isthat graph of order p in which every two vertices are adjacent. A graph G is a bipartite
graph if its vertex set V(G) can be partitioned into two subsets ¥; and V2 such that every edge of
G joins a vertex of V1 and a vertex of V. If, in addition, [V1| = m,|Vz| = », and every vertex of Vi
is adjacent to every vertex of V4, then G is referred to as the complete bipartite graph Km,». The
graph K, is caled a star, with the vertex of degree n referred to as the center d the star. For
positive integers m and =, the double star S, , consists of adjacent vertices u and », where u and
v are adjacent to m— 1 and n — 1 additional vertices of degree 1, respectively. The vertices u and
v are the centers o the double star Smn. The double star Sy, is therefore the star Ky,,. These

concepts areillustrated in Figure 4.
Figure 4. Some special types of graphs

Suppose G isthe complete graph K. ThusG is (p-1)-regular. If r isan integer with r > p—1,
then any r-uniformity graph of G contains at least »+ 1 vertices. On the other hand, G is uniformly
embedded in K,41. These remarks provide the basisfor the following result.

Theorem 1. Let p beafixed positive integer. If risan integer with » > p-1,then u.(X,) = r+1—p
and Ur(Kp) = {Kr+1}'

By Theorem 1, thecompletegraph K41 isther-uniformity graph for al thegraphs Ky, Ka, ..., Kr41.

This observation gives us the following result.

Corollary 2. For every positive integer r, there exists a graph that is the r-uniformity graph of at
least = distinct graphs.

We next determine the uniformity number of a star.

Theorem 3. Thestar K, has uniformity number n— 1and U(K1n) = {Kan}-

Proof: Let H be an n-uniformity graph of K; 5, and suppose that M is the set of vertices added
to K,» to produce H, where [M| = m. Thus, ©(K1s) = m. Let v be the center of the star
Kin, and let v1,v2,...,v, denote the remaining vertices of K n. (See Flgure 5.) The deficiency
diof v; (0 <i<gn)isthengivenby dg = 0and dy = dz = - n = n—1 Since the
maximum deficiency e of Ki, iS» - 1, it followsthat 1o > n— 1. On the other hand, if welet
M = {u1,u2,...,un-1}, define Vi = {v1,v2,...,v5} and V2 = {w} UM, and join every vertex
v (1<i<n)toevery vertex uj (1< j < n — 1), we produce the graph Knn. Since Kin
is uniformly embedded in Kn ., we have u(K1,n) = n= 1 and, further, since Knn is the unique
n-regular graph of order 2n with this property, U(Ky,n) = {Knyn}. =

Figure 5. Thestar Ki,n-
We now turn to a more complicated problem, namely, the investigation of the uniformity num-
bers of double stars of the type Sp n-
Theorem 4. Let n be a positive integer.
(1) 1f n=1,then u(Sa,n) =0 and U(Sn,n) = {P2}.
(2) If n =2, then v(Sn.») = 1 and U(Sn,») = {Cs}-
(3) If n> 3and n isodd, then u(San) =2(n- 1).
(4) If n>4and niseven, then 2n = 3< u(Snn) < 2(n - 1).

Proof: If n=1,then Sy, = P, whileif n = 2, then S, » = Ps. Since P2 is regular, U(P2) = {Pa}
and u(P,) = 0. On the other hand, we have aready seen that v(P4) = 1and U(Ps) = {Cs}.

Suppose now that = > 3. Let u and v be the centers of the double star G = Spn. Let
Uy = {u,us,...u5_1} betheset of vertices adjacent to u and Vi = {v1,v2,...,% -1} the set of
vertices adjacent tov. (See Figure 6.)

Upoy 422 Ug oy

Vi
Figure 6. The double star Sp .

The maximum degree of S, » iSn, which isthe degree of the centers. Since all the other vertices
have degree 1, the total deficiency sof the doublestar is

Va-1

v, Vp2

(n=1)-2(n—1) = 2(n — 1)



508

Let H be auniformity graph of S, where m vertices are added to S, » to produce H. Then
m-n>2n-1)>=% or m22n~4+%.
Sincen 2 3,
m>[2n—4+32]=2n-3.

Also, ZVEV(H) degv = (2n + m)n, which is twice the number of edges of H. Hence, mn must be
even. Consequently, if n isodd, we have that m > 2n — 2.

We prove by construction that if n > 3 and n is odd, then «(S,») = 2(n— 1), whileif n> 4
and niseven, then 2n — 3 < u(Sn,n) < 2(N-1).

Consider the graph G with centers u and v as shown in Figure 6. Join v; to al verticesin
My, = {z1,z2,...2n-1}, and join u; to &l vertices in Ma = {2, Tn41,-..,Z2n-2}. (See Figure7.)
Now, join al the vertices in M2 to every vertex in {v2,vs,...,va—1} and join al vertices in M, to
every vertex in {us, ua,...,un—1}. Asthereare n-1verticesin each of M; and M, and n- 2 vertices
in each of {uz,ua,...,us_1} and {va,vs,...,vs_1}, the degrees of the vertices in {us,ua, ..., u,_,}
and {v2,vs,...,v,—1} are now n. But, each vertex in M; U M, has degree n — 1. To increase the
degrees of the verticesin M; UM, ton, wejoinz; t0zi4n-1 (1< i< n-1). Let H bethegraph
just constructed. We claim that this G is uniformly embedded in H'. To prove our claim, we must
show that for each vertex ; (1< i < 2r - 2)of H', thereisan induced subgraph of H’ isomorphic
to S, that contains z;. Any vertex z; € M; belongs to the subgraph induced by M, UV; U {u v},
while each vertex z; 6 M, belongs to the subgraph induced by M. UU; U{u,v}. In both cases, the
subgraph isisomorphic t0 Sp,». Thus, Sa,x is uniformly embedded in H'. =

) Uy

xll
X1
N *n+1
12 MZ
My
*n-3
Xp-2
Xon-2
X,

Va o Va-2

Figure 7. Constructing a uniformity graph for S a.

The reader might well find it interesting to investigate the problems of finding #(Sm, ) and
U(Sm,n) for m # n.

From the proof of Konig's theorem described at the beginning of this article, it follows that

the number of vertices added to a graph G of order p to make it r-regular is (2" - 1)p, where

=r - A(G). So (2" = 1)p is an upper bound for u.(G). Also, since the resulting graph from

Erdés and Kelly's theorem is r-regular, the number m of vertices added to obtain its graph is a
lower bound for u,(G). Therefore,

m < u(G) < (2" - p v
The number u,(G) may liestrictly between these two bounds, as we next show.

Consider the graph G of Figure 8. Observe that G has order 13, namely, ten vertices of degree
3 and three vertices of degree 2. Further, G contains one 3-cycle, al three vertices of which have
degree 3. Also, G has three 5-cycles, no two of which share more than two edges.
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Figure 8. A graph whose uniformity number is obtained
neither by Konig's nor by Erdos and Kelly's formula.

It is clear that we need add only one vertex to G and join it to the three vertices of degree 2
in G to produce a 3-regular graph containing G as an induced subgraph. Indeed, the graph F so
produced is unique and is shown in Figure 8. Thus the number m in (1) has the value 1 for this
graph G while{2® = 1)p = 13. Weshow, however, that G is not uniformly embedded in F. Observe
that F has one 3-cycle and four 5-cycles(the 5-cycle v*,u,a,c,w,v* is added). Also, two 5-cycles
of F* have three common edges.

If G were uniformly embedded in F, then the deletion of some vertex of F different from v*
must produce a graph isomorphic to G. Because G contains a 3-cycle, none of s, or ¢ can be
deleted. Because every vertex of the 3-cycle in G has degree 3, none of v, 2, or z can be deleted.
Because G has three 5-cycles, none o u,a, ¢, or w can be deleted. Because G does not contain two
5-cyclessharing exactly three edges, none of &, d, or y can be deleted. Therefore, G is not uniformly
embedded in F and so u(G) > 3.

On the other hand, G is clearly uniformly embedded in the graph H, so that 4(G) = 3.

3 Uniformity Sequences of Graphs We have seen that for a given graph G and an integer
r > A(G), the r-uniformity number u,.(G) awaysexists. This then suggests a sequence associated
with G. Let G be a graph with A{G) = d. Then the uniformity sequence s(G) of G is the sequence
51,52,83, -+, Where s = we4a-1(G) for k = 1,2,3,.... We write s(G) = {s51,52,53,...]. It follows
from Theorem 1 that for a fixed positive integer p, the uniformity sequence s(Kp) = {0, 1.2....}.
Indeed, we can say more.

Theorem 5. Thesequence 0,1,2,... is the uniformity sequence of a graph G if and only if G = K;
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for some positive integer p.

Proof: Wehavealready seen from Theorem 1that s(K,) : 0,1,2,.... Next assumeG isagraph with
uniformity sequence 0,1,2,.... Suppose that G has order p and A(G) =d. Then s; = ua(G) =0,
which implies that G is d- regular. Since s; = uq41(G) = 1, it is possible to add one new vertex v
to G and d + 1 new edges (all incident with v}, so, that the resulting graph is (d+ 1)-regular. This,
however, implies that p = d+ 1 and that G = K,

The proof of the preceding theorem actually provides a somewhat stronger result.

Coroallary 6. A sequence s is the uniformity sequence of a complete graph if and only if the second
termis 1.

We now consider uniformity sequences d other specific graphs. The following concept and
theorem will be useful to us. The complement G of a graph G isthat graph with V(G) = V(G) such
that wv isan edge of G if and only if «v isnot an edge of G.

Theorem 7. If a graph G is uniformly embedded in a graph H, then G is uniformly embedded
inH.

Proof: Suppose that G is uniformly enbedded in H, and let » € V(H). Then thereexistsU C V(H)
with v € U such that the subgraph induced by I/ in H isisomorphic to G. However, the subgraph
induced by U in__ﬁ isisomorphic to &, so there exists an induced subgraph of H containingv that
isisomorphic to G.»

From Theorem 7, we have an immediate corollary.

Corollary 8. Let G be a graph with A(G) = d and A(G) = d. Then, for every nonnegative
integer £,
Uai(G) = Ug,,.(G),

so 5(G) = s(G).

From Theorem 7, we know that K} 3 is uniformly embedded in every graph belonging to U(K; 3)
for all » > 3. We can see that a graph belonging to U,(%&,3) must have a 3-cyclein addition to a
vertex not adjacent to any vertex of the 3-cycle. We can also see that a 2-regular graph G belonging
to U,(K1,3) will be a graph of smallest order for which G has the largest possible degree such that
K13 is uniformly embedded in G. Therefore, G belongs to U(K\ 3). The graphs Hy, H,, and Hs
whose complements aregiven in Figure 9 correspond to thefirst three termsof s(X,,3). By following
the general pattern set in Figure 9, we have that s(K1.3) = {2,3,4,.. ]

K3 K3 v

Hy:

(o]
Figure 9. Computing the uniformity sequence of K 3.

We now determine the uniformity sequence of all stars. It is useful to state the following result.
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(See [1}, for example.)

Theorem A. Let r and n be integers with 0 < r < p. There exists an r-regular graph of order p if
and only if rpiseven.

Theorem 9. Let r and n he integers with r > n > 2. Then

u(Kia)=47 if nisevenor r isodd
' - otherwise.

Proof: Since the star K1, contains vertices of degree 1, at least r — 1 vertices must be added to
produce an r-regular graph containing K1,, as an induced subgraph. Thus, 4-(Kyn) > r - 1. If
#.(K1,n) = 7 - 1, then there exists an r-regular graph of order (n+1y+(r - 1) = n+ r containing
K, asan induced subgraph. If n iseven and r isodd, then no such graph exists (by Theorem A),
in which case u,(K1,n) > r.

Suppose that it is not the case that n is even and r is odd. We show that there exists an r-
regular graph of order n +r containing Ky, asan induced subgraph. Let ¥; and ¥, be two digoint
sets of vertices, where [Vi| = » and {V2] = n. On the set Vi, we construct an (r - n)-regular graph
(of order r). By Theorem A, such a graph exists. We then join every vertex of ¥j to each vertex of
Va, producing a graph G. The graph G is r-regular of order r +m. If v € Vi, then the subgraph
induced by {v} U V3 is K1». Thus, K1, is uniformly embedded in G.

Suppose n is even and r is odd so that » > n+ 1. Then welet ¥; and ¥, be disjoint sets of
vertices with {Vi| = r and |Va] = n4 1. We construct an (r - n - 1)-regular graph on Vi, which can
be done by Theorem A. Let H be the graph produced by joining every vertex of V3 to each vertex
of V;. Then H isan r-regular graph of order r+n+171f ve V) and x € V3, then each subgraph
of H induced by {v} U (V2 -{x}) is K1,a. Therefore, K1, is uniformly enbedded in H. =

Coroallary 10. If n > 3isan odd integer, then s(K1,) ={n—1,n-2,n—3,...}; whileif n > 2is
an even integer, then s(K1n) = {n- 1,ntLn+t1,~»+3n+3,...}

We next investigate the uniformity sequence of C,4. For the purpose of doing this, we present a
formulafor u,(Ca).

Theorem 11. For r > 2, o
c)=4{"7"1 ifrisodd

HellE) {’“2 if r iseven.

Proof: We consider two cases.

Case 1. Assume r > 3is odd. Every -Iqraph in U(Cy) isr-regular and Cj is 1-regular; so the order

of every graph in U(Cy) isat least r T 2. Therefore, u.(Cy) > r — 2. However, for = odd, every r-

regular graph has even order, so u,(C4) > r -1 If u.(C4) = r = 1, then every graph in U.(Cy) is 2-

regular. Now Cy is uniformly embedded in C, for n > 6. Thus, Cy is uniformly embedded in Cr43,

which implies that u,(C4) = r—1.

Case 2 Assumer > 2 is even. Asin Case 1, we know u,gg) > r - 2 However, Ty is_uniformly

embedded in al 1-regular graphs of order at least 4. So, Cy is uniformly embedded in C,42, and

u(Cq)=r—2n

Thefollowing corollary is now immediate.

Corollary 12. s(Cy) = {0,2,2,4,4,6,6,...}.
With the aid of the preceding two results, we can now establish the following:

Theorem 13. For every positive integer », there exists agraph G and an integer r for which there"
are at least n r-uniformity graphs.
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Proof: The result is certainly trueif n = 1, so we may assume that n > 2. Let G = C4 and let
r=2n+ 1. By Theorem 11, u,(C4) = »— 1. Observe that Cj is uniformly embedded in every graph
in the set

S={CUGClp+q=r+3, 3<p<(r+3)/2},

which is a subset of U,(Cy). Therefore,
[U-(Cy)l = [U(Co)[ 2 |S| = (r=1)2=n,

completing the proof."

From the definition of uniformity sequences, it may seem that such a sequence is nondecreasing.
However, that is not always the case.

For example, it can be shown that the first ten terms of the uniformity sequence of Cs are
0,3,5,5,5,7,9,9,11,10.

We have seen that two nonisomorphic graphs may have the same uniformity sequence. For
example, for every integer n > 2, s(Kn) = {0,1,2,...}. However, of course, for n # m, the
complete graphs of K, and X, have distinct orders. Even if two nonisomorphic graphs have the
same order, though, this does not imply that their uniformity sequence must be different. Of course,

by Corollary 8, complementary graphs have the same uniformity sequence. However, the graphs G
and H of Figure 10 are nonisomorphic, noncomplementary, and have order 4, yet s(G) = s(H) =

{2,3,4,5,...}.
F: G: v H:

o
Figure 10. Graphs with the same uniformity sequence.
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INTRINSIC REACTION COORDINATE METHODOLOGIES:
COMPARATIVE ANALYSES

Kim Baldridge, San Diege Supercomputer Center
Lisa A. Pederson, North Dakota State University

INTRODUCTION

The more progress physical sciences make, the more they tend to enter the domain of mathemat-
ics, which is a kind of centre to which they all converge. We may even judge the degree of perfection
to which a science has arrived by the facility with which it may be submitted to calculation.' Adolpke
Quetelet, 1796-1874

Chemical calculationsthat predict structures, energetics, and other properties of experimentally
known or unknown molecules provide a fundamental resource for chemical research today. The basis
of these calculations lies in an area of theoretical chemistry called molecular quantum mechanics.
This is a science that relates molecular properties to the motion and interaction of electrons and
nuclei. Since the chemical properties of atoms and molecules are determined by their electronic
structure, it is necessary to understand the nature of the motions and energies of the electrons and
nuclel.

This, in turn, reguires understanding the highly mathematical formulations that predict molec-
ular structure and properties, and thermodynamic and reaction processes. This paper discusses the
numerical techniques used to calculate reaction paths; paths which lead from reactant to product
species in reaction processes.

BACKGROUND

Soon after the formulation of molecular quantum mechanics in 1925,% it was determined that
solving the Schrodinger differential equation lead to direct quantitative predictions of chemical phe-
nomena from first principles. This ab initie method provided a theoretical approach to chemistry
independent of laboratory experimentation.

A key computational problem in solving the molecular Schrodinger equation is the solution of
the real symmetric eigensystem, known as the Hartree-Fock equations:

Fipy = Ay 1)

Here, Fisagiven n x nreal symmetric matrix, and (A;, ¥;) isone of n eigenvalue/eigenvector pairs
to be determined. In a given molecule, the energy of the system is dependent on both the geometry
of the molecule and the placement of the electrons in orbitals around the atoms in the molecule.
These energy contributions are expressed in the kinetic and potential energy terms of ther x n F
matrix, the Fock matrix. The eigenvalues, A;, represent energy levels of the molecular orbitals, ;.
These molecular orbitals are represented as linear combinations of basis functions or, in chemical
terms, atomic orbitals (i.e., s orbitals, porbitals, etc.).

The matrix dimension n (i.e., the number of basis functions in the computation) varies with
the number of electronsin the molecule and the desired accuracy of the molecular orbital function
representation. Valuesof n on the order of afew hundred are easily reached for even moderately sized
molecular systems. The individual matrix elements, which represent electron-electron interactions,
involvethe eval uation of O(n%) integrals, which tendsto dominate the 0(n ) floating point operations
required for solution of the eigensystem.

An iterative technique is used to solve the self-consistent field (SCF) computation (1). Tis”
is because the Fock operator depends on its own eigenfunctions, and the Fock matrix is usualy
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constructed from orbitals computed on the previous iteration. Thus, a sequence of eigensystems
must be solved until convergence (or self-consistency) is attained. Moreover, the SCF computation
often istheinner iteration in a geometry optimization in which the nuclear coordinates are optimized
with respect to energy. This means that a single geometry optimization for a molecule with even a
few heavy atoms may require the solution of hundreds of real symmetric eigensystems.

These calculations begin with a Cartesianal representation of the molecular system. In a many-
atom molecule, three coordinates define the location of each atom in space. Of these 3N total
coordinates, 3 translational and 2 (linear molecules) or 3 (non-linear) rotational degrees of freedom
can be ignored because energy is invariant to these motions in the overall molecule. The remaining
3N —6 (or 3N — 5) coordinates define the vibrations of the molecule, i.e., bond stretches and angle
distortions.

In a chemical reaction, the key structures are the reactants (molecules present at the onset of
a reaction), the products (molecules resulting from some chemical reaction between the reactant
species), and the transition state (a high energy complex through which the reactants must traverse
for the reaction to occur). Mathematically (Figure 1), the reactantsand products are at the bottom
of awdl on the potential energy surface (PES), having a zero gradient and positive curvature. The
transition state is located at a saddle point on the PES. This point has a zero gradient, but in
contrast to the stationary points (reactants and products), has one imaginary frequency (obtained
from the diagonalization of the second derivative matrix of energy with respect to coordinates).
Thisfrequency correspondsto the one and only one downward curvature. Following this frequency,
from the transition state to either the reactants or the products, providesa preferred path aong the
bottom of the valleys connecting these structures, called the minimum energy path (MEP).

Reactant region:

Trangtion Stateregion:

Product region:

Haurel.
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The mathematical determination of the MEP requiressolving a set of simultaneous differential
equations. The reaction path is defined in terms of the intrinsic reaction coordinate (IRC)3, s,
which is followed in moving along the MEP from reactants to products. This reaction coordinate
represents a structural and energetic progression as the system proceeds from reactants to products.
Thefollowing set of |RC equations gives the desired path:

d
i—:f(s’x)

= [(T"A/M)l/2 TA, ("'UB/I‘)I/2 zp,...]

&)

where z 4, Zg, ... are the coordinates of atoms A, B, .. .; x isreduced mass of reactants; m4,mpg, ...
are the masses of the atoms; f(s,z) = —VV/|VV| is defined to be a unit vector in the negative
direction of the normalized gradient of the potential.

The complexity of the reaction path problem isdue to these multidimensional equations. When
these equations are integrated, the following equation is obtained:

(on) = 2(6n) + | " fs,2(s))ds 3)

Sn

Because z(s) is unknown, an interpolating polynomial is used for f (s, z). Various solution methods
can be obtained by inserting a different interpolating polynomial. Although the resulting methods
are not new to mathematics, their particular application to quantum chemistry has yet to be fully
understood and developed. One of the first discussions of reaction path following was presented by
Fukui? in 1970. Today, researchers are interested in finding the most efficient methods for following
the MEP.

Calculations of chemical reaction structures can help in understanding the kinetics of areaction.
An upper bound on the kinetics for the reaction can be calculated from solving the transition
states, reactant, and product structures. Knowledge of even more points along this path alows
one to include such effects as reaction path curvature and tunneling effects, both of which improve
approximation of the predicted reaction kinetics.

Ab initio prediction of accurate rate constantsis limited by the cost of calculating sufficient
information on a PES. Advancements made in gradient calculations and higher-order derivatives has
been an important factor in reducing the computational effort>. Another concern is the accuracy
with which the M EPfor the reaction must be calculated to obtain a converged thermal rate constant.

The methods presented here include both basic one-step and complex methods. All methods
considered reqguire only single-point energy and first derivative calculations. The complex methods
are required for chemical reaction paths governed by a stiff set of differential equations because the
time constants of the variables differ greatly (stiff terms). Applying standard numerical techniques
to differential equations governing the dynamic behavior of very stiff systems is often difficult.’
To maintain stability, the step size must be extremely small in these systems since the small time
constants decay rapidly. For example, the | RC equations for a reaction in which the frequency of
one internal coordinate is diminishing rapidly while another isincreasing very slowly as a function
of reaction time s. Most standard numerical techniques have poor round-off characteristics when
applied to stiff systems because round-off errors tend to cover up the decay of the solution.

METHODS

Because the gradient at the saddle point is zero, the IRC isinitiated by a small displacement
in the direction of the imaginary normal mode. Within the harmonic approximation, the energy
lowering, AE, for a given step, h; is approximately

2
AE= % (4)
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where A E represents the desired energy change to take the first step away from the transition state
structure; k is the negative force constant from the magnitude of the imaginary frequency; and & is
the resultant step size.

Along the MEP, it isassured that the slope will not become infinite because the occurrence of an
infinite derivative at a particular point implies multiple energiesfor that geometric structure, which
isnot possible. In fact, any drastic changesin energy for infinitesimal changesin the geometry are not
seen, assuch energy changes could result in surface hopping from the given potential energy surface
to another higher energy excited surface. It is generally the case that the chemical surfaces are
smooth, as long as the level of theory is high enough. The supposition that the Lipschitz condition
issatisfied for the steps taken along the PES (which is a necessary condition for the application of
these methods) appears valid.”

ONE-STEP METHODS

In one-step methods® (Table |, opposite), approximating a new IRC point, z;+1, involvesinfor-
mation from only one of the previous points, z;. Although these methods use function evaluation
information at points between z; and =41, they do not retain that information for approximating
new points along the IRC.

All the information these methods use is obtained within the interval over which the solution
is approximated. Euler methods are the most simplistic methods to solve Initial Vaue Problems
(IVPs). Euler methods involve computing a discrete set of solutions knowing only the derivative at
the previous point.

While it has been demonstrated® that Euler methods are qualitatively accurate in predicting
the MEP for simple reactions process, in applications which require quantitatively accurate MEP’s
(e.g., prediction of reaction dynamics), results from Euler methods may not be sufficient. It is
possible that more sophisticated, higher-order techniques will permit a larger step size to balance
the greater amount of computer time required for complex methods. The Runge-Kutta methods
have been applied to such cases.

The Runge-K uttamethods were devel oped to avoid the computation of higher-order derivatives
required by methodssuch as Taylor methods.® Instead of the higher-order derivatives, extrafunction
values are used to duplicate the accuracy of the Taylor methods. The major computational effort
in Runge-Kutta methods is the evaluation of the function dz/ds = y' = g(s,z). In the second
(fourth) order methods, the local truncation error is the square (quartic) of the step size, h, i.e.,
0(h?) (O(h%), while the cost is two (four) function evaluations per step. Thus, there is a tradeoff
between number of function values and step size in using higher order methods over lower order
methods. In addition, it has been pointed out!®#1% that Runge-Kutta methods of order higher that
4 may not be valid for systems of equations, although this fact has shown to be controversial based
on the literature. For this particular application, we have tested these methods and have shown that
the Runge-Kutta methods of order 2 give unconverged reaction path properties, as do methods of
order greater than 4,1%¢

The following paragraphs identify each one-step method that was considered. Details of any of
these one-step methods, including derivations, can be found in standard numerical analysis texts.®

Traditional Euler Single Step:

Tn1 = Tn + 65 V(2a) (8)

V(z,) isthe unit vector in a direction opposite to the gradient of the potential at the point z,, and
6sisthesizeof thestep taken along this vector. This method isastandard to compare with all other
techniques because it converges to a unique solution in the limit of small step size. This method
worksfor systems with stable gradients. However, for afixed-step size (asfar as computational time
costs), the path generated will not be completely accurate.
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TABLE |
N . Nt »

Method Error Term* CPU Time
Traditional Euler O(h**2) 0.3 61
ES2 O(h**2) 1 84
BEM O(h*"2) 3.7 271
TRAP, O(h**3) 1.5 61
RK2 O(h**3) 0.7 61
RK4 O(h**5) 3.5 240
QFAP O(h**3)
FAB2 O(h**3)
AMPC3 O(h**4) 2.7 230
AMPC4 O(h**5) 3.1 219

Traditional Euler Method (FAPO)

Euler Method With Reaction Path Stabilization (ES2)

Backward Euler Method (BEM)

Trapezoidal Method (TRAP)

Runge-Kuttaof Order 2 (RK2)

Runge-Kutta of Order 4 (RK4)

General Equation:

Yin+1) = Y(n) + Wiki
ki=h* f (xn + cih, yo + ajjki) i =1,v;c=0

Multistep Methods:

Quadratic Fixed Step Adams Predictor (QFAP)
Fixed-Stride Adams-Bashforth Method of Order 2 (FAB2)
Adapted-Stride Adams-Moulton Predictor-Corrector
Method of Order 3 (AMPC3)
Method of Order 4 (AMPC4)
General Equation:

Y(n+1) = A1Yn + 82Yn-1 +...+ BkYn+i« + h [ DOYnst +D1Y'n +-+ BkYns1k]

explicit: use the previous k known points and gradients
implicit: use the previous k known points and gradients plus the predicted
Y(n+1) point.

& method is conventionally called nth order if its error term is O(hn+1)
whatio of CPU lime of the given method to that of ES2 with step size 0.5ap

Number of steps required to wak from 0 to -3.02ap along the MEP for

the reaction: CH3 + Hp --> CH4+ H




518

Euler Method With Reaction Path Stabilization (ES$2):

To correct for the implicit reaction path deviation in the Euler method, the minimum energy
point along a perpendicular bisector of successive gradients is sought. Thisis a better estimate of
the new point along the path. Thefirst step 23, , is obtained in the usual fashion with the Euler
method. The bisector vector is then defined as follows:

dn-H = (Vn - VnD+1)/”/;l - Vv?-{-l'

The corrector step along the bisector can either be obtained iteratively, based on a small fixed
step, or can be determined by a parabolicfit, based on the potential along the bisector and a finite
difference approximation of the derivative.!*

T4l = Tngy +Ednyr (6)

If, however, the point generated is already on the minimum energy path, this correction step can
introduce large errors. Careful analysis has shown stabilization should only be implemented when
the angle between the two gradient vectors is less than 176°. This particular method alowslarger
steps than does the traditional Euler method, thus, significantly reduces the computation time by
requiring fewer gradient calculations.

Runge-Kutta Order 2 (RK2):

There are many Runge-Kutta methods of order 2, including the midpoint method, Heun's
method, and the modified Euler's method. Each of these methods was tested in our application,
although only the midpoint method will he discussed here. Thelocal error in these methods do not
exceed the order of the Taylor method of order two.

ki = 6sV(z,)

7
Tpp1 = Tp + sV (z, + 0.5k;) M
The k;’s in the Runge-Kutta Methods represent intermediate points between the last known point
and the one being predicted. These intermediate points are not saved after the desired point has
been obtained.

Runge-Kutta Order 4 (RK4):

The Runge-Kuttamethod of order 4 can he derived using Simpson's rulefor numerica integra-
tion and Euler approximations of gradients. Aswastruefor the order 2 method, this method avoids
calculation of higher derivatives.

ky = 6sV(z,)
’Cg = 58V(2n + 0.5k1)
k3 = 68V(-‘Bn + 0.5k3) (8)

by = 5sV(z,-, + ka)
Tpg1 = Za + (k1 + 2k; + 2k3 + k4)/6
Both fixed step size and variable step size RK2 and RK4 methods can be used. The variable step
method predicts the next step size hased on percentage of geometrical change.'?
MULTISTEP METHODS

Multistep methods require approximating more than one previous point aong the IRC to de-
termine the new point approximation. The Adams-Bashforth techniques are explicit methods; that
is, they determine the next point explicitly in terms of previous points along the IRC. The Adams-
Mouiton techniques are implicit methods because the new point is determined using the value of
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the new point and previous points. The two techniques typicaly are used together and collec-
tively in predictor-corrector methods. These involve the Bashforth formula to predict the first or
the next point, followed by the Moulton formula for improvements. Although these methods are
complex, they estimate error from successive approximations to each zx value. The procedure uses
an (n - 1)-step implicit Adams-Moulton method to improve an approximation from an nth step
Adams-Bashforth method. Both of these methods have local truncation error of order O(h™).

Adams-Moulton methods have been observed® to give considerably better results thas the
Adams-Bashforth method of the same order. This is partially explained by comparing an m-step
Adams-Bashforth explicit method with an (m — 1)-step Adams-Moulton implicit method. Both
require m evaluations of the function per step, and both have local truncation errors proportional
to A™. In general, the coefficientsof the termsinvolving the function and the local truncation error
aresmaller for the Adams-Moulton methods. This leads to greater stability for the implicit methods
and smaller rounding error. However, the implicit methods have the inherent weaknessof having to
first convert to an explicit representation for z,4+1, which can be difficult algebraically.

Thus, the best compromise is the explicit methods for predicting a new point, followed by
refining of this prediction by using the Adams-Moulton method.

The Adams-Moulton methods involve stride adaptation. Two approximations (one from the
predictor and one from the corrector) are available for each MEP point, and comparison of these
alows one to estimate the uncertainty in the step. The difference in these two approximations
(the error approximation) is then used to adapt the stride. This stride adaptation controls the
local truncation error, and as a consequence, the global error, as one proceeds along the path. It
alowsone to specify alarger nominal stride and still retain accuracy in regions that are difficult to
integrate.

Both advantages and disadvantages of multistep methods are pronounced as the order is in-
creased. A higher order givesa smaller error term and a more efficient algorithm, whileit requires
more storage and special provisionsfor starting theintegrator. Order four multistep methods appear
to be the most useful compromise.

Thegenera equation for any predictor or corrector equation is:
T4l = Q1%n + G2Tnyt +. .. + GTnpr—1 + A(boThypy + 017 + .+ brTh )

When b = 0, the method is called an explicit or open method and this equation gives zn4.1 explicitly
in terms of previously determined values. When by does not equal zero, the method is called an
implicit or closed method, since z,4 occurs on both sides of the equation and is determined only
in an implicit manner. The following paragraphs briefly define the multistep methods considered
in this work. As with the one-step methods, details of any of these multistep methods, including
derivations, can be found in standard numerical analysis texts.?

Adapted-Stride Adams-Moulton Predictor-Corrector Method of Order 3 (AMPC3):

Including a non-zero by term in the linear k-step difference equation results in a recursive
method that successively approximates a given point with the inclusion of the slope at that point.
Corrections made on thestep size givea tighter control on the truncation errors, and, therefore, also
on the accumulated errors. Thefollowing are the predictor and corrector equations:

Predictor:

20, = 20+ (659/12)[23 V(20) — 16 V(2a1) + 5 V(2n—2)]
65 = 65(0)(14¢/3 |:::$‘14),1 - zS,OLDl/(”“)
e=5x10"%g and p=3
Corrector:

e®) =20 + (69D /12)[5V (2], +8V(Za) = V(Zac1)]  i=1,2
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The initiation of this method is based on one-step methods in the following way:
zg = transition state point (known).

first step taken away from the saddle point (based on AE}.

zz = second step (use Euler method on points ze and xi).

1

2o4¢ = Subsequent points obtained using AMPC3 acting on the most recent three points known
aong the MEP.

Other methods to generate the starting values for this method can be employed; however, this
method appears the most efficient. It should be noted also that, whenever the step size is changed,
the method must be restarted using the one-step procedure.

Adapted-Stride Adams-Moulton Predictor-Corrector Method of Order 4 (AMPC4):

Similarly, one can arrive at the fourth order method with these equations:
Predictor:

28} = 2o + (659)/24) [55 V (2a) — 59V (2n41) + 37 V(Ta—2) — 9V (2n-3)]

n

Corrector:
Tap1 = 2oby + (659/24) [0V (20 41) + 19V (2n) = 5V(2a1) + V(Za-2)]

The same stride correction is used as with the AMPC3 method, p = 4.

DISCUSSION

Comparison of the methods is based on the number of function evaluations for a particular
method; the CPU time required to calculate the particular IRC; and the accuracy of the method.
From these criteria, it isclear that no one class of methods is better than all the others. The choice
depends on the particular reaction system to which the methods are applied. One can, however,
assess the behavior of methods within each class and extract guidelines on which method to use for
a particular problem.

In general, one should first try the simple one-step ES2 method for applications that involve
qualitative information about the reaction path (for example, verification that a particular transition
stateleads to an indicated set of reactants and products). The Euler method and its ES2 extension
are the most commonly used methods for solving the MEP equations. Provided the step size is
small enough and the chemical reaction not stiff, sufficient accuracy can be obtained.!® However,
very small step size will in turn demand considerable CPU time investment.

The ES2 method should aso be used for other more quantitative applications, onesin which
the reaction system is known to be stable. This is true especidly if the reaction involves many
atoms. If one knowsin advance that a particular reaction involvesinternal coordinates with widely
varying time constants, then a stiff method should be used. If results require a particularly small
error tolerance, one should try the multistep methods.

Comparing RK2 and RK4, the higher order method is recommended because of more accurate
prediction of reaction path properties. Results obtained in this work clearly show instability in
the RK2 methods. In particular, discontinuous functions of structural and energetic properties are
obtained.

The Ad ——Moulton predictor-corrector methods are multistep formulas for computation.® Re-
sults indicate these methods are reliable in predicting a converged reaction path with reasonable
computer time. In general, Adams-Moulton type methods give results comparable to both the
traditional Euler method, with very small step size, as wel as the stiff methods, RK4. However,
not every type of multistep method is appropriate for any given type of problem. The intervals
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of integration may be so short that the multistep methods have little chance to demonstrate their
advantage over the Runge-Kuttamethods.

Overall, for complex reactions, it is best to choose the variable step RK4 method, even though
this method uses more computer time, because RK4 competes with both the one-step ES2 method
and the Ad ——Moulton methods in convergence properties. Mathematically, various second deriva-
tive approximation techniques include the effects of curvature with the expectation of better, con-
vergence properties. However, the calculation of the gradient takes up to three times as long as the
calculation of asingle point energy. Calculation of the Hessian (second derivative matrix) takes up
to ten times that of the single point energy. Perhaps a compromise, such as the calculation of a
second derivative at every n points, and at that point taking a more sophisticated step would be
feasible. These modifications are currently being investigated.
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A NOTE CONCERNING FARE FUNCTIONS

J. N. Boyd and P. N. Raychowdhury
Virginia Commonwealth University

INTRODUCTION. Recently (1], we presented a bit of mathematics in a story-like setting. We
defined a function f on a one-dimensional, ordered array of points, 2(G), z(1),z(2),...,z(n), by
means of the recursion relation

oy = LEC=DHIE61)

with f(z(0)) = f(z(r)) =0 and i = 1,2,3,...,n — 1. For reasons growing out of the scenario, we
caled the functions "fare functions.” Even more recently [2], we generalized the fare functions to
higher dimensional arrays, giving the extended functions the somewhat imposing name " complete
fare functions."

Then, not being content to giveour functionstheir well deserved rest, we wondered what would
happen if, rather than adding a constant, we subtracted it from the average of f on z(i — 1) and
z(i + 1) as given in the recursion relation. With the new defining equation

oty = =D Fali4 1) g

m
we proceeded to investigate the functions obtained by subtracting the positive constant C, To our
pleasure, we found them to have at least one natural application.

THE FUNCTIONS. To fix thegeometry in out minds, let usimagine n+ 1 points z() on a coordinate
axisso that the coordinate of =(z) issimply i fori =0,1,2,...,n.

X = x(0) x(1) x(2) x{n-1) x(n)

P— o

i o= 0 1 2 ' n-1 n

Figure 1. The points on a Coordinate Line.
Following the same sort of reasoning asgiven in our first reference, we made the guess that

f(z(3)) = Ci(i —n) + k, (2)

where k is any real constant, would satisfy Equation (1)for i =1,2,3,...,n— 1. The guess turned
out to be correct, as the reader can verify if so desired. Lettingz = 0 or n yields the boundary
condition that f(z(0)) = f(=(n)) = K. If we suppose that we have a second function g(z(z)) aso
satisfying (1) with g(z(0)) = g(z(n)) = k for the same constant k, then the differencefunction f —g
is harmonic with value zero on the boundary of its domain. Therefore, f(z(:)) — g{z(:)) = 0 for
every i initsdomain, and we may conclude that f is the unique function satisfying Equation (1)for
any given k.

Thefunctions are symmetric with respect to i = n/2, whether or not n iseven. An interesting
choiceof k isCn?/4 so that f, with i extended to the odd half integers if necessary, is zero at the
median of z(0),z(1),2(2),...,2(r). If the 2(i)’s are equally spaced on their coordinate line, then
z(n/2) is the midpoint of the segment with endpoints z(0) and z(r).
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AN APPLICATION. Our application is probably misnamed as such. It is simply an observation
that something happens in the "real world" that mirrors (or is mirrored by) the behavior of our
functions. Asothershave donewhothink of themselves as mathematicians first rather than physicists
or engineers, we went to the "real world" to seek a problem to which our functions would give a
solution.

Wetried to associate with our discretelinear array some process through which we could imagine
a cost at each point such that the cost would increase with the distance of the point from its nearest”
boundary point. One idea was that of stockpiling supplies at n + 1 points along a highway. We
assumed that supplies could be assembled with equal ease at either terminus of the highway. Then
it would certainly be more costly to carry one unit of supplies to a point farther from an endpoint
than nearer. Our function would describe the quantity of suppliesto be deposited at the i-th point.
However, the "story line" soon became too artificial to hold anyone's interest for long.

Next we asked, "Why not build a bridge to be supported at n + 1 equally spaced locations?"
Would not the supporting structures farther from the banks of the stream be more difficult to put
in place than those which were closer? At first we were thinking of constructing egually spaced
buttresses across a stream with the most massive at the banks on either side. Our function might
describe the weight of the i-th buttress. Again, we seemed to be developing a scenario too far
removed from reality.

Then, rather suddenly, we realized that we were actually describing the central span of a sus-
pension bridge. After writing down a simple differential equation with tensions and tangents, it is
quite straightforward to show that a light, taut cable bearing a very heavy, horizontally uniform load
(such as a roadway) takes the form of a parabolic arc.[3] The cables of a real suspension bridge in
which the roadway hangs from many, equally spaced strands closely approximate arcs of parabolas.

Thus, we arrived at our application. The functions describe the lengths of the n + 1 strands
linking the roadway to a supporting cable in a suspension bridge. The scenario becomes " natural”
if one feelsthat thefirst try at functions to model spatially distributed physical quantities ought to
be "as close to" harmonic as possible. If C were taken to be zero, Equation (1) would become the
defining relation for a discrete harmonic function.[4]

AN EXAMPLE. Assume that n isa very large even integer. Find C' so that the lengths of the first
and last of the n + 1strands are 500 units longer than the middle strand.
SOLUTION. Let k = Cn?/4 = 500. Then C = 2000/a2.
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ON QUOTIENT STRUCTURESOF z"

Joseph A. Gallian, University of Minnesota, Duluth
Robert S. Johnson, Washington and Lee University
Shiaoling Peng, University of Minnesota, Duluth

Cyclic groups, direct products, quotient (factor) groups, group generators, and isomorphisms
are fundamental concepts in an undergraduate abstract algebra course. Moreover, the group of
lattice points in Euclidean n-space arises in many contexts. This note was prompted by a question
that involvesal of these notions, namely, what is the structure of the group Z & Z/{(a,b))? This
question naturally leads to related ones such as the structures of the group 2" /{(a1,as,..-,an)),
the ring 2" /{(a1,az,...,a,)), the group Q & @/{(a,b)), the group R® R/{(a,b)) and the vector
space R @ R/{(e,b)) over R. To make the matter even more encompassing, the analysis invokes a
bit of linear algebra as well.

It is our opinion that specific instances of these questions are useful as classroom examples,
exercises, and exam problems as they challenge students to synthesize many important concepts
(see 1, pp. 154,1581 and [2,p. 154]).

We proceed with the answer to our first question.

Theorem 1. Z @ Z/{{(a,b)) % Z D Zyea(a)

Proof. To simplify the notation, welet G = Z& 2, H = ((a)) and d = ged(e,b). First we
observe that G/H isinfinite. For if a # b, then (1,1)+ H hasinfinite order, whileif a = b, (1,00tH
has infinite order.

Next, write a= a’d, b= b'd, and 1= a's T b't. Weclaim that G/H is generated by (t,—s)+H
and (a',b") + H. To verify the claim, let (mn) + H be an arbitrary element of G/H and observe
that because 1= a's T bt isthe determinant of the linear system

tx+ a'y=m
(-9tby=n
there are integers z and y <0 that

(m,n)+H = (tz+d'y,—sz+by)+H
z(t,-s) T H+y(a', ) + H

z((t,-s) T H)ty(@ )t H).

n

n

This establishes the claim.

Next, note that d((a',t)+ H) = (ab)* H = H sothat ((a',b) T H) is isomorphic to Z.
Moreover, since G/H isinfinite, it followsthat ((t,-—s)+ H) must have infinite order and therefore
isisomorphic to Z. We complete the proof by noting that ((t7s)+ H)n((a',#)+H )istheidentity
(since every element of the subgroup on the right has finite order while every nonidentity element
in the subgroup on the left has infinite order. m

Since 2, is the trivial group, we have the following corollary.

Corollary 1. Z & Z/{(a, b)) iscyclic if and only if gcd(a,b) = 1.

In an Abelian group the subgroup comprised of the elementsof finite order is called the torsion
subgraup. As another corollary of Theorem 1, we have the structure of the torsion subgroup of
Z®Z[((a,b)).
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Corollary 2. The torsion subgroup of Z @ Z/({(a,b)) is isomorphic to Zged(a,b)-

Thestructure of Z & Z/{(a,b)) as well as generators of the finite and infinite direct factors can
be readily determined geometrically as follows. In the rea plane, let L(a,b) be the line segment
from (0, 0) to (a,b) with (0,0) deleted. Then Z & Z/{(a,b)) s cyclicif and only if (a,b) is the only
|attice point on L{a, b); the order of thefinite direct factor isthe number of lattice points on L(a, b);
a coset representative of a generator of the finite direct factor is the lattice point on L(a, b) nearest
to (0,0); a coset representative of a generator of the infinite direct factor is the lattice point colsest.
to L{e, b) and nearest to (0,0).

Toillustrate, we consider Z & Z/{(8,12)). From the figure below, we see that the group is not
cyclic; theorder of thefinite direct factor is4; a generator of thefinitedirect factor is(2, 3)+((8,12));
and a generator of the infinite direct factor is (1,1) + {(8,12)).

Continuing with the notation introduced in the proof of Theorem 1, letting T denotethe torsion
subgroup of G/H (i.e., thesubgroup isomorphic to Zycq(s,b)), and L thelinein the real plane joining
(0,0) and (a,b), we can also give a description of the cosets of T in G/H. For k > 0, the elements
of k(t,—s) + T are the lattice points in the plane that are above L and a distance of k/v&Z + b2
from L; for k <0, the elements of (¢, —s) +T arethe lattice pointsin the plane that are below L
and a distance of Jk|/ve” + b2 form L.

Y

812

83

“.8)
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Theorem 1 and its corollaries have natural extensions to higher dimensions. The proof of the
general case is anaogous to the n = 2 case and entails a (non-routine) induction argument to prove

the existence of the generators. PRODUCTS OF TRIANGLE TRISECTORS
Theorem 2. zZ"/{(a1,@2,...,8n)} ® 2" @ Zycd(a1,a3,....20)" Andrew Cusumano
) ) ) ) @et Neck, NY
Corollary 1. Z"/((a, az,-.,@a)} is torsion-free if and only if ged(ay, as,...,en) =1
Corollary 2. The torsion subgroup of Z"/((ay, &, -..,@a)} iSisomorphic to Zgcd(a;,az.. :0n)- Theorem. In the accompanying arbitrary triangle, the product of the dotted line segmentsis equal
For Z @ Z @ Z/{(a,b,c)), we may obtain explicit generators by putting to the product of the broken line segments.

d=gcd(a,be), a=ad, b=bd c=cd;
d = ged(®,C), ¥ = bid, ¢’ = e1d’;
de, tdy =1
hzotey=1

The three coset representatives of the generators are: (@, ¥,¢), (=, biz1,c1z1), and (0,—yz, 22)-
Verification is left to the reader.

In sharp contrast to the simple description of the structure of the factor group Z & Z/{(a, b)),
a determination of the structure of the corresponding group with Z replaced by the additive group
of the rational numbers, real numbers, or complex numbersis a bit beyond the scope of an under-
graduate abstract algebratext. It turnsout that in al of these casesthe factor group isisomorphic
to the direct product of groups that are isomorphic to the group of rational numbers and the group
Q/Z. (See Section 5.2 of [3 for details.)

To round out our discussion we answer three related questions that might naturally occur to
students.

1 What is the structure of 2" /{(a1,0,...,0)} x {(0,a2,0,...,0)} x --. x {(0,0,...,as)}?

2. Viewing Z" asaring and {(a1,as,...,2,)) asthe principal ideal generated by (a1,a, ...,an),
what is the structure of the ring Z"/((ay, &, ...,an))?

Proof:
3. Viewing R" as a vector space over R and {(a1,@3,...,8s)) as the subspace spanned by
(a1,az,...,a,), What is the structure of the vector space R*/{(a1, @z, ...,an))? 1) s=t=u
It is straightforward (in fact, good exercises for students) to prove that (yes, you guessed it) 2) g=r
the answer to Question 1 isthe group Za, @ Za, - -- ® Za,; the answer to Question 2 is the ring -
Zs, ®Zay® .+ D Za,; and theanswer to Question 3is the vector space RM! . 3) u:FCT
References 4 s= eq
1. J. B. Fraleigh, A First Course in Abstract Algebra, 4th ed., Addison-Wesley, Reading, MA, ‘:_D
1989. 5) r= ETP-
2. J. A. Gailian, Contemporary Abstract Algebra, 2nd ed.,, D. C. Heath, Lexington, MA, 1990. P g
3 W. R. scott, Group Theory, Prentice-Hall, Englewood Cliffs, NJ, 1964. 6) FC ~ AD
7 e-q-FC=f-p-AD
8) e-r-FC=f-p-AD
c-p-FC
AWARD CERTIFICATES 9 = =pAD

10) e-c-FC=f-AD-BF
cam make wse of the P Mu Epsilon Award Certificates available to help you
cmstical achievements of your giudents. Contact Professor Robert Woodsyde, 11) AE-BD-FC=CE-AD-BFa




528

BEAUTIFUL THEOREMS

Richard L. Francis
Southeast Missouri State University

A concise theorem or formula which relates ALL of the "basic" elementsin some context seems
somewhat of a rarity, mathematically speaking. Well known in such an extraordinary category is
the Euler formula )

efti1=o.

It is noteworthy that this formula contains five of the most crucia constants from the study of
numbers, namely, 0, 1, e, m, and i. Also included is the most basic of operation symbols (+) as
well as the most fundamental of relation symbols (=). Such a less-than-obvious theorem will be
considered BEAUTIFUL as a conseguence, not only of its importance , but aso of its concise and
highly inclusive nature. Other beautiful theorems appear on the mathematical landscape. Some
are fairly wel known. A remarkable result, one of the geometer's favorites, seems quite fitting in
this overall category. Though not so well known, it involvesvarious lengths and concerns triangles
in particular. Somehow its basic components, as now follows, all come together in one impressive
statement.

Consider the triangle ABC' in which a, b, and ¢ are side measures, s is the semi-perimeter,
and » and R denote, respectively, the inradius and circumradius. |s it possible to relate al of these
notables in a single, concise, and easy-to-remember equation? The answer is YES. Use of al six of
the fundamental symbols is accomplished by the formula

4rRs = abe.

It provides still another look at a beautiful theorem. This result, likely known in varying forms in
ancient times, is also associated with the works of Euler. In some accounts, it bears his name.

4rRs = abc

<
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Such a beautiful theorem can be established by lengthy and complicated methods. However,
the novel one below is quite instructive and definitely within the solving range of the secondary
school or college trigonometry student. Begin by letting the area K equal 1absin C, or equivaently,
4Kec = 2abesin C. By writing this result as a proportion, it follows that

_¢c _ac
2sinC ~ 4K’

The circumradius is given by R = 575, meaning that

abc
R— 47.

But K = rs, in which case

R:aﬂc or

4rRs = abc.
4rs

Since 4s is twice the perimeter, the formula may be expressed in the alternate but highly impressive
form
abc

—— =2rR.
a+b+c

Other beautiful theoremscometo mind. Some are more advanced, such asthe Law of Quadratic
Reciprocity (which was conjectured but not proved by Euler). Others arefairly closeat hand. Note,
for example, the concise relationship

Tan"!'14+Tan"'2+ Tan"'3 =,
or the formula for triangles given by
tan A+ tan B+ tan C = (tan A)(tan B)(tan C),

or the famous Eulerian formula relating the number of faces, vertices, and edges of a polyhedron,
namely,
F+V=E+2

The beautiful theorem need not take the form of an equation as happens above. |t may express
a relationship among notable elementsin a way which does not suggest the equation but, instead,
something just asimpressive. The Euler Line Theorem, for example, fits this mold nicely. It reveals
that the centroid, the orthocenter, and the circumcenter of ANY triangle will alwayslie on aline.
And then, by the various standards, there are the "pretty" theorems of Desargues, Pappus, Pascal,
Brianchon, and others.

The word "beautiful” of course refersto the subjective. It likely casts mathematics in the light
of an ART as opposed to a SCIENCE. Within the framework of diverse criteria, quite a range of
theorems, some practical and some not so practical, easily become the object of aesthetic interest.
In the judgment of many, Euler's conciseresults prove outstanding, insightful, and = beautiful. Do
you have a prime candidate for a theorem or result in such a category?
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A NOTE ON A DIE'FERENCE EQUATION

Russell Euler
Northwest Missouri State University

Let a and b be nonzero parameters. If a # 6, then two linearly independent solutions of the
difference equation
Uns2 — (8 F B)yns1 T abyn =0 6]

are a" and 4", and the genera solution of (1) is
Yn = 10" + c2b", (2
where ¢; and ¢, are arbitrary constants.

When a = b the two fundamental solutionsof (1) are w9 = a" and ¥ = nan., Thisis easy
to check but not so easy to motivate, especialy y(:’). The motivation of the form of the general
solution in the case of equal rootsof the characteristic equation can be accomplished by rearranging
the terms in equation (2) for the case when a # &, renaming the constants, and considering the
limit as the parameter b approaches a. To achieve this, by adding and subtracting the term cza”,
equation (2) can be written as

yn = (1 + c2)a” + ca(b" ~ a™).

For a # b, multiplying and dividing the second term of this equation by b—a will change the solution
into a form that will lend itself to using L'Hospital’s rule when the limit is taken. So, for a # b, the
general solution of (1) becomes

b —an
¥ = (a1 + c2)a” + co(b— 3
or
b —an
yn=caa"+¢:4 b—a’ (3

where ¢z = ¢; + c2 and cs = ca(b — ).
Notice that when a = b, the second term in equation (3) is of the indeterminate form %. So,
employing L’Hospital’s rule to compute the limit as bapproachesa in (3) yields

Yn = c3a" + cana" !,

= c3a” + c5na”, 4)
where ¢s = cafa. Equation (4) is the general solution of (1) when a = band the technique utilized
clearly shows how ys,z) = na" arises.

As an alternative to using L’Hospital’s rule on the second term in (3), the following method
can be used. Since

3 —a” = (b — a)(bn—l +bn-2a + bn—SGZ+ e ban—Z + an—l),

we have
pr=an - -
lim = im(tH-Za+pn%a? + .- bam 2t ),
—a b—a b—a
= an—l +an—1 =+, __an—l
= na"" %
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Hence, (3) becomes y, = caa™ * cqna™ 1 as before.
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EDITOR'S NOTE

Several careful readers have pointed out some miscalculations in the paper “Fractorials? by
Nataniel Greene, which appeared in the Fall, 1992, issue of the Journal. On p. 431, 9'3 should
equal 162; on p. 433.18!3 should equal [(6)(3)]'a; in the example following the proof of Corollary
4 on p. 433, z should equal 1/[2.189%/4]; on p. 435 in the statement of Theorem 8, a! should
equal a'sn(a—b)sn(a —2b)pn . .-[a = (h—1)b]%. Findly, in Example 3 on p. 436, (1013)/(2*) = 17.5
and not 35 as indicated. Thus we use the inequality 10%3/2* = 17.5< 20 = (2z)'/(24) < 12153/(2Y).
Solving as in the example we find that ¢ = 5.0463

The Editor apologizes for any confusion that may have been caused.

WHAT'S YOUR SINE?

It was Robert of Chester's translation from the Arabic that resulted in our word "sine™ The
Hindus had given the name jivato the half chord in trigonometry, and the Arabs had taken thisover
asjiba Inthe Arabic language there is also a word jaib meaning "bay" or "inlet.” When Robert of
Chester came to translate the technical word jiba, he seems to have confused this with the word jaib
(perhaps because vowes were omitted); hence he used the word sinus, the Latin word for "bay" or
"inlet.”

Carl B. Boyer, A History d Mathematics, John Wiley & Sons, 1968, p. 278.

Editor's note: This same translation story is also attributed to Gerard of Cremona. (See Howard
Eves, An Introduction to the History d Mathematics, Fourth Edition, Holt, Rinehart and Winston,
1976, p. 194.) Both referencesindicate that the time of the translation into Latin was in the year
1150 A.D.

CHANGES OF ADDRESS

Subscribers to the Journal should keep the Editor informed of changes in mailing address.
Journals are mailed at bulk rate and are not forwarded by the postal system. The cost of sending.
replacement copies by first class mail is prohibitive.
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A PARTIAL FRACTIONS APPROACH TO A FAMILIARIDENTITY

M. A. Khan, RDSO
Lucknow, India

Theidentity -
Z(_l)n—k (:)kﬂ = n!
k=1

can be established either by using the combinatorial argument of distributing n balls in n boxes, or
the operator technique. (See[1].) Hereisan alternative approach based on partial fractions wherein
we show that the LHS is the expansion of the RHS rather than proving that the RHS is the closed
form of the LHS.

To thisend, westart with

11‘ 1 1 1 N 1
10-172) -2/ [-Gk-1/H [-@E-1/7
Now consider the following continued product:
1
2(z=1/2)- [z~ (k= 1)/k)]- [z — (n = 1)/n]
We resolve (1) into partial fractions of the form (2):

a(l a(2) a(k) ) a(n)
"‘i‘l+z_1/2+"'+ G-k T T z=(a-1/n @

We need only determine the general coefficient e(k) in expression (2). To accomplish this, we set
expression (1) identically equal to (2), multiply both sides by [x — (k — 1)/k], and take the limit as
x tends to (k — 1)/k. This yields:

0]

k 2k (E=Dk(k+Dk(k+2)k  nk
afk) = 1k -2 1 =1 -2 “n—Fk)
=(- 1)(" k)m__—)k("“‘) (on multiplying numerator and denominator by k)

= (=1)*-8. (k) GRS

Since the partial fraction representation of (1) is valid for all values of z except thosefor which
X = (k—=1)/k,for k=1,...,n, we may put z = 1 on both sidesof (1)and (2) to obtain:

a(k)
Zl—(k—l)/k n!

which, on restoring the value of e(k), implies that

Z( 1)(P=H). () "= pl
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Thistechnique can be applied to moregenera problems of thistype. For instance, it can readily
be shown by resolving the RHS into partial fractions that:

(=1)F (n n!
§k+z‘() z(z+1)(z+2)---(z+n)

and

= (1) Pun(k) (n\ _ Pp(-z)-n!
kgo z+k \k)  z(z+1)(z+2)-(z+n)’
where Pn,(k) is a rational polynomial in k of degree m and m < n.

This article is dedicated to Sir Syed Ahmad Khan, founder of Muslim University, Aligarb.
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MESSAGE FROM THE SECRETARY-TREASURER

Copies of the new, revised Constitution and Bylaws are now available. The prices are: $1 50
for each of thefirst four copiesand $1 for each copy thereafter. Ie., $(1.50 n) for n < 4 and $(nt2)
forn> 4.

The videotape of Professor Joseph A. Gallian’s AMS-MAA-PME Invited Address, " The Mathe-
matics of Identification Numbers," given as part of PME’s 75th Anniversary Celebration at Boulder,
CO, in August, 1989, is alsostill available. The tape may be borrowed free of charge by PME chap-
ters, and by others upon an advance payment of $10. Please contact my officeif you desire to borrow
the tape, telling me the date on which you would like to use it. | prefer to mail the tape directly to
faculty advisors, and expect them to take responsibility for returning it to my office. Please submit
your reguest in writing and include a phone number and a time that | might reach you if there are
problems. Robert M. Woodside, Secretary-Treasurer, Department of Mathematics, East Carolina
University, Greenville, NC 27858.

Seen on the back of a Math Club T-shirt:

Top N reasonsfor being a mathematician:

1. When people don't understand you, they think it's their own fault.
2.see# 1.
3 See# 1.

N. See#l. *

* If you don't understand this, see # 1.
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A THEOREM ON CIRCUMSCRIBED CIRCLES

Jun Ozone
Tochigi Minami Senior High School, Japan

Within the angle formed by intersecting rays, inscribe a chain of circles Cy, Cz, Cs, ... such that
C) is closest to the vertex of the angle and each circle Gy, n > 1, is tangent to the two rays and
tangent externally to the two circles Cy,—; and Cp41. Then it iseasy to show that the radii of the
circlesform a geometric sequence. The circlesA_», A_,,Co, A), Az of Figure 1 form such a sequence
of circles, which we shall call a vee sequence (of circles).

\Be sequences are a suitable project topic for high school students, and related questions are
sometimes given in entrance examinations for Japanese universities. Furthermore, we find this type
of question in Wasan, the old mathematics of 17th to 19th century Japan. In this article we shall
point out some properties of vee sequences of circles, especially in the light of Casey's and Monge's
theorems.

Theorem 1. Suppose {Cp, Ai(i = +1,%2,...)} and {Co, Bi(i = 1, £2,...)} aretwo vee sequences
sharing the common central circle C and whoseintersecting rays have vertices A and B, respectively,
as shown in Figure 1. Let ro,a;, b:i(i = +1,+2,...) denote the radii of the circles Co, A, and B;,
respectively. Then, for each i, we have that a_;a; = b_;b;.

Figure 1.

The proof followseasily from the fact that the radii ate in geometric progression, so for any
fixed 4, ro iS the geometric mean of a; and a;, whence a_;a; = r3.  Similarly, b_;b; = 3, so
a_ia; =b_b;. @

Monge's Theorem, which is fundamental to projective geometry, states that if three circles are
given, of three different radii and no two of which are concentric, then the line connecting the centers
of similitude of two pairsof the circles will pass through the center of similitude of the third pair (3,
Thm. 25.9,p. 109]). The next theorem is an immediate consequence of Monge's Theorem.
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Theorem 2. In the vee sequence of Theorem 1, the intersection point of the external common
tangents to arbitrary circles A, and B; lieson the line AB. If the radii of the two circles are equal,
then their common tangents are parallel to line AB.

Casey's Theorem, stated next, isadelightful extension of Ptolemy's cyclicquadrilateral theorem.
[Ptolemy's theorem states that if a convex quadrilateral ABCD is cyclic(can beinscribed in acircle),
then the product of its diagonals is equal to the sum of the products of its opposite sides; that. is,
AC .BD = AB.CD*t AD.BC. The converse of this theorem is also true: if the equation
AC.BD = AB.CD* AD. BC holds, then quadrilateral ABCD is cyclic] In fact, Ptolemy's
theorem is the special case where the four circles of Casey's Theorem all have radius zero.

Casey's Theorem. Let € beagivencircleand let Cy, C2,Cs, and Cy be four circles with distinct
centers that form a convex quadrilateral C1C2C5C4 having diagonals C1C3 and C2Cs. If circle C is
tangent to each of thefour circlesCy, Cs, Cs, and Cy, then

ti2taq + t1alas = ti3iaa,

where ¢; isthe length of the common external tangent to circlesC; and Cj if the two circles C; and
Cj lie both outside or neither one outside o circle C, and t;; is the length of the common internal
tangent to circles Cy and Cj if these two circleslie one outside and the other not outside of circle C.

Casey's proof of this theorem [1, Prop. 10, p. 103] cleverly uses inversion. We shall present
a proof that is readily accessible to any high school student possessing a reasonable knowledge of
trigonometry and geometry.

Figure 2
Proof. Let there he an inscribed circle of center C and radius r for thefour given circlesCy, Ca, Cs,
and Cy, with distinct centers, and let each circle with center C; have radius r;. Let the angles
C]CCz,CzCCa,CaCC4, and C4CCl be denoted by 2A,2B,2C, and 2D, reﬁpectlvdy (See Figure
2) Then A+ B+C+ D= Now by the law of cosines, we have that
CiC3=(r + r)? + (r + r)? - 2r + m)(r + r5) cos24,
and by the Pythagorean theorem,
2, = 016'3 =(r - )2
After some simplification, we have that
12, = 2(r + r1)(r T r2)(1 — cos24)

and finaly,
2, = 4(r T r)(r t ry)sin2 A

Similar expressions hold for the other tangent lengths tjj. For convenience we let

q=4Vr Tr)r Fr)(r T rs)(r Tra).
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Then
t1gtss = OSINASING, tystsy = qsinBsinD, and tiztss = gsin(4 +B)sin(B 1 C).
Now we have that

sin Bsin D = sin Bsin(x — (A+ B+ C)

=sin Bsin(A+ B +C)

=sinBsin(A* B)casC +sinBcos(4A+ B)sinC

= sin(A + B)sin BcosC +sin B cos A cos Bsin C — sin Asin® BsinC
sin(A + B)sin B cos C + sin B cos A cos Bsin C + sin A cos? Bsin C — sin Asin C
sin(4 1 B)sinB cosC * (snB cos A tsinAcosB) cos BsinC —sinAsinC
sin{A+ B)(sin B cosC*+ cosBsinC) - sinAsinC
sin(4+B)sin(B+C) tsinAsinG,

Il

il

which establishes that
sin(4 T B)sin(B+C) = snAsnC*+sinBsinD,
proving that the equation of the theorem holds.

If any circle C; does not lie outside the circle C that touches the four given circles, that is, if
the interior of circle C and the interior of circle C; have a nonempty intersection, then the above
argument holds if each occurrence of ; is replaced by —r; and any resulting negative (r — r;) or
(&r: = rj) isreplaced by itsabsolute value |r — ri| or | £ 9 £ 7] =

Theorem 3. Let A_y,Chp, A1 be a vee chain of circles with vertex A, and let C be any circle that
circumscribes circles A_; and A;. Then point A lieson the radical axis of circles C and Co.

Y4 Figure 3

Proof: Let T, U,V, and W be theintersections of theray ACp with the three circlesof the vee chain
emanating from A as shown in Figure 3. Invert thefigurein acircle centered at A and orthogonal to
circle Co. Then circle Gy is sdlf- inverse and the two rays emanating from A are self-inverse. Circle
A_, inverts to acircle tangent to the two rays and to circle Cp, namely, circle A;. So, the point X
of tangency of circles Ay and C invertsto a point Y on circle A;.

Now any circle through X and Y is self-inverse, but there is only one circle passing through
both X and Y and tangent to circle A_; at X. Since inversion preserves angles between curves,
that self-inversecircle is tangent to circle A; at ¥'; that is, it iscircle C, the unique circle tangent
to both circles A1 and A—; and passing through X. Now circles C and Cy both areself-inverse with
respect to the stated inversion in center A, so they have equal powersfrom point A. Thus A ison
their radical axis. =

Theorem 4. Let A and B be any two circles tangent to both rays of an angle with vertex P, and
let C be any circle externally tangent to both circles A and B. Then circles A and B are images of
one another in theinversion in the circle centered at P and orthogonal to circle C.
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P

Figure 4

Proof: Let X be the point of tangency of circles A and C, and let Y be theimage of X under the
stated inversion. (See Figure 4) Then Y lieson circle C and on the image circled circle A, which
image circle must aso be tangent to the two rays. The only circles externally tangent to circle C
and tangent to both rays emanating from P are circles A and B. Since circle A is not self-inverse,
then the image circleiscircle B. =

Theorem 5. Let A_;,Cp, A; be a vee chain of circles with vertex A, and B—1,Ch, B, a vee chain
with vertex B, each vertex lying external to the angle of the other vee chain. Then thereis a circle
C that circumscribes circles A-;,A;, B_1, and B;.

Proof: Theradical axis in the proof of Theorem 3 is the line through A that is perpendicular
to theline of centers of circles C and Cp. By adjusting Cp, that radical axis can be made to be any
line through A that lies external to the angle containing the vee chain with vertex A. For example,
if the center of circle Cq lies on the line of centers o the given vee chain, then the radical axis is
the line through A perpendicular to that line of centers. By increasing the radius of circle Cp and
letting its points of tangency with circles A_, and A; dide aong the left side of those circles, one
can seethat the radical axis revolvesabout A and approaches the left bounding ray of the vee chain.

A

Figure 5.

Thus draw thecircle Cq that circumscribes A-, and A; and whose radical axis with circle C isthe
line AB. By Theorem 2, the common external tangents to circles A—y and B_; meet at a point D
on line AB. (See Figure 5.) Since D is then on the radical axis of circles C and Cp, Theorem 4
applies. That is, in an inversion in center D and circle orthogonal to circles C and Co, circle Ay
maps to circle B_;. Sincecircle A_; istangent to the self-inversecircle C, then so alsoiscircle B_y
tangent to circle C.

Now invert the vee chain with vertex B in acircle centered at B and orthogonal to circle Ge.
Then circle B, mapsto circle By, and circle C' is fixed. Since circle B-; is tangent to circle C,
then itsimage B; isalso tangent to circleC.s

Corollary 1. For each i, there is a circle that circumscribes the four circles A;, A—;, B, and B_;.,
(See Figure 6.)




Figure 6.
Proof. Theinversion arguments above al hold when the subscripts 1 and -1 are replaced by ¢ and
—1, respectively. =

Corollary 2. Theorem 5 can be applied repeatedly to vee chains emanating from points A and
B in Figure 5 and tangent to circle C to produce the chains of Figure 7.

Figure 7.
The main theorem of this paper isan immediate corollary of Theorem 5.

Theorem 6. From any point P on line AB, draw tangent raysto circle Cs. Then the vee sequence
of circles C_1, Cy, Cy thus determined is circumscribed by circle C. (See Figure 8.)
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Figure 8.

One final result completes our study of vee sequences of circles.

Theorem 7. Let d denote the distance between the centers C and Cq of Figure 3 and let r and 7o
be the radii of circles C and Co. Then d® = r* — 2rrp — 31%.

Figure 9. \/

Proof. Take that vee chain of circles A_1,Cg, A1 whose vertex A is the intersection of the radical
axis and the line of centers of the two given circles C and Co. (See Figure 9.) Then we have
r=mnt rotr_; and r? = ryr_; because these radii are in geometric progression. Multiply the
former equation by r; and then replace itslast term using the latter equation to get

rri=ri4ror+7r3  and —ré=ritror —rry.
Now, d = 2r; 4+ rg— r, SO
d? = 4r? + 4rgry — drey + r2 +72 -2

and finaly,
2= 42t tr2—2mmy = 2 -2rrp— 33
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THE LEAST SQUARES LINE WITHOUT CALCULUS

Norman Schaumberger
Hofstra University

Let
y=bo + b1z (1)

be the straight line that best fits the n points (z1,11), (z2,¥2),--- (Zn,¥s) by the method of least
squares. In this note we use basic algebra to verify that the familiar equations

ﬂbo-l-blzzi = Zyi
b Zzi + 5,22 = Z iy
can be used to get the by and &; in (1).
The standard method for deriving (2) uses partial derivatives to minimize the function

@

n

Fbo,b1) =Y (wi — bo — bazi)*.

1

Thus the method of least squares will more readily fit into a precalculus, survey, or statistics course
which does not require calculus. .

If y = ag + ayz is any straight line in the plane, it follows that
S mi—a—am) =) (wi—b-bz) = '
3 (a0 + arzi)>=(bo + b12:)* + (2bo — 2a0) Y v + (2b1 — 201) Y migi.
Using (2), this becomes
Z[(ao + a125)? — (bo + b12:)? + (2b — 2a0)(bo + b12:) + (2b1 — 201 )(boz; + hizd)] =

Z[(au + 1112:,')2 - (bn + b;z,‘)2 + 2(b0 + bllt")z - 2(00 + aﬂ:;)(bo + bl:z:.-)] =
Z[(Go +a12)? + (bo + b12:)? — 2(a0 + a1z;)(bo + biz:)] > 0.

MATCHING PRIZE FUND

If your chapter presents award for Outstanding Mathematical Papers or for Student Achieve-
ment on Mathematics, you may apply to the National Office for an amount equal to that spent by
your Chapter, up to a maximum of fifty dollars. Contact Professor Robert Woodside, Secretary-
Treasurer.
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PUZZLE SECTION

SOLUTION TO MATHACROSTIC NO. 35 (FALL, 1992)

WORDS:
A. kohlrabi 0. asthenosphere
B. assurgent P. Neujmin
C. nervy Q. drift
D  decussate R. langsyne
E. incarnadine S. Invisible
F. Nude Descending T. neonsign
G. salmagundi U. esthesis
H. kookaburra V. twiddle
. yawp W. overstrew
J. polian X. plash
K. oxeye Y. lameliform
L. invective Z. asyndetic
M. nugatory a. nisse
N. twinge b. Edelweiss

AUTHOR AND TITLE: KANDINSKY - POINT AND LINE TO PLANE

QUOTATION: Just as an explorer penetrates deeply into new and unknown lands, one makes
discoveriesin everyday life and erstwhile mutesurroundings begin to speak alanguage which becomes
increasingly clear. In this way lifelesssigns turn into living symbols and the dead is revived.

SOLVERS: THOMAS F. BANCHOFF, Brown University; JEANETTE BICKLEY, St. Louis
Community Collegeat Meramec, MO; CHARLES R. DIMINNIE, St. Bonaventure University, NY;
ROBERT FORSBERG, Lexington, MA; JENNIFER HAKE, Newton High School, Newton, IL;
META HARRSEN, Durham, NC; TED KAUFMAN, Brooklyn, NY; BETH KAYROS, Trenton
State College, NJ; STEPHANIE SLOYAN, Georgian Court College, NJ.

MATHACROSTIC NO. 36
Proposed by Charlotie Maines, Rochester, NY.

The 304 letters to be entered in the numbered spaces in the grid will be identical to those in
the 29 keyed words at the matching numbers. The key numbers have been entered in the diagram
toassist in constructing thesolution. When completed, theinitial letters on the Words will givethe
name of an author and the title of a book; the completed grid will be a quotation from that book.

Solutions to Mathacrostic No. 36 should be sent to: Richard Poss, ”a Mu Epsilon Journal, St.
Norbert College, 100 Grant Street, De Pere, W1 54115. Solutions must be received by September
15.




DEFINITIONS
Any procedure involving statistical sampling
techniques i n obtaining a probabilistic
approximation to the solution of a mathematical
or physical problem (3)
Formal mathematical system consisting of

undefined objects and axioms of a geometric
nature (2)

Device for regulating strength of an electric current
Pigment made from carbonate of lead (2)

Showing lack of desire
Biblical prophet who rebuked David for the
death of Uriah

System of eliminating a variable from two
algebraic equations (3)

Sharpens
Nane given to the set of points which

satisfy the equation x? + y* = -r? (2)

Illegitimate sons of medieval prelates

Quantity of anything made i n one operation

Prayer for the repose of the dead
Ultimate goals
The cubie curve defined by the equation

xy =ax’ + bx? +ex+d (a®0) (3)

The paths of moving particles or celestial
bodies
American anthropologist (1887-1954)

Surface that lies between two parts of matter
and forms their common boundary

German-American algebraist (1882-1935)

groups reckoni . only
through the male lines

Amplifying device that effects a certain
relation between input and output signals

Plane cubic cUrve consisting of a single loop,
a node, and two branches asymptetic to
the sane Line (3)

Arrangement of flowers on the axis
of inflorescence

Meager; cheerless

Forgetfulness

192 3
176 54
s 167
257 10
153 89
%2 4
56 219
266 7T
212 RN
144 269
154
6 183
17 34
25

To comment UPON

Place at which two branches of a curve have a common
tangent and Lie on opposite sides of it (3)

Furnace formerly used in alchemy to maintain
a uniform and constant heat

Method of calculating an unknown by making an
estimate and working from it and properties of
the unknown to secure the value of the Latter €4)

I'n machinery, having double cranks forged
upon it, usually situated near and at right
angles to each other Chyph.)

b2 U3 AJe G 5 W [6 T [7 R
T [16 E (177 X [18 F 190 [20 Y |21 s |2
B L |% a |[B V 26 E |27 2 8 6 |29 J4 [ b 31 N 32 1 [33 P [3% U |35 0
3% W [37 @ [38 b |39 C [40 a 41 G [42 ¢ [43 D 4 A |45 J |6 V [47 B [48 ¥
W Z [50 U 51 E [52 X |53 b 5 B [55 K |56 I [57 G [58 Z [59 W |60 O 61 A
2 W& G & 1 |65 U |66 B |67 V @ Z | a 70 A |71V [72 X |73 P |74 W
75 T |76 a |77 L [7/8 1 |79 B [60 H 81 1 [B2 C 83 D (84 A [B5 Z [86 U 87 <
88 1 [69 G 90 A |91 L [92 4 |95 S [9% W [5 Y [9% b 97 G [98 R |99 € [100s [101E
02b |1030 [104 N [105U 106 G |07 Z 108 1 |W09c [110E [111b [112H [113 7T
114 D 58 (16 P [117U [118 G 119 a [120Y [121 8 122G 1236 (124K [155 W [126¢C
127 Z 128 0 29 c |130T 1318 [132V [1330 [154 B |1351 [136F [137 Y [138 € 396
%0 a [141 T [1426 |43 U 144 0 [W45E |6 A [147Y [4BC [149 Y (150 B 151 Z [152 D
TsT—'mn 155 T |156 C 157 N |158 1 159U [160 v [161 G |162 R 163 S & © 165 L
166 £ |167 D 6B 1 [169R [170 0 (171 T 1722 [173 F (176 W [175 A 1768 |177E |[1787 179D
180 A 181 b [1821 183 1 18L J |185 A 186 b 187 B 1880 [1B9 S 190G [191 D |
192A [1932 [1% Y 195 6 19 W (197 X [198 A 199 b |200 0 [201 7 [202 X |203 W |204 L
1206 F |207 N |20B E 209 Z 210 b 211 b |212 ¥ 213 € |214 H 2150 |216 M |217 0 [218s
219 1 [220 Z 2210 [222 b 2B E (2260 (25C (2262 (22T N |228L [29V |01 [B1b |232R
253 U 2% 6 235 P {236 b S7a |38 C |39 0 260U |24 F |262 W |43 L 244 4 |245 W
%8 L (247K [%B K [%9D (2504 |11 B2 A |53 2 54 6 855 ¥ X EEE
258 K 259 8 (260 A %16 |22 T (263X (264 Q@ (255 G 2668 [267 A |268 a |269 O |270 U |
27T N 272b (213K (2760 |275 ¢ |276 R 277D (278 U 279 C 280 q 281 G [282 L |
283 Z [284 @ (285 1 385 a |267 D (288 & 690 [0 b (2914 (292P [293Z [2% T |25 R |96 6 |
l 29T R [298 A [2998 [300Q [301V [S0ZN |303 c [304 F
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PROBL EMDEPARTIVENT
Edited by ClaytonW. Dodge
Universityof Maine

This department welcomes problems believed to be new and at a level appropriateforthe readersof
this journal. Old problems displayingnovel and elegant methods of solution are also invited. Proposals
should be accompanied by solutions i f availableand by any information that will assist the editor. An
asterisk (*) precedinga problemnumber indicatesthat the proposer did not submit a solution.

All communications should be addressed to C. W. Dodge, 5752 Neville/Math, University of Maine,
Orono, ME 04469-5752. Please submit each proposal and solution preferablytyped or clearlywrittenon
a separatesheet (one side only) properlyidentified withname and address. Solutions to problemsin this
issue should be mailed by December 15,1993.

Problems for Solution

797. Proposad by Alan Wayne, Holiday, Florida.
Restore the enciphered digitsof the addends in the followingbase four addition:

A+ RAP + AT T A + RAT = 1230.
By what means was the RAP caused?

*798. Proposed by Dmitry P. Mavio, Moscow. Russia.
Since 1993 isa prime year, it seems reasonable to ask which islarger,

10%% -1  10% -1
108 -1 100 -1

799. Proposad by Stan Wagon, Macalester College,S. Paul, Minnesota.

@) Find all yearsthat are paindromes in both the standard and the Hebrew calendars. (To get
the Hebrew year, add 3761if it is after the Jewish New Year in September, add 3760 otherwise. A
palindrome is a number, such as 17271, that reads the same backwards and forwards.)

b) Find all positiveintegers x such that there are infinitely many positiveintegersn for which
nand » T xare palindromes.

800. Proposad by Michad D. Williams,Wake Forest University,Winston-Salem, North Carolina.
Prove that for positiveintegra n,

L 2 n-i
@ = .1:[1(2“‘)2 .

801. Proposed by Norman Schaumberger, Bronx Community College,Bronx, New York.
If a,b, and care red numbers, then prove that

e’la-by+eb(b-c)+e‘(c-a)202e%c-a) +el(@a-b)+e(b-0).

802. Proposed by MurrayS. Klamkin, Universityof Alberta, Edmonton, Alberta, Canada.
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Let a and b be positiveread numbers. Determine the maximum value of
f@ = (@ - D& + yx? - b?)
over al red x withx? = b2 A non-calculus solution is requested.

803. Proposed by R S. Luthar, University of Wisconsin Center, Janesville. \\isconsin.
In any triangle ABC prove that

h) m%<,/§g,/zsc—,4.

(n a triangle ABC, Ef(4) means £(4) T £(B) T £(C).)

804. Proposed by Robert C. Gebhardt, Hopatcong, New Jersey.
Show that

- X
+X

= - 4 arctan x.

4atctani

Student solutions are especialy invited.

805. Proposed by David Ivy, Baltimore, Maryland.
a) For al integers k = -2 evaluate the integral

[l

[]

*b) Can you evaluate the integral for other values of k?

806. Proposed by Robert C. Gebhardt, Hopatcong, New Jersey.
The integral

_ dx
I= f(xm — xtaypn
was evaluated by one student as follows:

dx

r= %% __
x2 - x?

- _di-fiix_=7_xm+l+c,
x'? x? x
Provide a correct evaluation. Student solutions are especialy invited.

807. Proposed by Florentin Smarandache, Phoenix, Arizona.
In terms of the lengths a,b, and cof the sides of a giventriangle ABC, find the length of the

segment PQ of the norma to side BC at its midpoint M cut off by the other two sides. See the
accompanying figure.
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B M C
Problem 807

808. Proposed by Scott A. Brown, Stuart Middle School, Suart, Florida,

Student solutionsare especialy solicited. A circle (R)isinscribed in the unit square ABCD and
touches the sides of the square at S, T, U, and V, as shown in the accompanying figure. Another circle
(r) isinscribed in the region ASV outside circle (R) and inside the square at vertex A.

a) Find thearea of the shaded region insideregion ASY and outside circle (7). Give the answer
in radical, not just decimal, form.

*b) If the sequence of smaller circlesis continued indefinitely,each successivecircle inscribed
between the preceding circle and the comer A of the square, find the limit of the shaded region. That
is, find the area of region ASV lessthe sumof the areas of the circlesin the resulting infinite chain.

Problem 808

809. Proposedby David Ivy, Baltimore, Maryland,

In triangle ABC let AD and BE be any two cevians intersecting at a point F. ( A cevian AD for
triangle ABC isa line through the vertex A of the triangleand intersecting the opposite side BC, perhaps
extended, at a point D, different from both B and C.) Find the ratios BDIDC and AF/FD in terms of
the ratios AE/EC and BF/FE.

Solutions
76 L[Fall 1991, Spring 1992] Proposed by MurrayS Xlamkin, Universityof Alberta, Edmonton,

Alberta, Canada.
Determine all functions f{x) such that

oo l o0
= » d — = -1)" -
f(x) § ax* an 7 nz_—; (-1)a,x

|. Solution by Richard |. Hess, Rancho PalosVerdes, California.

The given equations require thet f (x)- f(-x) = 1. Suppose f (X) = age® where g(0) = 0.

Sincef Q) * f(-0) = 1,then a, = 1. Furthermore, since
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e®e® = 1, then g(x) = ~q(-x).
Thusf® = +e* for any odd function ¢(x).

II. Solution by the Proposer.
Letf(x) =E) + 0(x), where E and O are even and odd functions, respectively. Then wehave

1 _ Ew - 0w, sothat 1 = E%x) - 0%).

)
Hence

E®) = /1 + 0%(x) and f(x) = O() = {1 + O%(x)

where O(x) isan arbitrary odd function analytic at the origin. Two simple examples are

O(x) = sinhx, whence f(x) = e¢**,

O(x) =\Wax, whencef(x) = tanx = secx.
in. Comment by the Editor.
By setting 0(.? = sinh ¢(x), we see that Solutions| and I are equivalent. Then E(x) = cosh

q() and f(X) = E(x) T O(x) = cosh g(x) T sinh g(x) = e®.
The conditions of the problem were misstated originally as

= - n L - - _1\n+1 n
f® ,z;,""x wl =S g( n™la,x"

which impliesthat f (x)« f (-x) = -1. The followingtwo solutions are based on this misstatement.

V. Solution by Jayanthi Ganapathy, Universityof Wisconsin-Oshkosh, Oshkesh, Wisconsin,
Sef 2(0) = -1, no red-valued function has the properties mentioned in the problem.

V. Solution by Seung-Jin Bang, Seoul, Republic of Korea.
Sincef (x)and itsreciproca are holomorphic, there existsa holomorphic function g(x) such that
f(X) = e*®. See[1]. Since

e880 = 1 then g(x) + g(-x) = @m®) + i,
where m(x) isan integer-vaued function. Since g(x) + £(-x) isholomorphic, then m(x) isa constant m.

Hence g0) = (m ¥ 112) ni. From f (x) :f (-X) = -1 it followsthat k(%) = g(®) - (m T 112)ni isan odd
function. Thus we conclude that

f() = tieh®

for some odd holomorphic function A{x).
Reference

1.W. Rudiin, Real and Complex Analysis, 2nd ed., McGraw-Hill, New York, p. 292, Theorem 13.11.
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Also solved by SEUNG-JIN BANG, Seoul, Korea, PAUL S. BRUCKMAN (2 solutions),
Edmonds, WA, MARK EVANS, Louisville. KY, STEPHEN |. GENDLER, Clarion University of
Pennsylvania,RICHARD |. HESS, Rancho PalosVerdes, CA, DAVID 1VY, Baltimore, MD, and REX
H. WU, Brooklyn, NY.

771. [Spring 1992] Proposed by Alan Wayne, Holiday, Florida.
In the base six addition

EVE + EVE + EVE + AND = 1310

the digits of the addends have been unambiguoudly replaced by letters. Restore the digits. Where was
EVE?

Solution by Laurel Benn, Brooklyn, New York.

From the 6 column, since there must be a carry from the 6 column, we have that 3E tA<
9,50 E = 1 or 2. Hence, from the units column, D = 3 or 0, respectively.

If D =0, then E = 2 and, since 3 divides N,N =3.Now V=1o0or5.If V=1, then A =2,
a contradiction since E = 2. If V =5, then A = 0, which isnot permitted.

Therefore, D =3 and E=1 Now N =0and V =2o0r 4. If V=4, then A =4,a
contradiction. SoV = 2and A = 5. Hence EVE = 121, AND = 503, and EVE wasin 1310 = EDEN.

Ao solved by MATT AMOROSO, S. Bonaventure University, NY, JOHN T. ANNULIS,
Universityof Arkansas-Monticello, CHARLES ASHBACHER, Cedar Rapids, 74, STEVE ASCHER,
McNeil Pharmaceutical, Jring House, PA, PRANK P. BATTLES, Massachusetts Maritime Academy,
Buzzards Bay, SCOTT H. BROWN, StuartMiddle School, FL, PAUL S. BRUCKMAN, Edmonds, WA,
MARK EVANS, Louisville, KY, VICTOR G. FESER, Universityof Mary, Bismarck, ND, ROBERT C.
GEBHARDT, Hopatcong,NJ STEPHEN |. GENDLER, ClarionUniversityof PennsylvaniaRICHARD
I.HESS, Rancho PalosVerdes,CA, YOSHINOBU MURAYOSHI, Eugene,OR, ANDY PULKSTENIS,
Messiah College,Grantham, PA, WILLIAM STENZLER, Gorton High School, Yonkers,NY, KENNETH
M. WLKE, Topeka, KS and the PROPOSER.

772.[Spring 1992] Proposed by Robert C. Gebhardt, Hopatcong, New Jersey.

Let xx44 be afourdigit number and yy be a two-digit number in base b > 4. Find xand y
in terms of b o that (yy)® = xx44 in every such base b > 4 (such as 882 = 7744in base ten).

I. Solution by William H. Peirce, Rangeley, Maine, and Delray Beach, Florida.

We have that

Ob+ )2 =xb’+xb®+4b + 4,
which reduces to
Yo +1) =xb2+ 4 =x(b%- 1) + (x + 4).

Hence b + 1 must divide x T 4. Since x is a nonzero digitin base b, it followsthat x =b-3and b =
4. Now substitute x = b - 3 into either displayed equation to get that y =b - 2.

This problem isreadily generaized to (yy)* ="xxzz in base b.In addition to the solution set
above, other solutions do exist, and their existencefor a givenbase b is related to the prime factors of
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b - 1. This question is not considered further, other than to list some additional solutions for selected
values of b:

Bae b YY yi=xxz2
9 55 3,3,71,7
13 55 2,2,12,12
13 1,7 4,4,10,10
16 11,11 8,8,9,9
25 7,7 2,2,24,24
25 11,11 5,5,21,21
25 13,13 7,7,19,19
25 17,17 12,12,14,14
25 19,19 15,15,11,11

0. Solution by Scott H. Brown, Suart Middle School, Suart, Florida.

Let N have the j-digit (j = 2,3, 4,...) representation in base b,b > j + 3, each digit equal to
b -2 Then N2 has 2/ digits, the first (from the left) j-1 in ascending order beginningwith b - 3,
the jth digit being b +j - 5, the next j - 1 in descending order beginning withj + 2, and the last digit
is4. Thus, for j = 2,3, and 4, we have

[(b-2)b T 1)2=(b-3)b*+ (b-2)b2+ 4b + 4,
[(b-2)(b2+t b+ 112=(b-3)b°+ (b-2)p* T+ (b-2)p* + 50+ 45 + 4,
and
[B-2)B>+b>+b + 1)])*=
B-3)b"+ (b-2)b%+ (b-1)°+ (b-1b* + 6b>+ 5b2 + 4b + 4.
Reference
Problem 4272, School Science and Mathematics, vol. 91 (3), March 1991.

Ao solved by JOHN T. ANNULIS, University of Arkansas-Monticello, CHARLES
ASHBACHER, Cedar Rapids, I4, FRANK P. BATTLES, MassachusettsMaritimeAcademy, Buzzards
Bay, PAUL S BRUCKMAN, Edmonds, WA, KENNETH B. DAVENPORT, Pittsburgh,PA, MARK
EVANS, Louisville,K¥, VICTOR G. FESER, Universityof Mary, Bismarck, ND, RICHARD A.GOOD,
University of Maryland,College Park, STAN HARTZLER, Messiah College,Grantham, PA, RICHARD
I. HESS, Rancho PalosVerdes,CA, RANDY HO, Universityof Arizona, Tucson, DAVID E. MANES,
SUNY at Oneonta, YOSHINOBU MURAYOSHI, Eugene, OR LAWRENCE SOMER, Catholic
University of America, Washington,D.C.,WILLIAM STENZLER, Gorton High School, Yorkers, V¥,
KENNETH M. WILKE, Topeka, KS, and the PROPOSER.

773. [Spring 1992] Proposed by Leon Bankoff, Los Angeles, California.
Inagivencircle (0)a chord €D isdrawn to intersect diameter AOB at point E. Trree circles
are inscribed, the first two in the sectors BEC and BED, and the third in the opposite segment CED. -,
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Let the circle in sector BEC touch CE at J and let the circlein sector BED touch DE at N. See the
figure. If the three inscribed circles have equal radii,

a) show that CD is perpendicular to AB, b) find the ratio AE/EB,

¢) find the ratio AD/AB,

d) find the ratio CD/AB,

€) show that the rectangle JKMN on JN as base and with opposite side KM passing through A
circumscribes the third inscribed circle, and

f) show that the rectanglesJKLD and NMLD are golden rectangles.

Problem 773

Solution by Richard I. Hess, Rancho Palos Verdes, California.

a) Sicethe three inscribed circleshave equal radii, the fi gure CEDB issymmetricin diameter
BOEA , whence €D is perpendicular to AB.

b) Let the radii of the large and small circlesbe R and r, respectively. Draw the line 00 ,T
through the center @, of the small lower right circle to its point of tangency T with the large circle.
Draw radius 0,8 of circle (0,) perpendicular to AB, as shownin the figure. Then AS = 3rand from
the Pythagorean theorem applied to right triangle SO0 , we have

(00 =R -1 =712+ (@r - RY,
from which it followsthat
4R =9rand r = %R,

Now we get that

AE 2r 4r 4

¢) By the Pythagorean theorem applied to triangle ODE, since OE = R - 2r, we get that

ED = /OD? - OE? = yR® - (R - 21 = J&rR - 42 = 1[5

since 4R = 9r. By applying the Pythagorean theorem to triangle AED , we find that

a = 4% « 502 = 3,

Finally, AD/AB = 3r/2R = 213 since4R = 9r.
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d) Since CD =W E = 2rV5, then CD/AB = 2rV/5/2R = (4/9) V5. €) Since the three circles
haveequal radii r, then JN = 2r. By the symmetry of the entire figure about line AB, the third small
circleisthe circleon AE as diameter, so rectangle JKMN circumscribes that circle and therefore isa
square.

f) NowJD =JE t ED =r + 15, whence JD/JK = (1 T V/5)/2, the golden ratio. Since JKMN
is a square cut from a golden rectangle, then the remaining rectangle NMLD is another golden
rectangle.

Also solvedby PAUL S. BRUCKMAN, Edmonds, \WA , YOSHINOBU MURAYOSHI, Eugene,
OR, and the PROPOSER.

Editorial comment. Fifty lashesto theeditorfor faulty terminology.A sector isthe figurebounded
by two radii ¢ a circleand a subtended arc. A segment isthefigure bounded by a chord d a circleand
asubtended arc. SO in the figurefor thisproblem CEOB and DEOB arenot sectors since EC and ED are
not radii, but should properly have been called semi-segments. It issrue that CEDA isa segment.

774. [Spring 1992} Proposed by Robert C. Gebhardt, Hopatcong, New Jersey.

The first player in a game who acquires 250 points is the winner. Because player A isa better
player than player B, he gives player B a SO-point handicap. Similarly player B gives player C a SO-point
handicap and player C givesplayer D a SO-point handicap. What handicap should player A giveplayer
D?

1. Solution by Richard I. Hess, Rancho Palos Verdtx, California.

Sice A makes 250 points whileB makes 200, and B makes 250 points while C makes 200, then
B makes 200 while C makes 160. So A should give C a 90 point handicap. Since C makes 250 points
whileD makes 200,then C makes 160 while D makes 128.Hence A should give D a 122 point handicap.

Thisd| sounds very logical, but consider the simpler 4-point game where A givesB a 2-point
handicap, and B givesC a 2-point handicap. Here, by the same logic, A should give C a 3-point
handicap.

Consider, however, the followingmodd: Points are accumulated one a time. When A playsB,
she has a probability p of winningany point and B has probability g = 1 -p of winning the point. The
handicap isset so as to giveeach player a probability of 112 of winningthe 4-point game.

Define A's chance of winningthe game when she has m pointsand B has n points to be P(m,
n). Then P(m,n) =p +P(m T 1,n) T q -P(m,n T 1), where P(4,x) = 1 and P(x,4) = O for any = = 0,
1,2, 3. With some algebra we get P(0,3) = p“and P(0,2) = p*(1 + 44). Using the logic of the solution
above, wewould havep = 213 and q = 113. We would expect that P(0,2) = 112, but actually P(0,2) =
112/243. To obtain P(0,2) = 112, wemust takep = .6862.This earlier approach would give p = 415
when A playsC, but this givesP(0,3) = 2561625 # 112. To get P(0,3) = 112, wemust takep = .8409
and (.8409)* = .7071 + .6962.In this (more accurate?) model there is no basis for determining A's
probability of winninga point from C when the probabilities are known when A playsB and when B
plays C. Thus the question of handicapping has no exact answer.

. Solution by M d vy, Baltimore, Maryland.

We first develop a model for handicaps and player skills. L et r,5represent the average number
of points player A expects to score against player B on any giventun When r,z = rg, then A is
considered better than B and A givesa handicap h g, to B based on

250 - h
250 _ 70 T b is, by, = 250(1 - -—-"“).
Tsp

¢)]
po

Tap BA

Note that this handicap does not equalize the chances of either player winning. Rather, whenr, < <,
250, we can regard 250/r, as the approximate number of turns A needs to amass 250 points, and this *
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valueisset equal to the approximate number of turns B needs to amass 250~ A g, points. Furthermore,
250/rgisnot the expected number of turns that A needs to amass 250 points, as on some of the turns
he will do better than on others, and weneed to consider the distribution of his scores. None-the-less,
our tournament directors have decided to use the Formula (1) to save the expense of buying a
supercomputer to use with alternative, more complicated formulations..

We consider a game with three basic skills that are easily measured and can be used with
Formula (1). The game rules call for playersto alternate turns tryingto score unless a player succeeds
in scoring. |f a player does score, he is givena chance to create another scoring opportunity. That is,
if he succeeds in forming this opportunity, he goes again. In order to score, a player must perform a
successful offensive maneuver, and then he scores if his opponent failsto perform a successful parry.
Thus there are three skills: carrying out an offensive maneuver, performing a defensive maneuver, and
generating a scoring opportunity. Let (p,,q,,¢,) be a triplet that defines player A's ability in the three
skill areas, respectively. Thus the probability that A willscore against B on any givenscoring opportunity
isx 5= p4(1 - g5). On any given turn, then, the number of points player A isexpected to score isgiven
by

T =Xp+ (X))t + x) i+ <0,

that is,

X
) r =.—A_E...__
@ AB 1-tx,

Now we can calculate the handicaps. For the given problem we have hg, = by = hpe = 50.
Then (1) yieldsrpe = (415) rep, Feg = (415) rac, and rg = (415) r5. We now consider three cases.

Case Lt,=tyg=tc=tpand Q, = gg = gc = ¢gp. In this single skill degeneracy case, the
opponent doesn't affect the player's ability to score. Thus ryg = 1 =rgp=r, and rp= (415)re=

(415) *ry = (415) *r,, s0

4 3
hp, = 2501 - (g) - 122

Case 2. t,=tg=tc= t,= 1, two skill degeneracy. Given any choiceof p,, 4., gs. g¢, and
gp,Wecan use (1) and (2) to determine pg, p, and p,. The solution isrejected, however, if it does not
satisfy 0 < pg, pc, pp < 1. For example, ifp, =3/4, g, = 0,95 = 114, g¢c= 112, and g, = 3/4, then
X5 = 9116, ry = 917, ra, = 36135, x5, = 36/71, and p, = 36171. Similar calculations show that p.=
961337 and pp = 19211661. Finally, & 5, = 15925011469 = 108.4.

Case 3. We now set hy, = ho = hpe = 50. One way to do this is with the values in the
followingtable:

Player P q t
A 0.6 0 1
B 0.9677 0 0.2
C 0.9600 0
D 0.00007681 0.9999 0

Now we calculate that rp, > r.p, S0 that player D needs to give A a handicap A, = 54.67582.This
example iSnon-transitive; if A isa better player than B and B isbetter than C, then it isnot necessarily
true that A is better than C.
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Also solved by JOHN T. ANNULIS, University of Arkansas-Monticello, CHARLES
ASHBACHER, Cedar Rapids, I4, PAUL S. BRUCKMAN, Edmonds, WA, MARK EVANS, Louisville,
KY, STEPHEN |. GENDLER, Clarion University of Pennsylvania,LEE LIAN KIM, Messiah College,
Grantham, PA, CARL LIBIS, Granada Hills, CA, and the PROPOSER.

775.[Spring 1992] Proposed by Nerman Schaumberger, Bronx Community College, Bronx, New
York.

If H isthe harmonic mean of the positivenumbers a,, a, ...,a,, prove that

1

1.1 1

1
—t—t— =
a

a,
H% % ™ q'a".a,

8-

Comment by David Ivy, Baltimore, Maryland.
| guessa hundred people must have pointed out that Problem 775 isworked out on pages 384-
385[of the Spring 1992issue] by the proposer!

Editorial reply. No, only six!

Also solved by SEUNG-JIN BANG, Seoul, Korea, SCOTT H. BROWN, Stuart Middle School,
FL,PAUL S.BRUCKMAN, Edmonds, WA,Rl CHARD |. HESS, Rancho Palos Verdes, CA, DAVID
IVY (2 solutions), Baltimore, MD, DAVID E. MANES, SUNY at Oneonta, YOSHINOBU
MURAYOSHI, Eugene OR, and the PROPOSER.

776. [Spring 1992] Proposed by Russdl Ewler, Northwest Missouri State University, Maryville,
Missouri.

Let n be a fixed positiveinteger and let

Po=1"+2*+ --- +nt
Write as a polynomial in P, the expression

15P + P+ P,' + PY).

Solution by Kenneth M. Wilke, Topeka, Kansas.
We have

nn + 1)

P, = 2

from which it followsthat

2n+12___8P1+1m3n2+3n~1=6Pn‘l'
3 9 5 5

Then

nn + D2n +1) _ 2n+ 1 181’1*1
P, = ( )6( ) . 3 P =P 9

nin + DY 2
p3=(_(_2__).) = P},
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n + 1)2n + 1)(3n% + 3n - 1)

6p, - 1
30 :

P, =
N 5

= PP,

By straightforward but tedious agebra we find that
15%P} « P} + P} + P =
P;(82944P¢ - 34560P] + 51921P} + 1056P] + 39896P] + 9992P,; + 51251).

Ao solved by SEUNG-JIN BANG, Seoul, Korea, FRANK P. BATTLES, Massachusetts Maritime
Academy, Buzzards Bay, SCOTT H. BROWN, Stuart Middle School, FL, PAUL S. BRUCKMAN,
Edmonds, WA, J. S. FRAME, Michigan State University, Lansing, RICHARD |. HESS, Rancho Palos
Verdes, CA, DAVID VY, Baltimore, MD, DAVID E. MANES, SUNY at Oneonta, YOSHINOBU
MURAYOSHI, Eugene, OR, WILLIAM H. PEIRCE, Rangeley, ME, KEVIN ROBINSON, Messiah
College, Grantham, PA, and the PROPOSER. Ivy gave several interestingformulas regardingthe P,
including that P, is expressibleas a polynomial in P, whenever k isan odd positiveinteger,and that PZis
expressible as a polynomial in P, whenever k isany positive integer.

778. [Spring 19921 Proposed by Laura L. Kedleherand Frank P. Battles, MassachusettsMaritime
Academy, Buzzards Bay, Massachusetts.

It isreadily established that the arc length along the curvey = cosh x on any interval [a,5] and
the area under the graph of this same function on this same interval are numerically equal. For what
other functions, if any, is this curious fact tme?

I. Solution by Paul S. Bruckman, Edmonds, \Nashington.
We assume that any function y = f (x) with the stated property is continuous and has a

continuous first derivative on [a,b). Our equation that the length of arc L eguals the area A on that
interval takes the form

b
A-L=f [y - T+ 67lax = 0.

Since this equation isto be tme for al intervals [a,8], we must have, for all x,

y2=1+0@'% whence & - 1 s
y? -1

whose solution isx = eosh™ y - C for any real congtant C. Therefore,

y = f0) = cosh(x + C).

. Solution by David E. Manes, Sate University of New York, Oneonta, New York
Besides the obvioussolution f (x) = 1, any function of the form

f(X) = de* T Be=, with 4B = 114

for any constants A and B, satisfies the above property; i.e.,

[IT~ TP dr = +f ' d.
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To thisend, the integral equation requires that

o) Y1+ (0P = f®).

Since the left side is aways at least 1, then fx) cannot be zero for any x. SO we square and then
differentiate this equation and simplify the result to get

F@U® - @ -o.

1 ff'(x) =0,then f isa constant function and we havef (x) = 1. Otherwise, we have the homogeneous
differential equation f (x) = f"(x), which has the family of solutionsf (x) = Ae* + Be". Then Equation
(1) yields44AB = 1, as required.

Also solved by SEUNG-JIN BANG, Seoul, Korea,RUSSELL EULER, Northwest Missouri State
University, Maryville, ROBERT C. GEBHARDT, Hopatcong, NJ, DAVID IVY, Baltimore, MD,
YOSHINOBU MURAYOSHI, Eugene, OR, and the PROPOSER. BOB PRIELIPP, University of
Wisconsin-Oshkosh, |ocated thissame problemas Problem E1549, proposed by C. R MacCluer and solved
by D. A Moran,inthe American Mathematical Monthly 70(1963). p893. In addition to thetwo solutions
above, Moran gives

cosh(x - a), 0 < x <a
y=11, a<x<b
cosh(x - b), xzh
AVM solverslocated this problemas Ex. 9, p. 45, Ordinary Differential Equations, by R E. Langer, as Ex.
8, p. 25, Elementary Differential Equations, by C. E. F. Sherwood and A. E. Taylor,and on pp. 149-50of
Through the Mathescope,by C. S. Ogilvy.

779. [Spring 1992] Proposed by W. Moser, McGill University, Montreal, Canada.
IfO ca =x <y =< 1/a, then prove that

x+15a+l’
X a

2
+—y-sax+i, and (x+y)(—l-+l)s(a+l)
x ax x y

+
w <
n
& =
+

“ I
«< |8

&
y a

Solution by Jonathan Harzzel, Messiah College,Grantham, Pennsyivania.

Letf(x)=x + 1/x, so that f(x) =f (I1x).By elementary caculus,f (x)isdecreasing on (0,1]
and increasing on [1,9). Hence we have the followinglemma

Lemma. For any t in the interval (0,1), f (x) achieves absolute naxi num on [¢,1/¢} at either
endpoint.

Since weare givena < x < |la, then by our lemma

f6) < fG@), thatis, x + L ca + L.
X a

Since a <x <y, then a/y <x'y 51 <y a. By our lemma,




556

f(_) < f(z), thatis, 2+ ¥ ¥ 4 &
y a y x a 'y
Nowax Sx'y 51 < l/axbecausey 5 lla,x 5y,ad x < |la. Our lemma Yields

f(f) < f(ax), whence LI AP l‘
y y x

ax

Sincea <xand @ 5 1/y,then a®> <x/y.Sincex <yand a <1,then ¥’y 51 5 Ila% Now
wehavea? 5x/y < l1a2 By our lemma, 'y T yIx < a2+ 11a2. Add 2to each sideof this inequality

and then factor the sidesto get
2
(x +y)(.1 +l) g(a + l)
x y a

Also solved by CHARLES ASHRACHER, Cedar Rapids, 4, SEUNG-JIN BANG, Seoul,
Korea, PAUL S. BRUCKMAN, Edmonds, WA, STEPHEN |. GENDLER, Clarion University of
Pennsylvania, RICHARD |. HESS, Rancho Palos Verdes, CA, DAVID E. MANES, SUNY at Oneonta,
YOSHINOBU MURAYOSHI, Eugene, OR, ANDREW FE. PINGITORE, Fredonia Sate University
College, NY, LONG PHI VO, Arlington, 7X, and the PROPOSER.

781. [Spring 19921 Proposed by the late Jack Garfunkel, Flushing, ¥ew York.

Erect squares ADEF ,BDKL,ad CDGH as showninthe figure, on the segments AD, DC, and
BD, where D isany point on side CA of giventriangle ABC. Let X, ¥, ad Z be the centers of the
erected squares. Prove that triangles ABC and XYZ are similar and the ratio of similarityisv2.

Problem 781

Solution &y A. T. E. Levin, Closed Bar Company, Dntown, Georgia.

Since X is the center of the square DEFA, then a 45° counterclockwise rotation ad a
homothety or stretch of ratio V2, both about point D, will carry X to A. Smilarly,that same rotation-
homothety carries Y to B and Z to C. The theorem follows.

Also solved by PAUL S. BRUCKMAN, Edmonds, WA, DAM D VY, Baltimore, MD,
YOSHINOBU MURAYOSHI (two solutions), Eugene, OR, and the PROPOSER.

782. [Spring 1992] Proposed by Murray S Klamkin, University of Alberta, Edmonton, Alberta,
Canada.
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In O. Bottema et al, Geometric Inequalities,Wolters-Noordhoff, Gronigen, 1969,item 12.55,p.
118,it is sated that for a triangle ABC withno angle = 2#/3 that

2R, T R, TR)? = (a2t b2+ c?) +4Fv3,
where R, R, and R, are the respective distances from an arbitrary point P inside the triangle to its
vertices,a,b,and c are the triangle's sidelengths,and F isitsarea. Item 12.55further States that-for
a triangle in which
LA = 2#3,
(Ri+R,+R) = (b + )2

Show that the firstinequality istrue for al triangles.

Problem 782

Solution by David #vy, Baltimore, Maryland.
Labd the central angles e, 8, and yas shown in the figre. By the law of cosines we have

b>=R?+ R}-2R\R,cos f,c*=R%+ R}- 2R R cos v,

a%= R}+ R}-2R;R,cos o
Also
2F = R\R,sin v+ R,R,sin o + R,R  sin B,
whence the dated inequality isequivalent to
Y4 + 2 cos a- 2V3 sin )R,R, = 0.

Since 4 + 2 cos 6- 2v3 sin = 4[1 - sin (0- #6)] = 0, the dated inequality trivially followswith
equalityifad onlyifa = 8 = v =2w/3.

Also solved by PAUL S. BRUCKMAN, Edmonds, WA, and the PROPOSER.

783. [Soring 1992] Proposad by the late Jack Garfunkel, Flushing, New York.
If,A, B, ad C are the angles of a triangle ABC, then prove that
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" z
) sin’ : . Hsm: .
cos? £ i
X (2) H“’S(z)
Solutwn by J. S. Frame, Michigan State University, East Lansing, Michigan.

For triangle ABC with sides a, b, ¢, inradius r, Semiperimeter s, and area F, we establish the
inequality and show that equality holdsonly if a =b = ¢, by proving that

2A
2osin’d X costs e - B
IIsin4 cos A 2rs
II 2
Clearly, the right side of this equation is nonnegativeand iszero if and only if the triangle is equilateral.
Recall that Xs-a)=s, tha r/(s-a) =tan (4/2), and that r’s>=F?=s(s-a)(s- b)s- C), so
r(s-a) = (s-b)(s-c)(rs). Then

H ZA . "
.Z& = EM = 22@0“4 = E(wtg = mg)

IIsin4 sin B sin C
and
Y costd sinZ * €
2=E 2 =22m4
o " afmg

The difference between these two sums iSseen to be

Z(cot§—3tan%)=z(s;a_3 r )=§_E3(s-b)(s—c)
r

§s~-a rs

- (E(s-a))2-32(s-b)(s-c) _ Y s-bB)-(s-9P _ (-7
2rs 2 ’

rs rs

Also solved by PAUL S. BRUCKMAN, Edmonds, WA, DAVID VY, Baltimore, MD,
YOSHINOBU MURAYOSHI, Eugene, OR, BOB PRIELIPP, University of Wisconsin-Oshkosh, PAUL
YIU, Florida Atlantic University, Boca Raton, and the PROPOSER.

Late solutions were received from KENNETH B. DAVENPORT, Pirtsburgh, PA, to problem
750, 753, 754, 764, 76and 770.

INQUIRIES

Inquiries about certificates, pins, posters, matching prize funds, support for regiona meetings,
and travel support for national meetings should be directed to the Secretary-Treasurer, Robert M.
Woodside, Department of Mathematics, East Carolina University, Greenville, NC 27858, 919-757-
6414.

559

Pl MU EPSILON 1993 NATIONAL MEETING

The 1993 National Meeting of the Pi Mu Epsilon National Honorary Mathematics Society will
be held in Vancouver, British Columbia, in Canada, from August 16-19. The meeting will be held
in conjunction with the AMS-MAA meetings, which run from August 15-19. Pi Mu Epsilon will
again co-host this national meeting with the MAA student chapters.

The Pi Mu Epsilon meeting will begin with a reception on the evening of Monday, August 16.
On Tuesday, August 17, the Pi Mu Epsilon Council will have its annual meeting. Alsoon that day,
the student presentations will begin. The presentationswill continue on Wednesday, August 18. The
Pi Mu Epsilon banquet will take place that evening, followed by the J. Sutherland Frame lecture.
This year's Frame lecture will be given by George E. Andrews, of Pennsylvania State University.
The meetings will conclude on Thursday, August 19, with the final student presentations.

TRAVEL SUPPORT FOR STUDENT SPEAKERS

Pi Mu Epsilon will provide travel support for student speakers at the national meeting. If
a chapter is not represented by a student speaker, Pi Mu Epsilon will provide one-half support
for a student delegate. Full support is defined to be full round-trip air fare (including ground
transportation) from thestudent's school or home to Vancouver, BC, Canada, up to $600. (Delegates
will receive up to $300.) A student who choosesto drive will receive 25 cents per mile for the round
trip from school or home to VVancouver, up to $600. (Delegates will receive 12% cents per mile, up to
$300.) If several studentsfrom the same chapter wish to attend, they may share the travel support,
if they choose to do so.

The National Council of Pi Mu Epsilon haa approved, on a temporary basis, a more generous
travel allowancefor student speakers at this year's meeting. The first speaker from a given chapter
will be eligible for the same travel alowance as before, but if there is more than one speaker from
a given chapter, the additional speakers (up to four) will be €ligible for an alowance of 20% of
what the first speaker receives. For example, if the distance traveled (by car or van) is over 2400
miles (round trip distance), a single student speaker would receive$600, two student speakers would
receive $720 (to share in any way they wish), three speakers would share $840, four speakers would
share $960, and five or more speakers from this single chapter would share $1080.

The purpose of this more generous travel allowanceis to encourage as many students as possible
tospeak at the Vancouver meeting. If you are a student member of Pi Mu Epsilon, and won't have
received a master's degree before May of this year, you are eligible to submit a paper to present at
the meeting.

For further information about the meeting and the travel support:

SEE YOUR PI MU EPSILON ADVISOR
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GLEANINGS FROM THE CHAPTER REPORTS

CONNECTICUT GAMMA (Fairfield University) During the fall semester, the chapter spon-
sored a ""Research in Undergraduate Mathematics Night." Members Laura Davey and Charles
Ragozzine spoke about their NSF sponsored summer research at Mills College/ UC-Berkeley and
Worcester Polytechnic Institute, respectively. In the spring, members of Pi Mu Epsilon assisted the
Mathematics Department in coordinating the activities for Math Counts, which is a mathematics
contest for junior high school students. At the annual spring initiation ceremony, twenty new mem-
bers were inducted and Henry O. Pollak (former president of the MAA and researcher at Bell
Labs and currently on faculty at Columbia) delivered the Pi Mu Epsilon Lecture entitled "Some
Mathematics of Baseball." The third annual Math Bowl Contest was aso held in the spring. Six
teams of four students competed in a "GE College Bowl" type of competition, in which al of the
questions were mathematical. During the annual Artsand Sciences Awards Ceremony, three mem-
bers, James Klosowski, Charles Ragozzine, and Margaret Sweeney received recognition for
their outstanding performance in mathematics. Each was given a hook in an area of mathematics,
and a one-year membership in the MAA.

FLORIDA KAPPA (The University of West Florida) At the induction meeting in December,
Dr. Donald Byrkit spoke on the history of number systems. A total of 17 new members were
inducted during the year. The chapter worked with the MAA Student Chapter to raise money for
socia events and to sponsor a trip to the Florida Section Meeting of the MAA. Professor James
R. Weaver (Faculty Correspondent) and PME chapter president Tracey Polsgrove took two
vehiclesfilled with students to the meeting. Shannon Pugh, Greg Scible, and Jeff Wallace
gave student talks entitled: *Subdivy, Exploration into a Winning Strategy,” "Remarks on the
Generalized Riemann Integral,” and 'The Wondering Mathematician," respectively. The chapter,
aong with the UWF Mathematics Association (Student Chapter of the MAA), helped the Florida
Association of Professional Engineers with their annual Northwest Florida Math Counts program in
February. Thejoint efforts of the PME chapter and the MAA Student Chapter resulted in solving
the "Vacillating Mathematician” problem in the College Mathematics Journal.

KANSAS GAMMA (The Wichita State University) The chapter sponsored several speakers
during the year. The speakers, and the titles of their talks, were: Dr. J. Chaudhuri, "Materials
Science and Engineering”; Ms. Lynette Bikos, "Careers with a Math Degree'; Dr. W. D.
Wallis, "Hadamard Matrices"; and Apurvna Sheth, "Vedic Mathematics." There were two group
presentations during theyear. One was " Mathematicsin Other Countries” was discussed by Zaheer
Aziz (Pakistan), Satoshi Kume (Japan), Naruatheap Puangpathumanond (Thailand), K ent
Rowe (USA, and Wee Meng Tan (Malaysia). (This presentation was repeated at the annual
joint meetings of the MAA and the Kansas Association of Teachers of Mathematics.) The other
group presentation wason "Vedic Mathematics,” by Tamim Arif, Supriya Madan, and Apurva
Sheth. David C. Ogden gave a talk on "A Combinatorial Queuing Model Related to the Ballot
Problem™ at the joint MAA/KATM meeting. In October, the chapter sponsored the showing of
the movie "Stand and Ddliver." During the year, the chapter aso provided free help sessions for
studentsin courses through Calculus IT1.

MICHIGAN EPSILON (Western Michigan University) Chapter member M ark K ust presented
his paper "Singular Value Decay in the Numerical Inversion of the Weierstrass 'Kansform™ at the
national meeting of Pi Mu Epsilon in Orono, Maine. There were severa talks on campus during
the year. Professor George Piraniam, University of Michigan, presented the talk "Geometric
Meditations on Function Theory." At PME’s annual Initiation Banquet, where a total of 32 new
members wereinitiated, Dr. Tom Vidmar, The Upjohn Company, presented the after dinner talk
entitled "Statistics: Helping to Improve Productivity Through Laboratory Automation." WMU
graduate student Heather Jordon Gavlas presented the talk "Framed.” Mark Kust spoke on
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"Approximation Methods in Tomography.” University of Michigan undergraduate student Cheryl
P. Grood presented the talk "Dihedral Rewriteability." Professor Robert Devaney, Boston
University, presented two talks: ' Chaos, Fractals, and Dynamics," and "The Mathematics Behind
the Mandelbrot Set.”" Professor Timothy Pennings, Hope College, spoke on "Further Insights
into Dynamical Systems and Chaos." Finaly, Michigan State University graduate student Lisa
Hansen presented atalk entitled 'L east Common Divisorsand Least Common Multiplesof Graphs."
Atits Annual Book Sale, Pi Mu Epsilon raised $370 to help support chapter activities for the coming
year.

MONTANA ALPHA (The University of Montana) Professors Rudy A. Gideon and Mary
Jean Brod are the new faculty advisors of-the chapter. The chapter had three meetings dur-
ing the year. Although the meetings were mostly organizational, several students discussed some
mathematical topics.

NEW YORK OMEGA (St. Bonaventure University) The chapter continued its cooperation
with the SBU Student Chapter of the MAA in sponsoring the Mathematics Forum. This year's
Forum lectures were: ""Some Irrational numbers by an Irrational Person™, by Albert White, SBU;
"On Maximizing the Product of Partitions,” by Jeffe Boats, SBU student; " Stochastic Calculusand
the Valuation of Option Contracts,” by Larry Lardy, Syracuse University; "The Higher Derivative
Test for Extreme Vaues," by Chuck Diminnie, SBU; "Arrow's Paradox: Why Democracy Does
Not Exist," by Doug Cashing, SBU; "The Actuarial Professon,” by Kerry Fitzpatrick, Senior
Actuarial Associate, Aetnalnsurance Co.; 'Some Mathematics of Computer Graphics," by Dalton
Hunkins, SBU Department of Computer Science; and " Differential Equations, | Can't SolveThem,"
by Harry Sedinger, SBU. Our third annual celebration of Mathematics Awareness Week included
the talk by Sedinger, the Pi Mu Epsilon induction ceremony, and a showing of Joe Gallian’s
videotape lecture on "The Mathematics of Identification Numbers."

WISCONSIN DELTA (St. Norbert College) Seven students attended the Pi Mu Epsilon Na-
tional Meeting at Orono, Maine: Sandra Gestl, Amy Krebsbach, Mike Lang, Roxann Leise-
mann, LindaMueller, Shawn Volk, and Dave Ward. Gestl, Krebsbach, and Lang presented
papersat the conference. St. Norbert College had the honor of hosting Jai me Escalantein Febru-
ary. Mr. Escalante addressed the community and also conducted a unique class in order to
demonstrate some of Hsteaching techniques to prospective high school teachers. In November, the
chapter hosted its Sixth Annual Pi Mu Epsilon Regional Undergraduate Mathematics Conference.
Thefeatured speaker was J. Dougl as Faires (Y oungstown State University), who spoke on " Some
Puzzles | have Known," and "How Much Company Will You Have When You Retire?" There
were 18 student presentations at the conference, including those by SNC students L aura Donzelli,
M ark Fahey, Amy Gerrits, M ark Geske, Sandra Gestl, Amy Krebsbach, Mike Lang, and
Linda Mueller. Another significant event was the tenth annual SNC High School Math Meet, held
in conjunction with SNC’s math club, Sigma Nu Delta. Alsoin cooperation with SNA, the chapter
held the annual Brenda Roebke Volleyball Tournament. The proceeds from the tournament were
divided between the American Cancer Society and a scholarship fund for SNC students majoring in
math. In October and February, members of the chapter helped recruit donors for the on-campus
blood drive.

ATTENTION FACULTY ADVISORS

To have your chapter's report published, send copies to Robert M. Woodside, Secretary-
Treasurer. Department of Mathematics, East Carolina University, Greenville. NC 27858 and to
Richard L. Poss, Editor, St. Norbert College, De Pere, WI 54115.
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TWENTIETH ANNUAL
Pl MU EPSILON
STUDENT CONFERENCE
MIAMI UNIVERSITY
OXFORD, OHIO

Call for student papers and guests
Friday and Saturday
October 8 — 9, 1993

Held in conjunction with

featuring
Judah Schwartz

Weinvite you to joinus. Therevill be sessonsof the
student conferenceon Friday evening and Saturday afternoon.
Free overnight lodging for all students will be arranged with

Miami students. Each student should bring a deeping bag. Al

student guests areinvited to a free Fridagae/eni ng pizza party
supper, and speakerswill be treated to a Saturday noon picnic
lunch. Talksmay be on aw/ topic related to mathematics,
statistics or computing. We welcomeitems rangi ngbfrom
expository to research, interesting applications, problems,
summer employment, etc. Presentationtime should be
fifteenor thirty minutes.

We need your title, presentation time (15 or 30 min.),
preferred date zFri. or Sat) and a 50 (approx.) word abstract by
September 30, 1993. Please send to

Professor Milton D. Cox
Department of Mathematics and Statistics
Miami University
Oxford, Ohio 45056

The Teaching and Learning of Undergraduate Mathematics

begins
Friday afternoon, October 8.
Contact us for more details.
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St. Norbert College
Eighth Annual
PI MU EPSILON

Regional Undergraduate Math Conference

November 12-13, 1993

Featured Speaker: Mark Krusemeyer

Carleton College

Sponsored by: St. Norbert College Chapter of IIME
and
St. Norbert College ENA Math Club

The conference will begin on Friday evening and continue through Saturday
noon. Highlights of the conference will include sessions for student papers and
two presentations by Professor Krusemeyer, one on Friday evening and one on
Saturday morning. Anyone interested in undergraduate mathematics is
welcome to attend. There is no registration fee.

For information, contact:

Rick Poss, st. Norbert College
De Pere, Wl 54115

{414) 337-3198

e-mail: possri@sncac.snc.edu
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FREE"
INTERNATIONAL
TRAVEL!!

Take part in the Joint Meeting of

Pl MU EPSILON
with the
MAA STUDENT CHAPTERS
in
VANCOUVER

BRITISH COLUMBIA

CANADA

August 16-19, 1993

*See page 559 for details.




