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ON MUTUAL AND PAIRWISE INDEPENDENCE:
SOME COUNTEREXAMPLES

Anwer Khurshid and Haredo Sahai
University of Exeter and University d Puerto Rico

In elementary probability theory the concepts of pairwise and mutual or
stochastic independence play a useful role. Three eventsA, B, and C, defined
on the same sample space, are said to be pairwise independent if

PANB) = PA)P(B),
PANC) = PA)P(©),
PBNC) = PB)P(C).
The events are said to be completely independent if
P(ANBNC) = P(A)P(B)P(C) .

The eventsare said to be mutually independent if both conditions hold.
One might think that the first relations imply the second, i. e, that pairwise
independenceimplies completeindependence. Generaly, itisalmost alwaystrue
but there are instances where the events are pairwise independent and yet the
second condition does not hold. However, such occurrences are not very
common and it takes some effort to construct a nontrivial natural example. In
fact, Feller (1957, p. 117) has remarked that “... practical examplesof pairwise
independent events that are not mutually independent apparently do not exist."
It was the famous Russian mathematician S. N. Bernstein who first gave an
artificial exampleto illustratesuch a possibility. Similarly, the second condition
does not imply the first, i. e, events which are completely independent are not
necessarily pairwise independent.

The fact that pairwise independence is a strictly weaker condition than
mutual independence is noted with some surprise by most students in a
probability course. The purpose of this noteis to assemblesome exampleswhen
the events are pairwise independent but not completely independent and vice
versa. The examples are readily constructed and can be easily presented in an
elementary probability course.

Pairwise independence does not imply complete independence.

Example 1. Suppose that a regular tetrahedron has one red face, one
green face, one blue face, and its fourth face colored with red, green, and blue
stripes. Toss the tetrahedron and observe the face that appears (on the bottom).
Let A be the event that red appears, B the event that green appears, and C the
event that blue appears. We see that A, B, and C each have probability 1/2.
Furthermore, each of ANB, ANC, and BNC has probability 1/4, since the only
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way that two colors can appear is for the striped face to appear. So, A, B, and
C are pairwise independent. But ANBNC also has probability 1/4, so that A, B,
and C are not completely independent.

Thisexample appearsin [Gnedenko, 1963, p. 62], where credit isgiven
to S. N. Bernstein. It also appearsin may other texts. For example, [Freund,
1973, p. 151] gives a Venn diagram with those probabilities. But most of the
time, "Bernstein's tetrahedron” wears some kind of disguise. Here are some
other examples. We leave it to the reader to figure out the disguises.

la: [Cramér, 1946, p. 162; Lindgren, 1976, p. 46]. Let the sample
spacebe S = {(1,0,0), (0,1,0), (0,0,1)} withall pointsequally likely. LetA
(respectively, B, C) be the event that the first (respectively, second, third)
coordinate isa 1.

Ib: [Goldberg, 1960, p. 111]. In order to maintain quality control in a
manufacturing process, each item undergoes three inspections. Of four unitsin
asample, unit 1 passed only the first inspection, unit 2 passed only the second
inspection, unit 3 passed only the third, and unit 4 passed al three. Select one
of thefour unitsat random. Let A (respectively, B, C) be the event that the unit
passed the first (respectively, second third) inspection.

1e: [Eisen, 1969, p. 49]. Thefollowing four combinations of symbols
for apples, pears, and lemons appear on the face of a slot machine: (g a a),
@ pp),( |, 1),ad@ p 1), each with probability 1/4. LetA (respectively, B,
C) be the event that an apple (respectively, a pear, a lemon) shows up.

Id: [Parzen, 1960, p. 90; Hogg and Tanis, 1988, p. 42]. An urn
contains balls numbered 1to 4. Draw aball at random. LetA be the event that
bal number 1 or 2 is selected, B the event that ball number 1 or 3 is selected,
and C the event that ball number 1 or 4 is selected.

le: [Ash, 1972, p. 204; Subrahmaniam, 1979, p. 109; Berman, 1968, p.
69; Larsen and Marx, 1986, p. 61, Mendenhall, Schaeffer, and Wackerly, 1986,
p. 1091. Suppose that a fair coin is tossed twice. Let A be the event that the
first toss is a head, B the event that the second toss is a head, and C the event
that both tosses yield the same outcome.

Example 2.

Roll two fair dice. Let A be the event of an odd number showing up
onthefirst die, B theevent of an odd number showing up on the second die, and
C the event of an odd tota from the two faces. Each of A, B and C has
probability 1/2 and each of ANB, ANC, and BNC has probability 1/4, so A,
B, and C are pairwise independent. But ANBNC has probability 0, since two
odd numbers have an even sum, so the events are not completely independent.

This exampleappearsin[Mood, Graybill, and Boes, 1974, p. 42; Feller,
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1968, p. 143; Larsen and Marx, 1986, p. 63]. Similar examples based on rolling
two dice appear in several textbooks. We leave to the reader the calculation of
the probabilities.

2a: [Goldberg, 1960, p. 111]. Let A be the event that 6 shows up on
the first die, B the event that 6 shows up on the second die, and C the event-Of,
an odd total.

2b: [Blake, 1979, p. 122]. Let A be the event that 1 shows up on the
first die, B the event that 1. shows up on the second die, and C the event that the
same number shows up on both dice.

2c: [Ash, 1970, p. 28]. LetA bethe event that thefirst die shows a 1,
2, or 3, B the event that the second die shows a 4, 5, or 6, and C the event that
the sumis 7.

Example 3[Feller, 1968, p. 127]. Consider the sample space consisting
of nine triplets: the six permutations of a b and c together with (g a a),
(©, b, b), and (¢, ¢ c), each with probability 1/9. Let A (respectively, B, C) be
the event that the first coordinate ia a (respectively, the second coordinate is b,
the third coordinate is ¢). Each of A, B, and C has probability 1/3 and each of
ANB, ANC, and BNC has probability 1/9, so A, B, and C are pairwise
independent. But ANBNC has probability 1/9 also, so the events are not
completely independent.

Example 4 [Larsen and Marx, 1986, p. 62]. A roulette wheel has 36

numbered slots colored red or black as follows:

red: (1, 2, 3, 4,5, 10, 11, 12, 13, 24, 25, 26, 27, 32, 33, 34, 35, 36)

black: (6, 7, 8, 9, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 28, 29, 30, 31).
Spin the wheel once and observe the number and color of the dot in which the
bal lands. Let A be the event that the dot is red, B the event that the slot has
an even number, and C the event that its number is less than or equal to 18.
Then each of A, B, and C has probability 1/2, and each of ANB, ANC, and
BNC has probability 1/4. But ANBNC has probability 1/9.

Example 5[Geisser and Mantel, 1962, p. 290]. Consider a sphere and
select, randomly and independently, three great circle segments on it. Let A be
the event that segments 1 and 2 intersect, B the event that segments 1 and 3
intersect, and C the event that segments 2 and 3 intersect. The specific
probabilities involved will depend on the lengths of the segments, but whatever
they are, pairwise independenceis inherent in the experiment. If any two of the
three events occur, then one of the segments intersects both of the other two;
intuitively, this increases the chance that the other two segments will intersect -
each other. So, complete independencefails.

Example 6[Geisser and Mantel, 1962, p. 290]. Supposethat three halls
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are distributed independently and at random into two or more urns. LetA bethe
event that balls 1. and 2 are placed in the same urn, B the event that balls 1. and
3are placed in thesame urn, and C the event that balls 2 and 3 are placed in the
same urn. If there are exactly two urns, then we have yet another disguised
example of the Bernstein tetrahedron. If there are exactly three urns, then we
have the same probabilitiesasin Example3. If thereare more than three urns,
then the probabilities are new.

Geisser and Mantel actualy gave a generalized Example 6, where the
number of ballsis n 2 3. Thenweget n(n - 1)/2 events A,, where A;; occurs
if balls i and j are placed in the same urn. Similarly, Bernstein's example has
been generalized to any number of dimensionsin [Lancaster, 19651.

Other examples, not significantly different from those above can be
found in [Neuts, 1973, p. 76; Kreysig, 1970, p. 57; Gir, 1974, p. 33; DeGroot,
1975, p. 42].

Complete independencedoes not imply pairwise independence

Example 1 [Ash, 1970, p. 27].

Suppose that two dice are tossed and let S be the sample space comprising all
ordered pairs{ (4 )) }, 5 j =1, 2,3, 4,5, 6, with a probability of 1/36 assigned
to each point. LetA be the event that the face of thefirst dieis1, 2, or 3; B the
event that the face of the first die is 3, 4, or 5; and C the event that the sum of
the two facesis 9. It is easily verified that PA) = P(B) = 1/2, P(C) = 119,
PANB) = 1/6, PANC) = /36, PBNC) = 112, and PANBNC) = 1/36.
Thus, it follows that A, B, and C are completely independent but not pairwise
independent.

Example 2 [Larsen and Marx, pp. 61-62].
In Example 1, let A be the event that the face of the first dieis 1 or 2; B the
event that the face of the second dieis 3, 4, or 5; and C the event that the sum
of the two faces is 4, 11, or 12. It is readily shown that A, B, and C are
wmpletely independent but not pairwise independent.

Example 3 [Crow, 1957, pp. 716-7171.

An urn contains one red, one blue, one white, two yellow, and three black balls.
A ball is drawn randomly from the urn. Let A be the event that a red, yellow,
or white ball is drawn; B the event that a blue, yellow, or white ball is drawn;
and C the event that a black or white bal is drawn. It is easily shown that
P(A) = P(B) = P(C) = 1/2, P(ANB) = 3/8, PANC) = PBNC) = 1/8, ad
P(ANBNC) = 1/8. Thus, it followsthat A, B, and C are completely independent
but not pairwise independent. Essentially the same example is given in
[Lindgren (1976, p. 48)].
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Example 4 [Subrahmaniam, 1979, p. 110].

In a certain town there are three editions of a daily newspaper: morning (M),
evening (&), and weekend (W). Sup-
pose the probability of a randomly cho-
sen household subscribing to any one of
the editions is illustrated by the Venn
diagram in Figure 1. From the figure,
PM) = .50, P(E) = .80, P(W) = .60,
P(MNE) = 42, PMNW) = 24, PENW)

= .42 and PMNENW) = 24. Thus,
M, E, and Ware wmpletely independent
but not pairwise independent.

Example 5 [Freund, 1962, p.

50].

Suppose the eventsA, B and C and their
respective probabilitiesareillustrated by
the Venn diagramin Figure 2, wherethe
sample space contains 100 equally likely
points and the numbers on the diagram
indicate the number of distinct outcomes
contained in the respective events.
From the figure, P(A) = 1/2, P(B) =
1/4, P(C) = 8/100, PANB) = 1/4,
PANC) = PBNC) = 11100, and
P(AanC) = 1/100. Thus, it follows Figure 2
that A, B, and C are wmpletely indepen-

dent but not pairwise independent.

Example 6 [Goldberg, 1960, p. 112].
A card is selected at random from a standard deck of 52 cards. Let A be me
event that the selected card is a spade or club, B the event that it isa spade, and
C the event that it is the ace of spades or the ace, king, ... , 8 of diamonds. It
is readily verified that A, B, and C arc completely independent but not pairwise
independent.

Example 7 [Mood, Graybill, and Boes, 1974, p. 43].
Consider two events A and B that are not independent and another event C of
probability zero. Then it immediately follows that A, B, and C are wmpletely
independent but not pairwise independent

As suggested by the examples given in this paper, some authors give
only one type of counterexamplewhile othersinclude both types. Furthermore,
most examples can be criticized as "frivolous” in nature, or at least artificial. We
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conclude with two examples which definitely are not frivolous but have
important practical applications.

Example 1 [Geisser and Mantel, 1962, p. 2901.
Let ry5, ria, and ry3 be the pairwise sample correlation coefficients based on
a random sample of n observations from a trivariate nonsingular normal
distribution having a diagonal variance-covariance matrix. Using the methods
of mathematical statistics, it can be proven that the joint density of the sample
correlation coefficients, ry,, ry3, ad ry3 is given by

2 2 2 (n
flrig, 13 r3) = C(M)(1 =iy =3 = ry3 +2rypr13rys)

when 1 - rlz2 - r123 - r223 +2r;pr1373 > 0 and zeroelsewhere. Now, usingthe
considerations of continuity and positive definiteness of the correlation matrix,
it can be shown that the three random variables are not mutually independent.
However, it can be shown directly thet the variables ry,, r13, and ry3 are
pairwise independent.

The above result can be extended to the general case ofp(p - 1)/2
(withp > 3) jointly distributed correlation coefficientswhen a random sample of
n observations is drawn from ap-variate nonsingular normal distribution having
a diagona variance-covariance matrix. The result has an important statistical
application to the effect that it smplifies the evaluation of the variance, in the
null case (when the corresponding population correlations are zero), i. e,

p

p P p )
Yy ¥ a;ri| = L 5 a; Var(ry) .

(=1 j=i+l i=1 j=i+1

=52

Var

Example 2 [Driscoll, 1978, p. 432].
Consider two independent random variablesX and Y each having the rectangular
distribution on the unit interval. Further, define a random variableZ = (X + Y)
(mod 1), i. e

7 = X+Y if 0sX+Ys1
“lx+Y-1 ifl<X+Ys<?2.

Then, using the methods of calculusand analytical probability, it can be shown
that X, Y, and Z are identically distributed and pairwise independent but not
mutually independent.

The above result has an important application in the characterization of
the rectangular distribution. For example, using the methods of advanced
probability, it can be proven that among the absolutely continuous distributions
having the closed unit interval for their support, the rectangular distribution is the
only onesatisfying the above properties[Driscoll, 19781. The result also extends
to intervals other than [0, 1], as well as to discrete rectangular distributions, and
thus provides characterizations for al rectangular distributions.
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Chapter Reports

Professors Rudy Gideon and Mary Jean Brod, faculty advisors of the
MONTANA ALPHA chapter (University of Montana), report that there are thirty
new members and plans for biweekly meetings. Four students presented talks
to the chapter last year:

Dean Risinger—Finiteness and rings of continuous functions

Doug Holsein—Exact sequences of topological spaces

Patricia Olsen—Optimal jury selection

Scott McRae—Andysd's of a heuristicalgorithmfor optimally scheduling
assignments with constraints.

The NEW YORK OMEGA chapter (St. Bonaventure University) held five
meetings and, in cooperation with the MAA student chapter, sponsored the
Mathematics Forum, a series of ten lectures, including one by this year's Frame
Lecturer, George Andrews.

ON THE SOLUTIONSOF a® = b?

Jeffrey D. Bomberger
University d Nebraska—Lincoln

The eguation x¥ = y* was solved by Euler and has been considered
many timessince. However, theequation x* = y¥ isnotaswell known. bt this
paper we will find al pairs (a, b) which satisfy a® = bb.

Let us consider the function f(x) = x*, x > 0. Calculation shows that
f attainsits minimumat x = 1/e and that lim _, . x* = 1. Thusthe graph of
f isas shownin Figure 1. From the
graphwecanseethatife ™€ < y < 1,
then there is a unique pair of red Y
numbers (a, b) that satisfiesa® = b y=x*
= y. Therefore, by allowingy to
vay in the interva (e, 1), it
followsthat thereare infinitely many
pairs (a, b) that satisfy a® = bb.

Let S denote the set of all X
pairs (a, b) with a < b whi¢h satisfy 1o 1
a" =b®. Then it is clear that if
(& b SthenO<a<l/e<b<l Figure 1
Also, sincef is one-to-one on each of
O, lie) and (1/e, 1), if (a b) and
(& c) arein S, then b = c,and if (g b) and (c, b) arein §, then a =¢.

It is not hard to see that (1/4, 1/2) € S. Thus, there isy so that
(1/2y, 1ly) € S. Istherey so that (1/3y, 1/y) € S? If so, then (1/3y)Y% =
', 1/3y) = (1/y)3, ad y3-3y=0. Solving, we get y =32
Replacing 3 with 4 gives y* - 4y = 0 and y = 413,

In generd, if (1/xy, 1fy) € S, wehavey * - xy = 0, from which we

get
LEMVA L Forany x > 1, (¢ #=-D, xWe-1y = g
Proof-. Let a =x*D and b =x "D, Then 0<a<b and since
xa = b,
a8 = (x M-y o (¢ Wex-Vya = bP.

LEMVA 2 For x> 1, let A(x) = x> and B(x) = x /=D Then

0) A and B are continuous on (1, «).
(ii) A isstrictly decreasing and B is dtrictly increasing on (1, ).

571
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i lim _ - A() = e}, and lim,_,,, A() = 0.

Eiv; lim . B(x) = e'l, and lim,_, ., B(x) = 1.

Proof: (i): Since A(x) = exp(~-xInx/(x = 1)) and xInx/(x - 1) is continuouson
(A4, =), thenso isA. Similarly, B iscontinuous on (1, =). Infact, A andB are
infinitely differentiableon (1,0). (ii): Let A(x) =x -1 - Inx. Thenh '/ (x)
=1-1/x>0forx>1. So, hisdrictly increasingon (1, ), andx - 1 - Inx
= h(x) > h(1) = O for dl x > 1 Now, since A'(X) = -h(x)AX)/(x - 1)2 and
A(x) >0, it followsthat A’(x) < 0 for x € (1, ©). The proof thatB’(x) > 0
for x € (1, ») issimilar. Here, we need only show that xInx -(x -1) >0
for al x> 1, which is not difficult. Finaly, (iii) and (iv) follow from
L’Hépital’s rule.

THEOREM: S = { (v -1 x-U-Dy|l<x <o}
Proof: By Lemma 1, we need only show that
SC{@E™*-1) xyUx-Dy|1<y<w}.

Let (a, b) € Sand A(x), B(x) asinLemma2 Then, fromLemma2, A(x) and B(x)
are one-to-onewntinuous functionson (1, ), A(1, %) = (0, e‘l), and B(1, =)
= (e -1.1). Now,sincea € (0, e‘l) and b € (e 1 1) then by the intermedi-
ate value theorem, there exist unique numbersx and z € (1, ) such thatA(x)
=aand B(z) = b. So, (A(x), B(z)) € S, but (A(x), B(x)) € Sby Lemma 1
So, B(z) = B(x). Since B(x) isone-to-oneon (1, =), then z= x. Hence,(a, b)
= (A(x), B(x)) for auniquex < (1, «), completing the proof.

By letting x = n/(n - 1) for integer n > 1, we get an infinite sequence
of rationa solutions (g, b): { ((n - /m)", (n - 1)/n)"'1 },n=234,... The
first four terms of this sequence are (1/4, 1/2), (8/27, 4/9), (811256, 27/64),
(1024/3125, 256/625).

Jeffrey Bomberger is an actuarial science mgjor at the University o
Nebraska—Lincoln. Thispaper was written when he was afirst-year student in
calculus, under the direction d Professor Mohummad Rammaha.

Chapter Report

Professor Paul Eloe reportsfrom the CHIO ZETA chapter (University of
Dayton) that Kristine Fromm and Kristen Toft participated in summer research
programsin 1992, that nine students participated in the Putnam Examination, and
that a Dayton team was entered in the annual mathematical modeling contest.

ELLIPSES AS PROJECTIONS OF CIRCLES
AliR. Amir-Moéz
Texas Tech University

One can study some properties
of an ellipse through the orthogona

projection of circles. Two properties " e '
which are carried through the projection
are quite interesting.
X
%

(i) Tangency is transformed
into tangency.

(i) Areasareal multiplied by
the cosine of the angle between the
plane of the circle and the plane of its

projection. Figure 1

1 TheProjection of aCircle:
Each ellipse can be considered as the ¥
orthogona projection of its principle A
circle. Let Q bea point on the principle
circle of an elipse (Fig. 1). Then the .
perpendicular to QA through Q inter-
sects the ellipse at P. Let the foot of 6 x
the perpendicular be H. We may say
that HP is the projection of HQ. In
order to make this idea clear, we rotate
the principle circle about the x-axis Figure 2
throughan angle 9 such thaicos 9 = b/a;
then the projection of this circle on the xy-planeis the ellipse. A cross section,
with QA being the edge of the plane of the circle, is shown in Figure 2.

Let the equation of the principle circle be

1) X242 =q?,
Then Q has coordinates (X, Y) which satisfy (1). Since
PH b
——_ =cosO = _,
H a

if the coordinatesof Pare (x, y) then we observe that

x:Xandy:EY.
a

Substituting in (1) for X and ¥, we obtain
573
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2
2,8° 2 _ 2
xt 4 —y a
or ) )
X +X =1,
a b2

2 Tangency: We observethat
a tangent line to an elipse at a point P
and the tangent lineto the corresponding
point Q of the principle circle intersect
at a point X which is on thex-axis (Fig.
3). The proof is quite smple. Now
suppose we would like to draw a tan-
gent line to the elipse from any pointL
outside the elipse (Fig. 3). We draw
the perpendicular line to the x-axis
throughL. Then we obtain the point M Figure 3
on this line such that

AN,
N

LN b
—— =cosO = .
MN a
Then the tangent line through M to the circle intersectsthex-axisat K. Theline

KL is tangent to the elipse.

3 Areas. It is well-known
that a projectionof an area (as in Figure

A
2) is equal to the area of the origina
surface multiplied by the cosine of the / \
angle between the two planes. So the B 5
area of the elipse with semi-mgjor axis
a and semi-minor axis b will be \/

A=nazcose=na2(£) = nab. 2
a

4. Hippocrates Theorem: Figure 4
Let ABCD be a sguare inscribed in a
circle. Draw four haf circleswith diametersAB, BD, DC, and CA. We obtain
four crescent-shaped configurationsover thearcs (Fig. 4). The sum of the areas
of these crescent shapes is the same as the area of the square ABCD. The proof
is quite simple and can be found in [1].

Now consider the orthogonal projection of thisconfigurationon a plane
through the lineCB. We shall get an ellipseand four crescent-shapedareas that
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we would like to describe. Each of the
areas is situated between two ellipses;
one of them is the projection of the
circumscribed circle of the square. We
shall look at the outer ellipsein the first w

quadrant. The center M of the circle @ag ) BB
with diameter AB projectsinto M ! the &
D

Al

midpoint of A'B (Fig. 5). The hdf
circle of diameter AB projectsinto half )
of an dlipse. Let the projection of the
circumscribed circle be Figure
1 1
* o+ ) =1

a? b2

Then haf of the mgor axis of the other dlipse will be aﬁ/Z and haf of its
minor axis will be

92 550 = "‘/2—..’1= bﬁ.
2 2 a 2

The set of coordinatesof M is (a/2, a/2). So theset of coordinatesof M'  will

be
f.,.ﬁcose = .‘i,f. .
2°2 2

Consequently, the equation of this ellipseis
x-a2) , @-b2? _
a’p b2
This way the four crescent-shaped areas become four areas the sum of which is
the same as the area of the rectangle, that is, the projectionof the square ABCD.
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PSL(2, 7) 1s SIMPLE, BY COUNTING

Sandra M. Leps
[1linoi s Benedictine College

Proving that PSL(2, 7) is asimple group can be done by the method of
conjugation. This paper will use the more efficient method of counting. The
paper will cover some definitions that arc referred to in the proof and then
address the proof. This method of proof also appliesto A5. | will begin by
defining the group.

SL(2, 7) is the group of 2-by-2 matrices with determinant one with

entries from F,, the integers modulo 7. To find its order, we look at the
following elements, with a, b, ¢, d nonzero entries. There are 6 of the form
-
a )| 6 of the form {‘ 5] and 36 of each of the four forms |0 © ] a0 i
0 d | lc 0 cdl||cd
a b-
-O dJ
for each choice there are 5 ways of choosing ¢ and d (since both are nonzero).
So, the order of SL(2, 7) is 2+6 + 4-36 +5-36 = 336.

The center of a group is

Z(G) = {sEG |sg =gs for dl gEG}.
PSL(2, 7) isthe group SL(2, 7)/Z(SL(2, 7)). To find the order of PSL(2, 7), we

find |Z(SL(2, 7))]. We arc looking for the matrices that commute with all the
elements of SL(2, 7). Since such a matrix commutes with all the elements, in

b b
, and [a 0]. Theentriesaand b in [a ]can be chosen in 36 ways and
(o

Cc

0
particular it commutes'with matrices of the form [g b]’ with a and b not equal

R N
W R

So we know that be = ea for al b, ain F, so (b - ae = 0 from which it
followsthat e= 0. We aso know that ad =db for al a, b, so we have that d

to 0. Thus

or
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c
= 0. Since d = e = 0, any matrix in the center has the form [

c 0 01
also commutes with SO
[0 f ] [1 0]
0 1flc O c 0
10l s o

(O _Oc.
c o |rof

c 0

[——

01
10

or

from which it followsthat f= ¢. Since must havedeterminant 1, ¢? = 1

0 ¢

c
andsoc=1orc=-1=6 (in F;). Also, it iseasy to see that 0 does

(o

indeed commute with &l the elements of SL(2, 7). Hence the order of PSL(2, 7)
is 33612 = 168.
Now we state and prove a theorem.

THEOREM: Let H be a normal subgroup of a finite group G and let x
be in G. If ged( |x|, |G/H|) = 1, then x is in H. ([1], p. 156)

Proof: Let |x| =r, |G/H| =s. Thenx” = e, so |xH | |r because
(xHY = (x NYH = eH. Now, by Lagrange’s Theorem, |xH§I|G/ |, and so
|xH||s. Since |xH ||r and |xH|fs, we have that |xH||gcd(r, 5). Since
ged(r,s) = 1, wehave |xH| =1, and x isin H.

A draightforward but long calculation shows that the elements of
PSL(2, 7) have the following orders:

Order |1|2|3|4|7

Number of elements | 1 | 21 | 56 | 42 | 48

Now we can prove that PSL(2, 7) is smple. If PSL(2, 7) hes a
nontrivial proper subgroup H, then
|H| =2,3,4,6,7,8, 12, 14,21, 24, 28,42, 56, or 84.
We consider different cases.
i) If |H| =7,14,21,28 or 42, then |PSL(2,7y/H | is relatively
prime to 7, and so by the thecorem, H would have to contain all 48
elementsof order 7. Since |A | = 42, that is impossible.
i) If |H| =3,6,12, or 24, then |PSL(2,7)/H | is relatively prime to
3, and so by the theorem, H would have to contain al 56 clements of
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order 3, but |H| < 24.
ii.) If |H| =8, then |PSL(2,7)/H| is relatively prime to 4, and so
t?[/_[ tlhetréeorem H would have to contain all 42 elements of order 4, but
iv.) If |[H| =56, then |PSL(2,7)/H | is relatively prime to both 4 and
7, and so by the theorem, H would have to contain all 90 elements of
orders 4 and 7, but |H| = 56,.
v.) If |H| =84, then |PSL(2,7)/H | isrelatively primeto both 3 and
7, and so by the theorem, H would haveto contain al 104 elements of
orders3 and 7, but |H| = 84,.
vi.) If |H| = 2or4, then |PSL(2,7)/H| = 84 and 42. We know
from the Sylow theorems that any group of order 84 and any group of
order 42 has only one Sylow-7 subgroup, which is therefore normal.
If His normal in PSL(2, 7), then PSL(2, 7)/H has a normal subgroupN g
of order 7. So now we consider the projection homomorphism
y:PSL(2,7) — PSL(Z, T)/H.
w'l (Ny) is a norma subgroup of G and is of order 2-7 or4-7.
However, we have already shown that there does not exist a normal
subgroup of order 14 or 28, so this case also is impossible.

We have examined all possible orders of nontrivial proper normal
subgroups H of PSL(2, 7) and shown that al lead to contradictions. Hence
PSL(2, 7) has no nontrivial proper normal subgroups and is a simple group of
order 168.
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3507! - 1isa big prime. How many digits?

EQUIVALENCE CLASSES IN THE REAL WORLD

James Ramaley
Ziff-Davis Publishing Company

1 Introduction — what does a mathematician do in business?

Perhaps the last two words in the title of this section are superflu-
ous—many people simply wonder what mathematicians do in general without
restricting the question to the "business world". But while | was teaching | was
often asked precisely that question by my students and, at the time, | realy
couldn't answer them with any kind of authority. | knew that there were many
jobs in which a knowledge of elementary statistics was useful. And | even
suspected that one might be able to use some linear algebra or calculus, but aside
from jobs that are viewed as "technical”, | didn't realy have much of a¢lue as
to the rea value of a mathematical education to the business community.

Over the last twenty years in business | have come to realize that the
value of mathematical studies is not specifically in the mastery of certain tools.
Rather, it is that the study of niathematics leads one into a "mathematical”
approach to problem solving that places great emphasis upon precise definitions.
The fact of the matter is that niost people are not skilled in, nor do they
appreciate the importance of, precise definition-making. Yet a mathematician,
almost by instinct, will turn a question of problem-solving into one of problem-
identification.

The matching problem outlined below gives a good example of a
problem that is of great strategic and tactical interest to the publishing industry
and which has been "solved" before many times. However, as you will see, a
mathematician's approach will give a new twist to this old problem.

2. The matching problem.

Recognizing whether or not two things are the same is a theme common
to many parts of mathematics, as well as of human existence. Even the
statement that 1 + 1 = 2 is asimple illustration of this theme, but it has great
consequences in the development of the Peano Postulates for Arithmetic.

The matching 1 am interested in is that of names and addresses. In the
magazine industry the inadvertent entry onto the subscription files of two orders
for the same person is usualy a minor annoyance to the subscriber, but it is a
costly mistake for the company. Not only will the company waste copies by
sending unwanted copies to the subscriber, but the failure to dectect such
duplicates has the undesirable side effect of reducing the total "paid circulation”
of the magazine. Paid circulation is a technically defined term that is used by
advertisers to indicate the number of people who have paid to reccive copies of
the magazine. It is the basis for advertising rates in the magazine and is there-;
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fore of great interest to the advertiser and publisher alike.

Correctly matching names and addresses has many other raniifications.
For example, credit reporting bureaus link together records of transactions such
as credit card payments or loan payments and prepare credit reports requested by
companies looking to extend credit to borrowers. An example that is very
important to direct mail advertisers (magazines themselvesare often sold through
direct mail promotions) has to do with name suppression. If a list of prospects
is rented from an outside source, before the list is mailed one would want to
identify all the prospects on the list who are already subscribers to the magazine
and "suppress' their names from the mailing.

Making an error in the suppression of hamesis not nearly as serious as
erroneously reporting credit information. |n the former case it simply means
than an existing subscriber gets a wasted promotion; in the latter case an
erroneous credit report could result in a costly lawsuit.

But consider the cost of mailing promotions to already subscribing
prospects. The cost of a promotion may be as great as 50 cents per name. It is
not unusual to mail out as many as 1 million pieces in asingle campaign. If as
few as 5%o0f these are already on file, a not uncommon duplication percentage,
some $25,000 will be wasted trying to promote people who already subscribe!

3. The traditional solution.

The common approach to this problem is quite straightforward. For
each name and address record a "matchcode" is defined by extracting portions
of the record in a specific way. Two records having the same matchcode are,
by definition, declared to be duplicates.

For example, a matchcode might be defincd by concatenating the zip
code with the subscriber's last name. Such a simple matchcode would have a
couple of obvious failings. In the first place, any two people having the same
last name actually residing in the same zip code area would be declared
duplicates. A glance in any phone book would indicate that it is, in fact,
relatively common for families to have members with the same surname living
near each other. Another problem conics from the fact that many lists are
constructed in such a way that the last name is not easily extracted. Sometimes
the last name might be first, sometimes it might be last. There might he a suffix
(Pb.D. or J.) or a prefix (Mr. or Ms) that one has to avoid. Several techniques
can help minimize these shortcomings. For example, instead of using the entire
last name, a common trick is to drop all non-initial vowels from the last name
instead. This partially compensates for two of the most common errors in
transcribing names: transposition of characters and the interchange of vowels
within a name. Another idea is to append the first initia of the first name—this
helps distinguish different family members. Sometimes a portion of the address
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isadded too. Clearly any matchcoding scheme can fall prey to two errors— two
different records might give rise to the same maichcode (a type II error, in
statistical terms) or really duplicate records give rise to different matchcodes (a
type | error). It is well-known that it is impossible to minimize both types of
errorssimultaneously. So, the question usually boils down to which type of error
is the more serious in the context. The publisher can decide to use a "tight"
matchcode (one that extracts many characters from each record and requires
matching on all characters) or a "loose"matchcode. A tight matchcode minimizes
making an error in saying that two records are duplicates (when they are not) but
will overlook duplicate records that are not nearly perfect duplicates; a loose
matchcode minimizes the chance of overlooking two duplicate records by
asserting some are equal even when they are not. Aside from the observations
above, matchcodes have an extremely vulnerable shortcoming—they are
hierarchical. That is, in comparing two matchcodes, even a very simple error
early in the hierarchy will cause two match codes to be significantly different.
Two records could be nearly identical, but a mistake in the first letter of the last
names would be fatal.

4. A High Tech Approach.

| like to think of the process of matching to a "search and rescue"
operation. | think of each record as broadcasting a signal that indicates its
presence while a matching procedure picks up these signals and determines (by
a scoring mechanism) whether two records' signals are sufficiently strong to
determine them as duplicates. The signals broadcast are called "tokens" and are
extracts of the subscriber record chosen in a way that they "represent” portions
of the record. For example, a name field might be represented by a first name
token, a middle name token, a last name token, and a set of initials. Thomas J.
Watson might become four tokens. THMS, J, WTSN, TJW. The same concept
could apply to companies: International Business Machines would become
INTRN, BSNSS, MCHNS, IBM. In a high tech approach each record is first
broken into tokens and the tokens are put into an indexed file. Then every
record is again read sequentially and, for each token, every record having a
matching token is selected and put into a pool of matching "candidates'. A
scoring mechanism can be set up that is used to determine whether a potential
match has a sufficiently high score to be declared an actual match. This method
has the advantage of minimizing the chance of missing records which are, in
fact, duplicates (providing the scoring mechanism is good). But there is a
tremendous cost. Clearly there will be many, many instances where one, two,
or even more tokens might match but the records are simple not matches. .
Several techniques could be used to reduce the number of potential matching
records, but still the number of data fetches could overwhelm even a very
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powerful computer.

5 A mathematician's approach.

We have seen two approachesto the matching problem. The matchcode
technique is fast but is very sensitive to variations in the name and address, A
token approach decreases the chance of missing duplicate records but requires
tremendous computer capacity since many records are read hundreds of times.
What would a mathematician do? A mathematician is trained to look for way's
in which a problem can be broken down into smaller problems— hopefully one?
which are simpler and perhaps have even already been solved. Also reasoning
by analogy is a common approach and so one tries to find analogies to prior
experiences. First note that it is possible to think of matching records as i
metric problem; or more generally, as a problem in defining an equivalence
relation whereby two records are "related" if they match. Secondly, it is
important to realize that matching hastwo important components—(1) the searcl
for candidates for matching and (2) a scoring mechanism to declare actual
matches. Considering the two aspects of matching— searching and scoring
—gives a key idea. We want a search procedure that leverages prior search
activities. That is, suppose we had five candidates for matching a given record.
Because we want matching to be an equivalence relation, each of these records
should be a candidate for matching each other. Therefore, when we create i
candidate pool for the "first" of these records we want to use this pool for all
these records simultaneously. This leads to the idea of a "window" of
candidates. Wesort all the records by some criterion that maximizes the chances
that candidates are "near" each other and then open a sliding window that
considers all of the records visible in the window as potential candidates for
matching. The advantage of this view is that records are read only once and are
candidates for matching with all other records in the window. From a processing
standpoint, since each record is read only once the process is linear with the
number of records.

Now that we have a way to locate candidates we still need a scoring
mechanism to declare matches. The scoring mechanism should be symmetric
since the order of comparing two records should be irrelevant. This suggests
some kind of additivity, the simplest being just to add points for matching tokens
from both records. We will declare that two records match if the score exceeds
some predetermined threshold. The easiest way of insuring transitivity issimply
to take the transitive closure of this matching relation—. if a record matches any
member of a family it is defined to be in that family.

Thisidea also has an extremely valuable consequence that considerably
widens its usefulness. A "helper file" is a file which contains some certified
linking field that exists between records within the file. For example, it may be
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possible to obtain a file that contains "certified" variations of a company name
al linked by a single company number. Sometimes these variations are non-
trivial, as in the case of the Scripps Oceanographic Ingtitute—a part of the
University of California at San Diego! If the helper file links these two records
and is merged with the file to be matched, the transitivity of the matching
relation insures that otherwise unmatchable records are, in fact, matched.

Without going into further detail here | just want to recall the point that
an equivalence relation gives rise to equivalence classes so that two records are
"related” (or matched) if they are in the same class. This point is fundamental
to a person who has been trained in mathematics but it would be completely
overlooked by a non-mathematician.

6. Epilogue.

There are many further applications of mathematical thought in the
matching problem. Just to name a couple, consider the probleni of measuring
the accuracy of a matching run. To assert that a given match is either correct
or incorrect requires that you have some underlying scoring method (other than
the niatching program itself). This would be the case if, for example, one has
a certified linkage between records (perhaps you secretly have social security
numbers). The problem, then, is how to define a metric that reflects the
accuracy of the matching run.

Another problem would be how to best define a match "threshold”, a
score that minimizes the changes of erroneously declaring matches and which
simultaneous maximizes the likelihood of correctly declaring matches (it is
mathematically impossible to actually do both, but still one needs to define a
threshold for use).

So, how can one recognize uses of mathematics in the "real world"?
The key is to be able to recognize general structuresand the procedures used to
build and analyze such structures. And while the iniportance of precise
definitions is well understood by a mathematician, it is rarely understood just
how important precision is in understanding the exact nature of a problem before
trying to solve it.

James Ramaley isVice President for Circulation Systems for Ziff-Davis
Publishing, where he has been employed Jor almost twenty years. His Ph. D.
work at the University of New Mexico was in category theory. His career ran
he explained by the genetic influences of his grandfuther (professor at the:
University of Colorado from I898 to 1943) and great-grandfather (printer and
publisher in Minncapohs from AS70 1o 1917).



A THEOREM ON INVERTIBLE MATRICES

Russell Euler
Northwest Missouri State University

By the Cayley-Hamilton Theorem, every square matrix satisfies itg
characteristic equation. Let A be a 2x 2 invertible matrix with real entrieg_
When will A~ satisfy the characteristic equation of A? This note answers the
question. r 1
ap
c d '
pA) = |A -AN| =22 -(rA)A + |A|, where |A| =ad-bc" and’ rA -
a +d (which is caled the trace of A). SinceA isinvertible, |A| = O.

Let p(A) denote the characteristic polynomial of A = The,

THEQREM p(A ™!y = Oifandorlyif |[A| = Lor(trA)A = (1 + |ADI,
Proof. Since p(A) =0,
A’pAa™ = A%p@A™) - |A|p@A)
= AQ(A WY - (@A)A L+ |A|7] - |A][A% - (rA)A + |
This simplifies to give
AZpAa™) =1 - (rA)A +(rA)|A|A - |A 2,
= (1-[AP +(JA] - D(rA)A,
= @-]AD(A + A - (@wA)A).
If pd~Y) = O, theneither [A] = Lor (rA)A ~ (1+|A])].
Conversely, if [A] =1or (rA)A = (1+ |A|)], thenA2p@a 1) = 0
andso pa 1 = O.

COROLLARY. If |A| = -1 and trA =0, then p(A ") = O.
Proof. Since |A] = -1and trA =0, (rA)A = (1+ |A|)] = Oang
so p(A 1) = O from the theorem.
12
1 1]

The restriction tr A = 0 in the corollary is necessary: if A =

-1 2
then |A] = -1, rA =2, and p(d) = A2 - 2A - 1. Also,A-1 = 1land
L J
4 -8
Al = o)
PAT) 4 al®

The question of when a 3x 3 matrix A has an inverse that satisfies the
characteristic equation of A remains open.
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Russell Euler, the author o many analytical and pedagogical papers,
received his Ph. D. degreefrom the University o Missouri—Kansas City. He
is a professor in the department o mathematics and statistics at Northwest
Missouri State University.

Are Proofs Hard?

Hereisan amazing theorem, giving a necessary and sufficient condition
for two numbers to be equal, connecting the operations of addition and
multiplication:

THECREM x =y if and only if xy = (x +y)*/4.

Prove half of the theorem, your choice of which half.

There, was that hard? Now, if you fed like it, prove the other half.
Then see how the theorem would be changed if the last equation had a 2 instead
of a4 in the denominator. Then, if you still fed like it, see what a 2n instead
of a 4 would do, thus proving infinitely many theorems all at once. Then let
n—sc0, Then what? | don't know—mathematicsis endless.

Chapter Report

The Historian of the OHIO XI chapter (Y oungstown State University),
Lori Kaminski produced an eight-page chapter Newsletter, not all of which can
be reproduced here. The winner of the annua calculus competition, and
$50—who says that mathematics does not pay?—was a major in mechanical
engineering, but second place was taken by Patrick DiRusso, a mathematics
major. The P Mu Epsilon T-shirt Sale resulted in twenty-seven purchases.
Among the advantages of preparing a student paper are

A student paper presentation at a national meeting will often draw a

positive reaction from interviewerswhen discussing a resume.
The chapter held a mathematics careers panel discussion at which six alumni
served as panel members. Their occupations are: Vice President of a software
company, Senior Actuarial Analyst at a pension consulting firm, Computer
Anayst for the National Security Agency, Business Relations Specialist for
Electronic Data Systems, Mathematics Instructor at a high school, and graduate,
student in mathematics.



How TO FIND SINES WITHOUT KNOWING ANY

Andrew Cusumano
Great Neck, New Yok

This notedescribesan easily programmable procedurefor approximating
the sine of a given angle, using the double-angle formula for the sine.

Theapproach is to divide the anglein haf enough times until we obtain
an angle small enough to approximate its sine as the angle itself. We can then
work backwards, repeatedly using the double-angle formula, until we have the
sine of the original angle.

3 5
Since sinx = x = % +’;_' - ..., the error in approximating sinx by

x is < x°16. If wewant 10-place accuracy, then we can use the approximation

3
it x3/6 c5-1071) or x< V3-10’10 =~ .0006694. For an angle between

0° and 90°, wewill need no morethank divisionsby 2, where ™2 ¢ .0006694,
ok
so k = 12 will do. Then, since sin2x = 2sinx COSX = 2Si nle - sin’x , we

apply
0 sina,,, = 2sina, 1 = R4

k times, with sina, = a5, where a; is the original angle bisected k times.
The procedure can easily be carried out on non-programmable

calculators without any data entry other than the original angle as long as one

memory location is available to store the current value of sina . It takes only

afew minutesto go from n_f)_ = .0005113 back to .5000000 by applying (1) 10

times. 2

Andrew Cusumano was a mathematics major at C. W. Post College,
graduating in 1976. He is now a software engineer and, besides that, is
interested in sequences, series, and geometry.
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COMPUTER ARITHMETIC ON AN ABACUS

Don Bloomquist, Jr.
Albertson College

That ancient calculating device, the abacus, can be used to do
calculations in base 16, the base in which the contents of computer files are
usudly displayed.

The Chinese version of the

abacus, the suan pan, is divided into
two sections, as indicated in Figure 1 f T f T f
In the lower section there are five beads,

the one-point beads, on each reed. Each
one-point bead on the rightmost
reed—the unit's reed—represents one

unit. In the upper section there are two
beads, the five-point beads, on each
reed. When the suan pan is usad to
represent decimal numbers, each one-
point bead represents ten beads on the reed to its right, and each five-point bead
represents five one-point beads on the same reed. Figure 2 shows the decimal
number 1993 represented on the suan pan.

The suan pan, with its five one-point beads and two five-point beads,
has more beads than it needs for calculating in decimal. (In contrast, the
modern Japanese version of the abacus,
the soroban, has only four one-pointand
one five-point bead on each reed. and
thus has no beadsto spare.) Some num-
bers can be displayed in more than one
way. For example, 10 can be shown in
three different ways: one one-point bead
on the second reed from the right, both
five-point beads on the rightmost reed,
or one five-point beed and the fiveone-  pigure 2. 1993 (decimal)
point beads on the rightmost reed. If
they were used with maximum efficiency, the beads on the units reed could be
used to represent all of the integers from 0 to 15 (25 + 5).

Thus, one reed of a suan pan can represent dl of the digits (O, 1, 2, 3,
4,5,6,7,89, A, B, C,D, E F) used in hexadecimal (base-16) arithmetic. In
order to represent dl numbers in hexadecimal on a suan pan, each one-point
bead on the second reed from the right (thesixteen's reed) must represent sixteen
one-point beads on the unit's reed. Each one-point bead on the third reed from

Figure 1: Suan pan, displaying 0

587
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the right (the 256's reed) represents sixteen one-point beads on the sixteen's
reed. Similarly, each one-point bead on the fourth reed from the right (the
4096's reed) represents sixteen one-point beads on the 256°s reed, and so on.
Starting with the rightmost reed, the value that each one-point bead represents
increases by powers of sixteen.

Zero is displayed on the suan
pan by pushing all beads away from the
middle bar. To display other numbers,
push the appropriate beads toward the
middle bar. For example, to display
1000 (3E8 in hexadecimal), push three
one-point beads and one five-point bead
to the middle bar on the unit's reed.
Then push four one-point and both five-
point beads to the middle bar on the
sixteen's reed to display the E; finally,  Figure 3: 3E8 (hexadecimal)
push three one-point beads on the 256’s reed to the middle bar. See Figure 3 for
this representation, and Figure 4 for the display of D7FC (854012 in decimal).

At times there are two ways of representing hexadecimal numbers on
the suan pan. The digit 5 can be represented by pushing one five-point bead or
five one-point beads to the middle bar. The digit A can be represented by
pushing the two five-point beads to the
center bar or by moving one five-point
and al the one-point beads to the mid-
dle bar.

Toadd two numbers, for exam-
ple 7CE * 217, first display 7CE on the
suan pan. Display E by pushing two
five-point beads and four one-point
beads to the middle bar on the unit's
reed. Next, display C on the sixteen's
reed by pushing two five-point and two
one-point beads to the middle bar.
Lastly, display the 7 on the 256's reed.
To add 217, first add 7 to the unit's
reed. This manipulation cannot be done
immediately because there are not
enough one- and five-point beads to
move to the middle bar. Carrying is
necessary: since 7 = 16 - 9, add 16 by
moving a one-point bead on the six-

Figure 4 D7FC (hexadecimal)

Figure 5. 9E5 (hexadecimal)
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teen's reed to the middle bar. Then subtract 9 from the unit's reed by moving
one five-point and four one-point beads away from the middle bar. Another way
to subtract 9 is to slide both five-point beads on the unit's reed away from the
middle bar (subtracting 10) and then to move one unit bead to the middle bar.
No carrying is needed to add 1 on the
sixteen's reed and 2 on the 256's reed.
The correct sum, 9ES, is now displayed.
See Figures 5 and 6 for the two ways
the result could appear, depending on
which of the two methods described was
used to subtract 9.

Sometimes, as in adding 57 to
4EF, it will be necessary to carry more
thqn one hexadecimal place to the left, Figure 6; Also 9E5 (hexadecimal)
as it is necessary to carry more than one
decimal place in the addition of 57 to 489 in base 10.

Subtraction may be done as easily as addition. With some practice, a
person with a suan pan will be able to do hexadecimal arithmetic much more
quickly than almost anyone who uses pencil and paper; however, computers will
still be faster.

Don Bloomquist, Jr.,, a mathematics major, isin his junior year at the
Albertson College of Idaho. He wrote thispaper during hisfreshman year under
the direction of Dr. L. R. Tanner.

Was Dirichlet Smart?

Even the great mathematicians can make mistakes. As J. W. Dauben
tells us on page 7 of Georg Cantor (Princeton University Press, 1979), Cauchy
once made an assertion equivalent to saying that if 2a converges and if
lim,_ a,/b, =1, then 2b, converges also. Dirichlet, who read critically,
found an example showing that Cauchy was wrong. Can you do as well? We
have all been taught, as Cauchy and Dirichlet were not, that Cauchy's assertion
is true if the series have positive terms, so we know to look first at alternating
series. Even with that hint, it is not all that likely that an average, or even
above-average, student of mathematics would be likely to duplicate Dirichlet’s

accomplishment, which is why Dirichlet’s example is on page 598.



SQUARE-FREE LUCAS PSEUDOPRIMES

Paul S Bruckman
Everett, Washington

The purpose of this paper is to give a condition necessary and sufficient
for al Lucas pseudoprimesto be square-free.
We will begin with some preliminaries. The Fibonacci numbers arc
defined by
F

n+l

=F, +F,n=0,12.;Fy;=0F =1
The sequence {F"};° is called the Fibonacci sequence, after the 13th-century

mathematician Leonardo of Pisa, aso known as Fibonacci. The sequence has
non-negative terms and, for n = 2, is strictly increasing.

The Lucas numbers are defined similarly, but with different initial
values:

Ly =Ly +L,n=01,2.,;Ly=2,L =1.

n+2

The Lucas sequence {L, }f; is named after the 19th-century French ihathemati-
cian Edouard Lucas, whose seminal work [5] generated much of the subsequent
research into the sequences and their generalizations. The segquence has positive
terms and, for n = 1, is strictly increasing.

Ifa=@0+y/5)2adp=(1-y/5)2. then

_ (‘1"-["
n - (1"[3

, L,y =a"+f", n=1,2, ...

Broadly speaking, there are two categories of properties of (and
rel ationshi ps between) the Fibonacci and Lucas numbers: additive and divisibili-
ty. The firgt includes representations of integers as sums (or differences) of
Fibonacci (or Lucas) numbers. The second, as its name implies, includes
representations of integers as products (or ratios) of Fibonacci (or Lucas)
numbers. In this paper, we shall be most concerned with the divisibility
properties.

We ligt below (without derivation) some of the divisibility properties
that we will make frequent use of in this paper. For derivations, see, for
example, |1, 6].

(1) Fy, = F.L

n"n

(2) (F,.F,) = F where (¢, b) denotes the greatest common

(m.n)?

590
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divisor of aand b.
(3) (Fn’ Fn+1) = (Ln’ Ln+1) =1.
@) F, |F, if and only if m|n.

SF F, 1, neven

(5) Ly -1=

L,L n odd.

n+1?

We next define the Fibonacci entry-point. It may be shown that any
integer misadivisor of some element of the Fibonacci sequence. Thisis by no
means a foregone conclusion. Not al integers m divide some element of the
Lucas sequence since 5 divides no Lucas number. (The reason for this is that
the Lucas numbers, modulo 5, are 2, 1, 3, 4, 2, 1, 3, 4, 2, ... ) The smalest

positive index n such that m|F, (where m> 1) is called the Fibonacci entry-
point of min the Fibonacci sequence, and is denoted by Z(m). Other authors
have referred to Z(m) as the "rank of apparition” of m, an odious appellation
brought about by a mistranslation of the French word apparition, which means
"appearance’, not "apparition”, in English. Another more acceptable and
frequently used adternative is "rank of appearance’. To illustrate, since
F,=Fy,=1, F3=2,F,=3, Fs=5, Fg =8, F; =13, wefind Z(2) =3, Z(3)
=4,Z(5) = 5,Z(8) = 6, Z(13) = 7. We may aso verify that Z(4) = 6, Z(6) = 12,
Z(7) = 8,Z(9 =12, Z(10) = 15, Z(11) = 10, Z(12) = 12, and so on.
For al m> 1 we have the following properties:
(6) Z(m)y = n if and only if m |F, and m | F, forall r withl s r s n -1
(thisis actually the definition of Z(m) );
(7) Z(m)|Z(n) if and only if m|n (if and only if F,, |F,, by (4));
(8) m | F,, if and only if Z(m) | n;
n
9 if m= H pie' is the prime-power decomposition of m, then
1=l

10)  Z(m =LCM{Z(p; ) };
(11) if pisany primeand e = 1 any integer, then Z(p ©) = pr(p),
for some integer f with 0 <f < ¢;
(12) i fpisany primewith p = 2 for someinteger € = 1, and if
ZE™ Y = Z(p ), then Z(p ") = p"°Z(p ©) forall r = e +1.
See, for example, [2, 6].
We need one more property which involves(x/p), the Legendre symbol,
defined for odd primesp and integersx relatively prime top as follows. If an
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integer y exists such that y2 = x (modp), we call x a quadratic residue (mod p)
and write (x/p) = 1, otherwise we write (x/p) = -1. The Legendre symbol is also
known as the quadratic character of x (mod p). The final property is
(13) if p=2,5 is prime, then Z(p) | (p - (p/5))-
Since for odd primes = 5
_[1ifp==1 (mod 10)
@) = {—1 if p = %3 (mod 10).
we may restate (13) as
. L Z(p)|(p -1) if p= %1 (mod 10)
fpic2,5 , th ’
P 1S prime, then {Z(p) |(p+1) if p'w 3 (mod 10).
In a 1982 paper [8], H. C. Williams reported that he had verified that,
for pict 2,5,
(14) P21 Fp-isp)
for all primesp < 10°. Although he did not assert that (14) holds for all primes

= 2,5, wewill nevertheless call (14) the"Williams conjecture”. In light of (8),
we may restate it as

(15) Z(p®) I (p - (5/p)) for al primes p = 2, 5.

However, (11) impliesthat Z(p 2y = Z(p) or pZ(p). From (12), we see that (15)
implies that

(16) Z(p*) = pZ(p), for al primesp = 2, 5.

On the other hand, if we assume that (16) holds and if it were true that
pZIFp_(M,), then, using (8), Z(pz) =pZ(p)|(p - (5/p)). Thisisimpossible
since p = (5/p) = p * 1, and cannot be divisible by p. Therefore (16) implies
(14) and we haveshown that (14) and (16) areequivalent. Moreover,Z(Zz) = Z(4)
=6 =2-3=2Z(2). Wecanalsoverify that Z(25)= Z(5%) = 25 = 5-5 = 5Z(5).
Therefore we may restate the Williams conjecture in the slightly stronger form

Z(pz) = pZ(p) for al primesp.

In a 1984 paper [3], J. J. Heed, evidently unaware of Williams' prior
work, verified the conjecture for all p < 10.

The Williams conjecture is related to the study of Wieferich primes and
their generalizations. A Wieferich prime is a prime p that satisfies 2?1 =
1 (mod pz). There are only two Wieferich primes < 6 .10°, namely 1093 and
3511 More generally, prime solutions of afle (mod pz), wherea > 1is
not a multiple of p, are exceedingly rare. Accordingly, we should expect
solutions to the "counter-conjecture" Z(p 2) = Z(p) to bealso very rare. Indeed,
the Williams conjecture states that such solutions are non-existent.

Note that (13) implies p]FP_(S,p), or, equivaently,
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Fp-(5p) = 0 (mod p), for dl primesp= 2, 5.
We can ask if the congruence
(17) F,_(S‘") = 0 (mod n), with (n, 10) =1,

H

might hold for composite values of n, with (5/n) being the Jacobi symbol, the.
generalization of the Legendre symbol to composite n defined by (x/n) =

Hﬂn (x/p). Theanswer isaffirmative. Any composite integer which satisfies

(17) is caled a Fibonacci pseudoprime, or FPP. The first two FPP’s are
323 =17-19 and 377 = 13-29 and it is known that there are infinitely many
[4]-

It is known that Lp = 1 (mod p), holds for all primesp [7]. We can
also ask if there are composite nsuch that L, = 1 (mod n). Again, the answer
is affirmative, and such n are called Lucas pseudoprimes (or LPP's). The first
three LPP's arc 705 = 3-5-47, 2465 = 5-17-29, and 2737 = 7-17-23, and
it is known that there are infinitely many [7]. It isalso known that all LPP's are
odd [7].

All known FPP’s and LPP's are products of distinct primes, and so are
square-free. It is not known if this is true in general, in spite of efforts made to
prove it. Though it will not be proved here either, we will establish that a
slightly weaker version of the Williams conjecture is equivalent to the conjecture
that all LPP's are square-free. (A comparable version may be shown to be
equivalent to the conjecture that all FPP’s are square-free, but we will not prove
that here.) We will attempt to show that

™ Z(p2) = pZ(p) for all primes p
and
**) All LPP’s are square-free

are equivalent.

Suppose (*) is true and that n is a LPP. Also, assume that p2 n for
some prime p. Since all LPP's are odd, p is odd. Since, by definition,
n|(L, - 1), we have p? (L, -1). Let m=(n-1)2. We consider three
Cascs.

Cast 1: n= 1 (mod 4), 5[n.

By (5), L, -1~ 5F,F,.,. Since p=5, p>|F_F_.,. By (3), F, ad
F, ., ae relatively prime, so either pllFm or p* |F, .- Trlat is,p° |F, .o
where 0 = 0 or 1. By (1), Fy,a0 = Fprglpmens ThUus P7IF,, oy, i €
P IF,.1. By (8), Z(p7) [(n £ 1), which implies p|(n £ 1). However, since
pz[n, p|n aso. This is impossible.
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CASE2 n = 3 (mod 4).
By (5), L, -1=1L,L_.,, which implies p?|L,,L,,,;- By ()L Ly.1)
= 1, which impli&eitherpzle or p2|Lm+1. As in Case 1, p2|L,, 9, Which
again implies p* | F,,420- The remaining steps are identical to those in Case

CASE3 n = 5 (mod 20).
Ifp =5, we proceed as in Case 1. If p =5, then 5%|5F  F, ,,,S05|F,_F, .
Proceedingas above, weconcludethat 5| (n + 1). However,5|n also, since5? | n.
Once again, we are led to a contradiction.

Since the three cases are exhaustive, we conclude that (*) implies (**).

Conversely, suppose that (**) is true. Let n be any LPP and suppose
that p|n, wherep is an odd prime. By hypothesis, p?In. By definition,
n|(, - 1). Followingthestepsused toshow that (*) implies (**), wefind that
p|F,, and p?JF,.,. Then Z(p)|(nt1), but Z(p?)[F,,,. Hence,
Z(p 2) = Z(p) for dl primesp which divide some LPP. SinceZ(Zz) = 2Z(2),
we see that all that is needed to complete the proof that (**) implies (*) is the
assertion that dl odd primes p divide some LPP. We will forego the proof of
this assertion here, since it involves conceptsthat arc somewhat more complicat-
ad than intended in the scope of this paper.

So, dl that we have proven is the weaker equivaence

# Z(p?) = pZ(p) for dl primep dividing some LPP,
All LPP’s are square-free.
However, as stated above, () may be replaced by the stronger statement (*).
Based on the empirical evidence, it appears highly likely that (*) and
(**) are true, but the proof of either conjecture is equaly likely to meet with
considerable difficulties.
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Chapter Report

The FLORDA EPSILON chapter (University of South Florida) held
thirteen meetingsduring the 1992-93 academic year, devoted to talks by students,
faculty members, and visitors. A selection of titles is

Off into space

An explanation of Strang’s strange figures

Applied mathematics in engineering

The Euler summation formula

Computer image techniquesin medica imaging

Perfect and perfectly useless numbers

Dynamics for the college student

Careers for mathematics mgjors

Paradoxes in mathematics

Laser sensing of the atmosphere.

In addition, there was a mathematical game party before the Christmas vacation
and the chapter, in collaborationwith the student chapter of the MAA, sponsored
the twice-yearly Hillsborough County Math Bowl competitions, with more then
200 participants in each. Professor Fredric Zerla aso noted that Suzanne
Josephs, the chapter's Outstanding Scholar, completed her university career with
a perfect 4.0 grade-point average.



COUNTING ICE-CREAM FLAVORS TO PROVE AN IDENTITY

James Chew
North CarolinaA & T State University

The identity in question is
0 = n(n +1)
2

How many kindsof double-dippedconescan acustomer order at an ice-
cream parlor that sells n flavorsof ice cream? We will allow two scoops of the

1+2+..+

. . hocolate vanilla
sameflavor but will consider £ thesame as . Let N bethe
vanilla chocolaie

number of different cones.

One line of reasoningis to think of N as being the sum of the number
of double-flavored cones and the number of single-flavored cones, so

N ___(n) +p= n(n -1) +n = nn+1).
2 2 2
The same result comes from thinking that N = total number of possible pairs -
number of duplicated pairs, so
N =n?- (n) —p2_onr-1) _nr+l)
2 2 2

Let us take a different approach, with n= 4 for definiteness. Let A, B,
C, and D be the flavors. There are 4 single-flavored cones: AA, BB, CC, and
DD. Therest are double-flavored. Thereare 3 conesin which A is picked first:
AB, AC, and AD. Next come the 2 cones in which B is picked first; BC and
BD. Finaly, we have the 1 cone in which C is picked first: CD. Hence
N=4+3+24+1.
The argument generalizesto n flavors, so that
N=n+(@-1)+., +2+1

James Chew haslivedinlindonesia, Australia, and Ethiopia, though his
Ph. D. degree isfrom the Virginia Polytechnic Institute and he has been at NC
A&T Statefor thepastfifteen years.
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A REGULAR POLYGON EQUATION
See Chin Woon
Imperial College, London

In analytic geometry, geo-

metrical objects are defined agebra-
icaly by equations. In this note, we
give a polar coordinate equation for
a regular polygon with any number S 0

of sides. 8 1
Let R be the distance from

the center of the polygon to a vertex. 'R

Place the polygon so that its center is

at the origin and a vertex isat(R, 0).

Figure 1

For 9 € [0, 2x), let
9 = 0/ (mod n/n),
So that
9 = 6 + gu/n, with 0 < 6/ < 5/n and 0<qg<2n.
The polygon can be divided into triangleswith different values of g, as
illustrated in Fig. 1 for a hexagon.
Let

¢(q)={ 0 if g is odd _F aF

1if g is even.
The function may also be defined in
asingle equation as ¢(g) =2[q/2] -

q+1oras ¢(g) = (-7 + 2. ol
In Fig. 2, if g is odd, then
00 =cos9 so win
OP
oP - R cosm/n 0
,0059' Figure2
If qiseven, o~ =cos(n/n - 0'),
oQ
o)
op! = Roosst/nl
cos(/n - 6')
The two equations for OP and OP’/ may be combined into
Rcos n/n

r =

cos (¢(g)m/n + (-1)*@0’))

597
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Thisgivesthefollowingsingle polar coordinateequationfor the regular polygon:

R cosmt/n .
cos (¢p(g)nt/n + (-—1)“’(‘1) (® - gn/n))

r =

As n— o this equation becomes r = R, asit should.

See Chin Woon a member o theClassd 1994 atImperial College. He
says that he has sometimesfelt that some d the concepts in mathematics seem
really ahead d their time.

Yes, He Was

Dirichlet said, let
a, = L) " b, = Y 1+ £ .
n Vn Vn

Then it is clear that a,/b, approacheslas n—w,buta - b, =-1-1/2 -
1/3 = ..., which diverges. Thus, not both 2a, and 25, can converge.

Chapter Reports

Professor Joan Wyzkoski Weiss reports that CONNECTI CUT GAMMA
(Fairfield University) had twenty-three new initiatesin the spring. Members of
the chapter assisted in coordinatingthe activitiesfor Math Counts, a mathematics
contest for junior high school students.

MASSACHUSETTS GAMMA (Bridgewater State College) sponsored a
colloguium, "Aspects of real-time object-oriented systems' by John McNulty of
the MITRE Corporation. Vice-president Keith Desrosiers also reports that the
chapter's advisor, Professor Thomas E. Moore, was awarded the MAA’s
Northeastern Section award for distinguished teaching.

SOME PARTITIONS OF THE INTEGERS

Joseph M. Moser and Genoveno Lopez
San Diego State University

Let m be an arbitrary positive integer. The congruence relation,=
modulo m, on the set Z of all integersis defined by i
x =y (modm) if and only if x -y = fen for some integer m.

The congruence relation is an equivalence relation with equivalence classes
{x+km|k€Z}, x=0,1,..m-1. It is likdy that other equivalence
relationson the set Z are not well known. Wewould like to present a few more
equivalence classes on Z which may be useful as exercisesor examples.
Firdt, for afixed integer k, define R, by
xR,y if and only if x2? +hx =y? +ky.
Itiseasy toshow that R is an equivalencerelation which partitionsthe integers
into an infinite number of classes, {x, -(x +K) }.
Next, let i = /-1, and define R; by
xR;y ifandonlyif i* =i7.
It again is easy to show that R; is an equivalencerelation which partitions the
integers into four equivalenceclasses. Also, R; = R,, whenm = 4.
Let us define R, by
xR_y if and only if eZmm = gZnyim,
It is not difficult to seethat R, = R,,, where R,, is as defined above.
Now, let us define Ry, by
X

sin—|.

x R,y if and only if
m

s JC
sin2 | =
m

It is easy to show that R, is an equivalence relation which partitions the
integers into k equivalence classes, where m =2k or m=2k -1. For
example, when m = 5, the equivalence classes are

{0, £5, £10, #15, ...}, {%1, 24, 26, 9, ...}, {*2, +3, +7, ¥8, ..}
Finaly, let us define R* by x R*y if and only if

(-1)["'/"'](1 _ [1-]) . 1 +(—1)[}'/m +1}

m m 2

m m 2

- (_1)[x/m](i - [i]) L1+ (-nylem +1]

where [Z] is the greatest integer in z. It is easy to show that R*® is an
equivalence relation. The partition of the integersis

599
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{x = mk|k€E Z},

{x =1+2mk|k€ Z}U{x = @m - 1) + 2mk | k € Z},

{x =2 +2mk k€ Z}U{x = (2m - 2) + 2mk | kE Z}, ...
{x=m-1+2mk|k€Z}U{x =(2m-m +1) +2mk |kE Z}.

Professors Moser and Lopez earned Ph. D. degrees from, respectively,
. Louis U. and UCLA before joining SDSU.

Chapter Reports

At the OHI0 NU chapter (University of Akron), nineteen new members
were inducted in April and thirty-five awards were made, including seventeen
memberships in various mathematical organizations and thirteen scholarships.

One of the new initiates of the MARYLAND DELTA chapter (Hood
College) has an interdisciplinary mgor in the politica economy of the third
world. Theannual Pi Mu Epsilon Lecture was given by Dr. Lida K. Barrett, on
"Emmy Noether and Grace Chisholm Y oung: two women mathematiciansof this
century".

A Steeply Puzzling Question

Does anyone, anywhere, know why m is alwaysand invariably used to
denote the slope of a line? If so, many readers of the Journal would like to
know as well,

NON-EXISTENCE OF CERTAIN UNITARY PERFECT NUMBERS

Jennifer DeBoer
Michigan Technological University

Let N be a podtive integer. The unitary divisors of N are al the
integersd such that d [N and (d, N/d) =1. A positive integer N is unitary
perfect when the sum of its unitary divisorsis 2V,

We use o*(N) to denote the sum of the unitary divisors of N. It can

be easily shown that if N = pla‘pzaz...p;", where py, ... ,p; are distinct primes,
then

* ay a L
ON) = (py '+ Py + D)lpy + D)
Therefore, N is unitary perfect if and only if
a a
o'®) Pl Pt
5 " -

P Py

As Guy [2] pointed out, any unitary perfect number must be even.
Subbarao and Warren [4] proved that the first four unitary perfect numbersare
(A) 6=2-3,60=22-3-5,90 =2-3%5, and 87360 =2%-3:5-7-13
Wall [5] has shown that

218.3.54.7-11-13+19-37-79-109 -157 313

is the fifth unitary perfect number. Furthermore, Graham [1] has shown that the
only three unitary perfect numbers of the form 2™s, where s is odd and
squarefree, are the first, second, and fourth numbersin (A).

In this paper, we will look at the third unitary perfect number and show
that it is the only one of the form 2732s.

For a given m, there is a simple procedure to find out if there is a
unitary perfect number of the form 232%s.. For example, suppose m = 1. Then
we want

2'+13410%) .,

or

This cannot equal 2 unless there is some factor p; = 5 in the denominator to

601
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cancel the 5 in the numerator. Therefore, 5 |s. Onwriting s = 55y, we get
o'(s
56 0 () =9

33 s,
This is true when s; = 1, so we see that 2:3%:5 s unitary perfect.
However, this does not work for every m. For example, m = 2 does not
yield an unitary perfect number of the form 2™ -32.5, for in the product
52523
22 8¢ 5
thereis no way to cancel out both factorsof 5 in the numerator with a squarefree
S.

As we see, a number N cannot be unitary perfect if 5|(2™ +1) or if
thereexists p; |s suchthat 5| (p; +1). Inaddition, since s issquarefree, s must
not be divisible by the squares of any odd primes.

For another example,

32 2.5 2.3

PRI
cannot equal 2 because there are three factors of 3 in the humerator, and the
highest power of 3 in the denominator is 2. Therefore, if 32|(2™ + 1), then N
is not unitary perfect. Finaly, suppose m =5. Then

3:11 2+5 2:3 23.3
25 32 5 11

cannot equal 2, again because there are too many factors of 3 in the numerator.
So, if one of the following cases holds, then 2™ -32.5 cannot be unitary
perfect:

1) 32| @™ +1).

) 3](@2™ +1) and thereexists p; |s such that 3|(p; + 1).

&) 5|(2™ +1) or thereexists p; |s such that 5[(p; +1).

@ there exists p; |s such that p, + 1 is divisible by the square of an odd
prime.

(5) there exists p;|s and p; |s such that 3 |(p; + 1) and 3 lp; +1).
Now we aways have 54s since 5](32 +1). For the remainder of this

paper, we will write N = 2™-3“-5-s, where s is such that(s,3) = (s5) = 1,

and we will let s =p,p,...p;, Where py, ...,p, are distinct primes. If N is

unitary perfect, then
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2m+14P1 %1 P+l
— = 2.

2 3 P Py
Furthermore, if any of criteria (1) through (5) held, then N cannot be unitary
perfect.

We will use criteria (1) through (5) to establish the result in-ail-cases
except m = 0 (mod 8).

LEMMA 1. K m=3(mod6), then 2”:3%-5-s cannot be unitary

perfect.

Proof. If m= 3 (mod 6), then 9| (2™ +1). Thuswe may apply case
-

LEMMA 2. If m=5 (mod6), then 2™-32:5-s cannot be unitary
perfect.

Proof. Suppose m = 5 (mod 6), Then 2™ & 5 (mod 9), s02™ + 1=
6 (mod9), and 3|(2™ +1). Also, a = (2™ +1)/3 =2 m -1 (mod3). Now a
has at least one prime divisor pm -1 (mod 3), for if al primedivisorsof a are
= 1 (mod 3),then a= 1 (mod 3). Thus, 3](p + 1). This meets case (2).

LEMMA 3. If m=1(mod6) and m> 1, then 2™+3%-5+s cannot be
unitary perfect.

Proof. Let M = 1 (mod 6). Then 2” m 2 (mod 9), so 3| (2™ + 1), and
2™ +1)3 =1 (mod 3). Furthermore, 2™ + 1= 1(mod8), and(2™ +1)/3 =
3 (mod 8).

We may assume that every prime divisor p of (2" +1)/3 has
p = 1 (mod 3); otherwise, criterion (2) is satisfied. If p[(2™ +1)/3 then
2™ w 1 (modp); consequently, 264*2 m -2 (modp), where m = 6a +1.

We now seethat x = 2>**1 jsasolutionof x2? = -2 (modp). A result
from quadratic residuetheory tells usthat this congruence is solvableif and only
if p=1or3(mod8). Thus every prime divisor of (2™ +1)/3 satisfies
p=21lor 3 (mod8).

Now (" +1)/3 =p;..p,=3(mod8), p;=21or3(mod8), and
p; = 1 (mod 3) forevery i. Theremust beat least one i suchthatp; = 3 (mod 8).
Then p,; + 1= 4 (mod 8), and (p; + 1)/4 = 2 (mod 3). Therefore, there exists
jsuch thatpj|(p,- +1) and p; = 2= -1 (mod 3). But 3|(p; +1) and we noted
previously that 3| (2™ +1). Thisagain meetscase (2), so 2™ -32-5 -5 cannot be
unitary perfect.

LEMMA 4. If m = 2 (mod 4), then 2™ -3%+5 »s cannot be unitary perfect.
Proof. Suppose m=2(mod4). Then 2™ = -1(mod5) and
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5|(@2™ +1). Thisis case (3).

LEMMAS. If m = 4 (mod 8), then 2™ +32.5 s cannot be unitary perfect.

Proof. Let m = 4(mod8). Then 2™ = -1 (mod 17), 17 | (2™ + 1),
and so 17]|s. However, 17 +1 = 18, which is case (4).

From theselemmas, weseethat if 2™ 3.5 is unitary perfect, thenm =
0 (mod 8). The proof for this case requires a different technique. To begin
with, we will show that there exists at least one Mersenne prime p; such that
p;|s. Notethat 2™ +1= 2 (mod 3), and there exists a unique p; | (2™ + 1)
such that p; = -1 (mod 3). At least one such term is needed to cancel out one
of the factors of 3, but two such numbers would meet 5 and violate our
conditions. The other primes p,, ... ,p; are = 1 (mod 3). Let p; be the smallest
primein py,..,p,. Then p; + 1is not divisibleby any p; in {py, .., Pi}, SO
p; +1=2" for some integer n. Therefore p; is a Mersenne prime.

Now, we will look at "chains' of prime divisorsof s. To explain this
concept, we examine the unitary perfect number 26.3.5.7.13, (This is not
germaneto our main theorem, but it is a helpful example.) The Mersenne prime
divisors of this number are 3 and 7. First, we look for a prime p/|s such that
3|(p +1). By inspection, we see that this number is S. Furthermore,
S| (26 + 1), completing the chain. If 5 did not divide 2% +1, then we would
look for another prime p, | s such that 5{(p, + 1). The"chain" would continue
in thisway until we reached a prime that did divide 26 + 1. Thus, theelements
inthischainare 3 and 5. Next, we consider the chain beginning with the same
prime 7. Because 7|(13 +1) and 13}(26 + 1), the elementsin this chain are
7 and 13. (Note aso that if either of our Mersenne primes had divided 26 41,
that chain would have contained only the single prime.)

More formally, there is a set of Mersenne primes 4, ... ,g; that divide
s. Each g; beginsa chain of primes Ry(g)), .. ,R(q;), whereq; |(Ry(g;) + 1),
R,(9)|(R,.1(g;) +1) for every a such that 1sasj-1, and, finaly,
Ri(q;) |(2™ +1). The primesfound in these chains, in addition to p;, account
for every primethat dividess. Somefactors may be repested; for example, if433 s,
the Mersenne primes 7 and 31 both lead up to 433, since 7|(433 +1) and
31{(433 +1). Fromthispoint, wewill let Q; = q;R;(4;)Ry(q;) ... R(q;), or the
product of all the primes in the chain beginning with g; If N is unitary perfect,

then . " -
@ AR 10@) @, oM

7 3 P QL Q N

To completethe proof, we will show that (B) does not happenwhenm = 0 (mod 8).
First, we may assume that m = 8, so

Second, we will look a p,, which is = 2 (mod 3). We may write m = 8b.

Then, as p; [(2" +1), 2% = -1 (mod p;). Thus 2'%® = 1 (mod p;). This
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2" +1 < 257

3%
showsthat the order of 2 (mod p,) is16. Therefore, 16| (p; - 1). (Notethatp - 1
is the order of Z, and that the order of 25 must divide p -1) Now, witha

little arithmetic, one can see that the smallest prime p such that p = 2 (mod 3),
p = 1(mod 16), and p + 1 has odd squarefree part is 113. Therefore,

pr*1 < 114
P 113
Finally, we will look at the terms contributed by each Q ‘. Thisis a product of
the form

g+1lp+1
g P

where each numerator is divisibleby the previous denominator. The product is
largest if p;,; +1=2p; for every i. Then the product is at most
g+l 2 4q9-2

©
g 29-149-3
Now an easy induction shows that the nth partial product of (C) is
2nq + 2[1
2q-@ -1
Thus
o©Q . tim _2'g+2" _g+!

Q rowyg-27+1 4-1
where Q isany @;.
Remember that g = 3. The next two Mersenne primes are 7 and 31,
S0

0'@) '@ _832 _416

0 0, 630 315
To find the upper bound for the contribution of the Mersenne primes > 31, we
will suppose that every odd power of 2 yieldsa Mersenne prime. Then the next
Mersenne primeis 127, and
o) o'@s) 0°@)  _ 64 156 1024

Qs A 63 255 1023
This is bounded by the product obtained by replacing each numerator with 4
times the previous denominator, so is
64 252 1004
E) € e s
63 251 1003
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It is easy to show that the nth partial product of (E) is
4"~1.64 64

64 - @ 24a T +1)  64-(1+4t e wah

On letting n tend to infinity, we get
64 _ 48

B4 -43 47

Now we are ready to finish the proof by noting that
o*N) < 257 4 114 4 16 48 _ 4 g6... < 2.

N 256 3 113 3 15 84

This contradicts (B). Therefore, there are no unitary perfect numbersof the form
27.32.5+s, when m> 1.
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SURPRISE! AN IMPROPER INTEGRAL

Howard B Lambert
East Texas State University

Computer mathematics packages, useful as they are, must be treated in
the same way as pocket cal culators. whenever something appears on the display
screen, the user should ask, "Is the answer reasonable?’ (For that matter, the
same question could profitably be asked after many paper-and-pencil calcul ations
aswell.)

Some packages can, for some functions £, find in closed form the
antiderivative F. When asked for the exact value of { ° fe)dx, they will return
F(b) - F(a). They can also approximate the va ue“us ng formulas, such as
Simpson’s Rule, that do not depend on the antiderivative.

As an example, Derive (version 1.62), asked for the exact value of

fe)dx with fix) = 1/(30052x +1), gave 0. Thisis obviously wrong since

fx) > 0 on [0, m]. When asked for an approximeation, the programgave a value
of 1.57079.

When asked for the antiderivative of f, the answer was

F(x) = (112)arctan((1/2)tanXx).

Sure enough, F(x) - F(0) = 0, and afew minutes” work with pencil and paper
shows that F/(x) = f(x).

So what went wrong? Let uslook at oneway of stating the Fundamen-
tal Theorem of Calculus:

If f(x) is continuouson [a, b] thenf has an antiderivative G defined by

G = f * Reyar

and if H is any antiderivative off on [a,ab] then G - H isaconstant on[a, b
and

[ feyae = H®) - Hea)

For G and H to be antiderivatives, they must have antiderivatives on
[a, b] and are thus continuous there. In the example, f is continuous on[0, 7]
but Fis not. Thus Fis not an antiderivative on the entire interval [a, b] and

Cfmot be used as the function H to evaluate f“ fx)dx.
. 0

If we begin with F(x) = (1/2) arctan((1/2) tanx), since F is undefined
at mf2 we have that

PAES = f = s

3cos’x + 1

607
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is not defined at &/2 and thus is discontinuous. (The discontinuity, of course,
is removable.)

Surprise!  We have an improper integral. To evaluate it, we have
: t . H
J;)nﬂx)dx = llmt_m/z-ﬁ]f(x)dx + hmt_m/z*J; fx)dx
£ J
Ol . F@E) []

=lim, .- M, xn

= F() - F(0) - (lim,_, ., FO - limt_mfz-F(t))
= F(x) - F(0) - (-n/4 - n/4) = m/2.

Note that lim, . F() -

lim, .- F(f) is the jump of F(x) a
x=n2. y=G

If we ask the computer to draw
the graphs of F(x)} and the continuous x
antiderivative G(x) = (’)‘ flHydt we get ®
Figures1 and 2. Onany closed interva
where both are continuous their values
differ at most by a constant and they
have the same shape. If we define a Figure 1
new function F* by

F(x) if 0=sx<nf2
F*) =] lim,_,_, F(x) if x=n/2
F(x)-J ifn2<xsmn
where Jis the jump in Fat /2, then

F* is a continuous antiderivative of f
and in the example is equa to G. It

follows that fo" f)dx = F*(@) - F*(0)
= F(x) = J - F(0) = /2. An updated X

version of Derive (2.06) gives the anti- /‘

derivative off as
1

.larctan fanx) ., X - — arctan(tan x),
2 2 2 2

y=F(

. o Figure 2
whose only discontinuities are remov- &

able. The discontinuities of (1/2)arctan((1/2)tanx) are smoothed out by
x/2 - (1/2)arctan(tan x), which has a jump at odd multiples of n/2.
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Other programsgivedifferent antiderivatives. A version of Maple gives
; arctan(Ztan \/— ) arctan(Ztan \/_ )

discontinuous at (2k + 1)m; a version of Mathematica

—%arctan(Z cotx),

disconti nuous at kr; and another version of Mathematica
_ln(l + 3(cos2x - isin2x)) - _.ln(3 + cos2x - isin2x)),

discontinuous at (2k + 1)m/2.

The proper rephrasing of the Fundamental Theorem of Calculus for a
functionf with a piecewise antiderivative, continuousexcept for jumps, isleft for
the reader.

So, when using the computer to find a definite integral, we should ask
for both the exact answer and the approximate answer. The program uses
different methods to find them, so if they agree we should feel confident with
the result. If they do not agree, then the antiderivative should be examined
closdly.

Howard Lambert isa graduate d Texas Tech University. 1n 1992, he
received a Teaching Excellence Award from the East Texas State University
chapter o the Texas Association d College Teachers.

Pin Prices Going Up

The cost of a P Mu Epsilon Pin will increase from $8 to $12 at
midnight, June 30,1994. Those of you who have lost yoursand need a replace-
ment or who are buying quantities of pins for their investment value are thus
advised to act soon. Pins are available from the Secretary-Treasurer, Professor
Robert M. Woodside, Department of Mathematics* East Carolina University,
Greenville, North Carolina 27858.



USING POWER SERIES TO COMPLETE THE
BASIC INTEGRATION FORMULA

Margaret Webb
Penn State Universy, New Kensington

Recently [1], Schaumberger used the mean-valuetheorem to show that

lim ,,_,_lf x"dx = J
In this note we will use power series to obtain the same result. We have

bn+1 _ an+l

n—-1

b
lim,_, J‘ x"dy = lim
a n+l

) e(n+1)lnb _e(n+1)lna
= lim

n—-1 n+1

fim, .y 5": [ (s D) - (0 +2lna)"]

k=2 k!

lim, ., [mb ~tna* fj (n+ 1')]"1.((1“19)" - (lna)")]

Inb -Ina = fb.d_x..

The interchange of limit and summation is justified by the uniform
convergence of the series.
Reference

1. N. Schaumberger, Using the mean vaue theorem to complete the basic
integration formula, this Journal 9 (1991), 226-227

The author prepared this paper under the supervision d Professor
Javier Gomez-Calderon whileshe wasafreshman at Penn State University—New
Kensington campus.
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EVALUATING A DEFINITE INTEGRAL USING PROBABILITY

M. A. Khan
Research Design and Standards Organisation
Lucknow, India

We shall show that

1 !
[ xra -xrar - __re
0 p+q+1)
The integral is known as Euler’s Integral (see, for example[1], {2]). It
is interesting that it can be evaluated by
using a probabilistic argument.

Let us select r +q random mex a

numbersfrom the interval [0, 1] and call r-1as qb's
them ay, @y, .. a,, by, by, . b,. What | i i
is the probability that a; < b; for dl i 0 X 1
and j7 We will answer the quesnon in
two ways.

First, consider the(r +Q)!
ways of arranging the r + q numbers. Figure 1

If we are to have a; < b;, then the as
must come first. Thus, the first number may be chosen in r ways, the second in
r = 1, and so on until the last of the as is selected. Then the first of the bs may
be chosen in g ways, the second in g - 1 ways, and so on. There are thenr! ¢!
ways to have the numbers appear in the desired fashion, and so the probahility
a;<b; foral iandjis 1%
.9

Second, considerthe location of
the largest of theason [0, 1]. Suppose
it is betweenx and dx, which has proba
bility dx. (See Figure 1) Then, if we maxa,  maxb,
are to have a, < b,, dl of the bs must p-lasl q-lbs= rc's |
be greater than x, and the probability of l) X Y 1
thisis (1 - x)?. Also, the other r - 1
as mugt be less than x, and the probabil-
ity of thisis x”~!. Finaly, the largest
of the as may be selected in r ways, so Figure 2
the probability of a suitablearrangement
with the largest of the as between x and dv is x" ! rdx (1 -x)9. The total
probability is obtained by integrating over dl possible values of v, and thus is

611
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1
fo rx™ 11 - x)7dx.

Since the probability is the same no matter which method we use to find it, we
have

flrx'-l(l - x)7dx = rt g! )
0 (r +9)!
Putting r = p + 1, we have the result.
The argument may be general-
ized to any number of sets. For exam-
ple, with threesets of numbers, {a, ..., a ),
bys...,bgs €45, c,}, the probability

maxa, maxb, ~ maxc,

a's -y ‘.
that a,<b, <c, for al ik is by —P-! | Qibs r-1°9,

X y 2
considering arrangements, __P' 9! 0
P +q+r)
On the other hand (see Figure 2) it is
.” pxP7lq(y -x)77 1 (1 - yY dxdy. Figure 3
OSXSysl

The integral may be put in various other forms by change of variables. One of
these forms, known as Dirichlet’s Integral, is

fff xp-lyq—lzr—ldxdydz _-Di@-n'@-1)
xy,zz0 (p+q+r)'

x+ty+zs ] )
This result can be obtained on similar lines by a slight modification of the
number line (see Figure 3). The details are left to the reader.

References

1. Spiegel, Murray R, Theory and Problems of Advanced Calculus, McGraw-
Hill, Singapore, 1981.

2. Srivastava, R S. L., Engineering Mathematics, vol. 1, Tata McGraw-Hill,
New Delhi, 1980.

M. A. Khan has a degree in electrical engineering and is presently
Deputy Director of RDSO, Lucknow. Besides mathematics, his interests include
contract bridge.

LETTER TO THE EDITOR

Dear Professor Poss,

| am sending here a brief followup to my article "Fractorial!" which
appeared in the Fall 1992 issue of the Journal. Even when | had finished it |
was troubled by what is a very cumbersome development to get from Definition
3, the definition of fractorial, to Theorems 1 and 2. | have simplified the whole
thing greatly by slightly reformulating the definition of fractorial so that now the
results of Theorems 1 and 2 follow in a very straightforward manner.

DEFINITION 3. a!, = a(a - b)(a - 2b) ...(a - kb), where a and b are
positivereal numbers, a 2 b, and kisanatural numbersuchthatk < a/b's k + 1,
sothat 0 <a -kb s b.

THEOREM. For al natural numbers a, b, ¢, and 4, the number, n, of
d-~1
factors in the fractorial expression (”/C)!(b/d) isgiven by n = %—le +1.

Proof. Fromk<a/b<k+1 weget0<a-kb=<b,orlsa-#kb<
b +1. Replace a with ad and b with bc to get 1= ad -kbc<bc+1.

Dividing by bc gives 1/bc = ad/bc - k < + 1/bc, so
k < ad/bc - 1/bc < k + 1.

Since n= k t 1, the result follows.

Sincerely yours,

Nataniel Greene
Y eshiva University

New Giant Twin Primes

4650828-1001 -10%4%° + 1,

Questions for the reader: 1. Do they add to our store of mathematical
knowledge? 2. Can we trust the computer that calculated them? If your
answers are, respectively, "Not much" and "Not necessarily" then 3. Why were
they included here and why did you read about them?
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M athacr ostics

Solution to Mathacrostic 36, by Charlotte Maines, (Spring, 1993).

Words:
A. Monte Carlo method P. Hooton
B. abstract space Q. interface
C. rheogtat R. Noether
D. venetian white S. gentes
E. inappetent T. servomechanism
F. Nathan U. folium of Descartes
G. Sylvester's dialytic method V. anthotaxy
H. hones W. lenten
I. imaginary circle X. lethe
J. nephews Y. annotate
K. batch Z. point of osculation
L. requiescat a athanor
M. objects b. rule of false position
N. trident of Newton c. two-throw
O. trgectories

Author and title: Marvin Shinbrot, Things Fall Apart,

Quotation: From the seventeenth century to the nineteenth, the heart of
al physicsand much of mathematics aswell was Newton's threelaws of motion:
a body not subject to external force remainsat rest or moveswith constant speed
in astraight line, theaccel erationof an object os proportiona to the forces acting
on it, and to every action there is an equal and opposite reaction.

Solvers:  THOMAS BANCHOFF, Brown University, JEANETTE
BICKLEY,St. LouisCommunity College—Meramec, CHARLESR. DIMINNIE,
St. Bonaventure University, VICTOR G. FESER, University of Mary, ROBERT
FORSBERG, Lexington, Massachusetts, META HARRSEN, Durham, North
Carolina, THEODOR KAUFMAN, Brooklyn, New York, HENRY S
LIEBERMAN, Waban, Massachusetts, DON PFAFF, University of Nevada,
Reno, STEPHANIE SLOY AN, Georgian Court College

Mathacrostic 37, proposed by PATTI VAHEDI, follows. To be listed
as a solver, send your solution to Underwood Dudley, B Mu Epsilon Journal,
Math. Dept., DePauw Univ., Greencastle, Indiana 46135.
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MATHACROSTICS

A. Vector cross-product convention.
[Hyph . wd]

B. He secured election of first
German Pope. [2 wds]

C. Enlightened one. [Sanskrit]

D. A solution to the Sturm-Liouville
problem.

E. FDR's director of the U. S. Mint.
[Surname]

F. Belgian art group of la Bele
Epoque. [2 wds]

G. It salivated when the bell rang.
[2 wds]

H. Its limit, by definition. =

integral of function. [2 wds]

I. German gelato or sorbet.

J. Fictive beast, clarifies
uncertainty principle. [2 wds]

K. Simple problem in astronomy.
[Hyph]

L. Incidental remark; if from a
judge, it has no bearing on the
case and is not binding. [2 wds]
M. It brought attention to
fundamental law in classical
mechanics. [2 wds]

N. Descartes' parabola= ___
Newton. [2 wds]

0. Narrow-minded; prejudiced.

P. He estimated earth radius with
trig, circa 230 BC
Q. 0.4cos(n/4).

R. Indian mathematician b. 476 BC.

S. Polynomial expression of a
function. [2 wds]
T Fool's dullness = "Whetstone

." [3 wds, from As You Like
it}
U. Realm of a + bi. [2 wds]

V Designer, intensity interferometer
[Init, surname]
W Chinese moon guitar [Hyph]

5 127158111119183 21 239 36 216 58 170

234114 39 79 184136 65 20

139 47 199226 95 71 2 147218178 162-

194241186152 118230 37 92 15 75

121150 84 38

25 64 100 8 52 224163 81 122

78 68 99 55 10 173211204229 138

180 4 134 16 157 23 109 69 197 228

20323896

149 20 53 42 72 94 106 80 176117131164

130145220233 24 103181 206217 246

88 26 9 155179 62 237171124 10421274

57 129 50 76 210 11 107143 86 153198102

191 19 227208 35 22 49 14273

222146240 28 168 51 120 3 91

161 101 12 221 46 245209 126 90 188172 33

1 159133 41 223113

215202 140 7 60 156 77 110132

67 98 125201193 34 177 6 219169242

196 48 144 166 32 225174 44 89

97 167 83 66 13 231 39 87 135190185 56

232214141 31 54 165189

154 85 18 40 213115187 175



616 PI MU EPSILON JOURNAL PROBLEM DEPARTMENT

Edited by Clayton W. Dodge

X. Its examples include 5, 23, 14009. . . .
[2 wds] , 30 160 45 50 11213724415 T3 27 256 University of Maine
Y. __ Atlas; __telescope; __time;
_ expansion. _ 105 192200 17 128 61
Z 39”‘ ‘fe”_‘““f’ BN thedory — This department welcomes problems believed to be new and at a level
and analysis of Word U. {2 wds] 43 82 243205 63 182108 14 116235 70 195 appropriate for the readers of this journal. Old problems displaying novel and
55T elegant _methpds of' solution are also i'nvited. Proposals'slwuh_i be accqmpanied
s A TR e e e T bysqlutlonsﬁaval!ableand byanylnformtlgnthat will assist theedlto'r. An
asterisk (*) preceding a problem number indicates that the proposer did not
11 M[12 P[1a U 14 z[15 D[ 16 H|17 Y[18 W18 N 20 J|21 A[22 N[23 H submit a solution.
All communications should be addressedto C. W. Dodge, 5752 Neville/Math,
2% s e 28 D20 U130 x|31 V(32 T[a3 Pla4 s[as N[3s A University of Maine, Orono, ME 04469-5752. Please submit each proposal and
3; =136 E e oR) P P e pra — solution prefer_e}blytyped or clearly written on ageparate sheet (oqeside pnly)
properly identified with name and address. Solutions to problems in this issue
8 T 40 N|so M[s1 o s2 F[s3 J|54 V[ss a|s6 U 57 M|58 A58 X should be mailed by July 1, 1994,
o hle Y e o Fle Bl e e s oo — —— ' This department seeks to present a wide variety of problems in each
issue, preferably not more than two problems from any one category. Hence
7N 74 L[75 D|76 M[77 R|78 G|78 B|80 J|81 F|82 Z[8a U 84 E[85 W appropriate proposals are sought for all categories, but especially for those that
are empty or nearly so. To aid (and entice) you in your submissions, we list
8 M|87 U|es L|88 T|60 P|ei O[e2 DJ63 Z 84 |86 C|o6 1|87 U[B8 S|e8 @ each category along with the number of problem proposalsin its file: algebra
Too o7 o Wos T s —ve 05w e S - 10, alphametics 1, analysis 10, geometry 3, logic and combinatorics O, number
theory 3, probability and statistics O, trigonometry 0, and miscellaneous 0.
112 X 113 Q| 114 B 115 W 116 Z1117 J| 118 D[ 118 A| 120 O]121 E|122 F 123 X
124 L 126 S[126 P|[127 A{128 Y[128 M 130 K| 131 J[132 R| 133 Q[ 134 H|[135 U[136 B Corrections
137 X[138 G 138 C| 140
i N e s Several times in the Spring 1993 Problem Department the name of
149 J 150 E| 161 X| 162 D 153 M[164 W] 155 L | 156 R| 157 H| 158 A 160 Q| 160 X| 161 P proposer and solver David Iny was inadvertently printed as David Ivy. Our
sincere apologies.
162 C| 163 F| 164 J 165 V| 166 T[167 U 168 O[168 S170 A/ 171 L|172 P{ 173 G[174 T| Thanks to William Peirce for pointing out that in the solution to
problem 765 on page 475 of the Fall 1992 issue, the lag equation should read

175 W[ 178 J| 177 S[178 C| 178 L[ 180 H|181 K[182 Z|183 A|184 B| 185 U|186 D ” 9
410~ = (121224)‘ = 02210022104.

188 P 189 V| 180 U[191 N[ 182 Y[ 183 S[184 D 186 Z| 186 T/ 187 H

780. [Spring 1992, Fall 1992} Corrected again. Proposed by R. S.

¥1$0-90.Y6 VO Aueqly +1p9 xog Ad

200 Y[ 201 S 202 R[203 |[204 G|205 Z] 206 J|207 Al208 N 208 P . : : . . .
‘ Luthar, University of Wisconsin Center, Janesville, Wisconsin.
212 (213 W[ 214 V 25 R 216 A| 217 J| 218 G| 218 §] 220 K Let ABCD he a paralldogram with LA = 60°. Lé the circle through
. . 2

A, B, and D intersect AC at E. Sce the figure Prove that BD- + AB-AD =
224 F(225 T 226 C|227 N|228 H 228 Q| 230 D231 U[232 V|233 K([234 B [235 Z|236 X AE -AC.
237 L 238 [ 238 A 240 O{241 D242 S[243 Z (244 X|245 Pl246 J H

Editor's comment: The statement of the problem was correct. The

617
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figure wasperhapsmideading: ABCD is
a paralelogram, not necessarily a
rhombus. The accompanying figure E
shows this situation more clearly. Our
apologies for any inconvenience the
original figure may have caused.

Problems for Solution

810. Proposed by Alan Wayne Holiday, Florida.
In the following base eight multiplication, the digits of the two
multipliers have been replaced in a one to one manner by letters:

(N(CLUED) = 437152.

Restore the digits. Similarly replace 437152 to find out who might have said "|
clued.”

811. Proposed by Tam Moore, Bridgewater State College, Bridgewater,
Massachusetts.

If a < b < c are positive integers with ged(a, b) = 1 and a2+ p’=c?
then (a, b c) is caled aprimitivePythagorean triple (PPT). If botha and c are
primes, then we shall call it aprime PPT (P*T).

a) If (a b, ¢) isa P>T, deduce that b=c¢ - 1.

b) Find al P*Ts in which aand c are

i) twin primes.

ii) both Mersenne primes.

iii) both Fermat primes.

iv) one a Mersenne, the other a Fermat prime.

812. Proposed by George P. Evanovich, Saint Peter's College, Jersey
City, New Jersey.
If n 2 2 is a positive integer, prove that
n 2 n .
Y cos (ﬂ) =y sin(zﬂ) = 0.
j=1 n j=1 n

813. Proposed by the lateJack Garfunkel, Flushing, New York.
Given a triangle ABC with sidesa, b, c and a triangle A’B’C’ with sides
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(b+ )2, (ct a)2, (a+ b)2. Provethat r' 2 r, wherer and r’ are the inradii
of trianglesABC and A'B'C’ respectively.

814. Proposed by Nathan Jaspen, Stevens Institute d Technology,
Hoboken, New Jersey.

For any decimal integer n, prove that n° and » end in the same digit;
that #® and »? end in the same digit, that »’ and »° end in the same digit, and
so forth.

815. Proposed by Bill Correll, Jr., Cincinnati, Ohio.
Let [x] denote the greatest integer not exceeding x. Solve for x :

[x+1)fx+2]x +3]) _g49.
L2003 )4

816. Proposed by Robert C. Gebhardt, Hopatcong, New Jersey.

a) From the integers 1, 2, 3, ..., n, a state lottery selects at random k
numbers(k < n). A personwho had previoudy chosen at random m of those k
numbers (M sKk) isawinner. Find the probability of being a winner.

*b) The Tri-State Megabucks (Maine, New Hampshire, and VVermont)
tickets cost $1each. A participant selects m= 6 numbersout of n =40 and is
a winner if al six numbers match the k = 6 numbers the game selects. The
winningsare paid in 20 equal annud installments. How large does the pot have
to be before a ticket is worth $1?

817. Proposed by Andrew Cusumano, Great Neck, New York.
In the accompanying figure
squares CEHA and AIDE are erected
externally on sides CA and AB of
triangleABC. Let BH meet|Cat Oand
AC at G,ayBrosteChanesivts Bt B, and l)

E are collinear.

b) Prove that angles HOE, B C
EOC, AOH, and AOI are each 45°.

¢) If ACB isaright angle, then
provetha E, F, and G are collinear.

Find an "elegant” proof for parts (a) and (b), both of which are known
to be true whether the squares are erected both externally or both internaly (see
The American Mathematical Monthly, problem E831, vol. 56, 1949, 406-407).
Part (C) is adelightful result that also should be known, but appears to be more
difficult to prove.
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*818. Proposed by Dmitry P. Mavlo, Moscow, Russia.
From the SY MP-86 Entrance Examination, solve the inequality

1 1
<

FEErRRTE
819. Proposed by Morris Katz, Macwahoc, Maine.
Evauate the integral

fln x sin"Lxdx.

820. Proposed by William Moser, McGill University, Montreal, Quebec,
Canada.

Let a, , (0 5k < n) denote the number of n-bit strings (sequencesof 0’s
and 1’s of length n) with exactly k occurrencesof of two consecutive 0’s. Show

that
n-1
r-k\fn-r-1
a =
n,k ’g) ( k )( r __k ))
where n = n! if 0gk d n - .
(k) K(n-K! T UsKsnan p 0 otherwise.

821. Proposed by Zeev Barel, Hendrix College, Conway, Arkansas.

Problem B-2 at the fifty-second annual William Lowell Putnam
Mathematical Competition (1991) stated: Suppose f and g are non-constant,
differentiable, real-valued functions defined on (-e,%). Furthermore, suppose
that for each pair of real numbers x and y,

fix +y) = fOf) - gx)g(y) and g(x +y) = fx)g(y) + 8NY)-

If £(0) = 0, prove that (f(x))? * (g(x))?> = 1 for all x.
In fact, one can do alittle more under the same hypothesis. Prove that
there exists a real number k such that fix) = cos kx and g(x) = sin kx for al x.

822. Proposed by Stanley Rabinowitz, MathPro Press, Westford,
M assachusetts.

If aisa root of the equation x® + x = 1= 0, then find an equation that
has &* + 1 as a root.
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Solutions

777, [Spring 1992, Fal 1992] Corrected. Proposed by Seung-Jin Bang,
Seoul, Korea.
It is well known that, fornz 2, In(n + 1) <S, <1+ Inn, where. _

S =1+i +l+...+.1_.
n

“ 2 3
It is aso known (Crux Mathematicorurn 11 (1985), 109) that, for n z 2,

np+ V" -n<S, sn-(n- 1)n " Mr-1)
Prove that
In(r+1) <nn+D¥ -n and n - (-1 D <1+ nn
foral nz 2.

Solution by Alma College Problem Solving Group, Alma College, Alma,
Michigan.

Recall that €* > 1+ uforall u# 0, sothat Inx <x = 1 for al x > 0,
x# 1, by settingx =ut 1

Because (n + 1) > 0 (and never equal to 1) when n 2 1, then

In@E+ )<+ ln-1
foral nz 1. Finally, multiply both sides by n to get that
In(r+1)=nin@+ )" <nn+ )" - n
Again using x > 1 + In x, we have, for n 2 2,
D S 1 4 n'l/(”'l), (n- l)n"ll("‘l) >(n-1)-Inn,
and
n-(n-nY D14 nn

Also solved by PAUL S. BRUCKMAN, Everett, WA, RICHARD |.
HESS, Rancho Palos Vedes, CA, DAVID INY, Westinghouse Electric
Corporation, Batimore, MD, MURRAY S. KLAMKIN, University d Alberta, ~
Canada, DAVID E. MANES, SUNY at Oneonta, JOHN D. MOORES,
Westbrook, ME, YOSHINOBU MURAYOSHI, Eugene, OR, PAUL D.
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SHOCKLEE, Memphis, TN, JORGE-NUNO SILVA, Albany, CA, REX H. WU,
Brooklyn, NY, and the PROPOSER.

784. [Fal 1992] Proposed by Alan Wayne, Holiday, Florida.
Restore the enciphered digits in the decima computation:

(TWO)(TWO + TWO) = EIGHT.

Solution by Kenneth M. Wilke Tapeka, Kansas.

Since 98765 = EIGHT = 2(TWO)~, then TWO < 223, Tisevenso T =
2,and O =1, 4, 6, or 9. Therefore TWO = 201, 204, 206, 209, 214, 216, or
219. Testing these possibilities, we find that only TWO = 209 yields a solution,
and then EIGHT = 87362.

Alsosolved by ALMA COLLEGE PROBLEM SOLVING GROUP, Ml,
CHARLES ASHBACHER, Cedar Rapids, IA, SEUNG-JIN BANG, Seoul,
Korea, FRANK P. BATTLES, MassachusettsMaritimeAcademy, BuzzardsBay,
SCOTT H. BROWN, Auburn University, AL, PAUL S. BRUCKMAN, Everett,
WA, MARK EVANS, Louisville, KY, VICTOR G. FESER, University d Mary,
Bismarck, ND, STEPHEN |. GENDLER, Clarion University d Pennsylvania,
RICHARD I. HESS, Rancho Palos Verdes CA, PETE JOHNSON, Hebron, CT,
JOHN D. MOORES, Westhbrook, ME, YOSHINOBU MURAY OSHI, Eugene,
OR, PAUL D. SHOCKLEE, Memphis, TN, LAURA SILVA, Albany, CA,
SONNY VU, Universty d lllinois at Urbana-Champaign, REX H. WU,
Brooklyn, AY, and the PROPOSER.

785. [Fall 19921 Proposed by Charles Ashbacher, Cedar Rapids, lowa,
and dedicated to the memory o Joseph Konhauser. Student solutions are
especially solicited.

A tiling of the plane by non-overlapping, non-congruent rectangles P;,
P,, ... is defined in the following way: P, is an arbitrary x by y rectangle; P,, P,

are al squares such that the side of each square Py, is equa to the sum of
the sides of the two previoussquares P, and P, , for al k > 1. Show thistiling.

Solution by Matthew Amoroso, . Bonaventure Universty, St
Bonaventure, New York.

To begin, let rectangle 1 be an x by y rectangle. See the figure on the
next page. Let rectangle 2 be a square of sidex and placeit so that it is resting
on aside of rectangle 1 with length x. Again see the figure. Next, rectangle 3
is asquare of side x + y which we place to rest against both rectangles 1 and 2.
Now rectangle 4 is asquare of side 2.x ty that rests againgt the two immediately
preceding rectangles 2 and 3. Continue it this manner to tile the plane in the

FROBLEMS AND SCLUTIONS 623

prescribed way. Since each square must have its side equa to the sum of the
sides of the two previous squares, the coefficients of x and of y in these side
lengths are successive Fibonacci numbers. f =0, f; = 1 and f,,,5 = f,, T f,41 for
nz 1 That is the side of squaren isequal to f,_yx + f, oy fornz 2

Also solved by PAUL S
BRUCKMAN, Everett, WA, RICHARD
I. HESS, Rancho Palos Vedes CA,

MURRAY S. KLAMKIN, University o * L1 LLI21x 112 Ll
Alberta, Canada, TOM MOORE, 3 4 3
Bridgewater State College, MA, JOHN

D. MOORES, Wesbrook, ME, PAUL T+y  +ty

D. SHOCKLEE, Memphis, TN, REX H.
WU, Brooklyn, NY, and the
PROPOSER.

786. [Fal 1992] Proposed by Dmitry P. Mavlo, Moscow, Russia

From two towns A and B, 48 km apart, two groups of hikers march
toward each other starting at the same time. The group leavingA marches at 4
km/hr by marches of not more than 6 hr at one time. The group from B hikes
at 6 km/hr for not morethan 2 hr at atime. After marchingt hr, the first group
must rest for at leastt hr. The second group has to rest not less than 2t hr after
t hr of hiking. Find the least time until the two groups meet and describe the
hiking patterns necessary for that solution.

tE 4

Solution by William H. Peirce, Delray Beach, Florida,

The time until the two groups meet will be least if each group hikes as
long as possiblewithout resting. Therefore, we let them meet asA is completing
a 6-hr hike at 4 km/hr and B is completing a 2-hr hike a 6 km/br, assuming the
time needed to meet is at least 6 hours. These final hikes span 24 + 12 = 36
km.

If the total time until they meet is T > 6 hours, then group A must hike
and rest equal times for thefirst T - 6 hours, averaging 2 km/hr during that time.
Group B has T - 2 hours during which they average 2 km/hr. Hence

48 =36 + 2T -6) + AT - 2)
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and T = 7 hours. Group A must hike 30 minutesand rest 30 minutes during the
first hour, and then hike the last 6 hours. Group B hikes 1 hour 40 minutes and
rests 3 hours 20 minutes during the first 5 hours, and then hikes the last 2 hours.
Except for the fact that the initid hike-and-rest period can be broken down into
smaller segments, this solution is unique.

Alsosolved by ALMA COLLEGE PROBLEM SOLVING GROUP, MI,
CHARLES ASHBACHER, Cedar Rapids, /A, PAUL S. BRUCKMAN, Everett,
WA, MARK EVANS, Louisville, KY, STEPHEN |. GENDLER, Clarion
University d Pennsylvania, RICHARD |. HESS, Rancho Palos Verdes, CA,
JOHN D. MOORES, Westhrook, ME, WILLIAM H. PEIRCE (second solution),
Delray Beach, FL, PAUL D. SHOCKLEE, Memphis, TN, MANUEL SILVA,
Albany, CA, and REX H. WU, Brooklyn, NY. One incorrect solution was
received.

787. [Fall 1992] Proposed by R S. Luthar, University d Wisconsin
Center, Janesville, \Wisconsn.
If 3, b ¢, d are the roots of

x4+px3+qx2+rx+s=0,
then evaluate the expression
(@+b+c-2d)b+c+d-2a)c+d+a-2b)d+a+b-2)

intermsofp, g r, and s.

Solution by Harry Sedinger, . Bonaventure University, S
Bonaventure, New York.
It iswell known (and easily seen) that if

Pl s gl e xts=(x - a)(x - b)x - o) - ),
then
a+b+c+d=-p ab+ac+ad+bc+bd+cd=q,
abc + acd t abd + bed = -r, and abed = s.
Then the given expression is equal to
(=p = 3d)(=p - 3a)(-p - 3b)(-p - 3¢)
=p*+3(@+b+c+dp’+9ab +ac + ad + be + bd + cd)p?
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+ 27(abc + acd t abd t bed)p + 81abed
=p* - 3p* + 9gp® - 27rp + 81s
= -2p* + 9gp* - 27rp + 81s.

Alsosolved by SEUNG-JIN BANG, Seoul, Korea, SCOTT H. BROWN,
Auburn Universty, AL, PAUL S. BRUCKMAN, Everett, WA, JLL
CARNAHAN, Eastern Kentucky University, Richmond, BILL CORRELL, JR.,
Cincinnati, OH, DAVID DELSESTO, North Scituate, RI, RUSSELL EULER,
Northwest Missouri State University, Maryville, GEORGE P. EVANOVICH,
Saint Peter's College, Jersey City, AJ, MARK EVANS, Louisville, KY,
STEPHEN |. GENDLER, Clarion Universty d Pennsylvania, RICHARD 1.
HESS, Rancho Palos Verdes, CA, MURRAY S. KLAMKIN, University o
Alberta, Canada, DAYONG LI, Eastern Kentucky Universty, Richmond,
HENRY S. LIEBERMAN, Waban, MA, DAVID E. MANES, SUNY at Oneonta,
JOHN D. MOORES, Westbrook, ME, YOSHINOBU MURAY OSHI, Eugene,
OR, WILLIAM H. PEIRCE, Delray Beach, FL, BOB PRIELIPP, University o
Wisconsin-Oshkosh, PAUL D. SHOCKLEE, Memphis TN, LAWRENCE
SKAGGS, Eastern Kentucky University, Richmond, KENNETH M. WILKE,
Topeka, KS, J. ERNEST WILKINS, R., Clark Atlanta University, GA, REX H.
WU, Brooklyn, NY, and the PROPOSER.

788. [Fall 1992] Proposed by the late Jack Garfunkel, Flushing, New
York.
Given positive numbersyx, y, zsuch that x + y + z = 1, prove that

22 22 2 2
Xy +yz+zx 2 Xy  +yz +z7x" + 8xyz

I. Solution by Sammy Yu and Jmmy Yu, students, Vermillion Middle
School, Vermillion, South Dakota.
Sincex Ty + z =1, the desired inequality is equivalent to
(xr+y +z)(l + 1 +l) 2 2+ 22 4 2 ag,
x 'y z z x y

and hence to

(1) Y3ZLEZIX XY LD WL H s,

x y z z x oy

Now consider that

G+, @, ety
X y z x
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_yleyz ezt +z:”‘x\mz +x2+xy+y2

x y z
2 2
NS N NS S N LA,
x y z x y z x y z

23y +3x+32=3

by applying the arithmetic mean-geometric mean inequality to each parentheses
separately. Equaity holds if and only if x =y =z Thus

2 2 2
2 O+, E+x) @y oy Wy g
) X Y * Z ZT+)’+ ¥

The left side of (2) can be rewritten as
O +z )(x Yz 1) +(z +x)(x+y+z = 1) +(x +y)(x 22 = 1)
y z

=(x+y+z)(y+z+z+x+“y)—2.
X y z

Hence equation (2) implies (1). The desired result follows with equality if and
only if x =y = 2.

II. Solution by Murray S. Klamkin, University d Alberta, Edmonton,
Alberta, Canada.
We rewrite the inequality in the following homogeneous form:

Gzt ztxp)xtytz?ay’?Z+ 22 +x%% +8xyzx ty+2)
or
(1) T\’T, = T,> - 2T\Ty + 8T,T; = T,> 6T, T,

WhereTl :X+y+Z, T2:yz+zx+,xy’ ad T3zxyz_
We give a stronger result by proving that the "best inequality” of the

form

) T’T, = aT,? + bT|T,
is

3) T Ty = AT, - 3T,

or equivalently,

3) yz(y - z)2 + 2x(z - x)2 + xy(x - y)2 =0,
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so (3) isclearly true. For (2) to be valid we have, on settingx =y =z =1/3,
that 92 3a + b; onsettingx =y =1/2and z=0, that 4 =z a. That (3) is "best"
will now follow if

@ 4T,% - 3T,T, = aT,? + b, T,

for all @ and b satisfying the latter two mequahty conditions. Since T2 a3lnT;
is a known equality equivalent to Zx?(y - 2)% = 0, then (4) follows if

b-3
4 -a
which is equivalent to the condition9 = 3a * b

Working backwards from (3), we find that the "best inequality" for'the
origina problemis

xy+yz+zxz4(x2y2+y222+zzx2)+5xyz.

Also solved by SEUNG-JIN BANG, Seoul, Korea, PAUL S
BRUCKMAN, Everett, WA, DAVID E MANES, SUNY at Oneonta,
YOSHINOBU MURAYOSHI, Eugene, OR, WILLIAM H. PEIRCE, Delray
Beach, FL, BOB PRIELIPP, Universty d Wisconsin-Oshkosh, J. ERNEST
WILKINS, JR., Clark Atlanta University. GA, and the PROPOSER.

<3,

789. [Fal 1992] Proposed by David Iny, Baltimore, Maryland.
Evauate the integral

e
0 \yy

I. Solution composed from those submitted by Paul S Bruckman,
Everett, Washington, and George P. Evanovich, St. Peter's College, Jersey City,
New Jersey.

Let the integrand be denoted by f(y). Using L'Hépital’s rule, we see
that

lim y-1 = lim._L:1,

y—1 Iny y—1 11y
so lim,_,; fy) = 1 and f is continuous at y = 1. Accordingly, we make the
definition

1
)] I, = f_b foydy, n=1,2,3, ..
(-4

Now if lim,,_,, I, exists, then this limit must be equal to the given integral,
which we denote as .
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We make the substitution y = e~2* in (1). Then dy = —-2¢™2* dx, and we
obtain

-x -3x o =X -3x

n — -
1,,=fe__e_dx, 50 1=f £ "¢ dx,
0 x 0
if it exists.
Now, more generaly, we let
-bx _ _ -ax
F@b)=1lim |"¢ "€ 4.
n—» O X

Then

" 1

aF(‘;’b) = lim n(—e'b")dx = lim _l_e'bx

0 n—»o0 n—»co 0 -E.

Therefore
1
F(a,b) = -hdb = -Inb + g(a) + C

for some function g and constant C. Since F(b, @) = -F(a, b), it follows that
gl@=Ina AlsoF@ a)=0=Ina-InatC,s0C=0. Thatis,

F(a,b) =Ina - Inb = |n_§, whence | = In3.

II. Solution by Murray S Klamkin, University of Alberta, Edmonton,
Alberta, Canada.
More generally, we evaluate

1ym_1
I(m,n) = y
(m, ) foyn,,,y

dy .

Lety = €7 so that
W oo -(1-mx _ e -(m+1-n)y

I(m,n) = f dx .

0 X
Thisis a Frellani integral and it is known that

fwdx = FO)'m 2,
0 X a

provided the integral existsand that

/

lim Jm a.@_dx =0.
n—o Jn/b X

Hence I(m, n) = In [(mt 1 - n)/(1 - n)]. For the given problem, /(1, 1/2) =

In 3.

For the case when lim,_,,, F(x) = F(s), then Elliot has shown that
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fw F@) ~Fb9) 40 - [F(w) - FO)m 2.
0 X b

As an example,

© anlax - tan"tbx dx = FEInA.
.[0 X 2 b 4
Also solved by BORIS BAEUMER, Louisana Sate University, Baton
Rouge, SEUNG-JIN BANG, Seoul,Korea, FRANK P. BATTLES, Massachusetts
Maritime Academy, Buzzards Bay, SCOTT H. BROWN, AuburnUniversity, AL,
DAVID E. MANES, SUNY at Oneonta, JOHN D. MOORES, Westbrook, ME,
HARRY SEDINGER, &. Bonaventure University, &Y, STAN WAGON,
Macalester College, . Paul, MN, J. ERNEST WILKINS, JR, Clark Atlanta
University, GA, and the PROPOER
Several solvers found references to the integrals F(a, b) o Solution |
and I(m, n) of Solution II: Sokolnikoff, Advanced Calculus, p. 364, Gradshteyn
& Ryzhik, Table of Integrals, Series, and Products, 4th ed, Academic Press,
1965, Formula 8, p. 543, Borden, A Course in Advanced Calculus, North-
Holland, 1983, Problem 37, p. 364. A common method of solution for integral
F(a, b) wasto rewrite it as a double integral and then apply Fubini’s theorem
to reversethe order of integration.

790. [Fall 1992] Proposed by Florentin Smarandache, Phoenix,
Arizona.
In base 6 how many digits does the nth prime contain?

Solution by Paul T. Bateman, University of Illinois, Urbana, Illinois.
More generaly, the number of digits of the number N to the base b is
the integra part of 1+ (In N)/(In b). The known formula

nlnn<p,<ninn(l+3(n),

where &(n) is a positive quantity that approches zero when n gets large, makes
it possible to approximate the number of digitsin the nth prime p,, within one
unit for large n. That is, the number of digitsin p, to base b is given by the
integral part of
1+ In(n Inn)
Inb

for large n.

Also solved by PAUL S. BRUCKMAN, Everett, WA, and DAVID E ,
MANES, SUNY at Oneonta.
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791. [Fall 1992] Proposed by Seung-Jin Bang, Seoul, Republic o
Korea

Prove that 2" + 1, where n is a nonnegative integer, is never a multiple
of 143.

I. Solution by Kenneth M. Wilke Topeka, Kansas.

Suppose that 2' + 1 = 0 (mod 143) for some nonnegative integer n.
Then n simultaneously satisfies both congruences 2' + 1 = 0 (mod 11) and 2*
+ 1= 0 (mod 13). By trid onefindsthat 2° + 1 =33 = 0 (mod 11). That is,

25w -1(mod 11), so 2 (-1)? = 1 (mod 11).

Thus the congruence 2’ + 1= 0 (mod 11) is satisfied when n = 5+ 10r for any
nonnegative integer r. By similar tria one finds that 2' + 1 = 0 (mod 13) is
satisfied when n = 6 + 12s for any nonnegative integers. Hence we must have
that 5 + 10r = 6 + 12sfor integral r and 5. Since the left side of the equation
is always odd while the right side is aways even, there is no solution.

II. Solution by David E. Manes, State University d New York College,
Oneonta, New York.

We disregard Osince 20 + 1 = 2 is not a multiple of 143. The order of
2 modulo 143 is 60; i.e., 60 is the smallest positive integer t such that 2/ = 1
(mod 143). Also2™ = 1 (mod 143) if and only if m is a multiple of 60. Now
assume there is a positive integer nsuch that 2* + 1= 0 (mod 143). Then 2* =
-1 (mod 143), which implies 22" = 1 (mod 143). Then 2n = 60k for some
positive integer k, or n = 30k. We have, however, that 23 = —12 (mod 143).
Accordingly,

2 _ 30k _ ) 1(modl143), if k is even
2" =27 = 112 (mod143), if K is odd;

that is, 2" & -1 (mod 143) for any positive integer n.

Also solved by CHARLES ASHBACHER, Cedar Rapids, IA, who
calculated that 280 = 1152921504606846976, SCOTT H. BROWN, Auburn
University, AL, PAUL S. BRUCKMAN, Everett, WA, BILL CORRELL, JR,,
Cincinnati, OH, CHARLES R. DIMINNIE, S. Bonaventure University, NY,
MARK EVANS, Louisville, KY, STEPHEN I. GENDLER, Clarion University
o Pennsylvania, RICHARD |. HESS, Rancho Palos Verdes, CA, MURRAY S.
KLAMKIN, University d Alberta, Canada, HENRY S. LIEBERMAN, Waban,
MA, JOHN D. MOORES, Wesbrook, ME, KANDASAMY MUTHUVEL,
University & Wisconsin-Oshkosh, WILLIAM H. PEIRCE, Delray Beach, FL,
BOB PRIELIPP, Universty d Wisconsin-Oshkosh, HARRY SEDINGER, S.
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Bonaventure University, NY, REX H. WU, Brooklyn, NY, and the PROPOSER.

792. [Fal 1992] Proposed by Seung-Jin Bang, Seoul, Republic dof
Korea

Given any thirteen distinct rea numbers, provethat there exists at least:
one subset {x, y, z} of three of them such that

C-»0-2e-2 _ 1
T+ o)A+ A+ @ 345

Solution by Oxford Running Club, University d Mississippi, University,
Mississippi.

The arctangentsof the thirteen numbersare thirteen distinct numbersin
the interval (-m/2,7/2). Then some three of these mudt lie in one of the
subintervals (-/2,-/3), [-n/3,-1/6), [-n/6,0), [0,n/6), [7/6,7/3), [7/3,7/2). Say
that x >y > z are three of the origina thirteen and that arctan x > arctany >
arctan z are in the same subinterval. Then each of the differences

arctan X — arctany, arctany — arctan 2z, arctan x — arctan z

is positive and strictly less than &/6. Hence, by the increasing nature of the
tangent function, each difference has a tangent between O and 143, so the
product of their three tangentsiis less than 1/(3v3). Since

X -y

tan(arctanx - arctany) =
1+xy

and two similar relationships, the result follows.

Alsosolved by PAUL S. BRUCKMAN, Everett, WA, BILL CORRELL,
JR., Cincinnati, OH, and the PROPOSER.

793. [Fall 1992] Proposed by Dieter Bennewitz, Koblenz, Germany.

Given any trapezoid, its diagonals divide its interior area into four
triangular areas: A and B adjacent to the parallel bases, and C and D adjacent to
the nonparallel sides, as shown in the figure.

a) Prove that the areas C and D are equa and that A*B = C+D.

b) Find area C in terms of the lengths of the altitude and the bases of
the trapezoid.

Solution by Richard 1. Hess, Rancho Palos Verdes, California

Let the upper and lower bases of the trapezoid have lengths a and b and
let itsaltitude be 4. Let the segment of the diagonal common to trianglesA and
D have length x and that common to B and C have length y. See the figure.
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a) Since the triangle formed by
B *+ C and that formed by B + D have a
the same base b and altitudeh,

B+ C=B+D=>bh2

and henceC=D. Smilaly,A+C=A
+D = ah/2. Thinkingof the diagond x
+y as base, then triangles B and D have
a wmmon dtitude, so D/B = x/y.
Smilarly A/C = x/y, whence AB = CD.

b) SinceAB = CD = C?, then B = C%*/A and we have

c? bh ah
B+C=__+C=2_ ad = .
= 5 A+C >
We solve these equations smultaneoudly to get that
2
c=D=_%%h  ,__"1 h ad B=_ b’
2(a + b)’ 2@ + b) 2@+ b)

Alsosolved by ALMA COLLEGE PROBLEM SOLVINGGROUP, M,
SEUNG-JIN BANG, Seoul, Korea, PAUL S. BRUCKMAN, Everett, WA, BILL
CORRELL, ., Cincinnati, OH, MARK EVANS, Louisville, KY, STEPHEN I.
GENDLER, Clarion Universty d Pennsylvania, HENRY S. LIEBERMAN,
Waban, MA, BARBARA J. LEHMAN, Brigantine, NJ, DAVID E. MANES,
UNY at Oneonta, JOHN D. MOORES, Weshrook, ME, YOSHINOBU
MURAY OSHI, Eugene, OR, HARRY SEDINGER, . Bonaventure University,
NY, REX H. WU, Brooklyn, NY, SAMMY YU and JMMY YU (jointly),
Vermillion, D, and the PROPOSER.

794. [Fal 1992] Proposed by Peter A. Lindstrom, North Lake College,
Irving, Texas
For -3 sx s6, show that 2x is equd to the sum of the zeros of

fx) =sin(x + cosx).

Solution by GeorgeP. Evanovich, St. Peter's College, Jersey City, New
Jersey.

Because ws (-1) = .54 and cos 0 = 1 ad the cosine function is
continuous, there exists a number a such that 0 < a < 1 axd cos (-a) = a
(Actudly, a = 0.739085.) Therefore —a is a zero of sin (x t+ cosx). Also note
that

cos (atm)=-acos(-at2m)=a adcos(a-n) =-a
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Thus -a, at =, —-a t 2n, and a - = are the zeros of sin (x + ws x) in the
intervd (=3, 6). Their sum is 2x. See the figure for the graph of y =

sin(x + wsx) over thisinterval.

y =sin(x t cos x).

Also solved by SEUNG-JN BANG, Seoul, Korea, PAUL S
BRUCKMAN, Everett, WA, MARK EVANS, Louisville, KY, MURRAY S.
KLAMKIN, University d Alberta, Canada, HENRY S. LIEBERMAN, Waban,
MA, DAVID E MANES, UNY at Oneonta, JOHN D. MOORES, Westbrook,
ME, OXFORD RUNNING CLUB, University d Mississippi, University, BOB
PRIELIPP (who supplied thefigure), University d Wisconsin-Oshkosh, REX H.
WU, Brooklyn, NY, and the PROPOSER.

795. [Fdl 1992] Proposed by Russell Euler, Northwest Missouri State
University, Maryville, Missouri.
Fnd dl solutions on the intervd [0, 2x] to

2wsSx - 2cosx +1 = 0.

I. Solution by Henry S Lieberman, Waban, Massachusetts.
The equation has no solutions. We have that

1=2cosx—-2cos3x=2msx(1-coszx)=25in2xcosx=sinxsian.

Thensinx = sin 2x = *1. Now sin x = *1 for x = kn/2 where k is an odd
integer. Thensin2x = sin hi = 0. Hence, there are no solutionsto sinx sin 2x
= 1, and hence to the origina equation dso.

I1. Solution by Rex H. WU Brooklyn, New York.
If t = cosx, then we must solve

(1) 28-2+1:=0where-1sts1l
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That is, 7 =t - 112 However, £ >t - 112 in the interva (-1,1). Hencethe
original equation has no rea solution. In fact, the only real solution to equation

(dyis 13 1/3
1 11 1 11
E = |~ | -0 - | -1.1915 < -1.
[4 \|432] (4 \432) = <-

Also solved by CHARLES ASHBACHER, Cedar Rapids, IA,
SEUNG-JIN BANG, Seoul, Korea, PAUL S. BRUCKMAN, Everett, WA, BILL
CORRELL, JR., Cincinnati, OH, GEORGE P. EVANOVICH, Saint Peter's
College, Jersey City, NJ, MARK EVANS, Louisville, KY, STEPHEN I.
GENDLER, Clarion University of Pennsylvania, RICHARD |. HESS, Rancho
Palos Verdes, CA, MURRAY S. KLAMKIN, University o Alberta, Canada,
PETER A. LINDSTROM, North LakeCollege, Irving, TX, DAVID E. MANES,
SUNY at Oneonta, JOHN D. MOORES, Westbrook, ME, OXFORD RUNNING
CLUB, University of Mississippi, University, WILLIAM H. PEIRCE, Delray
Beach, FL, BOB PRIELIPP, University of Wisconsin-Oshkosh, HARRY
SEDINGER, St. Bonaventure University, NY, KENNETH M. WILKE, Topeka,
KS, J. ERNEST WILKINS, JR, Clark Atlanta Universit}{. GA. and the
PROPOSER.

796. [Fal 1992] Proposed by
Michael W. Ecker, Clarks Summit,
Pennsylvania.

a A die is thrown until a © .
prescribed face (e.g. say 3) shows. What o o
is the mathematically expected number ®
of throws required for this to occur? ®

b) Same question, but suppose
a throw now consists of rolling 2 dice.
In particular, should we expect this
expectation to be haf that of part (8)?

¢) What is the smallest whole number of dice needed to constitute one
throw, if we wish to have the mathematically expected number of throws
required to roll our prescribed number not exceed 2?

Solution by Charles Ashbacher, Cedar Rapids, lowa.
a) If an event has probabilityp and al trialsare equally likely, then the
expected number E of trials until the event occursis given by

& ’ 1
E = quk lp =_,
k=1 P

where q = 1 - p. Hence the expected number of trials for a six-sided die to
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show a3 is 1/(1/6) = 6.

b) With two dice the probability of throwing at least one3 is1 - (5/6)2
= 11/36, so E = 1/(11/36) = 36/11 a 33 trids.

) For three dice the probability is 1 - (5/6)3 = 91/216, so E = 216/91
=~ 2.37. Forfourdice, p=1- (5/6)4 = 67111296, so E = 12961671 = 1.93 < 2,
so the answer is that four dice are necessary.

Note that the die you have in the sketch is wrong! You have 3 and 4
both showing on one die, but 3 and 4 are always on opposite sides of a die.

Alsosolved by ALMA COLLEGE PROBLEM SOLVING GROUP, M,
PAULS. BRUCKMAN, Everett, WA, GEORGE P. EVANOVICH, Saint Peter's
College, Jersey City, NJ, MARK EVANS, Louisville, KY, STEPHEN |I.
GENDLER, Clarion University of Pennsylvania, RICHARD |. HESS, Rancho
PalosVerdes, CA, HENRY S. LIEBERMAN, Waban, MA, JOHN D. MOORES,
Westbrook, ME, OXFORD RUNNING CLUB, University of Mississippi,
University, HARRY SEDINGER, St. Bonaventure University, NY, and the
PROPOSER. Only Ashbacher noticed the error in the die on the left: the top
face should be a six, not a four. The right die is correct.

Anecdotes Wanted

Mathematicsis full of peoples names Fermat’s theorem, Newton's
method, the Euclidean agorithm, Bernoulli numbers, Euler's $-function,
L’Hépital’s rule, Pell’s equation, Gausss lemma, ... .

However, the people behind the names are hardly known at al. Writers
of mathematical biography tend to concentrate on their subjects mathematical
lifeand ignore the rest. Pick up a book of mathematical history at random and
see if that is not true. Here is an excerpt from the middle of page 154 of
Hilbert, by Constance Reid (Springer-Verlag, New Y ork, 1970):

The next summer Hilbert lectured on relativity theory as part of a
University series for al of the faculties.

In the middle of page 154 of Niels Henrik Abel, by Oystein Ore (U. of
Minnesota Press, 1957) we find

With very few acquaintances and low ebb in his purse Abel could do
little else than write mathematics, and the last monthsin Paris turned
out to be extremely fruitful. A few days after his great memoir hed
been submitted to the Institute, he completed a lesser paper on
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equations, which he presented to Gergonne’s Annals.

The middle of page 154 of Carl Friedrich Gauss, by G. Waldo Dunnington
(Hafner, New York, 1955):

By January, 1832, he had thrown himself with all force into the
investigation of magnetism, and by February of that year had succeeded
in reducing the intensity of terrestrial magnetism to absolute units.

Page 154 (middle) of Joseph Fourier, by |. Grattan-Guinness (MIT Press,
Cambridge, 1972):

On calculera de méme |a valeur de d pour le cas de quatre inconnues
et on multiplera cette valeur par

929 - 7, 113112 - 73), 133132 - 73, ...

It is hard to make mathematics human. Mathematicians mostly live dull
lives, so colorful anecdotes bringing them alive as people are rare. 1t isa shame
that mathematicians as people have been so neglected. (If you doubt that they
have been neglected, can you tell which of Lagrange, Laplace, Legendre,
L’Hépital, and Lhulier was the tallest, or had the most children? Can you even
tell them apart?) The names of mathematicians are not the names of people,
they are the names of gods who produce theorems.

This is too bad because mathematicians were and are people, and
mathematics is a human activity. When we cannot make a connection between
our subject and the humans who were and are responsible for it, mathematics can
be viewed as inhuman, artificial, sterile, and boring. In fact, it is so viewed by
a rather large number of people.

To fix this, we need a supply of anecdotes about mathematicians. The
state of mathematical anecdotesis now so bad that even the false anecdotes are
no good. For example, you can find in print in more than one place the story
of how, when he was old, De Moivre each night slept for fifteen minutes more
than the previous night until he slept the clock around; then he died. It was
clearly made up by a non-mathematician, and not by a clever non-mathematician.
It isobviously falseand pointless even if true. The often-printed anecdote about
Euler’s algebraic proof of the existence of God is another example. Why would
Euler deliver such nonsense as "(a ” . b)lc = n; hence God exists."? Why
would Diderot who according to the anecdote knew no mathematics (not true)
have consented to listen? Ridiculous! That such feeble stories should gain
acceptance and be constantly repeated shows how easy it is for counterfeit
anecdotes to get into circulation and stay there.

We need good anecdotes about mathematicians, illustrating their human
qualities. We have George Washington chopping down the cherry tree, but we
have nothing similar for Euler. Benjamin Franklin flew a kite: what did Gauss
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do?

Since the historians of mathematics are not going to supply uswith what
we need, we must turn elsewhere. Let us turn to the readers of the B Mu
Epsilon Journal. This is an appeal for you to make up anecdotes about
mathematicians. Length and subject are immaterial as long as the anecdote is
good. It should be memorable, it should illustrate something, it can be funny,
touching, sentimental, stirring: anything as long as it is good. It does not have
to be true. Many of the best anecdotes, for example G. W. and the cherry tree,
are not. Nevertheless, they serve valuable purposes.

The best anecdotes received will be printed in a future issue of the
Journal, either anonymously or with attribution, as their authors choose.

The 1993 National Pi Mu Epsilon Meeting

The meeting took place at the summer meeting of the American
Mathematical Society, the Mathematical Association of America, and the
Canadian Mathematical Society, in Vancouver, British Columbia, from August
15to 19, 1993.

There were thirty-three student papers delivered in five sessions:

Upper chromatic numbers, by Aaron Abrams (University of California)

Optimal material layout in aproblem of heat transfer, by Ray V. Adams
(Worcester Polytechnic Institute)

Math anxiety, by Dawn Boyung (St. Norbert College)

The analytic hierarchy process with Bayes' Theorem, by Frank Castro
(Youngstown State University)

An introduction to the theory of K,(R), by John Davenport (Miami
University)

Functional integrals in a theory of absolute integration, by Anthony F.
De Lia (University of Central Florida)

Riemann Zeta Functionon the distributionof prime numbers, by Rondel
DeLong (Marshall University)

A marble drop method for solving linear programs, by Vladimir
Dimitrijevic (Youngstown State University)

Math methods down under, b%: Sandra S Gestl (St. Norbert College)

Sailing down the river of 3x“ + 6xy - by Francis Fung (Kansas
State University)

Bayesian probability and credibility theory in insurance ratemaking, by
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Jennifer Garrett (Miami University)

Differential hyperbolic geometry, by Lauren D. Hartman (Washington
and Lee University)

Data structures in theimplementationof the Huffman algorithm, by Jon
Hester (Hendrix College)

Allocationsfor matching gameson weighted graphs, by Jennifer Howes
(Drew University)

The economics of exhaustible resources, by Benjamin Keen (Miami
University)

Stokes’ Theoremand itsapplication, by Deborah Kellogg (East Carolina
University)

A matrix-balancing problem, by Julie Labbiento (Youngstown State
University)

Hilbert’s seventeenth problem, by Pasguale Lapomarda HI (College of
the Holy Cross)

Some proofs without words, by Cheryl McClellan (Y oungstown State
University)

One sample study of variancefocusing on type | error, by Julie Mullett
(Miami University)

Thelife tableapproach in determining actuarial mortality, by Umagasen
C. Naidoo (Miami University)

Automatic differentiation, by Mai Nguyen (Miami University)

Dead horses in the desert, by Kathryn Nyman (Carthage College)

A combinatorial queuing mode related to the ballot problem, by David
C. Ogden (Wichita State University)

Three proofs of Kaplansky’s Theorem, by Thomas Peppard (John
Carroll University)

Jentzsch’s Theorem in two complex variables, by Xiaoling Qian
(University of Illinois)

The Shapley value and partially defined games, by Jennifer Rich (Drew
University)

A generdization of triangular numbers, by Bonnie A. Sadler (East
Carolina University)

Implementation of diva procedurecallson aring of processors, by Scott
Shauf (University of Richmond)

Continued fractions, by Traca Slusher (Y oungstown State University)

Values of games in partition function form, by Maria Theoharidas
(Drew University)

Matricesand AIDS, by Jeffrey A. Wallace (University of West Florida)

A study of the representations of even numbers as the sum of two
primes, by Joel M. Wisdom (University of Tennessee, Chattanooga).
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Some of these papers, the editor hopes, will appear in forthcoming
issues of theJournal .

Five prizes, for papers of unusual merit, were awarded to Vladimir
Dimitrijevic, Jennifer Garrett, Lauren D. Hartman, Jon Hester, and Joel M.
Wisdom. -

At the meeting of the Pi Mu Epsilon Council, it was announced that the
National Security Agency had again granted Pi Mu Epsilon $5000 for the support
and encouragement of student speakers and that the American Mathematical
Society had contributed $1000 towards prize awards. In addition, a donor who
wished to remain anonymous has made a contribution that will more than double
thefund for the Richard V. Andree Awards, given to the best student papers that
appear in theJournal . The Council expressed gratification and thanks for the
support. In other business, the Council decided to increase the cost of Pi Mu
Epsilon pins from $3to $12, but to leave al other fees unchanged.

After the annual Pi Mu Epsilon banquet, an inexpensive and well-
attended event, the J. Sutherland Frame lecture was delivered by Professor
George E. Andrewsof PennsylvaniaState University. Histopicwas"Ramanujan
for students' and with energy and clarity he went from how Fibonacci numbers
could aid travelers in Canada to properties of continued fractions, giving the
impression, as skilled lecturers can, that mathematicsis readly a simple subject.

The next meeting of Pi Mu Epsilon will take place in conjunction with
the summer meeting of the MAA and AMS in Minneapolis, August 15-17,1994.

Editorial Statement

TheJour nal isaways seeking manuscriptsfrom student members of Pi
Mu Epsilon.

The main purpose of theJournal is to interest and inform its readers,
who are mostly undergraduates or recent graduates. Thus, the results of
specialized research, of interest to experts in a field, are not in generd
appropriate for the readers of theJournal who, along with its editor, are experts
inno Geld. Papersshould give background informationand place the results of
research in context. The audience that authors should keep in mind is a group
of bright young mathematicians who know next to nothing about your area of
expertise, but who are able and willing to learn.
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Miscdlany

Those "problems' of the form "Find the next number in the following
sequence” are not problems in the usual mathematical sense at all. You may
think that the next number in the sequence 2, 4, 6, 8, ... is 10, but you are
wrong. It is r, because the formulathat | had in mind when writing the terms
forn=1, 2, 3, 4 was

m o+ " ;410 (n - 1)(n - 2)(n -3)(n - 4).
The problems would be better stated as, "What was in the mind of the author as
the following sequence was being written?' This of course is a problem of
psychology and not of mathematics.

Nevertheless, such problems can be entertaining, especially if you can
guess the next number. The British periodical Eureka, a publication of the
undergraduate mathematical society at Cambridge University, had a tradition of
posing such problems. Here is a selection of 40-year-old sequences, which
incidentally illustrates the timeless and eternal nature of mathematics. They
range from the fairly obvious to the completely impossible, which is why
solutions will be given in the next issue of the Journal.

13,6, 10, 15, .. (#17, 1954)
1,2,4,81,6,3,2,6, ... (#11, 1949)
0,1,3,7, 15, 31, ... (#17, 1954)
3,5,11, 13, 17, 19, 29, ... (#18, 1955)
3,4,6,8, 12, 14, 18, ... (#19, 1957)
4,6,9, 10, 14, 15, 21, 22, 25, 26, 33, ...  (#17, 1954)
3,2,1,7,4,1,1,8,5,2,9,8, ... (#13, 1950)
1, 15,29, 12, 26, 12, 26, 9, 23, ... (#13, 1952)
5,11, 15, 16, 17, 18, 23, 25, ... (#18, 1955)

While looking through old issues of Eureka, | discovered another reason
why students should publish papers in the Journal. In #17 (1954) there was a
problem by Roger Penrose, then (I think) a student, now eminent in the extreme
(deviser of Penrose tiles, author of the recent best-seller The Emperor's New
NInd, Rouse Ball Professor of Mathematicsat Oxford, etc)). Hereit is (it is not
trivia): in a semigroup, where multiplication is associative but there are no
inverses, you are given that aba = a, bab = b, ab = ba, and ac = ca. Show that
bc = cb. Though the problem may be difficult, the conclusion to be drawn from
its existence is easy: if Roger Penrose published while a student, and Roger
Penrose has gone on to impressive achievements, then if you are a student, it
follows that ... .

Eighth Annua

MORAVIAN COLLEGE
STUDENT MATHEMATICS CONFERENCE

Bethlehem, Pennsylvania
Saturday, February 26, 1994

We invite you to join us, whether to present a talk or just
to listen and socialize. The invited speaker will be Diane
Souvaine, Acting Director of DIMACS (The Center for Discrete
Mathematics and Theoretical Computer Science), and associate
professor of Computer Science at Rutgers University. Her topic
will be "Geometric Computation and Applications”  The
conference will start at 9:00 am. and continue into late afternoon.
After the morning invited address, the rest of the day will be
devoted to student talks. Talks may be fifteen or thirty minutes
long. They may be on any topic related to mathematics, operations
research, statistics or computing. We encourage students doing
research or honors work to present their work here. We also
welcome expository talks, talks about interesting problems or
applications and talks about internships, field studies and summer
employment. We need your title, time of presentation (15 or 30
minutes) and a 50 word (approximate) abstract by February 18,
1994.

Sponsored by the Moravian College Chapter of Pi Mu
Epsilon and the Lehigh Valey Association of Independent
Colleges.

Alicia Sevilla

Department of Mathematics
Moravian College

1200 Main St.

Bethlehem, PA 18018-6650

(Telephone: (215) 861-1573)

Please contact:
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