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Concetta had been a student at  Worcester Polytechnic Institute and Russell a student at  Syracuse 
University. Both authors are currently in graduate school: Concetta at  Rutgers and Russell at 
Clemson. 

'Change Ringing: Mathematical M u s i c 3 y  Heather DeSione,  of Youngstown State University. 
She is currently attending graduate school at the College of William and Mary. 

"On Transpositions Over Finite Fields,"by Beth Miller, of Pennsylvania State University - New 
Kensington Campus. Beth prepared the paper under the supervision of Professor Javier Gomez- 
Calderon. 

The current issue of the Journal contains four papers with student authors: 

"Some Operations on Matrix-Valued Expressions," by Carol Clifton of Middle Tennessee State 
University. Carol completed this paper during her senior year under the direction of Dr. Kevin 
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"Outerplanar Graphs and Matroid Isomorphism," by Jeremy M. Dover while he was a student at  
Worcester Polytechnic Institute. He currently attends graduate school at  the University of Delaware. 

"Uniform Embeddings of Graphs," by James R. Murphy and Mohammed P. Shaikh while they were 
students at  Western Michigan University. 

"Intrinsic Reaction Coordinate Methodologies: Comparative Analyses," by Lisa Pedereon (while a 
student at  North Dakota State University) and Kim Baldridge (on the staff of the San Diego Super- 
computer Center). Lisa is currently a graduate student in chemistry at  Johns Hopkins University. . 



Now assume that b = 0.  The solutions become: 

(: ; ) I  (-: - ; ) I  (-i!I Y) (: -;). SOME OPERATIONS ON MATRIX-VALUED EXPRESSIONS 

The last two of these solutions are contained in the solutions in (7) .  

Now we may assume that c # 0. From (4), a = -d. From (3 ) ,  a  = Â±-/1 So, the solutions 

Carol Clifton 
Middle Tennessee State University 

are 

Consider the matrix equation aX+bI = 0, where I  is the identity matrix, 0 is the zero matrix, 
and X has four variable entries, z i j ,  for i ,  j = 1,2. We can solve for z i j  in the following manner: 

Notice that the solutions in (7) are contained in (8 ) .  

So, the solutions of the square root of I  are the following: 

By ( I ) ,  we obtain z u  = -b/a,zn = O,zzi = 0 . ~ 2 ~  = -b/a. As we will see, solving equations 
with matrix-valued expressions will involve performing operations on these expressions. To solve 
the linear equation above, for example, we apply the operation (̂X - bI) to both sides of the 
equation. However, that method will only work when the operation is defined for suitable matrix- 
valued expressions. To see where some difficulty might occur, we need only try to solve a quadratic 
equation. We can begin to solve the second degree matrix equation a x 2  + bX + cI = 0, for . . 
z i j ,  1 , ~  = 1,2 by completing the square. 

Thus, the square root of I  has an infinite number of solutions, where I is the principal root. 

A square root of the zero matrix should be a matrix which satisfies the equation 

From (10) and properties of determinants, it is clear that the detA = 0 .  From ( l o ) ,  we obtain the 
following system of equations: 

It would now be desirable to take the square root of each term in (2). However, if b2 - 4ac # 0 ,  we 
first need to investigate the square root of I .  If b2 - 4ac = 0 ,  we need to investigate the square root 
of the zero matrix. 

The square root of I  should be a matrix, A, such that A2 = I .  If 

where 

Since detA = 0 ,  we know ad = be. So, (11) and (12) become a(a + d) = 0 and d(a + d) = 0, 
respectively. By adding (11) and (12), we obtain a = -d, or trA = 0 .  Conversely, we can show that 
det A = 0 and trA = 0 implies that A2 = 0. Thus, we can parametrize the solutions to (10) in the 
following way: 

then 

Now that we know the solutions for A2 = I  and A2 = 0, we may solve the equation 
a x 2  + bX + cI = 0. When b2 - 4ac # 0 ,  then We obtain the following equations from the above equality: 

where \/T is an element of the solution set in (9). When b2 - 4ac = 0 ,  then 

We may consider two distinct cases. First, assume that c = 0 .  From (3) ,  a  = Â±1 From (6 ) ,  
d  = 2 ~ 1 .  From (5), a = -d when b # 0 ,  and the solutions are 

where fl is an element of the solution set in (13). The fact that in complex algebra a polynomial 
equation of degree n in a single unknown z has exactly n solutions, therefore, does not hold true in" 
matrix algebra. 



After studying the square root of I, one may now want to investigate the square root of 
A, where A # I ,  0. First notice that for a diagonal matrix D = diag (dl, d2,. . . , dn), where 
diag (dl, d2, . . . , dn) means that dl ,  dv , . . , dn are entries along the principal diagonal and only zeros 
are elsewhere, D1I2 = diag (a, &, . . . , ̂ /d^). Recall that if A eC (the set of complex numbers) 
and there exists a nonzero vector z such that Az  = \x, then A is said to  be an eigenvalue for 
the matrix A, and a: is an eigenvector corresponding to A. In certain cases, an n x  n matrix can 
be factored by using its eigenvectors. That is, A = PDP-l ,  where D is a diagonal matrix where 
the eigenvalues of A are placed along the principal diagonal each according to its multiplicity, and 
P is a matrix whose columns are eigenvectors appearing in the same order as their corresponding 
eigenvalues appear on the diagonal of D. If A = P D P - l ,  then A is said to  be diagonaliiable. If 
A is a matrix with complex entries, then the adjoint of A is the conjugate transpose of A, given 
by A* = At. Note that P* = P 1  for the matrix which diagonalizes a matrix A. A matrix U 
with the property that U* = U-l is said to be unitary. It can be shown that every unitary matrix 
can be diagonalized. If A = PDP-l ,  then we can define what is meant by the principal square 
root of A. Notice that if A = P D P - l ,  then An = PDnP-I  for any n Z+. One can see that 
A = ( P D ~ ~ ~ P - ~ ) ( P D ~ / ~ P - ~ ) .  It follows that All2 = P D ~ ~ ~ P - ' .  It is interesting to note that All2 
does not exist for just any matrix A. For example, 

has no square root, as seen below. 

Proposit ion 1. If det A = 0 and trA = 0, then X 2  = A has no solution for a 2 x  2 matrix A # 0. 

Proof: Suppose there exists a matrix X such that X 2  = A where not all a;;, = 0, i, j = 1,2. We 
have 

However, (det X)2 = detA = 0, Thus, zl2zm = zllzm. So, we have 

By adding (14) and (15), we see that (211 + ~ 2 2 ) ~  = a l l  + a22 = 0. Therefore, t rX = 0 and A is the 
zero matrix as seen from the four equations above, a contradiction. A characterization of a matrix 
A for which the equation x2 = A has a solution is given in texts, particularly [4] (Lancaster, p. 
95). From the discussion above, it is sufficient for the equation X 2  = A to have a solution if A  is 
diagonalizable. The question arises: "Which matrices are diagonalizable?" 

Besides unitary matrices, another category of diagonalizable matrices is the collection of Her- 
mitian matrices, named after the French mathematician Charles Hermite (1822-1901). A square 
matrix A is called Hermitian provided that A = A * .  In the real case, a Hermitian matrix is said to 
be symmetric. 

Theorem 1. If A is Hermitian, then A is diagonalizable. (See Hohn, p. 472.) 

The proof can be found in most texts of linear algebra. In proving this theorem, one finds 
that the eigenvalues of a Hermitian matrix are necessarily real. Also, eigenvectors corresponding to 

different eigenvalues are orthogonal. If A = A*, (Al.. . .An) are the eigenvalues corresponding to A 
repeated as often as their multiplicity, and ( q , .  . . , vn) is the corresponding set of eigenvectors, then 
we can recover A as follows: 

A =  x A k v &  = PDP*.  

A less common topic in elementary linear algebra is simultaneous diagonalization. Two -n x 
n  matrices A  and B are said to be simultaneously diagonalizable if they have a commonset of 
eigenvectors which diagonalize both A and B;  (i.e., A = P D P '  and B = PD'P*). The following 
theorem about the simultaneous diagonalization of two Hermitian matrices is useful. 

Theorem 2. Let A and B be n x  n Hermitian matrices. Then, AB = BA if and only if there exists 
a linearly independent set of vectors { Ã ˆ ) ~ }  such that Auk = atvt  and Bvk = b p t  for k = 1, .  . . , n. 

Any matrix A can be decomposed into its real and imaginary parts by defining 

1 1 
X = -(A+ A*) and Y = -(A - A*). 

2 2i 

It is easy to see that 
A = X + i Y .  

This is analogous to writing a complex number z as z = z + iy, where z ,  y â R. From (16) we 
compute 

A'A - AA" = 2i(XY - YX). (17) 

The following theorem characterizes matrices which can be diagonalized, 

Theorem 3. (Spectral Theorem) An n x  n matrix A can be diagonalized if and only if A'A = AA*. 
Such a matrix is said to be normal. (See Hohn, p. 405.) 

Proof: From (16), A can be diagonalized if and only if X and Y can be simultaneously diagonalized. 
Since X = X *  and Y = Y*, X and Y can be simultaneously diagonalized if and only if X Y  = YX,  
by Theorem 2. By (17), X Y  = Y X  if and only if A is normal 

For example, we may use the Spectral Theorem to show that M can be diagonalized, where 

Computing MM* and M'M, we obtain 

By the Spectral Theorem, M can be diagonalized. However, note that M is neither Hermitian 
(because M # At*) nor unitary (since M" # M-I). 

Similarly, we may use the Spectral Theorem to illustrate the Q cannot be diagonalized, where 

Computing QQ' and Q'Q, we obtain 

QQ* = (x) and Q*Q = (", -;). 
By the Spectral Theorem, Q cannot be diagonaliied since QQ' # Q'Q. 



Now that we know an easy test to determine if a matrix is diagonalizable or not, we may 
investigate applications of diagonalizable matrices. We have seen previously that if A is diag- 
onalizable, then X 2  = A has at  least one solution, so that Ail2 can be defined. We consider 
f (z) = anzn + an-lzn-l + . . . + a0 for a single unknown z. The question arises: "What about f (A) 
where A is a matrix?" Substituting A into f(x), we obtain 

f (A) = anAn + an- l~"- '  + . . . + a d .  (18) 

Since we know that An = P D n P - l ,  we obtain 

/(A) = U ~ P D ~ P - ~  + a n - l ~ ~ n - l ~ - l +  ...+ U ~ P P - ~ .  

Factoring, we have 
f(A) = P(anDn + a n - l ~ n - l  + ...+a@-'. 

Thus, 
f ( ~ )  = P~(D)P- l .  

Notice that f(A) is defined for any matrix A, as seen in (18). We have seen that if f(x)  = d l 2 ,  
then f(A) cannot be defined for all 2 x 2 matrices A. However, recall that if f(z) is analytic at  a 
point An, then it can be expanded in a Taylor series about A. with a positive radius of convergence. 
If the eigenvalues of a matrix A are contained in this disk of convergence, then f (A) can be defined 
using the Taylor's series expansion for f (z) as seen in the following theorem. 

Theorem 4. (See Lancaster, p. 183.) Let matrix A â‚¬Cn have eigenvalues A i ,  12,. . . , \n- If the 
function f has a Taylor series about AQ,  . 

f ( A ) = X a p ( A - ^ Y  
p=O 

with circle of convergence \\ - A o \  = r ,  and if l A j  - Aol < r, j = 1,2, .  . . ,n, then f(A) is defined 
and 

00 

f(A) = '&(A - AoI)P. 
p=o 

Other techniques for defining the value of a function applied to a matrix can be found in texts, 
particularly [I] (Grantmacher, Chapter V). If f(x) is analytic a t  every point in the complex plane 
(entire) and A is diagonalizable and A = PDP-l ,  then f (A) = P f (D)P-l provides an equivalent 
definition for the expression in Theorem 4. One class of entire functions are the trigonometric 
functions. Therefore, we can define 

sin(A) = Psin(D)P-I 

where 
sin(D) = diag(sin A i ,  . . . ,sin An). 

It is easy to see without justifying all the interchanges of limits that if A is normal, the two repre- 
sentations of the sin(A) are equivalent. 

N ~ 2 k t 1  

sinA = lim (̂-I)*- 
N-mo 

k=O 
(2k + I)! 

N ~ 2 k + l  
= P (&. lim (̂-I)"- (2k + l)! ) P-I 

i-0 

In the same way, we may define cos(A), where A is normal. We notice below that the tangent does 
not exist for certain normal matrices. 

t a n A =  Pdiag(tanA1, ..., tanAn)P* 
= Pdiag(sinAl/cosAl, . . . , sinAn/cosAn)P* 
= Pdiag(sin A l ,  . . . ,sin An)P*Pdiag(l/cosAi,. . . , l/cosAn)P*. - - 

Thus tan A = sin A/ cos A exists only if cos Ai is nonzero for i = 1, . . . , n. 
The trigonometric identities can now be proven on matrices by using the trigonometric identities 

from trigonometric functions defined on complex variables. For example, 

sin2 A + cos2 A = P diag (sin2 \i, . . . , sin2 An)P8 + P diag (cos2 
A i ,  . . . , cos2 An)P* 

= P[diag (sin2 A,, . . . , sin2 An) + diag (cos2 A ] ,  . . . , cos2 An)]P' 

= P diag (sin2 Al  + cos2 Al, . . . , sin2 An + cos2 An)P* 

= Pdiag(1, ..., !)Po 
= PIP' 
= I .  

Also, an example of a cofunction identity is given by: 

sin(A + ;I) = s ~ ~ ( P D P - '  + ̂ 1} 
= sin(pDp-l + ;PIP-') 

= sin P ( D  + t I ) P - I  
= Psin(diag(A1 + +,... ,An + $))P-I 
= P diag (sin(Al + ;), . . . ,sin(& + ;))P-' 

= P diag(cos Al, . . . , cos An)?-' 

= cos A. 

In summary, my work investigates the solutions to equations and identities containing matrix- 
valued expressions. This investigation leads to a study of unitary, Hermitian, and normal matrices. 
Last, the implications of replacing the complex arguments of polynomial and trigonometric functions 
with matrix-valued arguments are explored. 
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A matroid is a pair (E;C),  where E is a finite, non-empty set, and C is a collection of subsets 
of E, called circuits, which satisfy: 

O U T E R P L A N A R  G R A P H S  A N D  MATROID I S O M O R P H I S M  

Jeremy M. Dover 
Worcester Polytechnic Institute and The University of Delaware 

The goal of this paper is to present a method for counting the number of matroids which are the 
cycle matroids of outerplanar graphs. For those who are not familiar with matroids, we begin with 
a brief introduction to some of the basic concepts and definitions of matroid theory. From there, we 
introduce the fractured dual and discuss some of its properties. Finally, we use this fractured dual 
to answer some questions about the number of matroids and matroid isomorphism. 

W h a t  is  a Matro id?  

Consider the group of real numbers under addition. When considering the reals in this light, 
we completely blind ourselves to their multiplicative properties, but we can apply all of the results 
of group theory to the addition of reals. So, by restricting our attention, we have gained some 
knowledge. 

Now, in matroid theory, we attempt to do the same thing. With a matroid, the concept we 
focus on is "independence," in one form or another, of subsets of a given universal set. 

The concept of a matroid was introduced in 1935 in a paper by Hassler Whitney ("On the 
Abstract Properties of Linear Dependence," Amer. J. Math., 57 (1935), pp 509-533). In this paper, 
he looked at the set of columns of a matrix. A given subset of these columns, when considered as 
vectors, is either linearly independent of linearly dependent. Now, Whitney noticed that the sets of 
columns which are linearly independent satisfy the following properties: 

a) The empty set is linearly independent, 

b) Subsets of linearly independent sets are independent, and 

i) no circuit contains another circuit (except itself), and 

ii) if ci and c2 are distinct circuits such that x â cl and z â c2, then there is a circuit in C I  U c2 
which does not contain x. 

This definition of a matroid is equivalent to the previously given definition. For more details 
on this and other definitions of a matroid, see [4] or [2]. 

Cycle Mat ro ids  

Consider a graph G. A subset of its edges is, in some sense, dependent if it contains a cycle. 
This motivates the following definition. The cycle matroid of a graph, denoted M(G), is a matroid 
(E;  C ) ,  where E is the set of edges of G and C is the set of all cycles of G, which are the circuits of 

c) Given two linearly independent sets, one smaller than the other, then some element of the larger 
may be added to the smaller such that the resulting set will be linearly independent. 

This motivates the following definition: 

Definition. A matraid is a pair (E , I ) ,  where E is a finite, non-empty set, and I is a collection of 
subsets of E which satisfy the above three properties. The sets in I are called independent sets. 

Now we can define several important matroid concepts. A base of a matroid is a maximal inde- 
pendent subset of E; i.e., an independent set which is not properly a subset of another independent 
set. A circuit of a matroid is a minimal dependent subset of E ;  i.e., the removal of any element from 
a circuit yields an independent set. If A is a subset of E, then the rank of A is the cardinality of the 
largest independent set contained in A. And, finally, the closure of A is the largest set containing A 
such that the rank of A equals the rank of the closure. 

Now, what have we gained in going from the vector space to  the matroid? It may not be inune- 
diately clear, but we have made our definitions of "independence"-related concepts much simpler. 
For example, a set is linearly independent if and only if it is in the set I. Also, the operation of 
closure is entirely analogous to taking spans in the vector space. However, we have lost the opera- 
tions of addition and scalar multiplication; but, if one is interested in the independence properties 
of vector spaces, matroids are a useful tool. 

We have chosen to define a matroid in terms of independent sets. We could, however, have 
chosen differently. Every matroid concept defined above, along with appropriate axioms, can be 
used to define a matroid. In graph theory, it is most useful to define a matroid in terms of its 
circuits: 

the matroid. 

Why make this definition? One use of cycle matroids is to get a better handle on dualization 
processes. The geometric dual of a plane graph is given by the following process: 

1. Place a vertex in each face (including the infinite face) of the graph. 

2. Across each edge of the graph, draw a new edge between the vertices of the two faces to which 
the edge of the graph is adjacent. 

The graph given by these new vertices and edges is the geometric dual. Now, the geometric 
dual of a graph can change as one changes its embedding, so it does not make sense to talk about 
the geometric dual. However, the dual of a matroid is defined only if the graph is a plane, while 
the dual of a matroid is defined for all matroids. To make a connection between these dualization 
processes, we note that if a graph G has a geometric dual H ,  then the dual matroid of M(G) is 
M(H). Anyone interested in a thorough introduction to matroid theory and its applications should 
consult the very readable article by Wilson [3]. 

T h e  Fractured Dual 

(Note: to avoid questions about existence and connectivity of dual graphs, we now restrict our 
attention to graphs which are both planar and Zconnected.) 

While cycle matroids are a useful tool, they have the unfortunate property that they do not 
uniquely determine a graph for which they are the cycle matroid; i.e., several nonisomorphic graphs 
may have isomorphic cycle matroids. So, given two embedded graphs, G and H ,  the question arises: 
Is M(G) isomorphic to M(H)? It turns out that the geometric duals, provided that they exist, can 
often shed some light on this question. However, when dealing with large graphs, the duals are just 
a s  difficult to deal with as the original graphs. In this section, we discuss a way to simplify the 
structure of the dual graph without losing any information we may obtain about the cycle matroid. 
First, however, we need some definitions. 

Let G be a graph, with v a vertex in G. Assume the degree of v is n. The fracture of G at v 
is formed by deleting the vertex v, and replacing it with n new vertices y l ,  . . . , y*, and adding the 
following edges. Consider the set {{xi, v} E E(G) : xi 6 V(G)}. Since vertex v has degree n, the 
subscript i varies from 1 to n. (Note that the xi's need not be distinct.) Further, each of these edges 
is removed when v is deleted. Now to the graph, add the edges {xi, y i } ,  . . . , {xn, yn}. this process 
results in the fracture. 

The fractured dual, Go, of an embedded plane block G is obtained by taking the geometric dual 
of G and fracturing the vertex corresponding to the infinite face of G. For a fixed embedding of a 
graph, the fractured dual is unique, and is thus well-defined, but, as with the regular geometric dual, 
since there is nothing special about the infinite face, the fractured dual is not unique for a general. 
graph. However, if the fractured dual is a tree, there are some things which we can say about the" 
fractured dual. Some examples of fractured duals are given below in Figure 1. 



Figure 1. 

We now wish to prove a theorem which classifies those graphs which have a tree as a possible 
fractured dual. First, however, we need to state a theorem about outerplanarity. From Harary [I], 
we know that a graph is outerplanar if and only if it contains no subgraph homeomorphic to K4 or 

with the exception of K4 - x ,  i.e., K 4  with an edge deleted, which is homeomorphic to Kis,  
but has an outerplanar embedding. 

Theorem 1. A graph has an outerplanar embedding if and only if it has an embedding for which 
its fractured dual is a tree. 

Proof: Assume that G is not in an outerplanar embedding. Then there is a vertex v which does 
not lie on the infinite face. 

The faces containing v will form a cycle in the dual, and since v is not on the infinite face, this 
cycle will not be broken by the fracture of the vertex corresponding to the infinite face. Thus the 
fractured dual of this embedding will contain a cycle, and thus not be a tree. 

Conversely, if G is in an outerplanar embedding, every vertex will lie on the infinite face. Then, 
in the dual, every cycle in the dual will pass through the vertex in the infinite face. So, in the 
fractured dual, when the vertex in the infinite face is fractured, all of the cycles will be broken. 
Thus, the fractured dual will contain no cycles, and thus will be a tree. 

Mat ro id  Isomorphism 

We now wish to prove two theorems about the relationship between cycle matroids and fractured 
duals. With these theorems, we wish to address two questions. One, how does one determine when 
the cycle matroids of two given graphs are isomorphic? Second, how many graphic matroids are 
there? (A graphic matroid is a matroid which is the cycle matroid of some graph.) 

Theorem 2. If G and H are plane blocks and Go is isomorphic to H O,  then M(G) is isomorphic 
to M(H). 

The proof of this fact is a straightforward but technical argument, which uses more matroid 
theory than has been introduced here. Thus, the proof is omitted. 

What does this tell us? If G and H are two blocks with outerplanar embeddings, and their 
fractured duals are isomorphic trees, then their cycle matroids are isomorphic. However, this only 
tells us what happens when the fractured duals are isomorphic; it does not tell us what happens 
when the fractured duals are not isomorphic. 

The reason for this is that Theorem 2 is an implication and not an equivalence. The converse 
of Theorem 2 is not true in general. However, we now wish to prove the converse for a special case, 
that of Go and H O  being nonisomorphic trees. 

Before proving this theorem, we need one more definition. A twisting of a graph is defined as 
follows: Consider a minimal cutset of a graph of connectivity 2, { u ,  v } .  The removal of these two 
vertices disconnects the graph into several components. Using these components, we wish to form 
two subgraphs, Gl' and G2'. We do this by dividing the remaining components up between the 
two subgraphs such that each component appears in exactly one of Gl' and G2'. Now let G l  be 
Gl' joined with { u , v }  and any edges between { u , v }  and the vertices of Gl', and define G2 in an 
analogous way. The twisting of G is the graph formed by attaching G2 to G l  such that u in G l  is 
identified with v in G2 and v in G l  is identified with u in G2. 

Theorem 3. Let G and H be blocks with outerplanar embeddings. Then M(G) fs M(H) if and 
only if Go as H O  for the outerplanar embeddings. 

Proof: The reverse direction is equivalent to Theorem 2. If M(G) sss M(H). we have a theorem 
from Welsh [2], due to Whitney, which says that G can be obtained by a series of twistings from H. 
An example of this is shown below in Figure 2. 

Now, in a series of twistings, we do not change the structure of the fractured dual, sincewe 
are only changing the spatial arrangement of the graph, and are not changing any adjacencies. 
Therefore, the fractured dual is unchanged under a series of twistings. Thus Go Ã H O.  

Figure 2: Twistings on a graph and its fractured dual. 

Now this theorem gives us the second part of what we sought earlier. If we have two blocks 
with outerplanar embeddings, and their fractured duals for those particular embeddings are noniso- 
morphic, then their cycle matroids are nonisomorphic. 

Corollary. All outerplanar embeddings of a given outerplanar block have the same fractured dual. 

Proof: From Theorem 3, we showed that if G and H are outerplanar blocks and M(G) M(H), 
then Go a H o ,  regardless of embedding. Now, just take H = G, and we have the result.* 

Due to this corollary, when we talk about the fractured dual of an outerplanar embedding, this 
is the fractured dual of every outerplanar embedding of G. Note that if G is not in an outerplanar 
embedding, its fractured dual need not be a tree, so we cannot talk about a unique fractured dual. 

Now, we can make the following statement: If G and H are graphs in an outerplanar embedding, 
then every cycle matroid isomorphism is equivalent to  fractured dual isomorphism. 

These technical results allow us to address our second question. Since fractured dual isomor- 
phism is equivalent to cycle matroid isomorphism, we can take the set of all trees with n edges and 
invert the fractured dual process. (This can be done by identifying all vertices of degree one in the 
tree and dualizing the resulting graph.) All members of this set of graphs have nonisomorphic cycle 
matroids, by construction. So, the number of matroids on n elements (i.e., the size of the set E is n) 
which are the cycle matroids of outerplanar, 2-connected graphs is given by the number of trees on 
n edges. In fact, this is a very poor estimate for the actual number of matroids, as this count ignores 
many large classes of matroids. However, this technique combined with other counting techniques, 
does give a fair lower bound on the number of matroids which are both graphic and cographic. 
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UNIFORM EMBEDDINGS OF GRAPHS 

James R. Murphy, Michigan State University 
Mohammad P. Shaikh, Western Michigan University 

1. Introduction In the first book written on graph theory (published in 1936), Denes Konig 
[3] described a procedure where, given any graph G with maximum degree A(G) = d, a d-regular 
graph H can be constructed so that G is an induced subgraph of H .  (A graph G is an induced 
subgraph of H if H is obtained by adding edges and vertices (possibly none) to G such that no new 
edges join two vertices of G.) It will be advantageous for us to describe this technique. 

Let G be a graph with A(G) = d. If G is a regular graph, then take H = G. Otherwise, we take 
a new copy of G, which we denote by GI, and join corresponding vertices of G and G' whose degrees 
are less that d. We refer to the resulting graph as GI.  If GI is d-regular, then take H = GI. If not, 
we continue this process until a d-regular graph G,, is obtained. Figure I illustrates this process. 

Figure 1. An illustration of Konig's method 

Konig's technique, therefore, has the following consequence. 

Theorem. (Konig) For every graph G and every integer r 2 A(G), there exists an r-regular 
graph H containing G as an induced subgraph. 

From Konig's technique, we can also see that for every vertex v of H ,  there exists an induced 
subgraph of H that is isomorphic to G and contains v. This leads us into the main topic of this 
article. A graph G is said to be uniformly embedded in a graph H if, for every vertex v of H ,  there 
exists an induced subgraph of H isomorphic to  G that contains v. It follows from the proof of the 
theorem that every graph G is uniformly embedded in some r-regular graph for each r > A(G). 
This technique, however, does not guarantee that the graph H produced has minimum order. In 
fact, for the graph G of Figure 1, the graph H of Figure 1 has order 16, while the minimum order 
of a 2-regular graph containing G as an induced subgraph is only 6. The graph H' of Figure 1 has 
this property. 

In 1963, E r d k  and Kelly [2] developed a formula for determining the minimum order of a d- 
regular graph H containing a given graph G (with A(G) = d) as an induced subgraph. We describe 
this formula. Let G be a graph with maximum degree d whose vertex set is V(G) = { v ~ ,  "2,. . . ,vn}. 
Let di denote the degree of vi and let ej  = d - di (1 < i < n) denote the deficiency of vi. Further, 
let e = max{ei} represent the maximum deficiency and s = El ei the total deficiency. We can 
now state the theorem of Erdos and Kelly. 

Theorem. (Erdk  and Kelly) Let G be a graph of order n and let r be an integer such that 
r > A(G). A necessary and sufficient condition that m + n be the least order of an r-regular graph 
H containing G as an induced subgraph is that m be the least integer satisfying the following four 
conditions: 

(1) mr  2 s, 
(2) m 2 - ( r + l ) m + s > O ,  - - 

(3) m 2 e, 

(4) (m + n)r  is even. 

Figure 2 shows examples of graphs G, and H,(l  < i $ 4) such that Hi is A(G,)-regular, has 
minimum order, and contains G, as an induced subgraph. The solid vertices in each graph H, 
indicate the vertices added to G,, while the edges incident to each solid vertex are the added edges. 

Figure 2. Smallest regular graphs containing a given graph as an induced subgraph 

In Figure 2, Gi is uniformly embedded in Hi, for i = 1,2,3. However,G4 is not uniformly 
embedded in H4 since there does not exist an induced subgraph of H4 that contains x and is 
isomorphic to G4. We verify this fact next. Suppose, to the contrary, that G4 is uniformly embedded 
in H4. The graph G4 contains no 3-cycles, so either a or b must be removed, as well as one of c, d, 
and y. Since G4 contains no vertex of degree 1, the vertex y cannot be removed. However, if a or 
b is removed, then the resulting graph has three consecutive vertices of degree 2, and this graph is 
not isomorphic to G4. This produces a contradiction. 

2. The Uniformity Number of a Graph Let G be a graph and r an integer with r > d = 
A((7). Then we define the r-uniformity number ur(G) of G as the minimum number of vertices 
needed to  be added to G to produce an r-regular graph H in which G is uniformly embedded. 
We write u(G) for ud(G) and call it simply the uniformity number of G. For a given graph G of 
order p, an r-regular graph H of order p + ur(G) in which G is uniformly embedded is called an; 
r-uniformity graph of G while a d-uniformity graph is called more simply a uniformity graph. The 



set of r-uniformity graphs will be denoted by U , ( G )  and the set of uniformity graphs by U ( G ) .  

We now illustrate the above concepts. For a positive integer n, let P,, denote the path with n 
vertices and for n > 3, let Cn denote the cycle with n vertices. Then A(Pn)  = 2 if n > 3. Thus, 
for n > 3, the uniformity number u(P,,) = 1 since we need only add one vertex to P,, to produce 
a 2-regular graph in which Pn can be uniformly embedded. Since Cn+1 is the only graph with this 
property (see Figure 3),  it follows that U ( P n )  = {C,,+i}. 

Figure 3. The path Pn(n > 3) and its uniformity graph Cn+i 

It is now useful to describe some classes of graphs which we will encounter soon. The complete 
graph K P  is that graph of order p in which every two vertices are adjacent. A graph G is a bipartite 
graph if its vertex set V ( G )  can be partitioned into two subsets V\ and Vz such that every edge of 
G joins a vertex of V\ and a vertex of V2. If, in addition, \Vi\ = m, Il41 = n,  and every vertex of V\ 
is adjacent to every vertex of V2, then G is referred to as the complete bipartite graph K m n .  The 
graph Kin is called a star, with the vertex of degree n referred to as the center of the star. For 
positive integers m and n, the double star Smn consists of adjacent vertices u and u, where u and 
v are adjacent to m - 1 and n - 1 additional vertices of degree 1 ,  respectively. The vertices u and 
v are the centers of the double star Smn- The double star Sl,n is therefore the star Kl,,,. These 
concepts are illustrated in Figure 4. 

Figure 4. Some special types of graphs 

Suppose G is the complete graph Ifp.  Thus G is (p-  1)-regular. If r is an integer with r > p- 1, 
then any r-uniformity graph of G contains at  least r +  1 vertices. On the other hand, G is uniformly 
embedded in Kr+l.  These remarks provide the basis for the following result. 

Theorem 1. Let p be afixed positive integer. If r is an integer with r > p-1, then u,(IfP) = r + l - p  
and U r ( K p )  = { K r + i } .  
By Theorem 1 ,  the completegraph Kr+1 is the r-uniformity graph for all the graphs I f l ,  K2 , .  . . , Kr+l.  
This observation gives us the following result. 

Corollary 2. For every positive integer r ,  there exists a graph that is the r-uniformity graph of a t  
least r distinct graphs. 

We next determine the uniformity number of a star. 

Theorem 3. The star Kl,,, has uniformity number n - 1 and U(If i , , , )  = {Knn}. 
Proof: Let H be an n-uniformity graph of Kin, and suppose that M is the set of vertices added 
to If l , , ,  to produce H ,  where IMI = m. Thus, u(K1, , , )  = m. Let vo be the center of the star 
KIP,, ,  and let ul ,vz , .  . . ,vn denote the remaining vertices of Kl,,,. (See Figure 5.) The deficiency 
di of ui (0 $ i $ n) is then given by do = 0 and dl = dz = Â ¥  

= d,, = n - 1 .  Since the 
maximum deficiency e of is n - 1, it follows that TO > n - 1 .  On the other hand, if we'let 
M = { u l , ~ ~ , . .  . , u , , _ ~ } ,  define Vi = {v1,v2,  . . . ,un} and V; = {vo} U M ,  and join every vertex 
vi ( 1  < i < n) to every vertex uj (1 < j < n - I), we produce the graph Kn,,,. Since Ki,,, 
is uniformly embedded in I<,,,,,, we have u(I<l,,,) = n - 1 and, further, since I<,,,n is the unique 
n-regular graph of order 271 with this property, U ( K l n )  = {K,,,,,}. 

ovj. . ....; 
"I, 

" - 1 . .  , . .: 
Figure 5. The star K i n .  

We now turn to a more complicated problem, namely, the investigation of the uniformity num- 
bers of double stars of the type S,,,,. 

Theorem 4. Let n be a positive integer. 

( 1 )  If n = 1, then u(Sn,,,) = 0 and U(Sn,,,) = {Pa}.  

( 2 )  If n = 2, then u(S,,,,) = 1 and U(S,,,,,) = { C s } .  

(3 )  If n > 3 and n is odd, then u(S,,,,,) = 2(n - 1). 

(4 )  If n 2 4 and n is even, then 2n - 3 < u(SnSn) < 2(n - 1). 

Proof: If n = 1 ,  then S,,,, = P I ,  while if n = 2, then S,,,,, = P4. Since PZ is regular, U(P2) = {Pa} 
and u(Pt} = 0. On the other hand, we have already seen that u(P4) = 1 and U(P4) = { C s ] .  

Suppose now that n > 3. Let u and v be the centers of the double star G = S,,,,,. Let 
Ul = { u l , u 2 , .  . .", , -I}  be the set of vertices adjacent to u and Vl = { v l , v z , .  . . ,v,,-l] the set of 
vertices adjacent to v .  (See Figure 6 . )  

.G cSn,,: 

The maximum degree of S n n  is n, which is the degree of the centers. Since all the other vertices 
have degree 1, the total deficiency s of the double star is 



Let H  be a uniformity graph of S n n ,  where m  vertices are added to S,,,,, to produce H .  Then 

Since n > 3, 
2 

m >  r2n-4+-1  =2n-3. 

Also, SueVfff) degv = (2" + m)n, which is twice the number of edges of H .  Hence, mn must be 
even. Consequently, if n is odd, we have that m  > 2n - 2. 

We prove by construction that if n > 3 and n is odd, then u(S,,,,,) = 2(n - I ) ,  while if n > 4 
and n is even, then 2n - 3 < u(Snn)  < 2(n - 1 ) .  

Consider the graph G with centers u and v as shown in Figure 6. Join vl to all vertices in 
Ml = { z l , z 2 , .  . . z n - I } ,  and join ul to all vertices in = { z n ,  z n + l , .  . . ,z2,,-2}. (See Figure 7. )  
Now, join all the vertices in M2 to  every vertex in {v2 ,v3 , .  . . , vn-1} and join all vertices in Mi to 
every vertex in {a2 ,  113,. . . ,un-1}. As there are n- 1 vertices in each of Mi and M2 and n-2 vertices 
in each of {u2,  113,. . . , un-1} and { V ~ , V ~ , .  . . , v n - I } ,  the degrees of the vertices in {u2,u3,. . . , un-1} 
and {v2,v3,. . . , vn-l}  are now n. But, each vertex in Mi U M; has degree n - 1. To increase the 
degrees of the vertices in Mi U M2 to n, we join zi to zi+,,-l ( 1  $ i $ n-  1). Let H' be the graph 
just constructed. We claim that this G is uniformly embedded in H i.  To prove our claim, we must 
show that for each vertex zj (1 < i < 2n - 2)  of H', there is an induced subgraph of H' isomorphic 
to Snn that contains xi. Any vertex zi E Mi belongs to the subgraph induced by MI U Vl U {u ,  v } ,  
while each vertex zi 6 My belongs to the subgraph induced by M2 U UI U {u ,  v } .  In both cases, the 
subgraph is isomorphic to S n n .  Thus, Snn  is uniformly embedded in H i.  

Figure 7 .  Constructing a uniformity graph for Snn,  

The reader might well find it interesting to investigate the problems of finding u(Sm,,,) and 
U(Sm,,,) for m  # n. 

From the proof of Konig's theorem described at the beginning of this article, it follows that 
the number of vertices added to a graph G of order p to  make it r-regular is (2" - l )p ,  where 
n = r - A(G).  So (2" - l )p  is an upper bound for ur(G).  Also, since the resulting graph from 
E r d k  and Kelly's theorem is r-regular, the number m  of vertices added to obtain its graph is a 
lower bound for ur(G).  Therefore, 

The number ur(G) may lie strictly between these two bounds, as we next show. 

Consider the graph G of Figure 8. Observe that G has order 13, namely, ten vertices of degree 
3 and three vertices of degree 2. Further, G contains one 3-cycle, all three vertices of which have 
degree 3. Also, G has three 5-cycles, no two of which share more than two edges. 

Figure 8. A graph whose uniformity number is obtained 
neither by Konig's nor by Erdos and Kelly's formula. 

It is clear that we need add only one vertex to G and join it to the three vertices of degree 2 
in G to produce a 3-regular graph containing G as an induced subgraph. Indeed, the graph F so 
produced is unique and is shown in Figure 8. Thus the number m  in (1) has the value 1 for this 
graph G while (2" - l ) p  = 13. We show, however, that G is not uniformly embedded in F. Observe 
that F has one 3-cycle and four 5-cycles (the 5-cycle v* ,  u, a, c, w, v* is added). Also, two 5-cycles 
of F have three common edges. 

If G were uniformly embedded in F, then the deletion of some vertex of F different from v* 
must produce a graph isomorphic to G .  Because G contains a 3-cycle, none of r ,s ,  or t can be 
deleted. Because every vertex of the 3-cycle in G has degree 3, none of v , z ,  or z can be deleted. 
Because G has three 5-cycles, none of u, a, c, or w can be deleted. Because G does not contain two 
5-cycles sharing exactly three edges, none of b ,  d,  or y can be deleted. Therefore, G is not uniformly 
embedded in F and so u(G) 2 3. 

On the other hand, G is clearly uniformly embedded in the graph H, so that u(G) = 3. 

3. Uniformity Sequences of Graphs  We have seen that for a given graph G and an integer 
r > A(G),  the r-uniformity number ur(G) always exists. This then suggests a sequence associated 
with G. Let G be a graph with A(<?) = d. Then the uniformity sequence s(G) of G is the sequence 
S I , S ~ , S ~ , .  . ,, where sk = u ~ + ~ - ~ ( G )  for k = 1,2 ,3 , .  . .. We write s(G) = { s l ,  s2,s3, . . .]. It follows 
from Theorem 1 that for a fixed positive integer p, the uniformity sequence s (Kn)  = {O, 1.2.. . .}. 
Indeed, we can say more. 

Theorem 5. The sequence 0 ,1 ,2 , .  . . is the uniformity sequence of a graph G if and only if G = K; 



for some positive integer p. 

Proof: We have already seen from Theorem 1 that s(Kp) : 0,1,2, .  . .. Next assume G is agraph with 
uniformity sequence 0,1,2,. . .. Suppose that G has order p and A(G) = d. Then s l  = u d G )  = 0, 
which implies that G is d- regular. Since s; = ud+l(G) = 1, it is possible to add one new vertex v 
to G and d +  1 new edges (all incident with v ) ,  so, that the resulting graph is (d+  1)-regular. This, 
however, implies that p = d + 1 and that G 2 Kp.m 

The proof of the preceding theorem actually provides a somewhat stronger result. 

Corollary 6. A sequence s is the uniformity sequence of a complete graph if and only if the second 
term is 1. 

We now consider uniformity sequences of other specific graphs. The following concept and 
theorem will be useful to us. The complement G of a graph G is tbat graph with V(G) = V(G) such 
that uv is an edge of E if and only if uv is not an edge of G. 

Theorem 7. If a graph G is uniformly embedded in a graph H ,  then G is uniformly embedded 
in H.  

Proof: Suppose that G is uniformly embedded in H ,  and let v ? V(H). Then thereexists U C V(H) 
with v E U such tbat the subgraph induced by U in H is isomorphic to G. However, the subgraph 
induced by U in is isomorphic to G, so there exists an induced subgraph of containing v that 
is isomorphic to G.m 

From Theorem 7, we have an immediate corollary. 

Corollary 8. Let G be a graph with A(G) = d and A(??) = d. Then, for every nonnegative 
integer k, 

Ud+k(G) = Ud+k(G), 

From Theorem 7, we know that z3 is uniformly embedded in every graph belonging to u(Kl3) 
for all r > 3. We can see that a graph belonging to u r ( Z 3 )  must have a 3-cycle in addition to a 
vertex not adjacent to any vertex of the 3-cycle. We can also see that a 2-regular graph G belonging 
to Ur(J?1,3) will be a graph of smallest order for which G has the largest possible degree such that 
I<13 is uniformly embedded in G. Therefore, ?? belongs to U(K13). The graphs H1,H2, and H3 
whose complements are given in Figure 9 correspond to the first three terms of ~(K1,3). By following 
the general pattern set in Figure 9, we have that s(Kl.3) = {2,3,4,. . .]. 

We now determine the uniformity sequence of all stars. I t  is useful to state the following result. 

(See [I], for example.) 

Theorem A. Let r and n be integers with 0 < r < p. There exists an r-regular graph of order p if 
and only if rp  is even. 

Theorem 9. Let r and n he integers with r > n > 2. Then 
- - 

if n is even or r is odd 
ur(*lpn) = { - 1 otherwise. 

Proof: Since the star K i n  contains vertices of degree 1, at  least r - 1 vertices must be added to 
produce an r-regular graph containing as an induced subgraph. Thus, ur(K1,,,) > r - 1. If 
ur(Ki,,) = r - 1, then there exists an r-regulai graph of order (n + 1) + ( r  - 1) = n + r containing 
Kin as an induced subgraph. If n is even and r is odd, then no such graph exists (by Theorem A), 
in which case ur(Kin) 2 r. 

Suppose that it is not the case that n is even and r is odd. We show that there exists an r- 
regular graph of order n + r containing K i n  as an induced subgraph. Let Vl and V2 be two disjoint 
sets of vertices, where \Vi\ = r and = n. On the set fi, we construct an (r  - n)-regular graph 
(of order r). By Theorem A, such a graph exists. We then join every vertex of Vl to each vertex of 
V;, producing a graph G. The graph G is r-regular of order r + m. If v E Vl, then the subgraph 
induced by {v} U V2 is K1,,, . Thus, is uniformly embedded in G. 

Suppose n is even and r is odd so that r > n + 1. Then we let V1 and V2 be disjoint sets of 
vertices with \Vi\ = r and \Vi\ = n+ 1. We construct an (r  - n - 1)-regular graph on K, which can 
be done by Theorem A. Let H be the graph produced by joining every vertex of Vl to each vertex 
of Vi. Then H is an r-regular graph of order r + n + 1. If v E Vl and x E V;, then each subgraph 
of H induced by {v} U (V; - {x}) is Kin. Therefore, K I n  is uniformly embedded in H. = 

Corollary 10. If n > 3 is an odd integer, then S ( I < ~ , ~ )  = {n - 1,n  - 2,n - 3,. . .}; while if n > 2 is 
an even integer, then s(A1,,,) = {n - 1, n + 1, n + 1, n + 3, n + 3,. . .}. 

We next investigate the uniformity sequence of C4. For the purpose of doing this, we present a 
formula for ur(C4). 

Theorem 11. For r > 2, 
if r is odd 

~ r ( ~ 4 )  = {L 1 if r is even. 

Proof: We consider two cases. 

Case 1. Assume r > 3 is odd. Every graph in U(C4) is r-regular and is 1-regular; so the order 
of every graph in U(C4) is at  least r + 2. Therefore, ur(C4) > r - 2. However, for r odd, every r- 
regular graph has even order, so ur(C4) 2 r - 1. If u,.(C4) = r - 1, then every graph in U4G)) i s  2- 
regular. Now is uniformly embedded in Cn for n > 6. Thus, C4 is uniformly embedded in Cr+3, 
which implies that ur(C4) = r - 1. 

Case 2. Assume r > 2 is even. As in Case 1, we know u,(C4) > r - 2. However, Â£ is uniformly 
embedded in all 1-regular graphs of order at least 4. So, is uniformly embedded in cr+2, and 
ur(C^ = r - 2. n 

The following corollary is now immediate. 

Corollary 12. s(C4) = {0,2,2,4,4,6,6,. . .}. 
With the aid of the preceding two results, we can now establish the following: 

Theorem 13. For every positive integer n, there exists a graph G and an integer r for which there" 
are at  least n r-uniformity graphs. 



Proof: The result is certainly true if n = 1, so we may assume that n > 2. Let G Â C4 and let 
r = 2n+ 1. By Theorem 11, u,(C4) = r - 1. Observe that is uniformly embedded in every graph 
in the set 

S =  { C n l J C q 1 p + q = r + 3 ,  3<:p$(r+3)/2},  

which is a subset of U,.(G). Therefore, 

completing the proof." 

From the definition of uniformity sequences, it may seem that such a sequence is nondecreasing. 
However, that is not always the case. 

For example, it can be shown that the first ten terms of the uniformity sequence of C5 are 
0,3,5,5,5,7,9,9,11,10. 

We have seen that two nonisomorphic graphs may have the same uniformity sequence. For 
example, for every integer n > 2, ~(II',,) = {O, 1,2, .  . .}. However, of course, for n # m, the 
complete graphs of I(,, and Km have distinct orders. Even if two nonisomorphic graphs have the 
same order, though, this does not imply that their uniformity sequence must be different. Of course, 
by Corollary 8, complementary graphs have the same uniformity sequence. However, the graphs G 
and H of Figure 10 are nonisomorphic, noncomplementary, and have order 4, yet s(G) = s ( H )  = 

Figure 10. Graphs with the same uniformity sequence. 
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INTRODUCTION 

The more progress physical sciences make, the more they tend to enter the domain of mathemat- 
ics, which is a kmd of centre to which they all converge. We may even judge the degree of perfection 
to which a science has arrived by the facility with which it may be submitted t o  calculation.' Adolphe 
Quetelet, 1796-1874 

Chemical calculations that predict structures, energetics, and other properties of experimentally 
known or unknown molecules provide a fundamental resource for chemical research today. The basis 
of these calculations lies in an area of theoretical chemistry called molecular quantum mechanics. 
This is a science that relates molecular properties to the motion and interaction of electrons and 
nuclei. Since the chemical properties of atoms and molecules are determined by their electronic 
structure, it is necessary to understand the nature of the motions and energies of the electrons and 
nuclei. 

This, in turn, requires understanding the highly mathematical formulations that predict molec- 
ular structure and properties, and thermodynamic and reaction processes. This paper discusses the 
numerical techniques used to calculate reaction paths; paths which lead from reactant to product 
species in reaction processes. 

BACKGROUND 

Soon after the formulation of molecular quantum mechanics in 1925: it was determined that 
solving the Schrodinger differential equation lead to direct quantitative predictions of chemical phe- 
nomena from first principles. This ab initio method provided a theoretical approach to chemistry 
independent of laboratory experimentation. 

A key computational problem in solving the molecular Schrodinger equation is the solution of 
the real symmetric eigensystem, known as the Hartree-Fock equations: 

Here, F is a given n x n real symmetric matrix, and (A,, <ti) is one of n eigenvalue/eigenvector pairs 
to be determined. In a given molecule, the energy of the system is dependent on both the geometry 
of the molecule and the placement of the electrons in orbitals around the atoms in the molecule. 
These energy contributions are expressed in the kinetic and potential energy terms of the n x n F 
matrix, the Fock matrix. The eigenvalues, A,, represent energy levels of the molecular orbitals, il>,. 
These molecular orbitals are represented as linear combinations of basis functions or, in chemical 
terms, atomic orbitals (i.e., s orbitals, p orbitals, etc.). 

The matrix dimension n (i.e., the number of basis functions in the computation) varies with 
the number of electrons in the molecule and the desired accuracy of the molecular orbital function 
representation. Values of n on the order of a few hundred are easily reached for even moderately sized 
molecular systems. The individual matrix elements, which represent electron-electron interactions, 
involve the evaluation of O(n4) integrals, which tends to dominate the 0(n3) floating point operations 
required for solution of the eigensystem. 

J> 

An iterative technique is used to solve the self-consistent field (SCF) computation (1). This 
is because the Fock operator depends on its own eigenfunctions, and the Fock matrix is usually 



constructed from orbitals computed on the previous iteration. Thus, a sequence of eigensystems 
must be solved until convergence (or self-consistency) is attained. Moreover, the SCF computation 
often is the inner iteration in a geometry optimization in which the nuclear coordinates are optimized 
with respect to energy. This means that a single geometry optimization for a molecule with even a 
few heavy atoms may require the solution of hundreds of real symmetric eigensystems. 

These calculations begin with a Cartesianal representation of the molecular system. In a many- 
atom molecule, three coordinates define the location of each atom in space. Of these 3 N  total 
coordinates, 3  translational and 2 (linear molecules) or 3  (non-linear) rotational degrees of freedom 
can be ignored because energy is invariant to these motions in the overall molecule. The remaining 
3N - 6 (or 3N - 5) coordinates define the vibrations of the molecule, i.e., bond stretches and angle 
distortions. 

In a chemical reaction, the key structures are the reactants (molecules present a t  the onset of 
a reaction), the products (molecules resulting from some chemical reaction between the reactant 
species), and the transition state (a high energy complex through which the reactants must traverse 
for the reaction to occur). Mathematically (Figure I), the reactants and products are at the bottom 
of a well on the potential energy surface (PES), having a zero gradient and positive curvature. The 
transition state is located at  a saddle point on the PES. This point has a zero gradient, but in 
contrast to the stationary points (reactants and products), has one imaginary frequency (obtained 
from the diagonalization of the second derivative matrix of energy with respect to coordinates). 
This frequency corresponds to the one and only one downward curvature. Following this frequency, 
from the transition state to either the reactants or the products, provides a preferred path along the 
bottom of the valleys connecting these structures, called the minimum energy path (MEP). 

Reactant region: 

Transition State region: 

Product region: 

The mathematical determination of the MEP requires solving a set of simultaneous differential 
equations. The reaction path is defined in terms of the intrinsic reaction coordinate (IRC)', s, 
which is followed in moving along the MEP from reactants to products. This reaction coordinate 
represents a structural and energetic progression as the system proceeds from reactants to products. 
The following set of IRC equations gives the desired path: 

where ZA, ZB, . . . are the coordinates of atoms A, B, . . .; p is reduced mass of reactants; m ~ , r n ~ ,  . . . 
are the masses of the atoms; f(s ,x)  = -VV/lVVl is defined to be a unit vector in the negative 
direction of the normalized gradient of the potential. 

The complexity of the reaction path problem is due to these multidimensional equations. When 
these equations are integrated, the following equation is obtained: 

Because x(s) is unknown, an interpolating polynomial is used for f (s, z). Various solution methods 
can be obtained by inserting a different interpolating polynomial. Although the resulting methods 
are not new to mathematics, their particular application to quantum chemistry has yet to be fully 
understood and developed. One of the first discussions of reaction path following was presented by 
Fukni4 in 1970. Today, researchers are interested in finding the most efficient methods for following 
the MEP. 

Calculations of chemical reaction structures can help in understanding the kinetics of a reaction. 
An upper bound on the kinetics for the reaction can be calculated from solving the transition 
states, reactant, and product structures. Knowledge of even more points along this path allows 
one to include such effects as reaction path curvature and tunneling effects, both of which improve 
approximation of the predicted reaction kinetics. 

Ab initio prediction of accurate rate constants is limited by the cost of calculating sufficient 
information on a PES. Advancements made in gradient calculations and higher-order derivatives has 
been an important factor in reducing the computational effort5. Another concern is the accuracy 
with which the MEP for the reaction must be calculated to obtain a converged thermal rate constant. 

The methods presented here include both basic one-step and complex methods. All methods 
considered require only single-point energy and first derivative calculations. The complex methods 
are required for chemical reaction paths governed by a stiff set of differential equations because the 
time constants of the variables differ greatly (stiff terms). Applying standard numerical techniques 
to differential equations governing the dynamic behavior of very stiff systems is often difficuk6 
To maintain stability, the step size must be extremely small in these systems since the small time 
constants decay rapidly. For example, the IRC equations for a reaction in which the frequency of 
one internal coordinate is diminishing rapidly while another is increasing very slowly as a function 
of reaction time s. Most standard numerical techniques have poor round-off characteristics when 
applied to stiff systems because round-off errors tend to cover up the decay of the solution. 

METHODS 

Because the gradient at the saddle point is zero, the IRC is initiated by a small displacement 
in the direction of the imaginary normal mode. Within the harmonic approximation, the energy 
lowering, AÂ£ for a given step, h ,  is approximately 

Figure I. 



where A E  represents the desired energy change to take the first step away from the transition state 
structure; k is the negative force constant from the magnitude of the imaginary frequency; and h is 
the resultant step size. 

Along the MEP, it is assured that the slope will not become infinite because the occurrence of an 
infinite derivative at a particular point implies multiple energies for that geometric structure, which 
is not possible. In fact, any drastic changes in energy for infinitesimal changes in the geometry are not 
seen, as such energy changes could result in surface hopping from the given potential energy surface 
to another higher energy excited surface. It is generally the case that the chemical surfaces are 
smooth, as long as the level of theory is high enough. The supposition that the Lipschitz condition 
is satisfied for the steps taken along the PES (which is a necessary condition for the application of 
these methods) appears valid.^ 

ONESTEP METHODS 

In one-step methods8 (Table I, opposite), approximating a new IRC point, zi+i, involves infor- 
mation from only one of the previous points, xi. Although these methods use function evaluation 
information a t  points between xi and zi+, , they do not retain that information for approximating 
new points along the IRC. 

All the information these methods use is obtained within the interval over which the solution 
is approximated. Euler methods are the most simplistic methods to solve Initial Value Problems 
(IVPs). Euler methods involve computing a discrete set of solutions knowing only the derivative at  
the previous point. 

While it has been demonstrated9 that Euler methods are qualitatively accurate in predicting 
the MEP for simple reactions process, in applications which require quantitatively accurate MEP's 
(e.g., prediction of reaction dynamics), results from Euler methods may not be sufficient. It is 
possible that more sophisticated, higher-order techniques will permit a larger step size to balance 
the greater amount of computer time required for complex methods. The Runge-Kutta methods 
have been applied to such cases. 

The Runge-Kutta methods were developed to  avoid the computation of higher-order derivatives 
required by methods such as Taylor methodsn Instead of the higher-order derivatives, extra function 
values are used to duplicate the accuracy of the Taylor methods. The major computational effort 
in Runge-Kutta methods is the evaluation of the function dx/ds = y' = g(s,x). In the second 
(fourth) order methods, the local truncation error is the square (quartic) of the step size, h, i.e., 
0 (h 2)  (O(h4)), while the cost is two (four) function evaluations per step. Thus, there is a tradeoff 
between number of function values and step size in using higher order methods over lower order 
methods. In addition, it has been pointed outlOO~lOb that Runge-Kutta methods of order higher that 
4 may not be valid for systems of equations, although this fact has shown to be controversial based 
on the literature. For this particular application, we have tested these methods and have shown that 
the Runge-Kutta methods of order 2 give unconverged reaction path properties, as do methods of 
order greater than 4.1Â° 

The following paragraphs identify each one-step method that was considered. Details of any of 
these one-step methods, including derivations, can be found in standard numerical analysis texts? 

Traditional Euler  Single Step: 

V(xn) is the unit vector in a direction opposite to the gradient of the potential at  the point z,,, and 
6s is the size of the step taken along this vector. This method is a standard to compare with all other 
techniques because it converges to a unique solution in the limit of small step size. This method 
works for systems with stable gradients. However, for a fixed-step size (as far as computational time 
costs), the path generated will not be completely accurate. 

TABLE I 

One S t e ~  lWb~& 
Traditional Euler Method (FAPO) 
Euler Method With Reaction Path Stabilization (ES2) 
Backward Euler Method (BEM) 
Trapezoidal Method (TRAP) 
Runge-Kutta of Order 2 (RK2) 
Runge-Kutta of Order 4 (RK4) 
General Equation: 

y(n+i) = Y(n) + wiki 

k, = h* f (xn + cih, yo + aijkj) i = I , v  ; ci=O 

No** 

Multisteo Metho . 
Quadratic Fixed Step Adams Predictor (QFAP) 
Fixed-Stride Adams-Bashforth Method of Order 2 (FAB2) 
Adapted-Stride Adams-Moulton Predictor-Corrector 

Method of Order 3 (AMPC3) 
Method of Order 4 (AMPC4) 

General Equation: 

y(n+i) = a i y n  + ash-1 +...+ akyn+i-k + h [ boin+i + biy'n +.-.+ bky'n+i-k] 

CPU Time" Met hod 

Traditional Euler 

ES2 

BEM 

TRAP 

RK2 

explicit: use the previous k known points and gradients 
implicit: use the previous k known points and gradients plus the predicted 

y(n+i) point. 

Error Term* 

0.3 

1 

3.7 

1.5 

0.7 

0(h**2) 

O(h"2) 
0(h**2) 

0(h**3) 

O(h-3) 

A .. method i s  convent~onally called nth order if its error term is O(hn+l)  
Ratio of CPU lime of the given method to that of ES2 with step size 0.5ao 

61 

84 

271 

61 

6 1 

*** Number of steps required to walk from 0 to -3.02ao along the MEP for ; 
the reaction: CH3 + H2 --> CH4 + H. 



Euler  M e t h o d  W i t h  Reaction P a t h  Stabilization (ES2): 

To correct for the implicit reaction path deviation in the Euler method, the minimum energy 
point along a perpendicular bisector of successive gradients is sought. This is a better estimate of 
the new point along the path. The first step x L l  is obtained in the usual fashion with the Euler 
method. The bisector vector is then defined as follows: 

The corrector step along the bisector can either be obtained iteratively, based on a small fixed 
step, or can be determined by a parabolic fit, based on the potential along the bisector and a finite 
difference approximation of the derivative.ll 

If, however, the point generated is already on the minimum energy path, this correction step can 
introduce large errors. Careful analysis has shown stabilization should only be implemented when 
the angle between the two gradient vectors is less than 176'. This particular method allows larger 
steps than does the traditional Euler method, thus, significantly reduces the computation time by 
requiring fewer gradient calculations. 

Runge-Kut ta  Order  2 (RK2): 

There are many Runge-Kutta methods of order 2, including the midpoint method, Heun's 
method, and the modified Euler's method. Each of these methods was tested in our application, 
although only the midpoint method will he discussed here. The local error in these methods do not 
exceed the order of the Taylor method of order two. 

The kj's in the Runge-Kutta Methods represent intermediate points between the last known point 
and the one being predicted. These intermediate points are not saved after the desired point has 
been obtained. 

Runge-Kutta O r d e r  4 (RK4): 

The Runge-Kutta method of order 4 can he derived using Simpson's rule for numerical integra- 
tion and Euler approximations of gradients. As was true for the order 2 method, this method avoids 
calculation of higher derivatives. 

Both fixed step size and variable step size RK2 and RK4 methods can be used. The variable step 
method predicts the next step size hased on percentage of geometrical change.12 

MULTISTEP METHODS 

Multistep methods require approximating more than one previous point along the IRC to de- 
termine the new point approximation. The Adams-Bashforth techniques are explicit methods; that 
is, they determine the next point explicitly in terms of previous points along the IRC. The Adams- 
Moulton techniques are implicit methods because the new point is determined using the value of 

the new point and previous points. The two techniques typically are used together and collec- 
tively in predictor-corrector methods. These involve the Bashforth formula to predict the first or 
the next point, followed by the Moulton formula for improvements. Although these methods are 
complex, they estimate error from successive approximations to each xk value. The procedure uses 
an (n - 1)-step implicit Adams-Moulton method to improve an approximation from an nth step 
Adarns-Bashforth method. Both of these methods have local truncation error of order O(hn). - 

Adams-Moulton methods have been observed8 to give considerably better results thafl the 
Adams-Bashforth method of the same order. This is partially explained by comparing an m-step 
Adams-Bashforth explicit method with an (m - 1)-step Adams-Moulton implicit method. Both 
require m evaluations of the function per step, and both have local truncation errors proportional 
to hm. In general, the coefficients of the terms involving the function and the local truncation error 
are smaller for the Adams-Moulton methods. This leads to greater stability for the implicit methods 
and smaller rounding error. However, the implicit methods have the inherent weakness of having to 
first convert to an explicit representation for xn+l, which can be difficult algebraically. 

Thus, the best compromise is the explicit methods for predicting a new point, followed by 
refining of this prediction by using the Adams-Moulton method. 

The Adams-Moulton methods involve stride adaptation. Two approximations (one from the 
predictor and one from the corrector) are available for each MEP point, and comparison of these 
allows one to estimate the uncertainty in the step. The difference in these two approximations 
(the error approximation) is then used to adapt the stride. This stride adaptation controls the 
local truncation error, and as a consequence, the global error, as one proceeds along the path. It 
allows one to specify a larger nominal stride and still retain accuracy in regions that are difficult to 
integrate. 

Both advantages and disadvantages of multistep methods are pronounced as the order is in- 
creased. A higher order gives a smaller error term and a more efficient algorithm, while it requires 
more storage and special provisions for starting the integrator. Order four multistep methods appear 
to be the most useful compromise. 

The general equation for any predictor or corrector equation is: 

When b0 = 0, the method is called an explicit or open method and this equation gives xn+l explicitly 
in terms of previously determined values. When bo does not equal zero, the method is called an 
implicit or closed method, since xn+l occurs on both sides of the equation and is determined only 
in an implicit manner. The following paragraphs briefly define the multistep methods considered 
in this work. As with the one-step methods, details of any of these multistep methods, including 
derivations, can be found in standard numerical analysis texts.8 

Adapted-Stride Adams-Moulton Predictor-Corrector  M e t h o d  of O r d e r  3 (AMPC3):  

Including a non-zero bo term in the linear k-step difference equation results in a recursive 
method that successively approximates a given point with the inclusion of the slope at  that point. 
Corrections made on the step size give a tighter control on the truncation errors, and, therefore, also 
on the accumulated errors. The following are the predictor and corrector equations: 
Predictor: 

Corrector: 



The initiation of this method is based on one-step methods in the following way: 

xo = transition state point (known). 

x l  = first step taken away from the saddle point (based on AÂ£) 

xz = second step (use Euler method on points zo and xi). 

x2+, = subsequent points obtained using AMPC3 acting on the most recent three points known 
along the MEP. 

Other methods to generate the starting values for this method can be employed; however, this 
method appears the most efficient. It should be noted also that, whenever the step size is changed, 
the method must be restarted using the one-step procedure. 

Adapted-Stride Adams-Moulton Predictor-Corrector M e t h o d  of O r d e r  4 (AMPC4) :  

Similarly, one can arrive at the fourth order method with these equations: 
Predictor: 

Corrector: 

The same stride correction is used as with the AMPC3 method, p = 4. 

DISCUSSION 

Comparison of the methods is based on the number of function evaluations for a particular 
method; the CPU time required to calculate the particular IRC; and the accuracy of the method. 
From these criteria, it is clear that no one class of methods is better than all the others. The choice 
depends on the particular reaction system to which the methods are applied. One can, however, 
assess the behavior of methods within each class and extract guidelines on which method to use for 
a particular problem. 

In general, one should first try the simple one-step ES2 method for applications that involve 
qualitative information about the reaction path (for example, verification that a particular transition 
state leads to  an indicated set of reactants and products). The Euler method and its ES2 extension 
are the most commonly used methods for solving the MEP equations. Provided the step size is 
small enough and the chemical reaction not stiff, sufficient accuracy can be obtained.13 However, 
very small step size will in turn demand considerable CPU time investment. 

The ES2 method should also be used for other more quantitative applications, ones in which 
the reaction system is known to be stable. This is true especially if the reaction involves many 
atoms. If one knows in advance that a particular reaction involves internal coordinates with widely 
varying time constants, then a stiff method should be used. If results require a particularly small 
error tolerance, one should try the multistep methods. 

Comparing RK2 and RK4, the higher order method is recommended because of more accurate 
prediction of reaction path properties. Results obtained in this work clearly show instability in 
the RK2 methods. In particular, discontinuous functions of structural and energetic properties are 
obtained. 

The Ad-Moulton predictor-corrector methods are multistep formulas for computation.8 Re- 
sults indicate these methods are reliable in predicting a converged reaction path with reasonable 
computer time. In general, Adams-Moulton type methods give results comparable to both the 
traditional Euler method, with very small step size, as well as the stiff methods, RK4. However, 
not every type of multistep method is appropriate for any given type of problem. The intervals 

of integration may be so short that the multistep methods have little chance to demonstrate their 
advantage over the Runge-Kutta methods. 

Overall, for complex reactions, it is best to choose the variable step RK4 method, even though 
this method uses more computer time, because RK4 competes with both the one-step ES2 method 
and the Ad-Moulton methods in convergence properties. Mathematically, various second deriva- 
tive approximation techniques include the effects of curvature with the expectation of bettercon- 
vergence properties. However, the calculation of the gradient takes up to three times as long as  the 
calculation of a single point energy. Calculation of the Hessian (second derivative matrix) takes up 
to ten times that of the single point energy. Perhaps a compromise, such as the calculation of a 
second derivative at every n points, and at that point taking a more sophisticated step would be 
feasible. These modifications are currently being investigated. 
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A NOTE CONCERNING FARE FUNCTIONS 

J .  N. Boyd and P. N.  Raychowdhury 
Virginia Commonwealth University 

INTRODUCTION. Recently [I], we presented a bit of mathematics in a story-like setting. We 
defined a function f  on a one-dimensional, ordered array of points, z(O), z ( l ) ,  x(2) ,  . . . , x(n) ,  by 
means of the recursion relation 

with f (x (0 ) )  = f (x (n ) )  = 0  and i = l , 2 , 3 , .  . . , n  - 1.  For reasons growing out of the scenario, we 
called the functions "fare functions." Even more recently [2],  we generalized the fare functions to 
higher dimensional arrays, giving the extended functions the somewhat imposing name "complete 
fare functions." 

Then, not being content to give our functions their well deserved rest, we wondered what would 
happen if, rather than adding a constant, we subtracted it from the average of f  on x( i  - 1) and 
x(i + 1)  as given in the recursion relation. With the new defining equation 

f W )  = f ( 4  - I ) +  f ( + +  1 ) )  - 
2  ( 1 )  

we proceeded to investigate the functions obtained by subtracting the positive constant C ,  To our 
pleasure, we found them to have at  least one natural application. 

THE FUNCTIONS. To fix the geometry in out minds, let us imagine n+ 1  points z ( i )  on a coordinate 
axis so that the coordinate of x( i )  is simply i  for i  = 0 , 1 , 2 , .  . . , n .  

Figure 1. The points on a Coordinate Line. 

Following the same sort of reasoning as given in our first reference, we made the guess that 

where k is any real constant, would satisfy Equation ( 1 )  for i  = 1 , 2 , 3 , .  . . , n  - 1. The guess turned 
out to be correct, as the reader can verify if so  desired. Letting i = 0  or n  yields the boundary 
condition that f ( z ( 0 ) )  = f ( x ( n ) )  = k .  If we suppose that we have a second function g( z ( i ) )  also 
satisfying ( 1 )  with g(x(0))  = g ( z ( n ) )  = k for the same constant k, then the difference function f  - g  
is harmonic with value zero on the boundary of its domain. Therefore, f ( x ( i ) )  - g(x( i ) )  = 0  for 
every i in its domain, and we may conclude that f is the unique function satisfying Equation ( 1 )  for 
any given k. 

The functions are symmetric with respect to i  = n / 2 ,  whether or not n  is even. An interesting 
choice of k is C n 2 / 4  so that f, with i extended to the odd half integers if necessary, is zero at the 
median of z(O), x ( l ) ,  z ( 2 ) ,  . . . , x(n) .  If the z(i)'s are equally spaced on their coordinate line, then 
z ( n / 2 )  is the midpoint of the segment with endpoints z ( 0 )  and z ( n ) .  

AN APPLICATION. Our application is probably misnamed as such. It is simply an observation 
that something happens in the "real world" that mirrors (or is mirrored by) the behavior of our 
functions. As others have done who think of themselves as mathematicians first rather than physicists 
or engineers, we went to the "real world" to seek a problem to  which our functions would give a 
solution. 

We tried to associate with our discrete linear array some process through which we could imagine 
a cost a t  each point such that the cost would increase with the distance of the point from its nearest- 
boundary point. One idea was that of stockpiling supplies at  n  + 1  points along a highway. We 
assumed that supplies could be assembled with equal ease at  either terminus of the highway. Then 
it would certainly be more costly to  carry one unit of supplies to  a point farther from an endpoint 
than nearer. Our function would describe the quantity of supplies to be deposited at the i-th point. 
However, the "story line" soon became too artificial to hold anyone's interest for long. 

Next we asked, "Why not build a bridge to be supported at n  + 1 equally spaced locations?" 
Would not the supporting structures farther from the banks of the stream be more difficult to put 
in place than those which were closer? At first we were thinking of constructing equally spaced 
buttresses across a stream with the most massive at the banks on either side. Our function might 
describe the weight of the i-th buttress. Again, we seemed to be developing a scenario too far 
removed from reality. 

Then, rather suddenly, we realized that we were actually describing the central span of a sus- 
pension bridge. After writing down a simple differential equation with tensions and tangents, it is 
quite straightforward to show that a light, taut cable bearing a very heavy, horizontally uniform load 
(such as a roadway) takes the form of a parabolic arc.[3] The cables of a real suspension bridge in 
which the roadway hangs from many, equally spaced strands closely approximate arcs of parabolas. 

Thus, we arrived at  our application. The functions describe the lengths of the n  + 1  strands 
linking the roadway to a supporting cable in a suspension bridge. The scenario becomes "natural" 
if one feels that the first try a t  functions to model spatially distributed physical quantities ought to 
be "as close to" harmonic as possible. If C were taken to be zero, Equation ( 1 )  would become the 
defining relation for a discrete harmonic function.[4] 

AN EXAMPLE. Assume that n  is a very large even integer. Find C so that the lengths of the first 
and last of the n  + 1  strands are 500 units longer than the middle strand. 

SOLUTION. Let k = C n 2 / 4  = 500. Then C = 2000/n2, 
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ON QUOTIENT STRUCTURES OF Zn 

Joseph A. Gallian, University of Minnesota, Duluth 
Robert S. Johnson, Washington and Lee University 

Shiaoling Peng, University of Minnesota, Duluth 

Cyclic groups, direct products, quotient (factor) groups, group generators, and isomorphisms 
are fundamental concepts in an undergraduate abstract algebra course. Moreover, the group of 
lattice points in Euclidean n-space arises in many contexts. This note was prompted by a question 
that involves all of these notions; namely, what is the structure of the group Z f6 Z/ ( (a ,  b))? This 
question naturally leads to related ones such as the structures of the group Zn/ ( (a1 ,  a i ,  . . . ,an)) ,  
the ring Z n / ( ( a ~ , a 2 , .  .. ,an)) ,  the group Q Q Q / ( ( a ,  b)) ,  the group R f6 R / ( ( a ,  b)) and the vector 
space R f6 R / ( ( a ,  b)) over R. To make the matter even more encompassing, the analysis invokes a 
bit of linear algebra as well. 

I t  is our opinion that specific instances of these questions are useful as classroom examples, 
exercises, and exam problems as they challenge students to synthesize many important concepts 
(see [ I ,  pp. 154,1581 and [2,p. 1541). 

We proceed with the answer to our first question. 

Theorem 1. Z <S Z / ( ( a ,  b)) Z  Q Z,cd(O,b) 

Proof. To simplify the notation, we let G = Z f6 Z ,  H = ( ( a ,  6))  and d = gcd(a,  6). First we 
observe that G / H  is infinite. For if a # b, then (1 ,  l ] +  H has infinite order, while if a = b, (1,O) + H 
has infinite order. 

Next, write a = a'd, b  = b'd, and 1 = a's + b't. We claim that G / H  is generated by ( t ,  -s)  + H 
and (a' ,  6') + H .  To verify the claim, let (m, n) + H be an arbitrary element of G / H  and observe 
that because 1 = a's + b't is the determinant of the linear system 

t x +  a'y = m 
(- s)  + b'y = n 

there are integers z  and y so that 

( m , n ) +  H = ( t ~ + a ' ~ , - s z +  b ty )+H 

= x ( t , - s )  + H + y(a',b')+ H 

= x ( ( t ,  -s) + H )  + y ( (a ' ,  b') + H )  . 
This establishes the claim. 

Next, note that d ((a' ,  b')  + H )  = ( a ,  b) + H = H so that ((a', b') + H )  is isomorphic to Zd. 
Moreover, since G / H  is infinite, it follows that ( ( t ,  -s) + H )  must have infinite order and therefore 
is isomorphic to Z .  We complete the proof by noting that (( t ,  - s )  + H )  f l  ((a' ,  b')+ H )  is the identity 
(since every element of the subgroup on the right has finite order while every nonidentity element , 
in the subgroup on the left has infinite order. 

Since Zl  is the trivial group, we have the following corollary. 

Corollary 1. Z f6 Z / ( ( a ,  b)) is cyclic if and only if gcd ( a ,  b) = 1. 

In an Abelian group the subgroup comprised of the elements of finite order is called the torsion 
subgraup. As another corollary of Theorem 1, we have the structure of the torsion subgroup of 
Z QZ/{(a, k)}. 

Corollary 2. The torsion subgroup of Z f6 Z / ( ( a ,  b)) is isomorphic to Zgcd(=,b). 

The structure of Z f6 Z / ( ( a ,  b)) as well as generators of the finite and infinite direct factors can 
be readily determined geometrically as follows. In the real plane, let L(a,  b) be the line segment 
from (0,O) to ( a ,  b)  with (0,O) deleted. Then Z f6 Z / ( ( a ,  b))  is cyclic if and only if ( a ,  b)  is the only 
lattice point on L(a ,  b); the order of the finite direct factor is the number of lattice points on L(a ,  6); 
a coset representative of a generator of the finite direct factor is the lattice point on L(a,  b) nearest 
to (0,O); a coset representative of a generator of the infinite direct factor is the lattice point col&st- 
to L(a ,  b) and nearest to  (0,O). 

To illustrate, we consider Z @ Z/((8 ,12)) .  From the figure below, we see that the group is not 
cyclic; the order of the finite direct factor is 4; a generator of the finite direct factor is (23 )+( (8 ,12 ) ) ;  
and a generator of the infinite direct factor is ( I , ! )  + ((8,12)).  

Continuing with the notation introduced in the proof of Theorem 1, letting T denote the torsion 
subgroup of G / H  (i.e., the subgroup isomorphic to Zgcd{nb)) ,  and L the line in the real plane joining 
(0,O) and (a ,  b),  we can also give a description of the cosets of T in G / H .  For k > 0 ,  the elements 
of k ( t ,  -s )  + T are the lattice points in the plane that are above L and a distance of k/̂ /a'2- 
from L; for k < 0 ,  the elements of k ( t ,  - s )  + T are the lattice points in the plane that are below L 
and a distance of ) k l / \ / a ' 2  form L.  



Theorem 1 and its corollaries have natural extensions to higher dimensions. The proof of the 
general case is analogous to the n = 2 case and entails a (non-routine) induction argument to prove 
the existence of the generators. 

Theorem 2. Zn/((al, a*, . . . ,an)) Ã zn-l @ Zacd(a,,a2, ..., a,.). 

Corollary 1. Zn/((al , a2, . . . ,an)) is torsion-free if and only if gcd (a1,a2,. . . , an) = 1. 

Corollary 2. The torsion subgroup of Zn/((al, a;, . . . ,an)) is isomorphic to Z,c,+(o,,aa,. , o n ) -  

For Z @ Z @ Z/((a, b, c)), we may obtain explicit generators by putting 

d = gcd (a, b, c), a = a'd, b = b'd, c = c'd; 
d' = gcd (b', c'), b' = bid', c' = cid'; 

a'z, + dtYl = 1 

b l q  + Clfi = 1. 

The three coset representatives of the generators are: (a', b', c'), (-yl, blzl, CIZI), and (0, -y;, 22). 
Verification is left to the reader. 

In sharp contrast to the simple description of the structure of the factor group Z @ Z/((a, b)), 
a determination of the structure of the corresponding group with Z replaced by the additive group 
of the rational numbers, real numbers, or complex numbers is a bit beyond the scope of an under- 
graduate abstract algebra text. I t  turns out that in all of these cases the factor group is isomorphic 
to the direct product of groups that are isomorphic to the group of rational numbers and the group 
Q/Z. (See Section 5.2 of [3] for details.) 

To round out our discussion we answer three related questions that might naturally occur to 
students. 

1. What is the structure of Zn/((ai,O,. . . ,0)) x ((O,a2,0,. . . ,0)) x .. . x ((0,0,. . . ,an))? 

2. Viewing Zn as a ring and ((a1,a2. . . ,an))  as the principal ideal generated by (al, a;, . . . ,an) ,  
what is the structure of the ring Zn/((al, a;, . . . ,an))? 

3. Viewing Rn as a vector space over R and ((a1, 02,. . . ,an))  as the subspace spanned by 
(al,a;, . . . ,an) ,  what is the structure of the vector space Rn/((a1,a2,. . . ,an))? 

It is straightforward (in fact, good exercises for students) to prove that (yes, you guessed it) 
the answer to Question 1 is the group ZÃˆ @ Znz @ .. @ Zam; the answer to Question 2 is the ring 
Za, @ Za, @ .  . @ Zam; and the answer to Question 3 is the vector space R n l .  
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PRODUCTS OF TRIANGLE TRISECTORS 

Andrew Cusumano 
Great Neck, NY 

- a 

Theorem. In the accompanying arbitrary triangle, the product of the dotted line segments is equal 
to the product of the broken line segments. 

Proof: 



BEAUTIFUL THEOREMS 

Richard L. Francis 
Southeast Missouri State Universitg 

A concise theorem or formula which relates ALL of the "basic" elements in some context seems 
somewhat of a rarity, mathematically speaking. Well known in such an extraordinary category is 
the Euler formula 

e i  + 1 = 0. 

It is noteworthy that this formula contains five of the most crucial constants from the study of 
numbers, namely, 0, 1, e,  ir, and i. Also included is the most basic of operation symbols (+) as 
well as the most fundamental of relation symbols (=). Such a less-than-obvious theorem will be 
considered BEAUTIFUL as a consequence, not only of its importance , but also of its concise and 
highly inclusive nature. Other beautiful theorems appear on the mathematical landscape. Some 
are fairly well known. A remarkable result, one of the geometer's favorites, seems quite fitting in 
this overall category. Though not so well known, it involves various lengths and concerns triangles 
in particular. Somehow its basic components, as now follows, all come together in one impressive 
statement. 

Consider the triangle ABC in which a, b, and c are side measures, s is the semi-perimeter, 
and r and R denote, respectively, the inradius and circumradius. Is it possible to relate all of these 
notables in a single, concise, and easy-to-remember equation? The answer is YES. Use of all six of 
the fundamental symbols is accomplished by the formula 

4rR.s = abc. 

It provides still another look at  a beautiful theorem. This result, likely known in varying forms in 
ancient times, is also associated with the works of Euler. In some accounts, it bears his name. 

4 r R s  = a b c  

Such a beautiful theorem can be established by lengthy and complicated methods. However, 
the novel one below is quite instructive and definitely within the solving range of the secondary 
school or college trigonometry student. Begin by letting the area I< equal i a b s i n c ,  or equivalently, 
4Kc = 2abcsin C. By writing this result as a proportion, it follows that 

c abc -- - 
2sinC - 4K. 

1 The circumradius is given by R = &, meaning that 

abc R = -  
4I<" 

But I< = rs ,  in which case 
abc 

R = - or 4rR.s = abc. 
4rs 

Since 4s is twice the perimeter, the formula may be expressed in the alternate but highly impressive 
form 

abc - = 2rR. 
a + b + c  

Other beautiful theorems come to mind. Some are more advanced, such as the Law of Quadratic 
Reciprocity (which was conjectured but not proved by Euler). Others are fairly close a t  hand. Note, 
for example, the concise relationship 

or the formula for triangles given by 

tanA + tan B + t a n C  = (tanA)(tanB)(tanC), 

or the famous Eulerian formula relating the number of faces, vertices, and edges of a polyhedron, 
namely, 

F + V = E + 2 .  

The beautiful theorem need not take the form of an equation as happens above. I t  may express 
a relationship among notable elements in a way which does not suggest the equation but, instead, 
something just as impressive. The Euler Line Theorem, for example, fits this mold nicely. I t  reveals 
that the centroid, the orthocenter, and the circumcenter of ANY triangle will always lie on a line. 
And then, by the various standards, there are the "pretty" theorems of Desargues, Pappus, Pascal, 
Brianchon, and others. 

The word "beautiful" of course refers to the subjective. It likely casts mathematics in the light 
of an ART as opposed to a SCIENCE. Within the framework of diverse criteria, quite a range of 

1 theorems, some practical and some not so practical, easily become the object of aesthetic interest. 
In the judgment of many, Euler's concise results prove outstanding, insightful, and - beautiful. Do 
you have a prime candidate for a theorem or result in such a category? 



A NOTE ON A DIE'FERENCE EQUATION 

Russell Euler 
Northwest Missouri State University 

Let a and b be nonzero parameters. If a # 6, then two linearly independent solutions of the 
difference equation 

Y ~ + Z  - (a + b ) ~ n + ~  + a b ~ n  = 0 (1) 

are an and bn, and the general solution of (1) is 

where cl and c2 are arbitrary constants. 

When a = b, the two fundamental solutions of (1) are = an and yL2) = n an. This is easy 
to check but not so easy to motivate, especially yi2). The motivation of the form of the general 
solution in the case of equal roots of the characteristic equation can be accomplished by rearranging 
the terms in equation (2) for the case when a # b, renaming the constants, and considering the 
limit as the parameter b approaches a.  To achieve this, by adding and subtracting the term c2an, 
equation (2) can be written as 

For a # b, multiplying and dividing the second term of this equation by b-a will change the solution 
into a form that will lend itself to using L'Hmpita17s rule when the limit is taken. So, for a # b, the 
general solution of (1) becomes 

bn - an 
Yn = (CI + c2)an + c2(b - a)- b- a ' 

bn - an 
yn = c3an + c4 - 

b- a  ' 
where c3 = cl + c2 and c4 = c2(b - a). 

Notice that when a = b, the second term in equation (3) is of the indeterminate form i. So, 
employing L'Hospital's rule to compute the limit as b approaches a in (3) yields 

where c5 = c4/a. Equation (4) is the general solution of (1) when a = b and the technique utilized 
clearly shows how yL2) = nan arises. 

As an alternative to  using L'Hospital's mle on the second term in (31, the following method 
can be used. Siice 

we have 

bn - an 
l i j  - = lim(bndl + W 2 a  + bn-3 a +. . .ban-' + an-'), 
b-a b- a  b-a 

= a n d l  + an-l + . . .an-l 

= nan-l. 

Hence, (3) becomes yn = csan + c4nan-I as before. 
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EDITOR'S NOTE 

Several careful readers have pointed out some miscalculations in the paper "Fractorials!" by 
Nataniel Gteene, which appeared in the Fall, 1992, issue of the Journal. On p. 431, 9!3 should 
equal 16% on p. 433.18!3 should equal [(6)(3)]!3; in the example following the proof of Corollary 
4 on p. 433, z should equal 1/[2 . 1 8 9 ~ / ~ ] ;  on p. 435 in the statement of Theorem 8, a!b should 
equal a!bh(a - b)bh(a - 2blbh . . .[a - (h - l)b]!bh. Finally, in Example 3 on p. 436, (lO!3)/(z4) = 17.5 
and not 35 as indicated. Thus we use the inequality 1 0 ! ~ / 2 ~  = 17.5 < 20 = ( Z Z ) ! / ( ~ ~ )  < 12!3/(2~). 
Solving as in the example we find that z = 5.0463 

The Editor apologizes for any confusion that may have been caused. 

WHAT'S YOUR SINE? 

It was Ibbert  of Chester's translation from the Arabic that resulted in our word "sine." The 
Hindus had given the name jiva to the half chord in trigonometry, and the Arabs had taken this over 
as jiba. In the Arabic language there is also a word jaib meaning "bay" or "inlet." When Fbbert of 
Chester came to translate the technical word jiba, he s e e m  to have confused this with the word jaib 
(perhaps because vowels were omitted); hence he used the word sinus, the Latin word for "bay" or 
"inlet ." 

Carl B. Boyer, A History of Mathematics, John Wiley & Sons, 1968, p. 278, 

Editor's note: This same translation story is also attributed to Gerard of Cremona. (See Howard - Eves, An Intmduction to the History of Maihemattcs, Fourth Edition, Holt, Rinehart and Winston, 
1976, p. 194.) Both references indicate that the time of the translation into Latin ww in the year 
1150 A.D. 

CHANGES OF ADDRESS 

Subscribers to the Journal should keep the Editor informed of changes in mailing address. 
Journals are mailed at  bulk rate and are not forwarded by the postal system. The cost of sendin& 
replacement copiea by first class mail is prohibitive. 



A PARTIAL FRACTIONS APPROACH TO A FAMILIAR IDENTITY 

M. A.  Khan, RDSO 
Lucknow, Ind:a 

The identity 

&-l)n-t c) kn = n! 
t=1 

can be established either by using the combinatorial argument of diitributing n balls in n  boxes, or 
the operator technique. (See [ I ] . )  Here is an alternative approach based on partial fractions wherein 
we show that the LHS is the expansion of the RHS rather than proving that the RHS is the closed 
form of the LHS. 

To this end, we start with 

Now consider the following continued product: 

We resolve ( 1 )  into partial fractions of the form ( 2 ) :  

We need only determine the general coefficient a ( k )  in expression ( 2 ) .  To accomplish this, we set 
expression (1) identacally equal to (21, multiply both sides by [x - ( k  - l ) / k ] ,  and take the limit as 
x tends to  ( k  - l ) / k .  Thii yields: 

- (-i)(n-k)& - k("-') (on multiplying numerator and denominator by k) 
k! (n  - k ) !  

Since the partial fraction representation of ( 1 )  is valid for all values of z except those for which 
x = ( k  - l ) / k ,  for k  = 1 , .  . . , n ,  we may put z = 1  on both sides of ( 1 )  and ( 2 )  to obtain: 

which, on restoring the value of a ( k ) ,  implies that 

This technique can be applied to more general problems of this type. For instance, it can readily 
be shown by resolving the RHS into partial fkactions that: 

and 

where Pm(k)  is a rational polynomial in k of degree m and m 5 n .  

This artacle is dedicated to Sir Syed Ahmad Khan, founder of Muslim Unzuersity, Altgarb. 
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MESSAGE FROM THE SECRETARY-TREASURER 

Copies of the new, revised Constitution and Bylaws are now available. The prices are: $1.50 
for each of the first four copies and $1 for each copy thereafter. I.e., s(1.50 n) for n < 4 and $(n + 2 )  
for n  2 4. 

The videotape of Professor Jmeph A. Gallian's AMS-MAA-PME Invited Address, "The Mathe- 
matics of Identification Numbers," given as part of PME's 75th Anniversary Celebration at  Boulder, 
CO, in August, 1989, is also still available. The tape may be borrowed free of charge by PME chap- 
ters, and by others upon an advance payment of $10. Please contact my office if you desire to borrow 
the tape, telling me the date on which you would like to use it. I prefer to  mail the tape directly to 
faculty advisors, and expect them to take responsibility for returning it to my office. Please submit 
your request in writing and include a phone number and a time that I might reach you if there are 
problems. Robert M. Woodside, Secretary-Treasurer, Department of Mathematics, East Carolina 
University, Greenville, NC 27858. 

Seen on the back of a Math Club T-shirt: 

Top N reasons for being a mathematician: 

1. When people don't understand you, they think it's their own fault. 

2 .  see # 1. 

3. See # 1. 

N. See # l .  

If you don't understand this, see # 1. 



A T H E O R B M  O N  CIR.CUMSCR.IBED CIRCLES 

Jun Ozone 
Tochigi Minami S e n ~ o r  High School, Japan 

Within the angle formed by intersecting rays, inscribe a chain of circles Cl,  C2, C3,. . . such that 
Cl is closest to the vertex of the angle and each circle Cn, n > 1, is tangent to  the two rays and 
tangent externally to  the two circles C n - ~  and Cn+l. Then it is easy to show that the radii of the 
circles form a geometric sequence. The circles A-2, A-l ,  Co, Al ,A2 of Figure 1 form such a sequence 
of circles, which we shall call a vee sequence (of cimles). 

Vee sequences are a suitable project topic for high school students, and related questions are 
sometimes given in entrance examinations for Japanese universities. Furthermore, we find this type 
of question in Wasan, the old mathematics of 17th to 19th century Japan. In this article we shall 
point out some properties of vee sequences of circles, especially in the light of Casey's and Monge's 
theorems. 

T h e o r e m  1. Suppose {Co,Ai(i  = 9~1 ,  &2,. . .)} and {GO, Bi(i = &l, &2,. . .)} are two vee sequences 
sharing the common central circle Co and whose intersecting rays have vertices A and B, respectively, 
as shown in Figure 1. Let ro,ai, bi(i = &1,?~2,.  ..) denote the radii of the circles Co,Ai, and Bi, 
respectively. Then, for each I ,  we have that a-iai = b-ibi. 

Figure 1. 

The proof follows easily from the fact that the radii ate in geometric progression, so for any 
f i e d  i ,  ro is the geometric mean of a; and a-i, whence a-jai = r i .  Similarly, b-ibi = r i ,  SO 

a-iai = b-ibi .  

Monge's Theorem, which is fundamental to projective geometry, states that if three circles are 
given, of three dzerent radii and no two of which are concentric, then the line connecting the centers 
of similitude of two pairs of the circles will pass through the center of similitude of the third pair [3, 
Thm. 25.9, p. 1091. The next theorem is an immediate consequence of Monge's Theorem. 

Theorem 2. In the vee sequence of Theorem 1, the intersection point of the external common 
tangents to arbitrary circles A, and B, lies on the line AB. If the radii of the two circles are equal, 
then their common tangents are parallel to line AB. 

Casey's Theorem, stated next, is a delightful extension of Ptolemy's cyclic quadrilateral theorem. 
[Ptolemy's theorem states that if a convex quadrilateral ABCD is cyclic (can be inscribed in a circle), 
then the product of its diagonals is equal to the sum of the products of its opposite sides; thaL is, 
AC . BD = AB . C D  + A D .  BC. The converse of this theorem is also true: if the eqsatioii 
AC . BD = AB . CD + AD . BC holds, then quadrilateral ABCD is cyclic.] In fact, Ptolemy's 
theorem is the special case where the four circles of Casey's Theorem all have radius zero. 

Casey's Theorem. Let C be a given circle and let Cl,C2,C3, and C4 be four circles with distinct 
centers that form a convex quadrilateral ClC2C3C4 having diagonals C1C3 and c2c4. If circle C is 
tangent to each of the four circles Cl ,  C2, C3, and C4, then 

where tjj is the length of the common external tangent to circles Ci and Cj if the two circles Ci and 
Cj lie both outside or neither one outside of circle C ,  and tij is the length of the common internal 
tangent to circles Ci and Cj if these two circles lie one outside and the other not outside of circle C.  

Casey's proof of this theorem [I, Prop. 10, p. 1031 cleverly uses inversion. We shall present 
a proof that is readily accessible to any high school student possessing a reasonable knowledge of 
trigonometry and geometry. 

Figure 2 

Proof.  Let there he an inscribed circle of center C and radius r for the four given circles Cl,Cz,C3, 
and C4,  with distinct centers, and let each circle with center Ci have radius ri. Let the angles 
ClCC2, C2CC3,C3CC4, and C4CCl be denoted by 2A22B,2C, and 2D, respectively. (See F'iiure 
2.) Then A + B + C + D = rr. Now by the law of cosines, we have that 

C ~ C ;  = ( r  + rl)' + ( r  + ~ 2 ) ~  - 2(r + q ) ( r  + r2) cos 2A, 

and by the Pythagorean theorem, 

t;2 = c1c; - (r1 - r2)2. 

After some simpl5cation, we have that 

t;2 = 2(r + r l ) (r  + r2)(1 - cos2A) 

and finally, 
i:2 = 4(r + r l ) (r  + r2) sin2 A. 

Similar expressions hold for the other tangent lengths tjj. For convenience we let 

q = 4 4 ( r  + q ) ( r  + r2)(r + rs)(r + r4). 



Then 

tl2t3., = qsin Asin C, t23t41 = q sin Bsin D, and t n t a  = qsin(A + B )  sin(B + C). 

Now we have that 

s i n B s i n D = s i n B s i n ( ~ -  (A+ B + C )  
= s i n B s i n ( A + B + C )  
= sin B sin(A + B) cos C + sin B cos(A + B) sin C 

 sin(^+ ~ ) s i n ~ ~ ~ ~ ~ + ~ i n ~ c o s ~ c c s ~ s i n ~ - s i n ~ s i n ~ ~ s i n C  
 sin(^+  sin ~ c o s ~ + s i n  ~ c o s ~ c c s ~ s i n ~ + s i n ~ c o s ~  ~ s i n c - s i n ~ s i n c  

= sin(A + B) sin B cos C + (sin B cos A + sin A ccs B) ccs Bsin C - sin A sin C 

= sin(A + B)(sin B cos C + ccs B sin C)  - sin A sin C 
= sin(A + B) sin(B + C) + sin A sin C, 

which establishes that 

sin(A + B) sin(B + C) = sin A sin C + sin B sin D, 

proving that the equation of the theorem holds. 

If any circle Ci does not lie outside the circle C that touches the four given circles, that is, if 
the interior of circle C and the interior of circle Ci have a nonempty intersection, then the above 
argument holds if each occurrence of ri is replaced by -ri and any resulting negative ( r  - ri) or 
(&ri & r j)  is replaced by its absolute value lr - ril or 1 & ri & rjl. 

Theorem 3. Let A-l,Co,Al be a vee chain of circles with vertex A, and let C be any circle that 
circumscribes circles A-l and Al. Then point A lies on the radical axis of circles C and Co. 

ProoE Let T, U, V, and W be the intersections of the ray ACo with the three circles of the vee chain 
emanating fiom A as shown in Figure 3. Invert the figure in a circle centered at A and orthogonal to 
circle Co. Then circle Co is self- inverse and the two rays emanating from A are self-inverse. Circle 
A-l inverts to a circle tangent to the two rays and to circle Co, namely, circle Al. So, the point X 
of tangency of circles A-l and C inverts to a point Y on circle Al. 

Now any circle through X and Y is self-inverse, but there is only one circle passing through 
both X and Y and tangent to circle A-l at  X. Since inversion preserves angle between curves, 
that self-inverse circle is tangent to circle Al at  Y; that is, it is circle C,  the unique circle tangent 
to both circles Al and A-1 and passing through X. Now circlea C and Co both are self-inverse with 
respect to the stated inversion in center A, so they have equal powers from point A. Thus A is on 
their radical axis. 

Theorem 4. Let A and B be any two circles tangent to both rays of an angle with vertex P, and 
let C be any circle externally tangent to  both circles A and B.  Then circles A and B are images of 
one another in the inversion in the circle centered at  P and orthogonal to circle C. 

Figure 4 

Proof: Let X be the point of tangency of circles A and C,  and let Y be the image of X under the 
stated inversion. (See Figure 4.) Then Y lies on circle C and on the image circle of circle A, which 
image circle must also be tangent to the two rays. The only circles externally tangent to  circle C 
and tangent to both rays emanating from P are circles A and B. Since circle A is not self-inverse, 
then the image circle is circle B.  

Theorem 5. Let A-1, Cot Al be a vee chain of circles with vertex A, and B-1, Co, Bl  a vee chain 
with vertex B ,  each vertex lying external to the angle of the other vee chain. Then there is a circle 
C that circumscribes circles A-l,Al, B-1, and Bl.  

ProoE The radical axis in the proof of Theorem 3 is the line through A that is perpendicular 
to the line of centers of circles C and CO. By adjusting Cop that radical axis can be made to be any 
line through A that lies external to the angle containing the vee chain with vertex A. For example, 
if the center of circle Co lies on the line of centers of the given vee chain, then the radical axis is 
the line through A perpendicular to that line of centers. By increasing the radius of circle Co and 
letting its points of tangency with circles A-l and Al slide along the left side of those circles, one 
can see that the radical axis revolves about A and approaches the left bounding ray of the vee chain. 

Figure 5. 

Thus draw the circle Co that circumscribes A-, and Al and whose radical axis with circle C is the 
line AB. By Theorem 2, the common external tangents to circles A-1 and B-1 meet at  a point D 
on line AB. (See Figure 5.) Since D is then on the radical axis of circles C and Co, Theorem 4 
applies. That is, in an inversion in center D and circle orthogonal to circles C and Go, circle A-1 
maps to circle B-l. Since circle A-l is tangent to the self-inverse circle C,  then so also is circle B-1 
tangent to circle C.  

Now invert the vee chain with vertex B in a circle centered at  B and orthogonal to circle Co. 
Then circle B-1 maps to  circle BI,  and circle C is fked. Since circle B-1 is tangent to circle C, 
then its image Bl is also tangent to circle C.m 

Corollary 1. For each i, there is a circle that circumscribes the four circles Ai,A-i, Bi, and B-i,, 
(See Figure 6.) 



Figure 6. 

Proof. The inversion arguments above all hold when the subscripts 1 and -1 are replaced by i and 
-i, respectively. 

Corollary 2. Theorem 5 can be applied repeatedly to vee chains emanating from points A and 
B in Figure 5 and tangent to circle C to produce the chains of Figure 7. 

Figure 7. 

The main theorem of this paper is an immediate corollary of Theorem 5. 

Theorem 6. From any point P on line AB, draw tangent rays to circle CO. Then the vee sequence 
of circles C-l, Co,Cl thus determined is circumscribed by circle C. (See Figure 8.) 

Figure 8, 

One final result completes our study of vee sequences of circles. 

Theorem 7. Let d denote the distance between the centers C and CO of Figure 3 and let r and ro 

Figure 9. 

Proof.  Take that vee chain of circles A-l,Co, Al whase vertex A is the intersection of the radical 
axis and the line of centers of the two given circles C and Co. (See Figure 9.) Then we have 
r = r l  + ro + r-1 and ri = rlr-1 because these radii are in geometric progression. Multiply the 
former equation by r l  and then replace its last term using the latter equation to get 

Now, d =  2r1+ ro - r ,  so 

d2 = 4 4  + 4r0r1 - 4rr1 + r i  + r 2  - 2rr0 

and finally, 
d2 = - 4 4  + r i  + r 2  - 2m0 = r 2  - 2rr0 - 3ri.m 
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THE LEAST SQUARES LINE WITHOUT CALCULUS 

Norman Schaumberger 
Eofstm University 

Let 
y = bo + b i z  

be the straight line that best fits the n points (xi, yl), (m, ys), . . . (zn,  yn) by the method of least 
squares. In this note we use basic algebra to verify that the familiar equations 

can be used to  get the bo and b1 in (1). 

The standard method for deriving (2) uses partial derivatives to minimize the function 

Thus the method of least squares will more readily fit into a precalculus, survey, or statistics course 
which does not require calculus. Ã 

Using (2), this becomes 

MATCHING PRIZE FUND 

If your chapter presents award for Outstanding Mathematical Papers or for Student Achieve- 
ment on Mathematics, you may apply to the National Office for an amount equal to that spent by 
your Chapter, up to  a maximum of fifty dollars. Contact Professor Robert Woodside, Secretary- 
Treasurer. 

PUZZLE SECTION 

SOLUTION T O  MATHACROSTIC NO. 35 (FALL, 1992) 

WORDS: 

A. kohlrabi 
B. assurgent 
C. nervy 
D decussate 
E. incarnadine 
F. Nude Descending 
G. salmagundi 
H. kookaburra 
I. yawp 
J. pollan 
K. oxeye 
L. invective 
M. nugatory 
N. twinge 

asthenosphere 
Neujmin 
drift 
lang syne 
Invisible 
neon sign 
esthesis 
twiddle 
overstrew 
plash 
lamelliform 
asyndetic 
nisse 
Edelweiss 

AUTHOR AND TITLE: KANDINSKY - POINT AND LINE T O  PLANE 

QUOTATION: Just as an explorer penetrates deeply into new and unknown lands, one makes 
discoveries in everyday life and erstwhile mute surroundings begin to speak alanguage which becomes 
increasingly clear. In this way lifeless signs turn into living symbols and the dead is revived. 

SOLVERS: THOMAS F. BANCHOFF, Brown University; JEANETTE BICKLEY, St. Louis 
Community College at  Meramec, MO; CHARLES R. DIMINNIE, St. Bonaventure University, NY, 
ROBERT FORSBERG, Lexington, MA; JENNIFER HAKE, Newton High School, Newton, IL; 
META HARRSEN, Durham, NC; TED KAUFMAN, Brooklyn, NY; BETH KAYROS, Trenton 
State College, NJ; STEPHANIE SLOYAN, Georgian Court College, NJ. 

MATHACROSTIC NO. 36 

Proposed by Charlotte Maines, Rochester, N Y .  

The 304 letters to be entered in the numbered spaces in the grid will be identical to  those in 
the 29 keyed words at the matching numbers. The key numbers have been entered in the diagram 
to assist in constructing the solution. When completed, the initial letters on the Words will give the 
name of an author and the title of a book; the completed grid will be a quotation from that book. 

Solutions to Mathacrostic No. 36 should be sent to: Richard Poss, Pa Mu Epsilon Journal, St. 
Norbert College, 100 Grant Street, De Pere, WI 54115. Solutions must be received by September 
15. 



DEFINITIONS 

A. Any procedure involving s ta t is t i ca l  sampling 
techniques i n  obtaining a probabilistic 
approximation t o  the solution of a mathematical 
or physical problem (3) 

B. Formal mathematical system consisting of 
indefined objects and axims of a geometric 
nature (21 

C. Device for regulating strength of an electr ic current 

0. Pigment made from carbonate of lead (2) 

E. Showing lack of desire 

F. Bibl ical  prophet who rebuked David for the 
death of Uriah 

G- System of eliminating a variable from two 
algebraic equations (3) 

H. Sharpens 

I. Name given t o  the set of points which 
sat isfy the equation x' + yy' = -rz (2) 

J. I l legi t imate sons of medieval prelates 

K. Quantity of anything made i n  one operation 

L. Prayer for the repose of the dead 

M. Ultimate goals 

N. The c h i c  curve defined by the equation 
xy = ax2 + Â¥> + cx + d (a * 0) (3) 

0. The paths of moving particles or celestial 
bodies 

P. American anthropologist (1887-1954) 

Q Surface that l ies  between two parts of matter 
and forms their  coinnon boundary 

R. Gernan-ftnerican algebraist (1882-1935) 

T. & ~ l i f y i n g  device that effects a certain 
relation between input and output signals 

U. Plane cubic curve consisting of a single loop, 
a node, and two branches asynptotic t o  
the sane Line (3) 

V. Arrangement of flowers on the axis 
of inflorescence 

U. Meager; cheerless 

x. Forgetfulness 

7. To c-t upon 

2. Place a t  which two branches of a curve have a conmon 
tangent and Lie on opposite sides of i t  (3) 

a. Furnace formerly used i n  alchemy t o  maintain 
a uniform and constant heat 

b. Method of calculating an uiknobn by making an 
estimate and working from it and properties of 
the unknown t o  secure the value of the Latter (4) 

c. I n  machinery, having doii i le cranks forged 
upon it, usually situated near and a t  r igh t  
angles t o  each other (hyph.) 



PROBLEM DEPARTMENT 
Edited by Clayton W. Dodge 

University of Maine 

Tilis department welcomes problems believed to be new and at a level appropriatefor the readers of 
this journal. Old problems displaying novel and elegant methods of solution are also invited. Proposals 
should be accompanied by solutions i f  available and by any information that will assist the editor. An 
asterisk (*) preceding a problem number indicates that the proposer did not submit a solution. 

All communications should be addressed to C. W. Dodge, 5752 Neville/Math, University of Maine, 
Orono, ME 04469-5752. Please submit each proposal and solution preferably typed or clearly written on 
a separate sheet (one side only) properly identified with name and address. Solutions to problems in this 
issue should be mailed by December 15,1993. 

Problems for Solution 

797. Proposed by Alan Wayne, Holiday, Florida. 
Restore the enciphered digits of the addends in the following base four addition: 

A + RAP + AT + A + RAT = 1230. 

By what means was the RAP caused? 

*798. Proposed by Dmitry P. Mavlo, Moscow. Russia. 
Since 1993 is a prime year, it seems reasonable to ask which is larger, 

799. Proposed by Stan Wagon, Macalester College, St. Paul, Minnesota. 
a) Find all years that are palindromes in both the standard and the Hebrew calendars. (To get 

the Hebrew year, add 3761 if it is after the Jewish New Year in September, add 3760 otherwise. A 
palindrome is a number, such as 17271,that reads the same backwards and forwards.) 

b) Find all positive integers x such that there are infinitely many positive integers n for which 
n and n + x are palindromes. 

800. Proposed by Michael D. Williams, Wake Forest University, Winston-Salem, North Carolina. 
Prove that for positive integral n ,  

801. Proposed by Norman Schaumberger, Bronx Community College, Bronx, New York. 
If a ,  b,  and care real numbers, then prove that 

by Murray S. Klamkin, University of Alberta, Edmonton, Alberta, Canada. 

545 

Let a and b be positive real numbers. Determine the maximum value of 

over all real x with x2 2 b2. A non-calculus solution is requested. 

803. Proposed by R. S. Luthar, University of Wisconsin Center, Janesville. Wisconsin. 
In any triangle ABC prove that 

(In a triangle ABC, E f ( A )  means f ( A )  + f ( B )  + f ( Q . )  

804. Proposed by Robert C. Gebhardt, Hopatcong, New Jersey. 
Show that 

Student solutions are especially invited. 

805. Proposed by David Ivy, Baltimore, Maryland. 
a) For all integers k 2 -2 evaluate the integral 

*b) Can you evaluate the integral for other values of k? 

806. Proposed by Robert C. Gebhardt, Hopatcong, New Jersey. 
The integral 

was evaluated by one student as follows: 

Provide a correct evaluation. Student solutions are especially invited. 

807. Proposed by Florentin Smarandache, Phoenix, Ariwna. 
In terms of the lengths a, b,  and c of the sides of a given triangle ABC, find the length of the 

segment PQ of the normal to side BC at its midpoint M cut off by the other two sides. See the 
accompanying figure. 



Problem 807 

808. Proposed by Scott H. Brown, Stuart Middle School, Stuart, Florida, 
Student solutions are especially solicited. A circle (R)  is inscribed in the unit square ABCD and 

touches the sides of the square at S, T, U, and V,  as shown in the accompanying figure. Another circle 
(r) is inscribed in the region ASV outside circle (R)  and inside the square at vertex A. 

a) Find the area of the shaded region inside region ASV and outside circle (0. Give the answer 
in radical, not just decimal, form. 

*b) If the sequence of smaller circles is continued indefinitely, each successive circle inscribed 
between the preceding circle and the comer A of the square, find the limit of the shaded region. That 
is, find the area of region ASV less the sum of the areas of the circles in the resulting infinite chain. 

Problem 808 

809. Proposed by David Ivy, Baltimore, Maryland, 
In triangle ABC let AD and BE be any two cevians intersecting at a point F. ( A  cevian AD for 

triangle ABC is a line through the vertex A of the triangle and intersecting the opposite side BC, perhaps 
extended, at a point D, different from both B and C.) Find the ratios BDIDC and AFIFD in terms of 
the ratios AEIEC and BFIFE. 

Solutions 

76 1. [Fall 1991, Spring 19921 Proposed by Murray S. Klamkin, University of Alberta, Edmonton, 
Alberta, Cam&. 

Determine all functions&) such that 

f(x) = anxn and - = E(-l)"a,,xm. 
n-0 f(x) n-a 

I .  Solution by Richard I. Hess, Rancho Palos Verdes, California. 
The given equations require that f (x) - f (-x) = 1. Suppose f (x) = a n e m  where q(0) = 0. 

Since f (0) - f (- 0)  = 1, then a. = Â±1 Furthermore, since 

Thus f (x) = Â±e* for any odd function q(x). 

II. Solution by the Proposer. 
Let f (x) = E(x) + O(x), where E and 0 are even and odd functions, respectively. Then we have 

1 - = E(x) - q x ) ,  so that 1 = E\x) - 0 % ~ ) .  
f (x) 

Hence 

where 0(x)  is an arbitrary odd function analytic at the origin. Two simple examples are 

0(x)  = sinhx, whence fix) = e", 

and 

q x )  = Wax, whence f(x) = Wax Â secx. 

in. Comment by the Editor. 
By setting 0(x)  = sinh q(x), we see that Solutions I and U are equivalent. Then E(x) = cosh 

q(x) and f (x) = E(x) + 0(x )  = cosh q(x) + sinh q(x) = e*'. 
The conditions of the problem were misstated originally as 

which implies that f (x) f (-x) = -1. The following two solutions are based on this misstatement. 

IV. Solution by Jayanthi Ganapathy, University of Wisconsin-Oshkosh, Oshkosh, Wisconsin, 
Since f 7 0 )  = -1, no real-valued function has the properties mentioned in the problem. 

V .  Solution by Seung-Jin Bang, Seoul, Republic of Korea. 
Since f (x) and its reciprocal are holomorphic, there exists a holomorphic function g(x) such that 

f (x) = a*). See [ I ] .  Since 

where m(x) is an integer-valued function. Since gix) + g(-x) is holomorphic, then m(x) is a constant m. 
Hence g(0) = ( m  + 112) ni. From f (x) -f (-x) = -1 it follows that h(x) = g(x) - (m + 112) ni is an odd 
function. Thus we conclude that 

for some odd holomorphic function h(x). 
Reference 

1. W.  Rudiin, Real and Complex Analysis, 2nd ed., McGraw-Hill, New York, p. 292, Theorem 13.11. 



Also solved by SEUNG-JIN BANG, Seoul, Korea, PAUL S. BRUCKMAN (2 solutions), 
Edmunds, WA, MARK EVANS, Louisville. KY, STEPHEN I. GENDLER, Clarion University of 
Pennsylvania, RICHARD I. HESS, Rancho Palos Verdes, CA, DAVID IVY, Baltimore, MD, and REX 
H. WU, Brooklyn, NY. 

771. [Spring 19921 Proposed by Alan Wayne, Holiday, Florida. 
In the base six addition 

the digits of the addends have been unambiguously replaced by letters. Restore the digits. Where was 
E m  

Solution by Laurel Benn, Brooklyn, New York. 
From the 62column, since there must be a carry from the 6 column, we have that 3E + A < 

9, so E = 1 or 2. Hence, from the units column, D = 3 or 0, respectively. 
IfD =O,then E =2and,  since3dividesN,N =%Now V =  l o r 5 . I f  V =  1,then A = 2 ,  

a contradiction since E = 2. If V = 5, then A = 0, which is not permitted. 
Therefore, D = 3 and E = 1. Now N = 0 and V = 2 or 4. If V = 4, then A = 4, a 

contradiction. So V = 2 and A = 5. Hence EVE = 121,AND = 503,and EVE was in 1310 = EDEN. 

Also solved by MATT AMOROSO, St. Bonaventure University, IVY, JOHN T. ANNUUS, 
University of Arkansas-Monticello, CHARLES ASHBACHER, Cedar Rapids, L4, STEVE ASCHER, 
McNeil Pharmaceutical, Spring House, PA, PRANK P. BATTLES, Massachusetts Maritime Academy, 
Buzzards Bay, SCOTT H. BROWN, Stuart Middle School, FL , PAUL S. BRUCKMAN, Edmonds, WA , 
MARK EVANS, Louisville, KY, VICTOR G. FESER, University of Mary, Bismarck, ND, ROBERT C. 
GEBHARDT, Hopatcong, NJ, STEPHEN I. GENDLER, Clarion Universityof Pennsylvania, RICHARD 
I .  HESS, Rancho Palos Verdes, CA, YOSHWOW MURAYOSHI, Eugene, OR, ANDY PULKSTENIS, 
Messiah College,Grantham, PA, WILLIAM STENZLER, Gorton Highschool, Yonkers, NY, KENNETH 
M. WILKE, Topeka, KS, and the PROPOSER. 

772. [Spring 19921 Proposed by Robert C. Gabhardt, Hopatcong, New Jersey. 
Let x x 4 4  be a fourdigit number and y y  be a twodigit number in base b > 4. Find x and y 

1 terms of b so that (y y)' = x x  4 4 in eveiy such base b > 4 (such as 88' = 7744 in base ten). 

I. Solution by William H. Peirce, Rangeley, Maine, and Delray Beach, Florida. 
We have that 

which reduces to 

Hence b + 1 must dividex + 4. Since x is a nonzero digit in base b, it follows that x = b -3 and b 2 
4. Now substitute x = b - 3 into either displayed equation to get that y = b - 2. 

This problem is readily generalized to (yy)' = 'xxzz  in base b. In addition to the solution set 
above, other solutions do exist, and their existence for a given base b is related to the prime factors of 

b - 1. This question is not considered further, other than to list some additional solutions for selected 
values of b: 

Base b YY ( y y ) ' = x x z z  

II. Solution by Scott H. Brown, Stuart Middle School, Stuart, Florida. 
Let N have the j-digit (j = 2,3,4, ...) representation in base b, b > j + 3, each digit equal to 

b - 2. Then N2 has 2/ digits, the first (from the left) j - I in ascending order beginning with b - 3, 
the jth digit being b + j - 5, the next j - 1 in descending order beginning with j + 2, and the last digit 
is 4. Thus, for j = 2,3, and 4, we have 

[(b - 2)(b + I)]' = (b  - 3)b3 + (b  - 2)b2 + 4b + 4, 

[(b - 2)(b2 + b + I)]' = (b - 3)b5 + (b - 2)b4 + (b  - 2)b3 + 5b2 + 4b + 4, 

and 

Reference 

Problem 4272, School Science and Mathematics, vol. 91 (3), March 1991. 

Also solved by JOHN T. ANNUUS, University of Arkansas-Monticello, CHARLES 
ASHBACHER, Cedar Rapids, ZA, FRANK P. BATTLES, Massachusetts Maritime Academy, Buzzards 
Bay, PAUL S. BRUCKMAN, Edmonds, WA, KENNETH B. DAVENPORT, Pittsburgh,PA, MARK 
EVANS, Louisville, KY, VICTOR G. FESER, Universityof Mary,Bismarck, ND, RICHARD A. GOOD, 
Universityqf Maryland, College Park, STAN HARTZLER, Messiah College, Grantham, PA, RICHARD 
I. HESS, Rancho Palos Verdes, CA, RANDY HO, University ofArizona, Tucson, DAVID E. MANES, 
SUNY at Oneonta, YOSHINOBU MURAYOSHI, Eugene, OR. LAWRENCE SOMER, Catholic 
University of America, Washington, D. C., WILLIAM STENZLER, Gorton High School, Yonkers, NY, 
KENNETH M. WILKE, Topeka, KS, and the PROPOSER. 

773. [Spring 19921 Proposed by Leon Bankoff, Los Angeles, California. 
In a given circle ( 0 )  a chord CD is drawn to intersect diameter AOB at point E. Three circles 

are inscribed, the first two in the sectors BEC and BED, and the third in the opposite segment CED. ; 



Let the circle in sector BEC touch CE at J and let the circle in sector BED touch DE at N. See the 
figure. If the three inscribed circles have equal radii, 

a) show that CD is perpendicular to AB, b) tind the ratio AEIEB, 
c) tind the ratio ADIAB, 
d) find the ratio CDI AB , 
e) show that the rectangle JKMN on JN as base and with opposite side KM passing through A 

circumscribes the third inscribed circle, and 
f) show that the rectangles JKLD and NMLD are golden rectangles. 

B 
Problem 773 

Solution by Richard I. Htxs, Rancho Palos Verda, Cal$omia. 
a) S i c e  the three inscribed circles have equal radii, the figure C D B  is symmetric in diameter 

BOEA , whence CD is perpendicular to AB . 
b) Let the radii of the large and small circles be R and r, respectively. Draw the liie OOzT 

through the center Oz of the small lower right circle to its point of tangency T with the large circle. 
Draw radius 0 2 S  of circle (Oz) perpendicular to AB , as shown in the figure. Then AS = 3r and from 
the Pythagorean theorem applied to right triangle SO0 we have 

from which it follows that 

Now we get that 

c) By the Pythagorean theorem applied to triangle ODE, since OE = R - 2, we get that 

ED = = ,IR~ - (R - 2r12 = ,I- = r,B 

since 4R = 9. By applying the Pythagorean theorem to triangle AID, we h d  that 

ALJ = d i F G 7  = 3r. 

Fiidly, AD1 AB = 3d2R = 213 since 4R = 9r. 

d) S i c e  CD = W E  = 2 d 5 ,  then CDIAB = 2 d 5 1 2 ~  = (419)d~.  e) Site the three circles 
have equal radii r, then J N  = 2. By the symmem of the entire figure about liie AB, the third small 
circle is the circle on AE as diameter, so rectangle JKWN circumscribes that circle and therefore is a 
square. 

f) Now JD = J E  + D = r + d 5 ,  whence JDIJK = (1 + d5)12, the golden ratio. S i c e  JKWN 
is a square cut from a golden rectangle, then the remaining rectangle NMLD is another golden 
rectangle. 

Also solved by PAUL S. BRUCKMAN, Edmonds, WA , YOSHINOBU MURAYOSHI, Eugene, 
OR, and the PROPOSER. 

Editorial comment. Ftfty lashes to the editorfor faulty terminology. A sector is thefigurebounded 
by two radii of a circle and a subtended arc. A segment is the figure bounded by a chord of a circle and 
a subtended arc. So in theflgurefor this problem CEOB and DEOB are not sectorssince EC and ELI are 
not radii, but should properly have been culled semi-segments. It is true that CEDA is a segment. 

774. [Sphg 19921 Proposed by Robert C. Gebhardt, Hopatmng, New Jersey. 
The first player in a game who acquires 250 points is the winner. Because player A is a better 

player than player B, he givwplayer B a SO-point handicap. Similarly player B givesplayer C a SO-point 
handicap and player C gives player D a SO-point handicap. What handicap should player A give player 
D? 

I. Solution by Richard I. Hess, Rancho Pdos  Verdtx, Gzl$omia. 
S i c e  A makes 250 points while B makes 200, and B makes 250 points while C makes 200, then 

B makes 200 while C makes 160. So A should give C a 90 point handicap. Since C makes 250 points 
while D makes 200,then C makes 16OwhileD makes 128.Hence A should giveD a 122point handicap. 

This d l  sounds very logical, but consider the simpler 4point game where A gives B a 2-point 
handicap, and B gives C a 2-point handicap. Here, by the same logic, A should give C a 3-point 
handicap. 

Consider, however, the following model: Points are accumulated one at time. When A plays B, 
she has a probability p of winning any point and B has probability q = 1 - p of winning the point. The 
handicap is set so as to give each player a probability of 112 of winning the 4-point game. 

Detine A's chance of winning the game when she has m points and B has n points to be P(m, 
n). Then P(m,n) = p -P(m + 1,n) + q *P(m,n + I), where P(4,x) = I and P(x,4) = 0 for any x = 0, 
1,2,3, With some algebra we get P(0,3) = p 4  and P(0,2) =p4(l  + 4q). Using the logic of the solution 
above, we would havep = 213 and q = 113. We would expect that P(0.2) = 112, but achdly P(0,2) = 
1121243. To obtain P(0,2) = 112, we must take p = .6862.This earlier approach would givep = 415 
when A plays C, but this gives P(0,3) = 2561625 + 112. To get P(0,3) = 112, we must take p = .8409 
and (.8409)' = .7071 + .6%2.h this (more accurate?) model there is no basis for determining A's 
pmbabiiity of winning a point from C when the probabilities are known when A plays B and when B 
plays C. Thus the question of handicapping has no exact answer. 

II. Solution by David Ivy, Baltimore, MavyW. 
We first develop a model for handicaps and player skills. Let rMrepresent the average number 

of points player A expects to score against player B on any given turn. When rM 2 rm, then A is 
considered better than B and A gives a h a n d i q  hm to B based on 

Note that this handicap does not e q d i  the chances of either player winning. Rather, when rm < <. 
250, we can r e g d  2SOlrmas the approximate number of turns A n d s  to amass 250 points, and this 



value is set equal to the approximate number of turns B needs to amass 250 - hm points. Furthermore, 
2501ra is not the expected number of turns that A needs to amass 250 points, as on some of the turns 
he will do better than on others, and we need to consider the distribution of his scores. None-the-less, 
our tournament directors have decided to use the Formula (1) to save the expense of buying a 
supercomputer to use with alternative, more complicated formulations.. 

We consider a game with three basic skills that are easily measured and can be used with 
Formula (1). The game rules call for players to alternate turns trying to score unless a player succeeds 
in swring. If a player does score, he is given a chance to create another scoring opportunity. That is, 
if he succeeds in forming this opportunity, he goes again. In order to score, a player must perform a 
successful offensive maneuver, and then he scores if his opponent fails to perform a successful parry. 
Thus there thee skilk carrying out an offensive maneuver, performing a defensive maneuver, and 
generating a swring opportunity. Let b A , q A , t A )  be a triplet that defmes player A's ability in the three 
skill-, respwtively. Thus the probability that A willscore against B on any given scoring opportunity 
is xa = pA(l  - qB) .  On any given turn, then, the number of points player A is expected to score is given 
by 

that is, 

Now we can calculate the handicaps. For the given problem we have hm = ha = hm = 50. 
Then (1) yields rm = (415) rm, rm = (415) rBc, and rm = (415) ra. We now consider three cases. 

Case 1: tA = tB = t c  = t D  and q,, = qB = q c  = q D .  In this single skill degeneracy case, the 
opponent doesn't affect the player's ability to score. Thus ra = rAc = rm = rA and rD = (415) rc = 
(415) 'rB = (415) 'rA,  so 

Case 2. tA = tB = t c  = tD  = 1, two skill degeneracy. Given any choice of pA, qA,  qB, q c ,  and 
q D ,  we can use (1) and (2) to determine pB,pc,  and pD.  The solution is rejected, however, if it does not 
satisQ0 < p B , p C , p D  s 1. For example, i f p A  = 314, qA = 0, q B =  114, q c =  112, and q D =  314, then 
xa = 9116, ra = 917, rm = 36135, xm = 36/71, and pB = 36171. Similar calculations show that pc  = 
961337 and pD = 19211661. Fially, hm = 15925011469 = 108.4. 

Case 3. We now set hm = hm = hDc = 50. One way to do this is with the values in the 
following table: 

Now we calculate that rm > r,,,,, so that player D needs to give A a handicap hm = 54.67582.This 
example is n m - m i t i v e ;  if A is a better player than B and B is better than C, then it is not necessarily 
~~ AisbCtterthanC. 

Player 

A 

B 

c 
D 

Also solved by JOHN T.  ANNULIS, Universig of Arkansas-Monticello, CHARLES 
ASHBACHER, Cedar Rapids, IA, PAUL S. BRUCKMAN, Edmonds, WA, MARK EVANS, Louisville, 
KY, STEPHEN I .  GENDLER, Clarion Untversityof Pennsylvania, LEE MAN KIM, Messiah College, 
Grantham, PA, CARL LIBIS, Gra& Hills, CA, and the PROPOSER. 

775. [Spring 19921 Proposed by Norman Schaumberger, Bronx Communig College, Bronx, New 
Yo& 

If H is the harmonic mean of the positive numbem a ,, a= ..., a* prove that 

P q t 

0.6 0 1 

0.%77 0 0.2 

0.9600 0 0 

0 . m 6 8 1  0.9999 0 

Comment by David Iw, Baltimore, Maryland. 
I guess a hundred people must have pointed out that Problem 775 is worked out on pages 384- 

385 [of the Spring 1992 issue] by the proposer! 

Editorial reply. No, only six! 

Also solved by SEUNG-JIN BANG, Seoul, Korea, SCOlT H .  BROWN, Stuart Middle School, 
FL, PAUL S, BRUCKhUN, JZdnwnak, WA, RICHARD I. HESS, Rancho Palos Verdes, CA, DAVID 
lVY (2 solutions), Baltimore, MD, DAVD E. MANES, S U M  at Oneonta, YOSHINOBU 
MURAYOSHI, Eugene, OR, and the PROPOSER. 

776. [Spring 19921 Proposed by Russell Euler, Northwest Missouri State University, Maryville, 
Missouri. 

Let n be a fixed positive integer and let 

Write as a polynomial in P ,  the expression 

Solution by Kenneth M. Wilfce, Topeka, Kansas. 
We have 

from which it follows that 

Then 



and 

By straightforward but tedious algebra we fmd that 

ls4(P: + P i  + P: + PA = 

p:(82944~: - 34560~; + 51921~: + 1056~: + 39896~: + 9992P, + 51251). 

Also solved by SEIJNG-JIN BANG, Seoul, Korea, FRANK P. BATTLES, Massachusetts Maritime 
Academy, Buzzarh Bay, SCOTT H. BROWN, S m n  MWle School, FL, PAUL S. BRUCKMAN, 
Mmomk, WA, J. S. M E ,  Michigan State Universiy,Lunsing, RICHARD I .  H B S ,  Rancho Pdos 
Verdes, CA, DAVID IVY, Baltimore, MD, DAVID E. MANES, SUM at Oneonta, YOSHINOBU 
MURAYOSHI, Eugene, OR, WILLJAM H .  PEIRCE, Rangdq, ME, KEVIN ROBINSON, Messiah 
College, Grantham, PA, and the PROPOSJX Ivy gave several interesting f o m l a s  regardingthe Pb 
including that Pk is qressibleas a polynomial in PI whenever k is an ouid positive integersand that P i  is 
qressible as a polynomial in PI whenever k is any positive integer. 

778. [ S p ~ g  19921 Proposed by Laura L. Kelleher and Fmnk P. Battles, Massachusetts Maritime 
Acadeny, Buzzards Bay, Massachusetts. 

It is readily established that the arc length along the curve y = cosh x on any interval [a,b] and 
the area under the graph of this same function on this same intewal are numerically equal. For what 
other functions, if any, is this curious fact tme? 

I. Solution by Paul S. Bruckman, Mmonds, Washington. 
We assume that any function y = f (x) with the stated prop+ is continuous and has a 

continuous first derivative on [a,b]. Our equation that the length of arc L equals the awa A on that 
interval takes the f o m  

Smce this equation is to be tme for all hk.~dS [a,b], we must have, for all x, 

& 1 y 2  
= 1 + @'y, whence - = - 

&" fi' 
whose solution is x = cosh-' y - C for any real constant C. Therefore, 

II. Solution by David E. Manes, State Universityof New York, Oneonta, New York 
Besides the obvious solution f (x) = 1, any function of the form 

f (x) = Ae' + Bes, with At3 = 114 

for any constants A and B, satisfies the above property; i.e., 

\ab & = dx. 

To this end, the integral equation requires that 

S i c e  the left side is always at least 1, then Ax) catmot be zero for any x. So we square and then 
differentiate this equation and simplilj the r m l t  to get 

fl(x)[f(x) - f''(x)I = 0. 

I f f  '(x) = 0 ,  then f is a constant function and we have f (x) = 1. Otherwise, we have the homogeneous 
differential equation f (x) =f"(x),  which has the family of solutions f (x) = Ae' + Beu. Then Equation 
(1) yields 4AL3 = 1, as required. 

Also solved by SEUNG-JIN BANG, Seoul, Korea, RUSSELL EULER, Northwest Missouri State 
University, Maryville, ROBERT C. GEBHARDT, Hopatcong, NJ, DAVID IVY, Baltimore, MD, 
YOSHINOBU IvIUIWYOSHI, &gene, OR, und the PROPOSER. BOB PRIEI-IPP, University of 
Wisconsin-Oshkosh, located this same problem as Problem El549,proposed by C. R. MacCluer and solved 
by D. A. Moran, in the Amerian Mathematical Monthly 70 (1963). p 893. In d i t i o n  to the two solutions 
above, Moran gives 

d ( x  - a), 0 < x  < a 

a < x < b  

d ( x  - b), x 2 b. 

AMM solvers located this problem as Ex. 9,p. 45, Ordinary Differential Equations, by R. E. L.unger,as Ex. 
8.p. 25, Elementary Direrential Equations, by C, E. F. Shewood and A. E. Taylor, and on pp. 149-5Oof 
Through the Mathescope, by C. S. Ogihy. 

779. [Spring 19921 Proposed by W. Moser, McGill University,Montreal, G a d .  
If 0 C a < x 5 y S l l a ,  then prove that 

Solution by Jonathan Hamel, Messiah College, Grantham, Pennsylvania. 
Let f (x) = x + l lx ,  so that f (x) = f ( l lx) .  By elementary calculus, f (x) is decreasing on (0,ll 

and increasing on [I,-). Hence we have the following lemma. 

Lemma. For any t in the interval (0,l). f (x) achieves absolute maximum on [t,llt] at either 
endpoint. 

Smce we are given a 5 x 5 l l a ,  then by our lemma 

Smcea S x  <y,then d y  5 d y  5 1 5 y l a .  Byour lemma, 



Now a S d y  5 1 5 l l a  because y 5 l l a ,  x 5 y, and x 5 l la .  Our lemma yields 

S i c e a  5 x a n d a  5 l/y,then a 2 5 d y . S i c e x  5 y a n d a  S 1 , t h e n d y  5 1 5 lla2.  Now 
we have a 2  5 d y  S lla2. By our lemma, d y  + ylx 5 a2 + lla2. Add 2 to each side o f  this inequality 
and then tictor the sides to get 

Also solved by CHARLES ASHBACHER, Cedar Rap&, ZA, SEUNG-JIN BANG, Seoul, 
Korea, P A m  S. BRUCKMAN, Edmuds, WA, STEPHEN I. GENDLER, Clarion Univers* of 
Penq1vania, RICHARD I .  HESS, Rancho Pdos Verks,  CA, DAVID E. MANES, SUNY at Oneonta, 
YOSJ3DJOBU MURAYOSHI, Eugene, OR, ANDREW F. PINGITORE, Fredonia State Universiry 
College,NY, LDNG PHI VO, Arlington, lX, and the PROPOSER. 

781. [Sprbg 19921 Proposed by the late Jack Gafinkel, Flushing, N m  York. 
Erect squares ADEF , BDKL , and CDGH as shown in the figure, on the segments AD, DC, and 

BD, where D is any point on side CA o f  given triangle ABC. Let X, Y, and Z be the centers o f  the 
erected squares. F'mve that triangles ABC and XlZ are similar and the ratio o f  similarity is d2. 

A1 

Problem 781 

Solution by A. T. E. Levin, Closed Bar Company, Dntown, Georgia. 
S i c e  X is the center o f  the square DEFA, then a 45' counterclockwise rotation and a 

homothely or stretch o f  ratio d 2 ,  both about point D,  will carry X to A. Similarly, that stme rotation- 
homothety canies Y to B and Z to C. The theorem follows. 

Also solved by PAUL S. BRUCKMAN, Edmonds, WA, DAVID IVY,  Baltimore, MD, 
YOSHINOBU MURAYOSHI (two solutions), Eugene, OR, and the PROPOSER. 

782. [Spring 19921 Proposed by Murray S. Klamkin, Univemiry of Alberta, LVmonton, Alberta, 
catlaah. 

In 0. Bottema et al, Geometric Inequalities, Wolters-Noordhoff, Gronigen, 1969,item 12.55,~. 
118, it is stated that for a triangle ABC with no angle 2 2 d 3  that 

2(R,  + R2 + R3)' 2 (a 2 + b 2  + c2) + 4 ~ d 3 ,  

where R R 2  and R3 are the respective distances from an arbitmy point P inside the triangle to its 
vertices, a, b ,  and c are the triangle's side lengths, and F is its area. Item 12.55further states thavfor 
a triangle in which 
LA 2 2 d 3 ,  

( R l + R 2 + R J 2 2 ( b + c ) 2 .  

Show that the first inequality is tme for all triangles. 

Problem 782 

Solution by David Iyv, Baltimore, Maryland. 
Label the central angles a fl, and 7 as shown in the figure. By the law o f  cosines we have 

b 2 = R : + R : - 2 R l R , c o s  f l , c 2 = R i + R : - 2 R z R , m s  7, 

and 

a 2=  R i +  R i - 2 R 3 R 2 w s  a 

whence the stated inequality is equivalent to 

z ( 4  +Zcos  a - &  sin ct)R2R3 2 0 .  

S i c e  4 + 2 cos 0 - & sin 0 = 411 - sin ( 0  - d 6 ) ]  2 0, the stated inequality trivially follows with 
equality i f  and only i f  ct = f l  = 7 = 2d3.  

Also solved by PAUL S. BRUCKMAN, Ednwds, WA, and the PROPOSER. 

783. [Spring 19921 Proposed by the late Jack Gafinkel, Flushing, New York. 
I f ,  A, B, and C m the angles o f  a triangle ABC, then prove that 



PI MU EPSILON 1993 NATIONAL MEETING 
Solutwn by J. S. Frame, Michigan State University,East Lansing, Michigan. 
For triangle ABC with sides a,  b, c, iruadius r, semiperimeter s ,  and area F, we establish the 

inequality and show that equality holds only if a = b = c, by proving that 

Clwly, the right side of this equation is nonnegative and is zero if and only if the triangle is equilaed. 
R d l  that q s  - a) = s,  that r / ( s  - a) = tan (Al2), and that r's2 = F2 = S(S - a)(# - b)(s  - c), w 
d ( s  - a) = ( s  - b)(s  - c)l( rs). Then 

The difference between these two sums is seen to be 

Also solved by PAUL S. BRUCKMAN, Edmnds, WA, DAWD IVY, Baltimore, MD, 
YOSHINOBU MURAYOSHI, Eugene, OR, BOB PRIELIPP, Universioof Wismnsin-Oshbsh, PAUL 
YIU, Florida Atlantic University,Boca Raton, and the PROPOSER. 

Late solutions were receivedfiom KENNETH B. DAVENPORT, Pinsbuqh,PA, to problem 
750,753,754,764,769, and no. 

INQUIRIES 

Inquiries about certificates, pins, posters, matching prize funds, support for regional meetings, 
and travel support for national meetings should be directed to the Secretary-neasurer, Robert M. 
Woodside, Department of Mathematics, East Carolina University, Greenvale, NC 27858, 919-757- 
6414. 

The 1993 National Meeting of the Pi Mu Epsilon National Honorary Mathematics Society will 
be held in Vancouver, British Columbia, in Canada, from August 16-19. The meeting will be held 
in conjunction with the AMS-MAA meetings, which run from August 15-19. Pi  Mu Epsilon will 
again co-host this national meeting with the MAA student chapters. 

The Pi Mu Epsilon meeting will begin with a reception on the evening of Monday, August 16. 
On 'Ihesday, August 17, the Pi Mu Epsilon Council will have its annual meeting. Also on that day, 
the student presentations will begin. The presentations will continue on Wednesday, August 18. The 
Pi Mu Epsilon banquet will take place that evening, followed by the J. Sutherland Rame lecture. 
This year's Rame lecture will be given by George E. Andrews, of Pennsylvania State University. 
The meetings will conclude on Thursday, August 19, with the final student presentations. 

TRAVEL SUPPORT FOR STUDENT SPEAKERS 

Pi Mu Epsilon will provide travel support for student speakers at the national meeting. If 
a chapter is not represented by a student speaker, Pi Mu Epsilon will provide one-half support 
for a student delegate. Full support is defined to be full round-trip air fare (including ground 
transportation) from the student's school or home to Vancouver, BC, Canada, up to $600. (Delegates 
will receive up to $300.) A student who chooses to drive will receive 25 cents per mile for the round 
trip from school or home to Vancouver, up to $600. (Delegates will receive 12; cents per mile, up to 
$300.) If several students from the same chapter wish to attend, they may share the travel support, 
if they choose to do so. 

The National Council of Pi Mu Epsilon haa approved, on a temporary basis, a more generous 
travel allowance for student speakers at  this year's meeting. The first speaker from a given chapter 
will be eligible for the same travel allowance aa before, but if there is more than one speaker from 
a given chapter, the additional speakers (up to four) will be eligible for an allowance of 20% of 
what the first speaker receives. For example, if the diitance traveled (by car or van) is over 2400 
miles (round trip distance), a single student speaker would receive $600, two student speakers would 
receive $720 (to share in any way they wish), three speakers would share $840, four speakers would 
share $960, and five or more speakers from this single chapter would share $1080. 

The purpoae of this more generous travel allowance is to encourage as many students as pwib le  
to speak at  the Vancouver meeting. If you are a student member of Pi  Mu Epsilon, and won't have 
received a master's degree before May of this year, you are eligible to submit a paper to present at  
the meeting. 

For further information about the meeting and the travel support: 

SEE YOUR PI MU EPSILON ADVISOR 



GLEANINGS F R O M  T H E  C H A P T E R  R E P O R T S  

CONNECTICUT GAMMA (Fairfield University) During the fall semester, the chapter spon- 
sored a "Research in Undergraduate Mathematics Night." Members Laura  Davey and Charles 
Ragozzine spoke about their NSF sponsored summer research at  Mills College/ UGBerkeley and 
Worcester Polytechnic Institute, respectively. In the spring, members of Pi Mu Epsilon assisted the 
Mathematics Department in coordinating the activities for Math Counts, which is a mathematics 
contest for junior high school students. At the annual spring initiation ceremony, twenty new mem- 
bers were inducted and Henry  0. Pollak (former president of the MAA and researcher at Bell 
Labs and currently on faculty at  Columbia) delivered the Pi Mu Epsilon Lecture entitled "Some 
Mathematics of Baseball." The third annual Math Bowl Contest was also held in the spring. Six 
teams of four students competed in a "GE College Bowl" type of competition, in which all of the 
questions were mathematical. During the annual Arts and Sciences Awards Ceremony, three mem- 
bers, J a m e s  Klosowski, Charles Ragozzine, and Margaret  Sweeney received recognition for 
their outstanding performance in mathematics. Each was given a hook in an area of mathematics, 
and a one-year membership in the MAA. 

FLORIDA KAPPA (The University of West Florida) At the induction meeting in December, 
Dr.  Donald  Byrkit spoke on the history of number systems. A total of 17 new members were 
inducted during the year. The chapter worked with the MAA Student Chapter to raise money for 
social events and to sponsor a trip to the Florida Section Meeting of the MAA. Professor J a m e s  
R. Weaver (Faculty Correspondent) and PME chapter president Tracey Polsgrove took two 
vehicles filled with students to the meeting. Shannon P u g h ,  G r e g  Scible, and Jeff Wallace 
gave student talks entitled: "Subdivy, Exploration into a Winning Strategy," "Remarks on the 
Generalized Riemann Integral," and 'The Wondering Mathematician," respectively. The chapter, 
along with the UWF Mathematics Association (Student Chapter of the MAA), helped the Florida 
Association of Professional Engineers with their annual Northwest Florida Math Counts program in 
February. The joint efforts of the PME chapter and the MAA Student Chapter resulted in solving 
the "Vacillating Mathematiciann problem in the College Mathematics Journal. 

KANSAS GAMMA (The Wichita State University) The chapter sponsored several speakers 
during the year. The speakers, and the titles of their talks, were: Dr.  J. Chaudhuri ,  "Materials 
Science and Engineering"; Ms. Lynet te  Bikos, "Careers with a Math Degree"; Dr. W .  D. 
Wallis, "Hadamard Matrices"; and Apurvna  Sheth,  "Vedic Mathematics." There were two group 
presentations during the year. One was "Mathematics in Other Countries" was discussed by Zaheer 
Aziz (Pakistan), Satoshi  K u m e  (Japan), Narua theap  Puangpathumanond (Thailand), Kent  
Rowe (USA, and W e e  M e n g  Tan (Malaysia). (This presentation was repeated at  the annual 
joint meetings of the MAA and the Kansas Association of Teachers of Mathematics.) The other 
group presentation was on "Vedic Mathematics," by Tamim Arif, Supriya Madan ,  and Apurva 
She th .  David  C. Ogden gave a talk on "A Combinatorial Queuing Model Related to the Ballot 
Problemn at  the joint MAA/KATM meeting. In October, the chapter sponsored the showing of 
the movie "Stand and Deliver." During the year, the chapter also provided free help sessions for 
students in courses through Calculus 111. 

MICHIGAN EPSILON (Western Michigan University) Chapter member M a r k  Kus t  presented 
his paper "Singular Value Decay in the Numerical Inversion of the Weierstrass 'Kansform" at the 
national meeting of P i  Mu Epsilon in Orono, Maine. There were several talks on campus during 
the year. Professor George Piranian,  University of Michigan, presented the talk "Geometric 
Meditations on Function Theory." At PME's annual Initiation Banquet, where a total of 32 new 
members were initiated, Dr. T o m  Vidmar,  The Upjohn Company, presented the after dinner talk 
entitled "Statistics: Helping to Improve Productivity Through Laboratory Automation." WMU 
graduate student Hea ther  Jordon  Gavlas presented the talk "Framed." M a r k  K u s t  spoke on 

"Approximation Methods in Tomography." University of Michigan undergraduate student Chery l  
P. G r o o d  presented the talk "Dihedral Rewriteability." Professor R o b e r t  Devaney, Boston 
University, presented two talks: "Chaos, Fractals, and Dynamics," and "The Mathematics Behind 
the Mandelbrot Set." Professor Timothy  Pennings, Hope College, spoke on "Further Insights 
into Dynamical Systems and Chaos." Finally, Michigan State University graduate student Lisa 
Hansen presented a talk entitled "Least Common Divisors and Least Common Multiples of Graphs." 
At its Annual Book Sale, Pi  Mu Epsilon raised $370 to help support chapter activities for the coming 
year. 

MONTANA ALPHA (The University of Montana) Professors R u d y  A. Gideon and M a r y  
Jean B r o d  are the new faculty advisors of-the chapter. The chapter had three meetings dur- 
ing the year. Although the meetings were mostly organizational, several students discussed some 
mathematical topics. 

NEW YORK OMEGA (St. Bonaventure University) The chapter continued its cooperation 
with the SBU Student Chapter of the MAA in sponsoring the Mathematics Forum. This year's 
Forum lectures were: "Some Irrational numbers by an Irrational Person", by Albert  Whi te ,  SBU; 
"On Maximizing the Product of Partitions," by Jeffe Boats ,  SBU student; "Stochastic Calculus and 
the Valuation of Option Contracts," by Larry Lardy ,  Syracuse University; "The Higher Derivative 
Test for Extreme Values," by Chuck Diminme, SBU; "Arrow's Paradox: Why Democracy Does 
Not Exist," by Doug Cashing, SBU; "The Actuarial Profession," by K e r r y  Fitzpatr ick,  Senior 
Actuarial Associate, Aetna Insurance Co.; "Some Mathematics of Computer Graphics," by Dalton 
Hunkins, SBU Department of Computer Science; and "Differential Equations, I Can't Solve Them," 
by H a r r y  Sedinger, SBU. Our third annual celebration of Mathematics Awareness Week included 
the talk by Sedinger, the Pi  Mu Epsilon induction ceremony, and a showing of J o e  Gallian's 
videotape lecture on "The Mathematics of Identification Numbers." 

WISCONSIN DELTA (St. Norbert College) Seven students attended the Pi Mu Epsilon Na- 
tional Meeting at  Orono, Maine: Sandra  Gestl, A m y  Krebsbach,  Mike Lang, Roxann Leise- 
maim,  Linda Mueller, Shawn Volk, and Dave Ward .  Gestl, Krebsbach,  and Lang presented 
papers at the conference. St. Norbert College had the honor of hosting J a i m e  Escalante in Febru- 
ary. Mr .  Escalante addressed the community and also conducted a unique class in order to 
demonstrate some of his teaching techniques to prospective high school teachers. In November, the 
chapter hosted its Sixth Annual Pi Mu Epsilon Regional Undergraduate Mathematics Conference. 
The featured speaker was J. Douglas Faires (Youngstown State University), who spoke on "Some 
Puzzles I have Known," and "How Much Company Will You Have When You Retire?" There 
were 18 student presentations at the conference, including those by SNC students Laura  Donzelli, 
M a r k  Fahey, A m y  Gerri ts ,  M a r k  Geske, Sandra  Gestl, A m y  Krebsbach, Mike Lang, and 
Linda Mueller. Another significant event was the tenth annual SNC High School Math Meet, held 
in conjunction with SNC's math club, Sigma Nu Delta. Also in cooperation with SNA, the chapter 
held the annual Brenda Roebke Volleyball Tournament. The proceeds from the tournament were 
divided between the American Cancer Society and a scholarship fund for SNC students majoring in 
math. In October and February, members of the chapter helped recruit donors for the on-campus 
blood drive. 

ATTENTION FACULTY ADVISORS 

To have your chapter's report published, send copies to Robert M. Woodside, Secretary- 
Treasurer. Department of Mathematics, East Carolina University, Greenville. NC 27858 and to 
Richard L. Poss, Editor, St. Norbert College, De Pere, WI 54115. 
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TWENTIETH ANNUAL 
PI MU EPSILON 

STUDENT CONFERENCE 
MIAMI UNIVERSITY 

OXFORD, OHIO 
Call for student papers and guests 

Friday and Saturday 

October 8 - 9, 1993 

Held in conjunction with 

featuring 

Judah Schwartz 

We invite you to join us. There will be sessions of the 
student conference on Friday evening and Saturday afternoon. 
Free overnight lodging for all students will be arranged with 

Miami students. Each student should bring a sleeping bag. AU 
student guests are invited to a free Friday evening pizza party 
supper, and speakers will be treated to a Saturday noon picnic 

lunch. Talks may be on any topic related to mathematics, 
statistics or computing. We  welcome items ranging from 
expository to research, interesting applications, problems, 

summer employment, etc. Presentation time should be 
fifteen or thirty minutes. 

We need our title, presentation time (15 or 30 min.), 
preferred date ( ~ r i .  or Sat.) and a 50 (approx.) word abstract by 

September 30, 1993. Please send t o  

Professor Milton D. Cox 
Department of Mathematics and Statistics 

Miami University 
Oxford, Ohio 45056 

The Teaching and Learning of Undergraduate Mathematics 

begins 

Friday afternoon, October 8. 

Contact us for more details. 

St. Norbert College 

Eighth Annual 

PIMUEPSILON 

Regional Undergraduate Math Conference 

November 12-13, 1993 

Featured Speaker: Mark Kmsemeyer 

Carleton College 

Sponsored by: St. Norbert College Chapter of IIME 

and 

St. Norbert College ENA Math Club 

The conference will begin on Friday evening and continue through Saturday 
noon. Highlights of the conference will include sessions for student papers and 
two presentations by Professor Krusemeyer, one on Friday evening and one on 
Saturday morning. Anyone interested in undergraduate mathematics is 
welcome to attend. There is no registration fee. 

For information, contact: 

Rick Poss, St. Norbert College 
De Pere, Wl 541 15 
141 4) 337-3198 
e-mail: possrl@sncac.snc.edu 

S N A  



INTERNATIONAL 
TRAVEL! ! ! 

Take part in the Joint Meeting of 

PI M U  EPSILON 

with the 

MAA STUDENT CHAPTERS 

VANCOUVER 

BRITISH COLUMBIA 

CANADA 

August 16-1 9, 1993 

* See page 559 for details. 
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