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ON MUTUAL AND PAIRWISE INDEPENDENCE: 
SOME COUNTEREXAMPLES 

Anwer Khurshid and Haredo Sahai 
University of Exeter and University of Puerto Rico 

In elementary probability theory the concepts of pairwise and mutual or 
stochastic independence play a useful role. Three events A, B, and C, defined 
on the same sample space, are said to be pairwise independent if 

P(A nB) = P(A)P(B), 

P(A nC) - P(A)P(C) , 
P(Bnc) = P(B)P(C) . 

The events are said to be completely independent if 
P(A n B n q  = P(A) P(B)P(C) . 

The events are said to be mutually independent if both conditions hold. 
One might think that the first relations imply the second, i. e., that pairwise 
independence implies complete independence. Generally, it is almost always true 
but there are instances where the events are pairwise independent and yet the 
second condition does not hold. However, such occurrences are not very 
common and it takes some effort to construct a nontrivial natural example. In 
fact, Feller (1957, p. 117) has remarked that "... practical examples of pairwise 
independent events that are not mutually independent apparently do not exist." 
It was the famous Russian mathematician S. N. Bernstein who first gave an 
artificial example to illustrate such a possibility. Similarly, the second condition 
does not imply the first, i. e., events which are completely independent are not 
necessarily pairwise independent. 

The fact that pairwise independence is a strictly weaker condition than 
mutual independence is noted with some surprise by most students in a 
probability course. The purpose of this note is to assemble some examples when 
the events are pairwise independent but not completely independent and vice 
versa. The examples are readily constructed and can be easily presented in an 
elementary probability course. 

Pairwise independence does not imply complete independence. 

Example 1. Suppose that a regular tetrahedron has one red face, one 
green face, one blue face, and its fourth face colored with red, green, and blue 
stripes. Toss the tetrahedron and observe the face that appears (on the bottom). 
Let A be the event that red appears, B the event that green appears, and C the 
event that blue appears. We see that A, B, and C each have probability 1/2. 
Furthermore, each of AnB, AnC, and BnC has probability 114, since the only 
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way that two colors can appear is for the striped face to appear. So, A, B, and 
C are pairwise independent. But AfTfinC also has probability 114, SO that A, B, 
and C are not completely independent. 

This example appears in [Gnedenko, 1963, p. 621, where credit is given 
to S .  N. Bernstein. It also appears in may other texts. For example, [Freund, 
1973, p. 1511 gives a Venn diagram with those probabilities. But most of the 
time, "Bernstein's tetrahedron" wears some kind of disguise. Here are some 
other examples. We leave it to the reader to figure out the disguises. 

la:  [Cramdr, 1946, p. 162; Lindgren, 1976, p. 461. Let the sample 
space be S = {(I, 0, O), (0,1, O), (0,0, I)} with all points equally likely. Let A 
(respectively, B, C) be the event that the first (respectively, second, third) 
coordinate is a 1. 

lb: [Goldberg, 1960, p. 1111. In order to maintain quality control in a 
manufacturing process, each item undergoes three inspections. Of four units in 
a sample, unit 1 passed only the first inspection, unit 2 passed only the second 
inspection, unit 3 passed only the third, and unit 4 passed all three. Select one 
of the four units at random. Let A (respectively, B, C) be the event that the unit 
passed the first (respectively, second third) inspection. 

1c: [Eisen, 1969, p. 491. The following four combinations of symbols 
for apples, pears, and lemons appear on the face of a slot machine: (a, a, a), 
(p, p, p), (I, I, I), and (a, p, I), each with probability 114. LetA (respectively, B, 
C) be the event that an apple (respectively, a pear, a lemon) shows up. 

Id: [Parzen, 1960, p. 90; Hogg and Tanis, 1988, p. 421. An urn 
contains balls numbered 1 to 4. Draw a ball at random. LetA be the event that 
ball number 1 or 2 is selected, B the event that ball number 1 or 3 is selected, 
and C the event that ball number 1 or 4 is selected. 

Ie: [Ash, 1972, p. 204; Subrahma~am, 1979, p. 109; Berman, 1968, p. 
69; Larsen and Marx, 1986, p. 61; Mendenhall, Schaeffer, and Wackerly, 1986, 
p. 1091. Suppose that a fair coin is tossed twice. Let A be the event that the 
first toss is a head, B the event that the second toss is a head, and C the event 
that both tosses yield the same outcome. 

Example 2. 
Roll two fair dice. Let A be the event of an odd number showing up 

on the first die, B the event of an odd number showing up on the second die, and 
C the event of an odd total from the two faces. Each of A, B and C has 
probability 1/2 and each of A ~ B ,  AnC,  and B n C  has probability 114, so A, 
B, and C are pairwise independent. But A n B n C  has probability 0, since two 
odd numbers have an even sum, so the events are not completely independent. 

This example appears in [Mood, Graybill, and Boes, 1974, p. 42; Feller, 

1.968, p. 143; Larsen and Mane, 1986, p. 631. Similar examples based on rolling 
two dice appear in several textbooks. We leave to the reader the calculation of 
the probabilities. 

2a: [Goldberg, 1960, p. 1111. Let A be the event that 6 shows up on 
the first die, B the event that 6 shows up on the second die, and C the event-Of, 
an odd total. 

2b: [Blake, 1979, p. 1221. Let A be the event that 1 shows up on the 
first die, B the event that 1 shows up on the second die, and C the event that the 
same number shows up on both dice. 

2c: [Ash, 1970, p. 281. Let A be the event that the first die shows a 1, 
2, or 3, B the event that the second die shows a 4, 5, or 6, and C the event that 
the sum is 7. 

Example 3 [Feller, 1968, p. 1271. Consider the sample space consisting 
of nine triplets: the six permutations of a, b, and c together with (a, a, a), 
(b, 6, b), and (c, c, c), each with probability 1/9. Let A (respectively, B, C) be 
the event that the first coordinate ia a (respectively, the second coordinate is b, 
the third coordinate is c). Each of A, B, and C has probability 113 and each of 
AnB, AnC,  and BnC has probability 1/9, so A, B, and C are pairwise 
independent. But AnBnC has probability 1/9 also, so the events are not 
completely independent. 

Example 4 [Larsen and Marx, 1986, p. 621. A roulette wheel has 36 
numbered slots colored red or black as follows: 

red: (1, 2, 3, 4, 5, 10, 11, 12, 13, 24, 25, 26, 27, 32, 33, 34, 35, 36) 
black: (6, 7, 8, 9, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 28, 29, 30, 31). 

Spin the wheel once and observe the number and color of the slot in which the 
ball lands. Let A be the event that the slot is red, B the event that the slot has 
an even number, and C the event that its number is less than or equal to 18. 
Then each of A, B, and C has probability 112, and each of A ~ B ,  AnC,  and 
B n C  has probability 114. But A^B^C has probability 1/9. 

Example 5 [Geisser and Mantel, 1962, p. 2901. Consider a sphere and 
select, randomly and independently, three great circle segments on it. Let A be 
the event that segments 1 and 2 intersect, B the event that segments 1 and 3 
intersect, and C the event that segments 2 and 3 intersect. The specific 
probabilities involved will depend on the lengths of the segments, but whatever 
they are, pairwise independence is inherent in the experiment. If any two of the 
three events occur, then one of the segments intersects both of the other two; 
intuitively, this increases the chance that the other two segments will intersect ; 
each other. So, complete independence fails. 

Example 6 [Geisser and Mantel, 1962, p. 2901. Suppose that three halls 



are distributed independently and at random into two or more urns. Let A be the 
event that balls 1 and 2 are placed in the same urn, B the event that balls 1 and 
3 are placed in the same urn, and C the event that balls 2 and 3 are placed in the 
same urn. If there are exactly two urns, then we have yet another disguised 
example of the Bernstein tetrahedron. If there are exactly three urns, then we 
have the same probabilities as in Example 3. If there are more than three urns, 
then the probabilities are new. 

Geisser and Mantel actually gave a generalized Example 6, where the 
number of balls is n 2 3. Then we get n(n - 1)/2 events A,., where A,. occurs 
if balls i and j are placed in the same urn. Similarly, Bernstein's example has 
been generalized to any number of dimensions in [Lancaster, 19651. 

Other examples, not significantly different from those above can be 
found in [Neuts, 1973, p. 76; Kreysig, 1970, p. 57; Giri, 1974, p. 33; DeGroot, 
1975, p. 421. 

Complete independence does not imply pairwiie independence 

Example 1 [Ash, 1970, p. 271. 
Suppose that two dice are tossed and let 5 be the sample space comprising all 
ordered pairs { (i, j> }, i, j = 1, 2, 3, 4, 5, 6, with a probability of 1/36 assigned 
to each point. LetA be the event that the face of the first die is 1,2, or 3; B the 
event that the face of the first die is 3, 4, or 5; and C the event that the sum of 
the two faces is 9. It is easily verified that P(A) = P(B) = 112, P(C) = 1/9, 
P(AnB) = 116, P(AnC) = 1/36, P (B~C)  = 1/12, and P(A^~\C) = 1/36. 
Thus, it follows that A, B, and C are completely independent but not pairwise 
independent. 

Example 2 [Larsen and Marx, pp. 61-62]. 
In Example 1, let A be the event that the face of the first die is 1 or 2; B the 
event that the face of the second die is 3,4, or 5; and C the event that the sum 
of the two faces is 4, 11, or 12. It is readily shown that A, B, and C are 
wmpletely independent but not pairwise independent. 

Example 3 [Crow, 1957, pp. 716-7171. 
An urn contains one red, one blue, one white, two yellow, and three black balls. 
A ball is drawn randomly from the urn. Let A be the event that a red, yellow, 
or white ball is drawn; B the event that a blue, yellow, or white ball is drawn; 
and C the event that a black or white ball is drawn. It is easily shown that 
P(A) = P(B) = P(C) = 112, P(A fb) = 318, P(A n ~ )  = P(B~C)  = 118, and 
P(A f l ~ n C )  = 118. Thus, it follows that A, B, and C are completely independent 
but not pairwise independent. Essentially the same example is given in 
[Lindgren (1976, p. 48)l. 

Example 4 [Subrahma~am, 1979, p. 1101. 
In a certain town there are three editions of a daily newspaper: morning (M), 
evening (E), and weekend (W). Sup- 
pose the probability of a randomly cho- 
sen household subscribing to any one of 
the editions is illustrated by the Venn 
diagram in Figure 1. From the figure, 
P(M) = .50, P(E) = .80, P(W) = .60, 
P ( M n q  = .42, P(M~W) = a,P(EnW 
= .42 and P(MWflW) = .24. Thus, 

M, E, and Ware wmpletely independent 
but not pairwise independent. 

Example 5 [Freund, 1962, p. 
501. 
Suppose the events A, B and C and their 
respective probabilities are illustrated by 
the Venn diagram in Figure 2, where the 
sample space contains 100 equally likely 
points and the numbers on the diagram 
indicate the number of distinct outcomes 
contained in the respective events. 
From the figure, P(A) = 1/2, P(B) = 
114, P(C) = 8/100, P(AnB) = 114, 
P ( A ~ C )  = P ( B ~ C )  = 11100, and 
~ ( ~ n f i n c )  = i/ioo. n u s ,  it follows 
thatA, B, and C are wmpletely indepen- 
dent but not pairwise independent. 

Figure 1 

Example 6 [Goldberg, 1960, p. 1121. 

Figure 2 

A card is selected at random from a standard deck of 52 cards. Let A be me 
event that the selected card is a spade or club, B the event that it is a spade, and 
C the event that it is the ace of spades or the ace, king, ... , 8 of diamonds. It 
is readily verified that A, B, and C arc completely independent but not pairwise 
independent. 

Example 7 [Mood, Graybill, and Boes, 1974, p. 431. 
Consider two events A and B that are not independent and another event C of 
probability zero. Then it immediately follows that A, B, and C are wmpletely 
independent but not pairwise independent 

As suggested by the examples given in this paper, some authois give 
only one type of counterexample while others include both types. Furthermore, 
most examples can be criticized as "frivolous"in nature, or at least artificial. We 
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conclude with two examples which definitely are not frivolous but have 
important practical applications. 

Example 1 [Geisser and Mantel, 1962, p. 2901. 
Let r12, r13, and r23 be the pairwise sample correlation coefficients based on 
a random sample of n observations from a trivariate nonsingular normal 
distribution having a diagonal variance-covariance matrix. Using the methods 
of mathematical statistics, it can be proven that the joint density of the sample 
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correlation coefficients, r12, r13, and rZ is given by 
2 2 2  (n - 5)12 

f(r12, "13, "23) = - '12 - '13 - '23 + 2r12r13r23) 
2 2 2 

when 1 - r12 - r13 - rz3 + 2r12r13r23 > 0 and zero elsewhere. Now, using the 
considerations of continuity and positive definiteness of the correlation matrix, 
it can be shown that the three random variables are not mutually independent. 
However, it can be shown directly that the variables r12, r13, and r23 are 
pairwise independent. 

The above result can be extended to the general case ofp(p - 1)/2 
(withp > 3) jointly distributed correlation coefficients when a random sample of 
n observations is drawn from a p-variate nonsingular normal distribution having 
a diagonal variance-covariance matrix. The result has an important statistical 
application to the effect that it simplifies the evaluation of the variance, in the 
null case (when the corresponding population correlations are zero), i. e., 

Example 2 [Driscoll, 1978, p. 4321. 
Consider two independent random variables X and Y each having the rectangular 
distribution on the unit interval. Further, define a random variable Z = (X + Y) 
(mod I), i. e. 

z={ X + Y  if O s X + Y s l  
X + Y - 1  if l < X + Y s 2 .  

Then, using the methods of calculus and analytical probability, it can be shown 
that X, Y, and Z are identically distributed and pairwise independent but not 
mutually independent. 

The above result has an important application in the characterization of 
the rectangular distribution. For example, using the methods of advanced 
probability, it can be proven that among the absolutely continuous distributions 
having the closed unit interval for their support, the rectangular distribution is the 
only one satisfying the above properties [Driscoll, 19781. The result also extends 
to intervals other than [O, 11, as well as to discrete rectangular distributions, and 
thus provides characterizations for all rectangular distributions. 
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Chapter Reports 

Professors Rudy Gideon and Mary Jean Brod, faculty advisors of the 
MONTANA ALPHA chapter (University of Montana), report that there are thirty 
new members and plans for biweekly meetings. Four students presented talks 
to the chapter last year: 

Dean Risinger-Finiteness and rings of continuous functions 
Doug Holstein-Exact sequences of topological spaces 
Patricia Olsen-Optimal jury selection 
Scott McRae-Analysis of a heuristic algorithm for optimally scheduling 

assignments with constraints. 

The NEW YORK OMEGA chapter (St. Bonaventure University) held five 
meetings and, in cooperation with the MAA student chapter, sponsored the 
Mathematics Forum, a series of ten lectures, including one by this year's Frame 
Lecturer, George Andrews. 

ON THE SOLUTIONS OF a a = b 

Jeffrey D. Bomberger 
University of NebraskaÃ‘Lincol 

LEMMA 1: For any x > 1 ,  (x - '1, x - ')) â S. 
Proof-. Let a = x - ') and b = x - '1. Then 0 c a c b and since 
xa = b, 

a a = (x -* - 1))" = (x -I/@ - 1 )) xa = b b .  

The equation xy = yx  was solved by Euler and has been considered 
many times since. However, the equation xx  = yy is not as well known. Itfthis 
paper we will find all pairs (a, b) which satisfy a " = b '. 

Let us consider the function f(x) = xx, x > 0. Calculation shows that 
f attains its minimum at x = l ie and that limx+n+ xx = 1. Thus the graph of 
f is as shown in Figure 1. From the 
graph we can see that ife ''Ie c y c 1, 
then there is a unique pair of real Y 

numbers (a, b) that satisfiesa a = b 
= y. Therefore, by allowing y to 
vary in the interval (e-'Ie, I), it 

LEMMA 2: For x > 1 ,  let A(x) = x '̂ '') and B(x) = x ^"'). Then 

(i) A and B are continuous on (1, m). 

(ii) A is strictly decreasing and B is strictly increasing on (1, m). 

follows that there are infinitely many 
pairs (a, b) that satisfy a a = b '. 

Let S denote the set of all 
pairs (a, b) with a < b whidi satisfy 

x 
1Ã 1 

a "  = bb ,  Then it is clear that if 
(a, b) â S then 0 < a < l ie c b < 1. Figure 1 
Also, since f is one-to-one on each of 
(0, lie) and (lie, I), if (a, b) and 
(a, c) are in S, then b = c, and if (a, b) and (c, b) are in 5, then a = c .  

It is not hard to see that (114, 1/2) â S. Thus, there is y so that 
(1/2y, 1/y) â S. Is there y so that (lf3.y' lfy) E S ?  If so, then (1/3~)'^ = 

(lfy)'@, (lf3y) = ( I / ~ ) ~ ,  and - 3y = 0. Solving, we get y = 3". 
Replacing 3 with 4 gives y 4  - 4y = 0 and y = 4 .  

In general, if (lfxy, lfy) â S, we have y - xy = 0, from which we 
get 
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(ill) limX_,+ A(x) = e -', and limx-m A(x) = 0. 
(iv) l i m x - l + B ( x ) = e ~ l , a n d l i m x ~ m B ( x ) = l .  

Proof: (i): Since A(x) = exp( -x ln x/(x - 1)) and x ln x/(x - 1) is continuous on 
(1, w), then so is A. Similarly, B is continuous on (1, w). In fact, A and B are 
infinitely differentiable on (I,Â¡Â¡ (ii): Let h(x) = x - 1 - lnx. Thenh Tx) 
= 1 - l/x > 0 for x > 1. So, h is strictly increasing on (1, w), andx - 1 - lnx 
= h(x) > h(1) = 0 for all x > 1. Now, since A '(x) = -h(x)A(x)/(x - 1)' and 
A(x) > 0 ,  it follows that A '(x) < 0 for x â (1, w). The proof thatB1(x) > 0 
for x â (1, w) is similar. Here, we need only show that x lnx  - (x - 1) > 0 
for all x > 1 ,  which is not difficult. Finally, (iii) and (iv) follow from 
L'H6pita17s rule. 

THEOREM: s = { (x - 4 ~  - 1) -1@ - 1)) 1 I < x < w } .  

Proof: By Lemma 1, we need only show that 
s c { (x -x/(x - I), x -1'̂  - 1)) 1 1 < Jc < 00 } . 

Let (a, b) â S and A@), B(x) as in Lemma 2. Then, from Lemma 2, A(x) and B(x) 
are one-to-one wntinuous functions on (1, m) , A(1, w) = (0, e - ) ,  and B(1, w) 
= ( e l ,  1). Now, since a E (0, e-I) and b â ( e l ,  1) then by the intermedi- 
ate value theorem, there exist unique numbers x and z E (1, a )  such thatA(x) 
= a and B(z) = b. So, (A@), B(z)) â 5 ,  but (A@), B(x)) â S by Lemma 1. 
So, B(z) - B(x). Since B(x) is one-to-one on (1, w), then z = x. Hence,(a, b) 
= (A(x), B(x)) for a unique x â (1, oo), completing the proof. 

By letting x = n/(n - 1) for integer n > 1, we get an infinite sequence 
of rational solutions (a, b): { ((n - l)/n)n, (n - l ) ~ n ) ~ - l  }, n = 2, 3, 4, ... . The 
first four terms of this sequence are (114, 1/2), (8127, 4/9), (811256, 27/64), 
(1024/3125, 2561625). 

Jeffrey Bomberger is an actuarial science major at the University of 
NebraskaÃ‘Lincoln This paper was written when he was a first-year student in 
calculus, under the direction of Professor Mohummad Rammaha. 

Chapter Report 

Professor Paul Eloe reports from the OHIO ZETA chapter (University of 
Dayton) that Kristine Fromm and Kristen Toft participated in summer research 
programs in 1992, that nine students participated in the Putnam Examination, and 
that a Dayton team was entered in the annual n~athematical modeling contest. 

Ali R. Amir-Mo4z 
Texas Tech University 

One can study some properties 
of an ellipse through the orthogonal 
projection of circles. Two properties 
which are carried through the projection 
are quite interesting. 

(i) Tangency is transformed 
into tangency. 

(ii) Areas are all multiplied by 
the cosine of the angle between the 
plane of the circle and the plane of its 
projection. 

1. The Projection of a Circle: 
Each ellipse can be considered as the 
orthogonal projection of its principle 
circle. Let Q be a point on the principle 
circle of an ellipse (Fig. 1). Then the 
perpendicular to OA through Q inter- 
sects the ellipse at P. Let the foot of 
the perpendicular be H. We may say 
that HP is the projection of HQ. In 
order to make this idea clear, we rotate 
the principle circle about the x-axis 
through an angle 9 such that cos 9 = b/a ; 

Figure 1 

Figure 2 

then the projection of this circle on the xy-plane is the ellipse. A cross section, 
with OA being the edge of the plane of the circle, is shown in Figure 2. 

Let the equation of the principle circle be 

(1) X' + y 2  -a*. 
Then Q has coordinates (X, Y) which satisfy (1). Since 

if the coordinates of P are (x, y) then we observe that 
b x = X and y = Ã‘Y 
a 

Substituting in (1) for X and Y, we obtain 
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2. Tangency: We observe that 
a tangent line to an ellipse at a point P 
and the tangent line to the corresponding 
point Q of the principle circle intersect 
at a point K which is on the x-axis (Fig. 
3). The proof is quite simple. Now 
suppose we would like to draw a tan- 
gent line to the ellipse from any point L 
outside the ellipse (Fig. 3). We draw 
the perpendicular line to the x-axis 
through L. Then we obtain the point M Figure 3 
on this line such that 

Then the tangent line through M to the circle intersects the x-axis at K. The line 
KL is tangent to the ellipse. 

3. Areas: It is well-known 
that a projection of an area (as in Figure 
2)  is equal to the area of the original 
surface multiplied by the cosine of the 
angle between the two planes. So the 
area of the ellipse with semi-major axis 
a and semi-minor axis b will be 

2 A = na cos9 = na 2(i) = n a b .  

4. Hippocrates' Theorem: Figure 4 
Let ABCD be a square inscribed in a 
circle. Draw four half circles with diameters AS, BD, DC, and CA. We obtain 
four crescent-shaped configurations over the arcs (Fig. 4). The sum of the areas 
of these crescent shapes is the same as the area of the square ABCD. The proof 
is quite simple and can be found in [I]. 

Now consider the orthogonal projection of this configuration on a plane 
through the line CB. We shall get an ellipse and four crescent-shaped areas that 

we would like to describe. Each of the 
areas is situated between two ellipses; 
one of them is the projection of the 
circumscribed circle of the square. We 
shall look at the outer ellipse in the first 
quadrant. The center M of the circle ry 

with diameter AB projects into M ' , the 
midpoint of A ' B  (Fig. 5) .  The half 
circle of diameter AB projects into half 
of an ellipse. Let the projection of the 
circumscribed circle be Figure 5 

1 1 

Then half of the major axis of the other ellipse will be a m 2  and half of its 
minor axis will be 

The set of coordinates of M is (an, al2). So the set of coordinates of M' will 
be 

Consequently, the equation of this ellipse is 

This way the four crescent-shaped areas become four areas the sum of which is 
the same as the area of the rectangle, that is, the projection of the square ABCD. 
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Proving that PSL(2, 7) is a simple group can be done by the method of 
conjugation. This paper will use the more efficient method of counting. The 
paper will cover some definitions that arc referred to in the proof and then 
address the proof. This method of proof also applies to Ar. I will begin by 
defining the group. 

SL(2, 7) is the group of 2-by-2 matrices with determinant one with 
entries from F7, the integers modulo 7. To find its order, we look at the 
following elements, with a, b, c, d nonzero entries. There are 6 of the form 

and 36 of each of the four forms 

b ] ,  and El. The entries a and b in :] can be chosen in 36 ways and 

for each choice there are 5 ways of choosing c and d (since both are nonzero). 
So, the order of SL(2, 7) is 2-6 + 4-36 + 5-36 = 336. 

The center of a group is 
Z(G) = { s â ‚  \ sg = gs for all gGG}. 

PSL(2, 7) is the group SL(2,7)/Z(SL(2, 7)). To find the order of PSL(2, 7), we 
find \Z(SL(2, 7))l. We arc looking for the matrices that commute with all the 
elements of SL(2, 7). Since such a matrix commutes with all the elements, in 

/ 
particular it commutes with matrices of the form 4, with a and b not equal 

to 0. Thus 

So we know that be = ea for all b, a in F, so (b - a)e = 0 from which it 
follows that e = 0. We also know that ad = d b  for all i, b, so we have that d 
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- - 

from which it follows that f = c. Since b] must have determinant 1, c = 1 

and so c = 1 or c = -1 = 6 (in F7). Also, it is easy to see that [. t] does 

indeed commute with all the elements of SL(2, 7). Hence the order of PSL(2, 7) 
is 33612 = 168. 

Now we state and prove a theorem. 

THEOREM: Let H be a normal subgroup of a finite group G and let x 
beinG.  I f g c d ( \ x \ ,  \ G / H \ )  = 1, 

Proof: Let 1x1 = r ,  \G/H\  - s. Then x 
(xHf = (x Â¥) = eH. Now, by La 
X H \ ~ S .  Since l x ~ l l r  and \ s H \  
gcd(r, s) = 1, we have \xH \ = 1, and x is in H. 

A straightforward but long calculation shows that the elements of 
PSL(2, 7) have the following orders: 

Now we can prove that PSL(2, 7) is simple. If PSL(2, 7) has a 
nontrivial proper subgroup H, then 

\H\ = 2,3,4,6,7,8, 12, 14,21,24,28,42,56, or84. 

We consider different cases. 

i.) If \ H 1 = 7, 14,21, 28, or 42, then \PSL(2,7)/H \ is relatively 
prime to 7, and so by the theorem, H would have to contain a l l  4S 
elements of order 7. Since \H\ s 42, that is impossible. 

ii.) I f  \ H 1 = 3,6, 12, or 24, then \PSL(2,7)/H \ is relatively primc to 
3, and so by the theorem, H would have to contain all 5d elei~~riits o f  

Order 

Number of elements 

1 

1 

2 

21 

3 

56 

4 

42 

7 

48 



order 3, but \H\ s 24. 

iii.) If \H\ = 8, then 1 PSL(2,7)/H \ is relatively prime to 4, and s o  
by the theorem H would have to contain all 42 elements of order 4, but 
\H\ = 8 .  

iv.) If 1 H \ = 56, then \PSL(2,7)/H \ is relatively prime to both 4 and 
7, and so  by the theorem, H would have to contain all 90 elements of 
orders 4 and 7, but \H\ = 56,. 

v.) If \H\ = 84, then \PSL(2,7)/H \ is relatively prime to both 3 and 
7, and so  by the theorem, H would have to contain all 104 elements of 
orders 3 and 7, but \H\ = 84,. 

vi.) If H 1 - 2 or 4,  then \PSL(2,7)/H \ = 8 4  and 42. We  know 
from the Sylow theorems that any group of order 8 4  and any group of 
order 42  has only one Sylow-7 subgroup, which is therefore normal. 
If H is normal in PSL(2,7), then PSL(2, 7)/H has a normal subgroup Nu 
of order 7. So now we consider the projection homomorphism 

Q : PSL(2, 7) -Ã PSL(2, 7)/H. 

* ( N u )  is a normal subgroup of G and is of order 2-7 or4-7 .  
However, we have already shown that there does not exist a normal 
subgroup of order 14 or 28, so  this case also is impossible. 

We have examined all possible orders of nontrivial proper normal 
subgroups H of PSL(2, 7) and shown that all lead to contradictions. Hence 
PSL(2, 7) has no nontrivial proper normal subgroups and is a simple group of 
order 168. 
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3507! - 1 is a big prime. How many digits? 

James Ramaley 
Ziff-Davis Publishing Company 

1. Introduction-what does a mathematician d o  in business? 
Perhaps the last two words in the title of this section are superflu- 

ous-~iiany people simply wonder what n~athen~aticians do in general without 
restricting the question to the "business world". But while I was teaching I was 
often asked precisely that question by my students and, at the time, I really 
couldn't answer them with any kind of authority. I knew that there were many 
jobs in which a knowledge of elementary statistics was useful. And I even 
suspected that one might be able to use some linear algebra or calculus, but aside 
from jobs that are viewed as "technical", I didn't really have much of a clue as 
to the real value of a mathematical education to the business community. 

Over the last twenty years in business I have come to realize that the 
value of n~athematical studies is not specifically in the mastery of certain tools. 
Rather, it is that the study of niathematics leads one into a "mathematical" 
approach to problem solving that places great emphasis upon precise definitions. 
The fad  of the matter is that niost people are not skilled in, nor do they 
appreciate the importance of, precise definition-making. Yet a mathematician, 
almost by instinct, will turn a question of problem-solving into one of probleni- 
identification. 

The matching problem outlined below gives a good example of a 
problem that is of great strategic and tactical interest to the publishing industry 
and which has been "solved" before many times. However, as you will see, a 
mathematician's approach will give a new twist to this old problem. 

2. The matching problem. 
Recognizing whether or not two things are the same is a theme common 

to many parts of mathematics, as well as of human existence. Even the 
statement that 1 + 1 = 2 is a simple illustration of this theme, but it has great 
consequences in the development of the Peano Postulates for Arithmetic. 

The matching 1 am interested in is that of names and addresses. In the 
magazine industry the inadvertent entry onto the subscription files of two orders 
for the same person is usually a minor annoyance to the subscriber, but i t  is a 
costly mistake for the company. Not only will the company waste copies by 
sending unwanted copies to the subscriber, but the failure to deled such 
duplicates has the undesirable side effect of reducing the total "paid circulalion" 
of the maga/inc. Paid circulation is a technically defined lcnn that is used by 
advertisers to indicate the number of people who have paid to receive copies of 
the magazine. I t  is the basis for advertising rates in the niaya/inC and is there-; 



fore of great interest to the advertiser and publisher alike. 
Correctly matching names and addresses has many other raniifications. 

For example, credit reporting bureaus link together records of transactions such 
as credit card payments or loan payments and prepare credit reports requested by 
conlpanies looking to extend credit to borrowers. An example that is very 
important to direct mail advertisers (magazines themselves are often sold through 
direct mail promotions) has to do with name suppression. If a list of prospects 
is rented from an outside source, before the list is mailed one would want to 
identify all the prospects on the list who are already subscribers to the magazine 
and "suppress" their names from the mailing. 

Making an error in the suppression of names is not nearly as serious as 
erroneously reporting credit information. In the former case it simply means 
than an existing subscriber gets a wasted promotion; in the latter case an 
erroneous credit report could result in a costly lawsuit. 

But consider the cost of mailing promotions to already subscribing 
prospects. The cost of a pronlotion may be as great as 50 cents per name. It is 
not unusual to mail out as nlany as 1 million pieces in a single campaign. If as 
few as 5% of these are already on file, a not uncommon duplication percentage, 
some $25,000 will be wasted trying to promote people who already subscribe! 

3. The traditional solution. 
The common approach to this problem is quite straightforward. For 

each name and address record a "matchcode" is defined by extracting portions 
of the record in a specific way. Two records having the same niatchcode are, 
by definition, declared to be duplicates. 

For example, a matchcode might be defincd by concatenating the zip 
code with the subscriber's last name. Such a simple matchcode would have a 
couple of obvious failings. In the first place, any two people having the same 
last name actually residing in the same zip code area would be declared 
duplicates. A glance in any phone book would indicate that it is, in fact, 
relatively common for families to have nienibers with the same surname living 
near each other. Another problem conics from the fad that nlany lists are 
constructed in such a way that the last name is not easily extracted. Sometimes 
the last name might be first, sometimes i t  might he last. There might he a suffix 
(Ph.D. or Jr.) or a prefix (Mr. or Ms.) that one has to avoid. Several techniques 
can help minimize these shortcomings. For example, instead of using the entire 
last name, a common trick is to drop all non-initial vowels from the last name 
instead. This partially compensates for two of the niost common errors in 
transcribing names: transposition of characters and the interchange of vowels 
within a name. Another idea is to append the first initial of the first name-this 
helps distinguish different family members. Sometimes a portion of the address 
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is added too. Clearly any niatchcoding scheme can fall prey to two errors-two 
different records might give rise to the same matchcode (a type 11 error, in 
statistical terms) or really duplicate records give rise to different matchcodes (a 
type I error). It is well-known that it is impossible to minimize both types of 
errors simultaneously. So, the question usually boils down to which type of error 
is the more serious in the context. The publisher can decide to use a "tight" 
matchcode (one that extracts many characters from each record and requires 
matching on all characters) or a "loose"matchcode. A tight matchcode minimizes 
making an error in saying that two records are duplicates (when they are not) but 
will overlook duplicate records that are not nearly perfect duplicates; a loose 
matchcode minimizes the chance of overlooking two duplicate records by 
asserting some are equal even when they are not. Aside from the observations 
above, matchcodes have an extremely vulnerable shortcoming-they are 
hierarchical. That is, in comparing two matchcodes, even a very simple error 
early in the hierarchy will cause two match codes to be significantly different. 
Two records could be nearly identical, but a mistake in the first letter of the last 
names would be fatal. 

4. A High Tech Approach. 
I like to think of the process of matching to a "search and rescue" 

operation. I think of each record as broadcasting a signal that indicates its 
presence while a matching procedure picks up these signals and determines (by 
a scoring mechanism) whether two records' signals are sufficiently strong to 
determine them as duplicates. The signals broadcast are called "tokens" and are 
extracts of the subscriber record chosen in a way that they "represent" portions 
of the record. For example, a name field might be represented by a first name 
token, a middle name token, a last name token, and a set of initials. Thomas J. 
Watson might become four tokens: THMS, J, WTSN, TJW. The same concept 
could apply to companies: International Business Machines would become 
INTRN, BSNSS, MCHNS, IBM. In a high tech approach each record is first 
broken into tokens and the tokens are put into an indexed file. Then every 
record is again read sequentially and, for each token, every record having a 
matching token is selected and put into a pool of matching "candidates". A 
scoring mechanism can be set up that is used to determine whether a potential 
match has a sufficiently high score to be declared an actual match. This method 
has the advantage of minimizing the chance of missing records which are, in 
fact, duplicates (providing the scoring mechanism is good). But there is a 
tremendous cost. Clearly there will be nlany, many instances where one, two, 
or even more tokens might match but the records are simple not matches. , 

Several techniques could be used to reduce the number of potential matching 
records, but still the number of data fetches could overwhelm even a very 



powerful computer. 

5. A mathematician's approach. 
We have seen two approaches to the matching problem. The matchcodf 

technique is fast but is very sensitive to variations in the name and address, A 
token approach decreases the chance of missing duplicate records but requires 
tremendous computer capacity since many records are read hundreds of times 
What would a mathematician do? A mathematician is trained to look for way! 
in which a problem can be broken down into smaller problems-hopefully one? 
which are simpler and perhaps have even already been solved. Also reasoning 
by analogy is a common approach and so one tries to find analogies to prio 
experiences. First note that it is possible to think of matching records as i 

metric problem; or more generally, as a problem in defining an equivalence 
relation whereby two records are "related" if they match. Secondly, it i: 
important to realize that matching has two important componentsÃ‘(1 the searcl 
for candidates for matching and (2) a scoring mechanism to declare actua 
matches. Considering the two aspects of matching-searching and scoring 
-gives a key idea. We want a search procedure that leverages prior searcl 
activities. That is, suppose we had five candidates for matching a given record 
Because we want matching to be an equivalence relation, each of these record; 
should be a candidate for matching each other. Therefore, when we create i 

candidate pool for the "first" of these records we want to use this pool for a1 
these records simultaneously. This leads to the idea of a "window" o 
candidates. We sort all the records by some criterion that maximizes the chance: 
that candidates are "near" each other and then open a sliding window tha 
considers all of the records visible in the window as potential candidates fo 
matching. The advantage of this view is that records are read only once and an 
candidates for matching with all other records in the window. From a processinj 
standpoint, since each record is read only once the process is linear with thi 
number of records. 

Now that we have a way to locate candidates we still need a scorinj 
mechanism to declare matches. The scoring mechanism should be symmetrii 
since the order of comparing two records should be irrelevant. This suggests 
some kind of additivity, the siniplest being just to add points for matching tokens 
from both records. We will declare that two records match if the score exceeds 
some predetermined threshold. The easiest way of insuring transitivity is simply 
to take the transitive closure of this matching relation-. if a record matches any 
member of a family it is defined to be in that family. 

This idea also has an extremely valuable consequence that considerably 
widens its usefulness. A "helper file" is a file which contains some certified 
linking field that exists between records within the file. For example, it may be 

possible to obtain a file that contains "certifiedn variations of a company name 
all linked by a single company number. Sometimes these variations are non- 
trivial, as in the case of the Scripps Oceanographic Institute-a part of the 
University of California at San Diego! If the helper file links these two records 
and is merged with the file to be matched, the transitivity of the matching 
relation insures that otherwise unmatchable records are, in fact, matched. 

Without going into further detail here I just want to recall the point that 
an equivalence relation gives rise to equivalence classes so that two records are 
"relatedn (or matched) if they are in the same class. This point is fundamental 
to a person who has been trained in mathematics but it would be conlpletely 
overlooked by a non-mathematician. 

6. Epilogue. 
There are many further applications of mathematical thought in the 

matching problem. Just to name a couple, consider the probleni of measuring 
the accuracy of a matching run. To assert that a given match is either correct 
or incorrect requires that you have some underlying scoring method (other than 
the niatching program itself). This would be the case if, for example, one has 
a certified linkage between records (perhaps you secretly have social security 
numbers). The problem, then, is how to define a metric that reflects the 
accuracy of the matching run. 

Another problem would be how to best define a match "threshold", a 
score that minimizes the changes of erroneously declaring matches and which 
sin~ultaneous maximizes the likelihood of correctly declaring matches (it is 
mathematically impossible to actually do both, but still one needs to define a 
threshold for use). 

So, how can one recognize uses of mathematics in the "real world"? 
The key is to be able to recognize general structures and the procedures used to 
build and analyze such structures. And while the iniportance of precise 
definitions is well understood by a niathematician, it is rarely understood just 
how important precision is in understanding the exact nature of a problem before 
trying to solve it. 
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he explained by the genetic influences o f  h i s  tfnrtidfl~tlii'r (professor nt the: 
Uniwrsity of Color(1i10 from 1808 to 104.T) am1 q r i ~ t i t - q r t ~ t ~ ~ l f i ~ ~ l i ~ ~ r  (pr~nti-r niul 
publisher in Minin'iipo11.s from AS 70 to I0 1 7 ) .  
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By the Cayley-Hamilton Theorem, every square matrix satisfies it 
characteristic equation. Let A be a 2 x 2 invertible matrix with real entries 
When will A satisfy the characteristic equation of A? This note answers th 
question. r 1 

Let p(A) denote the characteristic polynomial of A - 1; 1. The 
L J 

p(A) = \A -Vl = A2 -(trA)A + 1 ~ 1 ,  where IAI = ad  -be  and trA : 

a + d (which is called the trace of A). Since A is invertible, IA 1 # 0. 

THEOREM. p(A -I) = 0 if and only if 1 A 1 = 1 or (tr A)A = (1 + 1 A I) I 
Proof. Since p(A) = 0 ,  

A -I) = A 2 p ( ~  -I) - \A\p(A) 

= A2[(A - (trA)A -' + \A \l} - \A\[A2 - (trA)A + 1 
This simplifies to give 

A 2 p ( ~  -I) = I - (trA)A + (trA) \A \A - \A 121, 

= (1 - [A j2)1 + ( \ A  1 - l)(trA)A, 

= (1 - \A l ) ( ( l  + IA 1)I - ( t r ~ ) ~ ) .  

If p(A -I) = 0, then either IA 1 = 1 or (trA)A - (1 + IA I)/. 

Conversely, if IA 1 = 1 or (trA)A - (1 + [A I)/, thenA -I) = C 
and so p(A -I) = 0. 

COROLLARY. If IA I = -1 and tr A = 0,  then p(A l )  = 0. 
Proof. Since IA 1 = -1 and trA = 0,  (trA)A = (1 + IA [ ) I  = 0 ant 

so p(A -I) = 0 from the theorem. 

The restriction trA = 0 in the corollary is necessary: if A = 

- - 

then IA 1 = -1, trA = 2, and p(A) - A2 - 2A - 1. Also, A = 1: :lland 

The question of when a 3 x 3 matrix A has an inverse that satisfies the 
characteristic equation of A remains open. 
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Are Proofs Hard? 

Here is an amazing theorem, giving a necessary and sufficient condition 
for two numbers to be equal, connecting the operations of addition and 
multiplication: 

THEOREM: x = y if and only if xy = (x + y)2/4. 

Prove half of the theorem, your choice of which half. 
There, was that hard? Now, if you feel like it, prove the other half. 

Then see how the theorem would be changed if the last equation had a 2 instead 
of a 4 in the denominator. Then, if you still feel like it, see what a 2n instead 
of a 4 would do, thus proving infinitely many theorems all at once. Then let 
n -*a. Then what? I don't know-mathematics is endless. 

Chapter Report 

The Historian of the OHIO XI chapter (Youngstown State University), 
Lori Kaminski produced an eight-page chapter Newsletter, not all of which can 
be reproduced here. The winner of the annual calculus competition, and 
$50-who says that mathematics does not pay?-was a major in mechanical 
engineering, but second place was taken by Patrick DiRusso, a mathematics 
major. The Pi Mu Epsilon T-shirt Sale resulted in twenty-seven purchases. 
Among the advantages of preparing a student paper are 

A student paper presentation at a national meeting will often draw a 
positive reaction from interviewers when discussing a resume. 

The chapter held a mathematics careers panel discussion at which six alumni 
served as panel members. Their occupations are: Vice President of a software 
company, Senior Actuarial Analyst at a pension consulting firm, Computer 
Analyst for the National Security Agency, Business Relations Specialist for 
Electronic Data Systems, Mathematics Instructor at a high school, and graduate, 
student in mathematics. 



H o w  TO FIND SINES WITHOUT KNOWING ANY 

Andrew Cusumano 
Great Neck, New York 

This note describes an easily programmable procedure for approximating 
the sine of a given angle, using the double-angle formula for the sine. 

The approach is to divide the angle in half enough times until we obtain 
an angle small enough to approximate its sine as the angle itself. We can then 
work backwards, repeatedly using the double-angle formula, until we have the 
sine of the original angle. 

x 3  xs  Since sinx - x - _ + _ - ..., the error in approximating sinx by 
3! 5! 

x is < x3/6. If we want 10-place accuracy, then we can use the approximation 
- - 

i t  x3/6 c ~ . l ~ - l l ,  or x -c ̂ *- .001)6694. For an angle between 

nil O0 and 90Â° we will need no more than k divisions by 2, where - c .0006694, 
2k 

so k = 12 will do. Then, since s i n 2  = 2sinx cosx = 2 sinx l/l - sin2x , we 

apply 

(1) s i n a ,  = 2 s i n a  T 1 - sin2a,, 

k times, with sin an = an, where an is the original angle bisected k times. 
The procedure can easily be carried out on non-programmable 

calculators without any data entry other than the original angle as long as one 
memory location is available to store the current value of sin a .  It takes only 

3116 a few minutes to go from __ = .0005113 back to SO00000 by applying (1) 10 

times. 21Â 

Andrew Cusumano was a mathematics major at C. W. Post College, 
graduating in 1976. He is now a software engineer and, besides that, is 
interested in sequences, series, and geometry. 
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That ancient calculating device, the abacus, can be used to do 
calculations in base 16, the base in which the contents of computer files are 
usually displayed. - - 

The Chinese version of the 
abacus, the sum pan, is divided into 
two sections, as indicated in Figure 1. 
In the lower section there are five beads, 
the one-point beads, on each reed. Each 
one-point bead on the rightmost 
reed-the unit's reed-represents one 
unit. In the upper section there are two 
beads, the five-point beads, on each 
reed. When the suan pan is used to 
represent decimal numbers, each one- Figure 1: Suan Pan, displaying 0 

point bead represents ten beads on the reed to its right, and each five-point bead 
represents five one-point beads on the same reed. Figure 2 shows the decimal 
number 1993 represented on the suan pan. 

The suan pan, with its five one-point beads and two five-point beads, 
has more beads than it needs for calculating in decimal. (In contrast, the 
modern Japanese version of the abacus, 
the soroban, has only four one-point and 
one five-ooint bead on each reed. and 
thus has no beads to spare.) Some num- 
bers can be displayed in more than one 
way. For example, 10 can be shown in 
three different ways: one one-point bead 
on the second reed from the right, both 
five-point beads on the rightmost reed, 
or one five-point bead and the five one- Figure 2: 1993 (decinlal) 
point beads on the rightmost reed. If 
they were used with maximum efficiency, the beads on the units reed could be 
used to represent all of the integers from 0 to 15 (2-5 + 5). 

Thus, one reed of a suan pan can represent all of the digits (0, 1, 2, 3, 
4, 5, 6, 7, 8, 9, A, B, C, D, E, F) used in hexadecimal (base-16) arithmetic. In 
order to represent all numbers in hexadecimal on a suan pan, each one-point 
bead on the second reed from the right (the sixteen's reed) must represent sixteen 
one-point beads on the unit's reed. Each one-point bead on the third reed from 



the right (the 256's reed) represents sixteen one-point beads on the sixteen's 
reed. Similarly, each one-point bead on the fourth reed from the right (the 
4096's reed) represents sixteen one-point beads on the 256's reed, and so  on. 
Starting with the rightmost reed, the value that each one-point bead represents 
increases by powers of sixteen. 

Zero is displayed on the suan 
pan by pushing all beads away from the 
middle bar. To display other numbers, 
push the appropriate beads toward the 
middle bar. For example, to display 
1000 (3E8 in hexadecimal), push three 
one-point beads and one five-point bead 
to the middle bar on the unit's reed. 
Then push four one-point and both five- 
point beads to the middle bar on the rigart 3: 3E8 (hexadecimal) 
sixteen's reed to display the E; finally, 
push three one-point beads on the 256's reed to the middle bar. See Figure 3 for 
this representation, and Figure 4 for the display of D7FC (854012 in decimal). 

At times there are two ways of representing hexadecimal numbers on 
the suan pan. The digit 5 can be represented by pushing one five-point bead or 
five one-point beads to the middle bar. The digit A can be represented by 
pushing the two five-point beads to the 
center bar or by moving one five-point 
and all the one-point beads to the mid- 
dle bar. 

To add two numbers, for exam- 
ple 7CE + 217, first display 7CE on the 
suan pan. Display E by pushing two 
five-point beads and four one-point 
beads to the middle bar on the unit's 
reed. Next, display C on the sixteen's 
reed by pushing two five-point and two 
one-point beads to the middle bar. 
Lastly, display the 7 on the 256's reed. 
To add 217, first add 7 to the unit's 
reed. This manipulation cannot be done 
immediately because there are not 
enough one- and five-point beads to 
move to the middle bar. Carrying is 
necessary: since 7 = 16 - 9, add 16 by 
nioving a one-point bead on the six- 

Figure 4: D7FC (hexadecimal) 
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teen's reed to the middle bar. Then subtract 9 from the unit's reed by moving 
one five-point and four one-point beads away from the middle bar. Another way 
to subtract 9 is to slide both five-point beads on the unit's reed away from the 
middle bar (subtracting 10) and then to move one unit bead to the middle bar. 
No carrying is needed to add 1 on the 
sixteen's reed and 2 on the 256's reed. 
The correct sum, 9E5, is now displayed. 
See Figures 5 and 6 for the two ways 
the result could appear, depending on 
which of the two methods described was 
used to subtract 9. 

Sometimes, as in adding 57 to 
4EF, it will be necessary to carry more 
than one hexadecimal place to the left, Figure 6:  Also 9E5 (hexadecinlal) 
as it is necessary to carry more than one 
decimal place in the addition of 57 to 489 in base 10. 

Subtraction may be done as easily as addition. With some practice, a 
person with a suan pan will be able to do hexadecimal arithmetic much more 
quickly than almost anyone who uses pencil and paper; however, computers will 
still be faster. 

Don Bloomquist, Jr,, a mathematics major, is in his junior year at the 
Albertson College of Idalw. He wrote this paper during his freslunan year under 
the direction of Dr. L. R. Tanner. 

Was Dirichlet Smart? 

Even the great mathematicians can make mistakes. As J. W. Dauben 
tells us on page 7 of Georg Cantor (Princeton University Press, 1979), Cauchy 
once made an assertion equivalent to saying that if 2 a converges and if 
limn-y, a J b  = 1, then 2 b ,  converges also. Dirichlet, who read critically, 
found an example showing that Cauchy was wrong. Can you do as well? We 
have all been taught, as Cauchy and Dirichlet were not, that Cauchy's assertion 
is true if the series have positive terms, s o  we know to look first at alternating 
series. Even with that hint, it is not all that likely that an average, or  even 
above-average, student of mathematics would be likely to duplicate Dirichlet's 
accomplishment, which is why Dirichlet's example is on page 598. 

Figure 5: 9E5 (hexadecimal) 



Paul S. Brnckman 
Everett, Washington 

The purpose of this paper is to give a condition necessary and sufficient 
for all Lucas pseudoprimes to be square-free. 

We will begin with some preliminaries. The Fibonacci numbers arc 
defined by 

Fld = F n + ,  +F,,, n = 0 , 1 , 2  ,...; F0 = 0, F, = 1 .  
00 

The sequence { F  } is called the Fibonacci sequence, after the 13th-century 
" 0 

mathematician Leonardo of Pisa, also known as Fibonacci. The sequence has 
non-negative terms and, for n 2 2, is strictly increasing. 

The Lucas numbers are defined similarly, but with different initial 
values: 

=L,,+, +LIZ, n = O , l , 2  ,...; L o - 2 , L ,  = I .  

The Lucas sequence { L  }>is named after the 19th-century French matheiiiati- 
cian Edouard Lucas, whose seminal work 151 generated much of the subsequent 
research into the sequences and their generalizations. The sequence has positive 
terms and, for n 2 1 ,  is strictly increasing. 

If a - (1 + 6 ) / 2  and P = (1 - 6 1 2 ,  then 

Broadly speaking, there are two categories of properties of (and 
relationships between) the Fibonacci and Lucas numbers: additive and divisibili- 
ty. The first includes representations of integers as sums (or differences) of 
Fibonacci (or Lucas) numbers. The second, as its name implies, includcs 
representations of integers as products (or ratios) of Fibonacci (or Lucas) 
numbers. In this paper, we shall be most concerned with the divisibility 
properties. 

We list below (without derivation) some of the divisibility properties 
that we will make frcqunit use of in this paper. For dcrivations, see, for 
example, [ l ,  61. 

0 F^,,=F,,L,,. 

(2)  (F,,,, F,,) - F(,,, 11,, where (11, 1)) denotes the greatest coiiiiiio~i 

divisor of a and b. 

(4) Fm \ F  if and only if m \ n .  

I 5FnFn , n even 
(5) ^2 , ,+1 -1=  

LnLn+l, n odd. 

We next define the Fibonacci entry-point. It may be shown that any 
integer m is a divisor of some element of the Fibonacci sequence. This is by no 
means a foregone conclusion. Not all integers m divide some element of the 
Lucas sequence since 5 divides no Lucas number. (The reason for this is that 
the Lucas numbers, modulo 5, are 2, 1, 3, 4, 2, 1, 3, 4, 2, ... .) The smallest 
positive index n such that m \ F  (where m > 1) is called the Fibonacci entry- 
point of m in the Fibonacci sequence, and is denoted by Z(m). Other authors 
have referred to Z(m) as the "rank of apparitionn of m, an odious appellation 
brought about by a mistranslation of the French word apparition, which means 
"appearancen, not "apparition", in English. Another more acceptable and 
frequently used alternative is "rank of appearance". To illustrate, since 
FI =F2 = 1 ,  F3 = 2 ,  F4 = 3 ,  F5 = 5 ,  F6 = 8 ,  F, = 13, weÂ£indZ(2)=3,2(3 
= 4,Z(5) = 5,Z(8) = 6,Z(13) = 7. We may also verify that Z(4) = 6,7(6) = 12, 
Z(7) = 8, Z(9) = 12, Z(10) = 15, Z(l1) = 10, Z(12) = 12, and so on. 

For all m > 1 we have the following properties: 

(6) Z ( m ) - n i f a n d o n l y i f m \ F n a n d m ~ F f o r a l l r w i t h l s r s n - 1  
(this is actually the definition of Z(m) ); 

(7) Z(m) \Z(n) if and only if m In (if and only if Fm IF.,, by (4)); 

(8) m 1 F  if and only if Z(m) 1 n ; 
n 

ei 
(9) if m = pi is the prime-power decomposition of m, then 

i = l  

(10) Z(m) = LCM { z(p,'Â¥ ; 

(11) if p is any prime and e 2 1 any integer, then Z(p e, = p fZ(p), 
for some integer f with 0 fi f < e ;  

(12) i f p  is any prime with p # 2 for some integer e 2 1, and if 
Z(pe+l) i< Z(pe), then Z(pr) =pr-=Z(pe) forall r s e + l .  

See, for example, [2, 61. 
We need one more property which involves (xfp), the Legendre symbol, 

defined for odd primesp and integers x relatively prime t o p  as follows. If an 



integer y exists such that = x (modp), we call x a quadratic residue (mod p )  
and write (x/p) = 1; otherwise we write (x/p) = -1. The Legendre symbol is also 
known as the quadratic character of x (mod p). The final property is 

(I3) if p * 2 , s  is prime, then Z(p) 1 (p - (PIS)). 

Since for odd primes s-s 5 
1 if p a Â ±  (mod 10) 

we may restate (13) as , , 

if p it 2 , 5  is prime, then 
Z(p) \ (p - 1) if p a 2 1  (mod lo),  

+ 1) \tps 2 3  (mod 10). 

In a 1982 paper 181, H. C. Williams reported that he had verified that, 
for p it 2, 5 ,  

(14) 
2 

p 1 Fp-(5lp) 
for all primes p < lo9. Although he did not assert that (14) holds for all primes 
* 2, 5 ,  we will nevertheless call (14) the "Williams conjecture". In light of (8), 
we may restate it as 

(15) Z(p2) 1 ( p  - (5/p)) for all primes p * 2, 5. 
However, (11) implies that Z(p 2, = Z(p) or pZ(p). From (12), we see that (15) 
implies that 

(16) ~ ( p )  =pZ(p), for all primes p # 2, 5 .  

On the other hand, if we assume that (16) holds and if it were true that 
2 

p then, using (8), Z(P 2, = pZ(p) \(P - (5/p)). This is impossible 

since p - (SIP) = p Â 1, and cannot be divisible by p. Therefore (16) implies 

(14) and we have shown that (14) and (16) are equivalent. ~ o r e o v e r , ~ ( 2 ~ )  = Z(4) 
= 6 = 2 -3 = 2Z(2). We can also verify that Z(25) = ~ ( 5 ~ )  = 25 = 5 -5 = 5Z(5). 
Therefore we may restate the Williams conjecture in the slightly stronger form 

Z(p 2, = pZ(p) for all primes p. 

In a 1984 paper [3], J. J. Heed, evidently unaware of Williams' prior 
work, verified the conjecture for all p < 1 0 .  

The Williams conjecture is related to the study of Wieferich primes and 
their generalizations. A Wieferich prime is a prime p that satisfies2~-I = 
1 (mod p 2). There are only two Wieferich primes < 6 . lo9, namely 1093 and 
351 1. More generally, prime solutions of a P 1  s 1 (mod 2), where a > 1 is 
not a multiple of p ,  are exceedingly rare. Accordingly, we should expect 
solutions to the ncounter-conjecture~~ z(p2) = Z(p) to be also very rare. Indeed, 
the Williams conjecture states that such solutions are non-existent. 

Note that (13) implies p \ Fp-(s,,py or, equivalently, 
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FP -WP) 0 (mod p) ,  for all primes p # 2, 5 .  

We can ask if the congruence 

(I7) Fll -{ellfl) - 0 (mod n), with (n, 10) = 1 ,  

might hold for composite values of n, with (5In) being the Jacobi symbol, the. 
generalization of the Legendre symbol to composite n defined by @In) -= - 
K ,  (xlp) . The answer is affirmative. Any coinposite integer which satisfies 

(17) is called a Fibonacci pseiidoprime, or FPP. The first two FTP's are 
323 = 17-19 and 377 - 13 -29 and it is known that there are infinitely many 

141- 
It is known that L = 1 (mod p ) ,  holds for all primes p (71. We can 

also ask if there are composite n such that L a 1 (mod n). Again, the answer 
is affirmative, and such n are called Lucas pseiidoprimes (or LPP's). The first 
three LPP's arc 705 = 3 -5-47,  2465 - 5-17 -29,  and 2737 = 7-17 -23,  and 
it is known that there are infinitely many [7]. It is also known that all LPP's are 
odd 171. 

All known FPP's and LPP's are products of distinct primes, and so are 
square-free. It is not known if this is true in general, in spite of efforts made to 
prove it. Though it will not be proved here either, we will establish that a 
slightly weaker version ofthe Williams conjecture is equivalent to the conjecture 
that all LPP's are square-free. (A comparable version may be shown to be 
equivalent to the conjecture that all FPP's are square-free, but we will not prove 
that here.) We will attempt to show that 

(*I Z(p ') - pZ(p )  for all primes p 

and 

(**I All LPP's are square-free 
are equivalent. 

Suppose (*) is true and that n is a LPP. Also, assume that p 2  n for 
some prime p. Since all LPP's are odd, p is odd. Since, by definition, 
n I ( L  - I) ,  we have p " [ ( ~ ,  - 1). Let m = (Ã - 1)/2. We consider three 
cases. 

CASF 1: n a 1 (mod4),  5 1 n .  
By (5), Lll - 1 - 5 F m F m + ,  . Since p * 5 ,  p-\ F^,F,,,+, . By (3), F,,, and 

Fm+, are relatively prime, so either p2 \F  ̂or 1 Fm+, . That is,/>" 1 Fm+0, 
- where 0 - 0 or 1 .  By (I), Fh+?,, - Fm+, ,Lm+, , .  Thus 1 F2m+2,,, i .  e., 

$ IFttt 1 . By (S), ~ ( o  ?) 1 ( n  Â I) ,  \\ hich implies p \ (n  Â 1 ) .  Ho\\ever, si~ic-r 
1 n ,  p\ n also. This is impossible. 



CASE 2: n Ã 3 (mod 4). 
2 By (5), Ln - 1 = L̂ ,,, which implies p [LrnLm^. By (3), (Lm, Lm+, 

2 2 = 1, which implies eitherp \ L  or p \Lm+l. As in Case 1, p 1Lrn+e, whit 
again implies p2 1 F2m+20. The remaining steps are identical to those in Case 
1. 

CASE 3: n a 5 (mod 20). 
I f p  it 5,  weproceedasincase 1. U p  = 5,  then 5 \ 5 ~ ~ + , ,  so5 I F F m + , .  

2 Proceeding as above, we conclude that 5 1 (n Â 1). However, 5 1 n also, since 5 1 n . 
Once again, we are led to a contradiction. 

Since the three cases are exhaustive, we conclude that (*) implies (**). 
Conversely, suppose that (**) is true. Let n be any LPP and suppose 

that p 1 n ,  where p is an odd prime. By hypothesis, I n .  By definition, 
n 1 ( L  - 1). Following the steps used to show that (*) implies (**), we find that 

P \F  ̂and p 'Pnk1. Then Z(p)\ (n Â I), but Z(p 2, IFn^. Hence, 

Z(p2) * Z(p) for all primes p which divide some LPP. ~ i n c e Z ( 2 ~ )  = 2Z(2), 
we see that all that is needed to con~plete the proof that (**) implies (*) is the 
assertion that all odd primes p divide some LPP. We will forego the proof of 
this assertion here, since it involves concepts that arc somewhat more complicat- 
ed than intended in the scope of this paper. 

So, all that we have proven is the weaker equivalence 

(#I ~ ( p )  = pZ(p) for all prime p dividing some LPP. 

All LPP's are square-free. 
However, as stated above, (#) may be replaced by the stronger statement (*). 

Based on the empirical evidence, it appears highly likely that (*) and 
(**) are true, but the proof of either conjecture is equally likely to meet with 
considerable difficulties. 
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Chapter Report 

The FLORIDA EPSILON chapter (University of South Florida) held 
thirteen meetings during the 1992-93 academic year, devoted to talks by students, 
faculty members, and visitors. A selection of titles is 

Off into space 
An explanation of Strang's strange figures 
Applied mathematics in engineering 
The Euler summation formula 
Computer image techniques in medical imaging 
Perfect and perfectly useless numbers 
Dynamics for the college student 
Careers for mathematics majors 
Paradoxes in mathematics 
Laser sensing of the atmosphere. 

In addition, there was a mathematical game party before the Christmas vacation 
and the chapter, in collaboration with the student chapter of the MAA, sponsored 
the twice-yearly Hillsborough County Math Bowl competitions, with more then 
200 participants in each. Professor Fredric Zcrla also noted that Suzanne 
Josephs, the chapter's Outstanding Scholar, completed her university career with 
a perfect 4.0 grade-point average. 



James Chew 
North Carolina A & T State University 

The identity in question is 

How many kinds of double-dipped cones can a customer order at an ice- 
cream parlor that sells n flavors of ice cream? We will allow two scoops of the 

same flavor but will consider the same as 
vanilla 

vaN1a . Let N be the 
chocolate 

number of different cones. 
One line of reasoning is to think o f N  as being the sum of the number 

of double-flavored cones and the number of single-flavored cones, so 

The same result comes from thinking that N = total number of possible pairs - 
number of duplicated pairs, so 

Let us take a different approach, with n = 4 for definiteness. Let A, B, 
C, and D be the flavors. There are 4 single-flavored cones: AA, BB, CC, and 
DD. The rest are double-flavored. There are 3 cones in which A is picked first: 
AB, AC, and AD. Next come the 2 cones in which B is picked first: BC and 
BD. Finally, we have the 1 cone in which C is picked first: CD. Hence 
N = 4 + 3 + 2 + 1 .  

The argument generalizes to n flavors, so that 
N = n +("-I)  +,.. + 2  + 1. 

James Chew has lived in Indonesia, Australia, and Ethiopia, though his 
Ph. D. degree is from the Virginia Polytechnic Institute and he has been at NC 
A&T State for the past fifteen years. 

See Chin Woon 
Imperial College, London 

In analytic geometry, geo- 
metrical objects are defined algebra- 
ically by equations. In this note, we 
give a polar coordinate equation for 
a regular polygon with any number 
of sides. 

Let R be the distance from 
the center of the polygon to a vertex. 
Place the polygon so that its center is 
at the origin and a vertex is at(R, 0). 

Figure 1 

For 9 â [O, 2n), let 
9 a 9' (mod dn) ,  

so that 
9 = d  +opt/n, w i t h 0 s Q ' c n / n a n d  0 s q < 2 n .  

The polygon can be divided into triangles with different values of q, as 
illustrated inFig. 1 for a hexagon. 

Let 
0 if q is odd 
1 if q is even. 

The function may also be defined in 
a single equation as 4(q) =2[q/2] - 
q + 1 or as $(q) = ((-1)q + 1)D. 

In Fig. 2, if q is odd, then 
00 - = cos 9 so 

v 
=In 

O P  
OP  = 

R cos n/n 0 

cos 9' 
OP I If q is even, ___ = cos(n/n - el), 

so 00 

0p1 = 
R cos n/n 

cos (n/n - 6') 

Figure 2 

The two equations for OP  and OP1 may be combined into 



SOME PARTITIONS OF THE INTEGERS 

This gives the following single polar coordinate equation for the regular polygon: 

As n -Ã = this equation becomes r = R, as it should. 

See Chin Woon a member of the Class of 1994 at Imperial College. He 
says that he has sometimes felt that some of the concepts in mathematics seem 
really ahead of their time. 

Yes, He Was 

Dirichlet said, let 

= (-1)" an - and 
7 

(-1)" bn = - - 
Then it is clear that aJbn approaches 1 as n -*Â¥= but a - bn = -1 - 112 - 
113 - ... , which diverges. Thus, not both 2 an and 2 bn can converge. 

Chapter Reports 

Professor Joan Wyzkoski Weiss reports that CONNECTICUT GAMMA 
(Fairfield University) had twenty-three new initiates in the spring. Members of 
the chapter assisted in coordinating the activities for Math Counts, a mathematics 
contest for junior high school students. 

MASSACHUSETTS GAMMA (Bridgewater State College) sponsored a 
colloquium, "Aspects of real-time object-oriented systems" by John McNulty of 
the MITRE Corporation. Vice-president Keith Desrosiers also reports that the 
chapter's advisor, Professor Thomas E. Moore, was awarded the MAA's 
Northeastern Section award for distinguished teaching. 

Joseph M. Moser and Genoveno Lopez 
Sun Diego State University 

Let m be an arbitrary positive integer. The congruence relation,= 
modulo m, on the set Z of all integers is defined by 

x = y (mod m) if and only if x - y = fen for some integer m. - - 

The congruence relation is an equivalence relation with equivalence classes 
{ x  + fen 1 k E Z}, x = 0, 1, ... m - 1. It is likely that other equivalence 
relations on the set Z are not well known. We would like to present a few more 
equivalence classes on Z which may be useful as exercises or examples. 

First, for a fixed integer k, define Rk by 

xRky  if and only if x 2  +h zY2 + kY- 
It is easy to show that Rk is an equivalence relation which partitions the integers 
into an infinite number of classes, { x, -(x + k) } . 

Next, let i = n, and define Ri by 

x R i y  i fandonly i f  i x = i y .  

It again is easy to show that Ri is an equivalence relation which partitions the 
integers into four equivalence classes. Also, Ri = R when m = 4. 

Let us define Re by 

x Re y  if and only if e2""Im = ehO'"". 
It is not difficult to see that Re = R ,  where R is as defined above. 

Now, let us define R S i  by 

x R,. y if and only if sin: 1 = sin: 1. 
It is easy to show that R S i  is an equivalence relation which partitions the 
integeis into k equivalence classes, where m = 2k or m = 2k - 1. For 
example, when m = 5,  the equivalence classes are 

{O, 25, 510, 215, ...}, {Â±I 24, 26, 29, ...}, {?2, 53, 27, 28, ... }. 
Finally, let us define R * by x R * y if and only if 

where [z] is the greatest integer in z. It is easy to show that R is an 
equivalence relation. The partition of the integers is 
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Professors Moser and Lopez earned Ph. D. degrees fiom, respectively, 
St. Louis U. and UCLA before joining SDSU. 

Chapter Reports 

At the OMO NU chapter (UNversity of Akron), Nneteen new members 
were inducted in April and thitty-five awards were made, including seventeen 
memberships in various mathematical orga~zations and thirteen scholarships. 

One of the new i~ t ia tes  of the MARYLAND DELTA chapter (J3ood 
College) has an interdisciplinary major in the political economy of the third 
world. The amual Pi Mu Epsilon Lecture was given by Dr. Lida K. Barrett, on 
"Emmy Noether and Grace Chisholm Young: two women mathematicians ofthis 
century". 

A Steeply Puzzling Question 

Does anyone, anywhere, know why m is always and invariably used to 
denote the slope of a line? If so, many readers of the Journal would like to 
know as well, 

Jennqer DeBoer 
Michigan Technological University 

Let N be a positive integer. The u ~ t a r y  divisom of N are all the 
integers d such that d 1 N and (d, N/d) = 1. A positive integer N is unitary 
perfect when the sum of its unitary divisors is 2N. 

We use u*(N) to denote the sum of the unitary divisors of N. It can . . 
l'2 ak be easily shown that if N = pl p2 ...pk , where p l ,  ... ,pk are distinct primes, 

then 
ak +1)@>+l)...(pk + I ) .  0 * ( 3  = @l 

Therefom, N is unitary perfect if and only if 

As Guy [2] pointed out, any u ~ t a r y  perfect number must be even. 
Subbarao and Warren [4] proved that the first four unitary perfect numbers are 

Wall [5] has shown that 
218 -3 a s 4  -7-11 -13 -19 -37 -79 -109 -157-313 

is the fifth unitary perfect number. Furthermore, Graham [I]  has shown that the 
only three unitary perfect numbers of the form zms, where s is odd and 
squarefree, are the first, second, and fourth numbers in (A). 

In this paper, we will look at the third u ~ t a r y  perfect number and show 
that it is the only one of the form 2m32s. 

For a given m, the= is a simple procedure to find out if there is a 
unitary perfect number of the form 2m32s.. For example, suppose m = 1. Then 
we want 

2l + 1 32 + 1 o*(s) --- = 2. 
21 32 

or 

5 O*(S) -- = 2. 
3 s 

This cannot equal 2 unless there is some factor pi = 5 in the d c i ~ o ~ ~ ~ i ~ ~ a t o r  10 



cancel the 5 in the numerator. Therefore, 5 1 s. On writing s = 5 *sl, we get 

This is true when sl = 1, so we see that 2 0 3 ~ 5  is unitary perfect. 
However, this does not work for every m. For example, m = 2 does not 

yield an unitary perfect number of the form 2m ~3~ *s, for in the product 
5 2-5  2 -3  - - - ... 
22 32 5 

there is no way to cancel out both factors of 5 in the numerator with a squarefree 
s. 

As we see, a number N cannot be unitary perfect if 5 1 (2m + 1) or if 
there exists pi 1 s such that 5 1 (pi + 1). In addition, since s is squarehe, s must 
not be divisible by the squares of any odd primes. 

For another example, 

32 2 -5 2 -3  

cannot equal 2 because there are three factors of 3 in the numerator, and the 
highest power of 3 in the denominator is 2. Therefore, if 32 1 (Zm + I) ,  then N 
is not unitary perfect. Finally, suppose m = 5. Then 

cannot equal 2, again because there are too many factors of 3 in the numerator. 
So, if one of the following cases holds, then zm *32 *s cannot be unitary 

perfect: 

(1) 32[ (2m+1) .  

(2) 3.1 (Zm + 1) and there exists pi 1 s such that 3 1 (pi + 1). 

(3) 5 1 (Zm + 1) or there exists pi Is such that 5 1 (pi + 1). 

(4) there exists pi Is such that pi + 1 is divisible by the square of an odd 
prime. 

(5) t h e r e e x i s t s p i [ s a n d p j ~ s s u c h t h a t 3 ~ ( p i + l ) a n d 3 ~ ( p j + l ) .  
Now we always have 5 s since 5 1 (32 + 1). For the remainder of this 4 paper, we will write N = Zm -3 -5 -s, where s is such that (s,3) = (s, 5) = 1, 

and we will let s =p1p2 ...pk, where p l ,  ... ,pk are distinct primes. If N is 
unitary perfect, then 
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z m + 1  4 ~ 1 ' ~  ~ k + l  ---...- 3 2 .  
Zm 3 pl p k  

Furthermore, if any of criteria (1) through (5) hdld, then N cannot be unitary 
perfect. 

We will use criteria (1) through (5) to establish the result in-dl-cases 
except m m 0 (mod 8). 

LEMMA 1. If m = 3 (mod 61, then zm *32 -5 -s cannot be unitary 
perfect. 

t Proof. If m - 3 (mod 61, then 9 1 (2m + 1). Thus we may apply case 

I (1)- 

LEMMA 2. If m m 5 (mod 6), then Zm ~3~ ~5 *s cannot be unitary 
pe$ect. 

Proof. Suppose m n 5 (mod 6), Then 2m - 5 (mod 91, so zm + 1 = 
6 (mod9), and 3I(zm + 1). Also, a = (2m + 1)P - 2  -1 (mod3). Now a 
has at least one prime divisor p -1 (mod 31, for if all prime divisors of a are 
= 1 (mod 3), then a m 1 (mod 3). Thus, 3 1 (p + 1). This meets case (2). 

LEMMA 3. If m - 1 (mod 6) and m > 1 ,  then Zm ~3~ .5 *s cannot be 
unitary perfect. 

Proof. Let m m 1 (mod6). Then Zm m 2 (modg), so 3 [(2m + I), and 
(2m + 1)P - 1 (mod 3). Furthermore, 2m + 1 - 1 (mod 81, and (2m + 1113 = 
3 (mod 8). 

We may assume that every prime divisor p of (2m + 1)/3 has 
p m 1 (mod 3); otherwise, criterion (2) is satisfied. If p 1 (Zm + 1113 then 

2m m -1 (modp); consequently, 26a+2 m -2 (modp), where m = 6a + 1. 
We now see that x = 23a+1 is a solution of x 2  m -2 (modp). A result 

from quadratic residue theory tells us that this congruence is solvable if and only 
k if p EY 1 or 3 (mod 8). Thus every prime divisor of (Zm + 1113 satisfies 

p EZR 1 or 3 (mod 8). 
\ Now (2m + 1)/3 = pl ...pr = 3 (mod 8), pi 6 1 or 3 (mod 81, and 

pi s 1 (mod 3) for every i. There must be at least one i such thatpi a 3 (mod 8). 
Then pi + 1 = 4 (mod 8), and (pi + 1114 cs 2 (mod 3). Therefore, there exists 
j such that pj 1 ($i + 1) and pj m 2 - -1 (mod 3). But 3 1 (pj + 1) and we noted 
previously that 3 1 (Zm + 1). This again meets case (21, so 2m ~3~ -5 -8 cannot be 
unitary perfect. 

LEMMA 4. If m = 2 (mod 41, then Zm -32 -5 *s cannot be u ~ t a r y  pekeas 
Proof. Suppose m s 2 (mod 4). Then zm = -1 (mod 5) and 



5 1 (2m + 1). This is case (3). 

LEMMA 5. If m = 4 (mod 81, then zrn -32 -5 *s cannot be unitary perfect. 
Proof. k t  m = 4 (mod 8). Then 2m w -1 (mod l 7 ) , l 7  1 (2rn + I),  

and so 17 I S .  However, 17 + 1 = 18, which is case (4). 
2 From these lemmas, we see that if 2m -3 -5 -s is unitary perfect, thenm = 

0 (mod 8). The proof for this case requires a different technique. To begin 
with, we will show that there exists at least one Mersenne prime pi such that 
pi Is. Note that 2rn + 1 = 2 (mod 31, and there exists a unique pl 1 (2m + 1) 
such that pl = -1 (mod 3). At least one such term is needed to cancel out one 
of the factors of 3, but two such numbers would meet 5 and violate our 
conditions. The other primes p2, ... ,pk are = 1 (mod 3). k t  pi be the smallest 
prime in p2, ... ,pk. Then pi + 1 is not divisible by any pj in {p2, ... ,pk}, so 
pi + 1 = zn for some integer n. Therefore pi is a Mersenne prime. 

Now, we will look at "chains" of prime divisors of s. To explain this 
concept, we examine the unitary perfect number 26 -3 3 -7 -13. (This is not 
germane to our main theorem, but it is a helpful example.) The Mersenne prime 
divisors of this number are 3 and 7. First, we look for a prime p 1 s such that 
3 1). By inspection, we see that this number is 5.  Furthermore, 
5 l(2 + l),completing the chain. If 5 did not divide 26 + 1, then we would 
look for another prime p2 1 s such that 5 1 (p2 + 1). The "chain" would continue 
in this way until we reached a prime that did divide z6 + 1. Thus, the elements 
in this chain are 3 and 5. Next, we consider the chain beginning with the same 
prime 7. Because 7 [ ( I3  + 1) and 13 1 (z6 + I), the elements in this chain are 
7 and 13. (Note also that if either of our Mersenne primes had dividedz6 + 1, 
that chain would have contained only the single prime.) 

More formally, there is a set of Mersenne primes ql ,  ... ,q, that divide 
s. h c h  qi begins a chain of primes Rl(qi), ... ,Rj(qi), whereqi 1 (Rl(qi) + I) ,  

Ra(qi) 1 (Ra+l(qi) + 1) for every a such that 1 s a s j - 1,  and, finally, 

Rj(qj) 1 (2rn + 1). The primes found in these chains, in addition to p l ,  account 
for every prime that divides s. Some factors may be repeated; for example, if433 1 s, 
the Mersenne primes 7 and 31 both lead up to 433, since 7 l(433 + 1) and 
31 l(433 + 1). From this point, we will let Qi = qiRl(qi)R2(qi) ... Rj(qi), or the 
product of all the primes in the chain beginning with qi If N is unitary perfect, 
then 

(B) 
zm + 1 4 PI + 1 U*(Ql) u*(Q,) u*(* ----...- 2 2 = - .  

2rn 3 PI Q 1 Q I N 
To complete the proof, we wilishow thit (B) does not happen whenm = 0 (mod 8). 

First, we may assume that m 2 8, so 
Second, we will look at p which is E 2 (mod 3). We may write m = 8b. 
Then, as p, 1 (Zm + I),  28h'= -1 (mod pl). Thus 216b = 1 (mod pl). This 
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shows that the oder of 2b (mod pl) is 16. The~fore, 16 1 (pl - 1). (Note thatp - 1 
is the order of Zp and that the order of 2b must divide p - 1 .) Now, with a 
little arithmetic, one can see that the smallest prime p such that p = 2 (mod 31, 
p = 1 (mod 161, and p + 1 has odd squarefree part is 113. Therefore, 

P l + l  114 - s -. 
Pl 113 

Finally, we will look at the terms contributed by each Q '. This is a product of 
the form 

q + l p + l  - - ... , 
9 P 

where each nun~erator is divisible by the previous denominator. The product is 
largest if pi+l + 1 = 2pi for every i. Then the product is at most 

((7 
q + l  29 4 9 - 2  - - - ... . 

9 3 - 1 4 9 - 3  
Now an easy induction shows that the nth partial product of (q is 

2"q + zn 
2nq - (2n - 1) 

Thus 

o*(Q) lim 2 n q + 2 n  = q + l  
- 9  

Q n + w 2 n q - 2 n + 1  9 - 1  

where Q is any Qi. 
Remember that q # 3. The next two Mersenne primes are 7 and 31, 

so 

To find the upper bound for the contribution of the Mersenne primes > 31, we 
will suppose that every odd power of 2 yields a Mersenne prime. Then the next 
Mersenne prime is 127, and 

P) 
u*(Q3) u*(Q4) 64 156 1024 --... s ---.... 

Q3 Q4 63 255 1023 
This is bounded by the product obtained by replacing each numerator with 4 
times the previous denominator, so is 



It is easy to show that the nth partial product of (E) is 

On letting n tend to infinity, we get 
64 

64 - 4/3 

Now we are ready to finish the proof by noting that 
o*(N) 257 4 114 4 16 48 
-s ------ =1.96. . .<2.  

N 256 3 113 3 15 84 

This contradicts (B). Therefore, there are no unitary perfect numbers of the form 
2m .32 -5 *s , when m > 1. 
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Jennifer DeBoer will g raha te  from Michigan Technological Universiy 
in November 1993 with a B. S. degree in mathematics and teaching as well as  
a physics minor. She plans to continue mathematical study in graduate school. 

Howard B Lambert 
East Taus State Universiy 

Computer mathematics packages, useful as they are, must be treated in 
the same way as pocket calculators: whenever something appears on the display 
screen, the user should ask, "Is the answer reasonable?" (For that matter? the 
same question could profitably be asked after many paper-and-pencil calculations 
as well.) 

Some packages can? for some functions fi find in closed form the 
r 

antiderivative F. When asked for the exact value of f(x)&, they will return 10 F(b) - F(a). They can also approximate the value using formulasy such as 
Simpson's Rule, that do not depend on the antiderivative. 

As an example, Derive (venion 1-62], asked for the exact value of 
/: f(x)& with flx) = ll(3 cos2x + I), gave 0. This is obviously wrong since 

flx) > 0 on [0, n]. When asked for an approximation, the program gave a value 
of 1.57079. 

When asked for the antiderivative o f 5  the answer was 
F(x) = (112) arctan((ll2) tan x). 

Sure enough? F(n) - F(0) = Oy and a few minutesy work with pencil and paper 
shows that F '(x) = flx) . 

So what went wiong? Let us look at one way of stating the Fundamen- 
tal Theorem of Calculus: 

If f(x) is continuous on [a, b] then f has an antiderivative G defined by 

G(x) = flt)dt r 
and if H is any antiderivative off  on [a, b] then G - H is a constant on [a, b] 
and 

Lb f(x)& = H(b) - H(a). 

For G and H to be antiderivatives, they must have antiderivatives on 
[a, b] and are thus continuous there. In the example, f is continuous on[O, n] 
but F is not. Thus F is not an antiderivative on the entire internal [a, b] and 
cannot be used as the function H to evaluate /rflx)&. 

If we begin with F(x) = (ID) arctan((lI2) tan x)? since F is undefined 
at n/2 we have that 
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is not defined at n/2 and thus is discontinuous. (The discontinuity, of course, 
is removable.) 

Surprise! We have an improper integral. To evaluate it, we have 

[Ax)& = 1imtdnn- cf lx)& + 1imtdnn+ Lnf(x)& 

t 
= limtda- F(x) lo + ]in, t+zn+ F(x) I: 

= ~ ( n )  - F(O) - ( ~ i m  t4nn+ F(t) - dnn-~( t ) )  

= F(n) - F(0) - (-d4 - n14) = n/2. 

~ o t e  that Iim -&+ F(t) - 
limt dnD- F(t) is the jump of F(x) at 
x = nn. 

If we ask the computer to draw 
the graphs of F(x) and the continuous 
antiderivative G(x) = flt)dt we get /: 
Figures 1 and 2. On any closed interval 
where both are continuous their values 
differ at most by a constant and they 
have the same shape. If we define a 
new function F * by 

where J is the jump in F at n12, then 
F * is a continuous antiderivative o f f  
and in the example is equal to G. It 

~OIIOWS that [f(x)& = F *(n) - F *(O) 

= F(n) - J - F(0) = nf2. An updated - 
version of Derive (2.06) gives the anti- 
derivative off  as 

whose only discontinuities are xmov- 
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Other programs give different antiderivatives. A version of Maple gives 

discontinuous at (2k + 1)n; a version of Mathematica 
1 --arctan(2 cot x), 
2 

discontinuous at h, and another veiion of Mathematica 

discontinuous at (2k + I)@. 
The proper rephrasing of the Fundamental Theorem of Calculus for a 

function f with a piecewise antiderivative, continuous except for jumps, is left for 
the reader. 

So, when using the computer to find a d e f i ~ t e  integral, we should ask 
for both the exact answer and the approximate answer. The program uses 
different methods to find them, so if they agree we should feel contident with 
the result. If they do not agree, then the antiderivative should be examined 
closely. 

Howard Lambert is a graduate of Texas Tech University. In 1992, he 
received a Teaching Excellence Award fiom the East Texas State University 
chapter of the Texas Associatwn of College Teachers. 

Pin Prices Going Up 

The cost of a Pi Mu Epsilon Pin will increase from $8 to $12 at 
mid~ght ,  June 30,1994. Those of you who have lost yours and need a replace- 
ment or who are buying quantities of pins for their investment value are thus 
advised to act soon. Pins are available from the Secretary-Treasurer, Professor 
Robert M. Woodside, Department of Mathematics* East Carolina University, 
Greenville* North Carolina 27858. 

able. Thi discontinuities of (1/2)arctan((1/2)tanx) are smoothed out by 
x/2 - (1/2)arctan(tanx), which has a jump at odd multiples of n12. 



USING POWER SERIES TO COMPLETE THE 
BASIC INTEGRATION FORMULA 

Margaret Webb 
Penn State Univers y, New Kensington 

Recently [I], Schaumberger used the mean-value theorem to show that 

In this note we will use power series to obtain the same result. We have 

((n + 1) in b)* - ((n + 1) ln a)* 
A! 

+ (n + I)*+' ( (In b)/' - (In a)*) 
k=* k! 

= lnb  - lna  = r;. 
The interchange of limit and summation is justified by the uniform 

convergence of the series. 

Reference 

1. N. Schaumberger, Using the mean value theorem to complete the basic 
integration formula, this Journal 9 (1991), 226-227 

The author prepared this paper under the supervision of Professor 
Javier Gomez-Calderon while she was a freshman at Penn State UniversityÃ‘Ne 
Kensington campus. 

M. A. Khan 
Research Design and Standards Organisation 

Lucknow, India 

We shall show that 

The integral is known as Euler's Integral (see, for example [I], (21). It 
is interesting that it can be evaluated by 
using a probabilistic argument. 

Let us select r + q random 
numbers from the interval [O, 11 and call 

-a' 
r - 1 a's q b's 

them a^,  a^, ... ar, bl, b2, ... b .  What 1 I 1 
is the probability that a i  < b, for all i 0 x 1 

and j? We will answer the question in 
two ways. 

First, consider the(r + q)! 
ways of arranging the r + q numbers. Figure 1 
If we are to have a; < bj, then the as 
must come first. Thus, the first number may be chosen in r ways, the second in 
r - 1, and so on until the last of the as is selected. Then the first of the bs niay 
be chosen in q ways, the second in q - 1 ways, and so on. There are thenr! q! 
ways to have the numbers appear in the desired fashion, and so the probability 

rl q! 
a i  < bj for all i and j is 

(r + o)! 
Second, considerthe location of 

the largest of the as on [O, 11. Suppose 
it is between x and dx, which has proba- 
bility dx. (See Figure 1.) Then, if we maxa, m b ,  

are to have a, < b,, all of the bs niust 1 
p - 1 a's q - 1 b's r 6s 

1 I I 
begreaterthanx,andtheprobabilityof 0 x Y 1 
this is (1 - x)q. Also, the other r - 1 
as must be less than x, and the probabil- 
i ty  of this is . r r l .  Finally, the largest 
of the as may be selected in r ways, so Figure 2 
the probability of a suitable arrangement 
with the largest of the Ã§ between x and dr  is . r r l  r d r (1  - .v )~ .  The total 
probability is obtained by integrating over all possible values of r, and thus is 
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Since the probability is the same no matter which method we use to find it, we 
have 

Putting r = p t 1, we have the result. 
The argument may be general- 

ized to any number of sets. For exam- 
ple, with three sets of numbets, { a l ,  ... ,ap,  

maxa, maxb, mmck 
bl ,  ... , bq ,  q, ... , c r ) ,  the probablllty 

P., ,, . , Ã£ ,-, 
that a, < b, < ck for all i, j, k is, by I I I 

x ! Y 2 

considering arrangements, , 
p! q! r! 0 1 

(p + q  + r ) !  
On the other hand (see Figure 2) it is 

pxp- lq (y  -x)q- l ( l  - ~ ) ~ d x d y .  Figure 3 

The integral niay be put in various other forms by change of variables. One of 
these forms, known as Dirichlet's Integral, is 

This result can be obtained on similar lines by a slight modification of the 
number line (see Figure 3). The details are left to the reader. 
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Dear Professor Poss, 

I am sending here a brief followup to my article "Fractorial!" which 
appeared in the Fall 1992 issue of the Journal. Even when I had finished it I 
was troubled by what is a very cumbersome development to get from Definition 
3, the definition of fractorial, to Theorems 1 and 2. I have simplified the whole 
thing greatly by slightly reformulating the definition offractorial so that now the 
results of Theorems 1 and 2 follow in a very straightforward manner. 

DEFINITION 3. = a(a - b)(a - 26) ... (a - kb), where a and b are 
positive real numbers, a 2 b ,  and k is a natural number such that k < a / b a s  k + 1 ,  
so  that 0 < a  - k b  5 b .  

THEOREM. For all natural numbers a, b, c, and d ,  the number, n, of 

,adb; l , + l .  factors in the fractorial expression (U/C)! /~, ,^  is given by n = - 
Proof. From k < a / b s k + l  weget  0 < a  - k b s b ,  o r l s a  - k b <  

b + 1. Replace a with ad and b with bc to get 1 5 ad - kbc < bc + 1 .  
Dividing by bc gives l/bc s ad/bc - k c + l /bc ,  so 

k s ad/bc -1/bc < k + l .  

Since n = k + 1, the result follows. 

Sincerely youis, 

Nataniel Greene 
Yeshiva University 

New Giant Twin Primes 

4650828 -1001 Â 1. 

Questions for the reader: 1. Do they add to our store of mathematical 
knowledge? 2. Can we trust the computer that calculated them? If your 
answers are, respectively, "Not much" and "Not necessarily" then 3. Why were 
they included here and why did you read about them? 



Mathacrostics 

Solution to Mathacrostic 36, by Charlotte Maines, (Spring, 1993). 

Words: 

A. Monte Carlo method 
B. abstract space 
C. rheostat 
D. venetian white 
E. inappetent 
F. Nathan 
G. Sylvester's dialytic method 
H. hones 
I. imaginary circle 
J. nephews 
K. batch 
L. requiescat 
M. objects 
N. trident of Newton 
0. trajectories 

P. Hooton 
Q. interface 
R. Noether 
S. gentes 
T. servomechanism 
U. folium of Descartes 
V. anthotaxy 
W. lenten 
X. lethe 
Y. annotate 
Z. point of osculation 
a. athanor 
b. rule of false position 
c. two-throw 

Author and title: Marvin Shinbrot, Things Fall Apart, 

Quotation: From the seventeenth century to the nineteenth, the heart of 
all physics and much of mathematics as well was Newton's three laws of motion: 
a body not subject to external force remains at rest or moves with constant speed 
in a straight line, the acceleration of an object os proportional to the forces acting 
on it, and to every action there is an equal and opposite reaction. 

Solvers: THOMAS BANCHOFF, Brown University, JEANETTE 
BICKLEY, St. Louis Community College-Meramec, CHARLES R. DIMINNIE, 
St. Bonaventure University, VICTOR G. FESER, University of Mary, ROBERT 
FORSBERG, Lexington, Massachusetts, META HARRSEN, Durham, North 
Carolina, THEODOR KAUFMAN, Brooklyn, New York, HENRY S. 
LIEBERMAN, Waban, Massachusetts, DON PFAFF, University of Nevada, 
Reno, STEPHANIE SLOYAN, Georgian Court College 

Mathacrostic 37, proposed by PATTI VAHEDI, follows. To be listed 
as a solver, send your solution to Underwood Dudley, Pi Mu Epsilon Journal, 
Math. Dept., DePauw Univ., Greencastle, Indiana 46135. 

A. Vector cross-product convention. 

[ H Y P ~  + wdl 
B. He secured election of first 
German Pope. [2 wds] 
C .  Enlightened one. [Sanskrit] 

D. A solution to the Sturm-Liouville 
problem. 
E. FDR's director of the U. S. Mint. 
[Surname] 
F. Belgian art group of la Belle 
Epoque. [2 wds] 
G. It salivated when the bell rang. 
[2 wds] 
H. Its limit, by definition. = 
integral of function. [2 wds] 
I .  German gelato or sorbet. 

J. Fictive beast, clarifies 
uncertainty principle. [2 wds] 
K. Simple problem in astronomy. 

[HYP~ I  
L. Incidental remark; if from a 
judge, it has no bearing on the 
case and is not binding. [2 wds] 
M It brought attention to 
fundamental law in classical 
mechanics. [2 wds] 
N. Descartes' parabola = A A 

Newton. [2 wds] 
0. Narrow-minded; prejudiced. 

P. He estimated earth radius with 
trig, circa 230 BC 

Q. 0.4cos(n/4). 

R .  Indian mathematician b. 476 BC. 

S. Polynomial expression of a 
function. [2 wds] 
T Fool's dullness = "Whetstone 

." [3 wds, from As You Like 
It.] 
U. Realm of a + bi. [2 wds] 

V Designer, intensity interferometer 
[Init, surname] 
W Chinese moon guitar [Hyph] 



X. Its examples include 5, 23, 14009. 
[2 wds] ----------- 

30 160 45 59 112137244151 123 27 236 
Y. _ Atlas; - telescope; - time; 

expansion. ------ 
- 105 192200 17 128 61 
2. 19th century pioneer in theory 
and analysis of Word U. [2 wds] ------------ 

43 82 243205 63 182108 14 116235 70 195 

PROBLEM DEPARTMENT 

Edited by Clayton W. Dodge 
University of Maine 

This department welcomes problems believed to be new and at a level 
appropriate for t/w readers of this journal. Old problems displaying novel and 
elegant methods of solution are also invited. Proposals slwuld be accompanied 
by solutions i f  available and by any information that will assist the editor. An 
asterisk (*) preceding a problem number indicates that the proposer did not 
submit a solution. 

All communications should be addressed to C. W. Dodge, 5752 Neville/MatIi, 
University of Maine, Orono, ME 04469-5752. Please submit each proposal and 
solution preferably typed or clearly written on a separate sheet (one side only) 
properly identified with name and address. Solutions to problems in this issue 
should be mailed by July 1, 1994. 

This department seeks to present a wide variety of problems in each 
issue, preferably not more than two problems from any one category. Hence 
appropriate proposals are sought for all categories, but especially for those that 
are empty or nearly so. To aid (and entice) you in your submissions, we list 
each category along with the number of problem proposals in its file: algebra 
10, alpliametics 1, analysis 10, geometry 3, logic and combinatorics 0, number 
theory 3, probability and statistics 0, trigonometry 0, and miscellaneous 0. 

Corrections 

Several times in the Spring 1993 Problem Department the name of 
proposer and solver David Iny was inadvertently printed as David Ivy. Our 
sincere apologies. 

Thanks to William Peirce for pointing out that in the solution to 
problem 765 on page 475 of the Fall 1992 issue, the last equation should read 
410- = (12122~)- = 0221002210~. 

780. [Spring 1992, Fall 19921 Corrected again. Proposed by R. S,  
Lutliar, University of Wisconsin Center, Junesville, Wisconsin. 

Let ABCD he a parallelogram with LA = 60Â° Let the circle through 
A, B, and D intersect AC at E. Sec the figure. Prove that ED ' + AB -AD = 
AE-AC . 

Editor's comment: The statement of the problem wn\ correct. Tlie A 



e r e  was perhaps misleading: ABCD is 
a parallelogram, not necessarily a 
rhombus. The accompanying figure 
shows this situation more clearly. Our 
apologies for any inconvenience the 
original figure may have caused. 

A 

Problems for Solution 

810. Proposed by Alan Wayne, Holiday, Florida. 
In the following base eight n~ultiplication, the digits of the two 

multipliers have been replaced in a one to one manner by letters: 

Restore the digits. Similarly replace 437152 to find out who might have said "I 
clued." 

81 1. Proposed by Tom Moore, Bridgewater State College, Bridgewater, 
Massachusetts. 

If a < b < c are positive integers with gcd(a, b) = 1 and a2 + b2 = c2, 
then (a, b, c) is called a primitive Pythagorean triple (PPT). If both a and c are 
primes, then we shall call it a prime PPT (P3T). 

a) If (a, b, c) is a P ~ T ,  deduce that b = c - 1. 
b) Find all P T S  in which a and c are 

i) twin primes. 
ii) both Mersenne primes. 
iii) both Fermat primes. 
iv) one a Mersenne, the other a Fermat prime. 

812. Proposed by George P. Evanovich, Saint Peter's College, Jersey 
City, New Jersey. 

If n 2 2 is a positive integer, prove that 

813. Proposed by the late Jack Garfimkel, Flushing, New York. 
Given a 1riangleABC with sides a, b, c and a triangle A'B'Cr with sides 
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(b + c)/2, (c + a)/2, (a + b)/2. Prove that r' 2 r, where r and rr are the inradii 
of triangles ABC and A'B'C' respectively. 

814. Proposed by Nathan Jaspen, Stevens Institute of Technology, 
Hoboken, New Jersey. 

For any decimal integer n, prove that n5 and n end in the same digit. 
that n6 and n2 end in the same digit, that n7 and n3 end in the same digit, and 
so forth. 

815. Proposed by Bill Correll, Jr., Cincinnati, Ohio. 
Let [x ]  denote the greatest integer not exceeding x.  Solve for x : 

816. Proposed by Robert C. Gebhardt, Hopatcong, New Jersey. 
a) From the integers 1, 2, 3, ..., n, a state lottery selects at random k 

numbers (k < n). A person who had previously chosen at random m of those k 
numbers (m s k) is a winner. Find the probability of being a winner. 

*b) The Tri-State Megabucks (Maine, New Hampshire, and Vermont) 
tickets cost $1 each. A participant selects m = 6 numbers out of n = 40 and is 
a winner if all six numbers match the k = 6 numbers the game selects. The 
winnings are paid in 20 equal annual installments. How large does the pot have 
to be before a ticket is worth $ l ?  

817. Proposed by Andrew Cusumano, Great Neck, New York. 
In the accompanying figure 

squares CEHA and AIDE are erected 
externally on sides CA and AB of 
triangle ABC. Let BH meet IC at 0 and 
AC at G ,  a) and Prove let CI that meet points AB D, at F. 0, and D WE 
E are collinear. 

0 

b) Prove that angles HOE, B 
EOC, AOH, and AOI are each 45'. 

c 
c) If ACB is a right angle, then 

prove that E, F,  and G are collinear. 
Find an "elegant" proof for parts (a) and (b), both of which are known 

to be true whether the squares are erected both externally or both internally (see 
The American Mathematical Monthly, problem E831, vol. 56, 1949, 406-407). 
Part (c) is a delightful result that also should be known, but appears to be more 
difficult to prove. 



*818. Proposed by Dmitry P. Mavlo, Moscow, Russia. 
From the SYMP-86 Entrance Examination, solve the inequality 

819. Proposed by Morris Katz, Macwahoc, Maine. 
Evaluate the integral 

820. Proposed by William Moser, McGill University, Montreal, Quebec, 
Canada. 

Let ahk (0 5 k < n) denote the number of n-bit strings (sequences of 0's 
and 1's of length n) with exactly k occurrences of of two consecutive 0's. Show 
that 

where (:) - n! 
if 0 s k s n and 

k! (n - k)! 

821. Proposed by Zeev Barel, Hendrix College, Conway, Arkansas. 
Problem B-2 at the fifty-second annual William Lowell Putnam 

Mathematical Competition (1991) stated: Suppose f and g are non-constant, 
differentiable, real-valued functions defined on (-00,~). Furthermore, suppose 
that for each pair of real numbers x and y, 

If j'(0) = 0, prove that (f(x))* + (g(x))2 = 1 for all x. 
In fact, one can do a little more under the same hypothesis. Prove that 

there exists a real number k such that fix) = cos kx and g(x) = sin kx for all x. 

822. Proposed by Stanley Rabinowitz, MathPro Press, Westford, 
Massachusetts. 

If a is a root of the equation 2 + x - 1 = 0, then find an equation that 
has a4 + 1 as a root. 
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Solutions 

777. [Spring 1992, Fall 19921 Corrected. Proposed by Seung-Jin Bang, 
Seoul, Korea. 

It is well known that, for n s 2, ln(n + 1) < S,, c 1 + In n, where . - - 

It is also known (Crux Mathematicorurn 11 (1985), 109) that, for n s 2, 

Prove that 

ln(n + 1) < n(n + 1)"" - n and n - (n - l)-l^n-l) < 1 + Inn 

for all n s 2. 

Solution by Alma College Problem Solving Group, Alma College, Alma, 
Michigan. 

Recall that e" > 1 + u for all u # 0, so that In x < x - 1 for all x > 0, 
x # 1, by setting x = u + 1. 

Because (n t I)~'" > 0 (and never equal to 1) when n 2 1, then 

for all n 2 1. Finally, multiply both sides by n to get that 

and 

Also solved by PAUL S. BRUCKMAN, Everett, WA, RICHARD I. 
HESS, Ranclio Pahs Verdes, CA, DAVID INY, Westinghoiise Electric 
Corporation, Baltimore, MD, MURRAY S. KLAMKIN, University of A ll~ena, a 
Canada, DAVID E. MANES, SUNY at Oneonta, JOHN D. MOORES, 
Westbrook, ME, YOSHINOBU MURAYOSHI, Ei^enr, OR, PAUL D. 



SHOCKLEE, Memphis, TN, JORGE-NUN0 SILVA, Albany, CA, REX H. WU, 
Brooklyn, NY, and the PROPOSER. 

784. [Fall 19921 Proposed by Alan Wayne, Holiday, Florida. 
Restore the enciphered digits in the decimal con~putation: 

(TWO)(TWO + TWO) = EIGHT. 

Solution by Kenneth M. Wilke, To eka, Kansas. ? Since 98765 s EIGHT = 2(TWO) , then TWO < 223, T is even so T = 
2, and 0 = 1, 4, 6, or 9. Therefore TWO = 201, 204, 206, 209, 214, 216, or 
219. Testing these possibilities, we find that only TWO = 209 yields a solution, 
and then EIGHT = 87362. 

Also solved by ALMA COLLEGE PROBLEM SOLVING GROUP, MI, 
CHARLES ASHBACHER, Cedar Rapids, IA, SEUNG-JIN BANG, Seoul, 
Korea, FRANK P. BATTLES, Massachusetts Maritime Academy, Buzzards Bay, 
SCOTT H. BROWN, Auburn University, AL, PAUL S. BRUCKMAN, Everett, 
WA, MARK EVANS, Louisville, KY, VICTOR G. FESER, University of Mary, 
Bismarck, ND, STEPHEN I. GENDLER, Clarion University of Pennsylvania, 
RICHARD I. HESS, Rancho Pahs  Verdes, CA, PETE JOHNSON, Hebron, CT, 
JOHN D. MOORES, Westbrook, ME, YOSHINOBU MURAYOSHI, Eugene, 
OR, PAUL D. SHOCKLEE, Memphis, TN, LAURA SILVA, Albany, CA, 
SONNY VU, University of Illinois at Urbana-Champaign, REX H. WU, 
Brooklyn, NY, and the PROPOSER. 

785. [Fall 19921 Proposed by Charles Ashbacher, Cedar Rapids, Iowa, 
and dedicated to the memory of Joseph Konhauser. Student solutions are 
especially solicited. 

A tiling of the plane by non-overlapping, non-congruent rectangles P i ,  
Py, ... is defined in the following way: Pi is an arbitrary x by y rectangle; P-,, Pi, 
. are all squares such that the side of each square P k i  is equal to the sum of 
the sides of the two previous squares Pk and Pk+, for all k > 1. Show this tiling. 

Solution by Matthew Amoroso, St. Bonaventl~re University, St. 
Bonaventtire, New York. 

To begin, let rectangle 1 be an x by y rectangle. See the figure on the 
next page. Let rectangle 2 be a square of side x and place i t  so that it is resting 
on a side of rectangle 1 with length x. Again see the figure. Next, rectangle 3 
is a square of side x + y which we place to rest against both rectangles 1 and 2. 
Now rectangle 4 is a square of side 2x + y that rests against the two immediately 
preceding rectangles 2 and 3. Continue in this manner to tile the plane in the 
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Also solved by PAUL S. 
BRUCKMAN, Everett, WA, RICHARD 
I. HESS, Rancho Palos Verdes, CA, 

x p - l m - i  
MURRAY S. KLAMKIN, University of x 
Alberta, Canada, TOM MOORE, 
Bridgewater State College, MA, JOHN 
D. MOORES, Westbrook, ME, PAUL 
D. SHOCKLEE, Memphis, TN, REX H. 
WU, Brooklyn, NY, and the 
PROPOSER. 

prescribed way. Since each square must have its side equal to the sum of the 
sides of the two previous squares, the coefficients of x and of y in these side 
lengths are successive Fibonacci numbers: fn = 0, f, = 1 and fn+2 = fn + fÃ£+ for 
n s 1. That is, the side of square n is equal to f , x  t f f l  for n 2 2. 

* - - 

786. [Fall 19921 Proposed by Dmitry P. Mavlo, Moscow, Russia. 
From two towns A and B, 48 km apart, two groups of hikers march 

toward each other starting at the same time. The group leaving A marches at 4 
km/hr by marches of not more than 6 hr at one time. The group from B hikes 
at 6 km/hr for not more than 2 hr at a time. After marching t hr, the first group 
must rest for at least t hr. The second group has to rest not less than 2t hr after 
t hr of hiking. Find the least time until the two groups meet and describe the 
hiking patterns necessary for that solution. 

Solution by William H. Peirce, Delray Beach, Florida, 
The time until the two groups meet will be least if each group hikes as 

long as possible without resting. Therefore, we let them meet as A is completing 
a 6-hr hike at 4 k d h r  and B is completing a 2-hr hike at 6 kmhr, assuming the 
time needed to meet is at least 6 hours. These final hikes span 24 + 12 = 36 
km. 

If the total time until they meet is T > 6 hours, then group A must hike 
and rest equal times for the first T - 6 hours, averaging 2 km/hr during that time. 
Group B has T - 2 hours during which they average 2 kmfhr. Hence 



and T = 7 hours. Group A must hike 30 minutes and rest 30 minutes during the 
first hour, and then hike the last 6 hours. Group B hikes 1 hour 40 minutes and 
rests 3 hours 20 minutes during the first 5 hours, and then hikes the last 2 hours. 
Except for the fact that the initial hike-and-rest period can be broken down into 
smaller segments, this solution is unique. 

Also solved by ALMA COLLEGE PROBLEM SOLVING GROUP, MI, 
CHARLES ASHBACHER, Cedar Rapids, IA, PAUL S. BRUCKMAN, Everett, 
WA, MARK EVANS, Louisville, KY, STEPHEN I. GENDLER, Clarion 
University of Pennsylvania, RICHARD I. HESS, Rancho Palos Verdes, CA, 
JOHN D. MOORES, Westbrook, ME, WILLIAM H. PEIRCE (second solution), 
Delray Beach, FL, PAUL D. SHOCKLEE, Memphis, TN, MANUEL SILVA, 
Albany, CA, and REX H. WU, Brooklyn, NY. One incorrect solution was 
received. 

787. [Fall 19921 Proposed by R. S. Luthar, University of Wisconsin 
Center, Janesville, Wisconsin. 

If a, b, c, d are the roots of 

then evaluate the expression 

in terms ofp, q, r, and s. 

Solution by Harry Sedinger, St. Bonaventure University, St. 
Bonaventure, New York. 

It is well known (and easily seen) that if 

4 3 2 x t px t qx t rx + s = (x - a)(x - b)(x - c)(x - d), 
then 

abc t acd + abd t bcd = -r, and abed = s, 

Then the given expression is equal to 
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t 27(abc t acd + abd + bcd)p t 8labcd 

Also solved by SEUNG-JIN BANG, Seoul, Korea, SCOTT H. BROWN, 
Auburn University, AL, PAUL S. BRUCKMAN, Everett, WA, JILL 
CARNAHAN, Eastern Kentucky University, Richmond, BILL CORRELL, JR., 
Cincinnati, OH, DAVID DELSESTO, North Scituate, RI, RUSSELL EULER, 
Northwest Missouri State University, Maryville, GEORGE P. EVANOVICH, 
Saint Peter's College, Jersey City, NJ, MARK EVANS, Louisville, AT, 
STEPHEN I. GENDLER, Clarion University of Pennsylvania, RICHARD I. 
HESS, Rancho Palos Verdes, CA, MURRAY S. KLAMKIN, University of 
Alberta, Canada, DAYONG LI, Eastern Kentucky University, Richmond, 
HENRY S. LIEBERMAN, Waban, MA, DAVID E. MANES, SUNY at Oneonta, 
JOHN D. MOORES, Westbrook, ME, YOSHINOBU MURAYOSHI, Eugene, 
OR, WILLIAM H. PEIRCE, Delray Beach, FL, BOB PRIELIPP, University of 
Wisconsin-Osl~kosl~ PAUL D. SHOCKLEE, Memphis, TN, LAWRENCE 
SKAGGS, Eastern Kentucky University, Richmond, KENNETH M. WILKE, 
Topeka, KS, J. ERNEST WILKINS, JR., d a r k  Atlanta University, GA, REX H. 
WU, Brooklyn, NY, and the PROPOSER. 

788. [Fall 19921 Proposed by the late Jack Garfinkel, Flushing, New 
York. 

Given positive numbers x, y, z such that x t y t z = 1, prove that 

I. Solution by Sammy Yu and Jimmy Yii, students, Vermillion Middle 
School, Vermillion, South Dakota. 

Since x + y + z = 1, the desired inequality is equivalent to 

and hence to 

Now consider that 



by applying the arithmetic mean-geometric mean inequality to each parentheses 
separately. Equality holds if and only if x = y = z. Thus 

. , 
x Y z X Y Z  

The left side of (2) can be rewritten as 

Hence equation (2) implies (1). The desired result follows with equality if and 
only if x = y = z. 

11. Solution by Murray S. Klamkin, University of Alberta, Edmonton, 
Alberta, Canada. 

We rewrite the inequality in the following homogeneous form: 

(yz + zc + xy)(x + y + z ) ~  a: fl + z 2 2  + x2$ + 8xyz(x + y + z) 

(1) s Ti2 - 2T,T3 + 8T1T3 = Ti2 + 6TlT3 

where TI = x + y + z, Ti = yz + zx + xy, and T3 = xyz. 

We give a stronger result by proving that the "best inequality" of the 
form 

(2) 

is 

(3) 

or equivalently, 

(3') 
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so (3) is clearly true. For (2) to be valid we have, on setting x = y = z = 113, 
that 9 2 3a t b; on setting x = y = 112 and z = 0, that 4 s a. That (3) is "best" 
will now follow if 

for all a and b satisfying the latter two inequality conditions. Since T: a 3T1T3 
is a known equality equivalent to Z&y -- 2 0, then (4) follows if 

which is equivalent to the condition 9 s 3a + b. 
Working backwards from (3), we find that the "best inequalityn for'the 

original problem is 

Also solved by SEUNG-JIN BANG, Seoul, Korea, PAUL S. 
BRUCKMAN, Everett, WA, DAVID E. MANES, S U M  at Oneonta, 
YOSHINOBU MURAYOSHI, Eugenc OR, WILLIAM H. PEIRCE, Delray 
Beach, FL, BOB PRIELIPP, University of Wisconsin-Oshkosh, J. ERNEST 
WILKINS, JR., Clark Atlanta University. GA, and the PROPOSER. 

789. [Fall 19921 Proposed by David Iny, Baltimore, Maryland. 
Evaluate the integral 

I. Solution composed from those submitted by Paul S. Bruckman, 
Everett, Washington, and George P. Evanovicfi, St. Peter's College, Jersey City, 
New Jersey. 

Let the integrand be denoted by f(y). Using L'Hdpital's rule, we see 
that 

Y - 1  1 lim - = lim - = 1 ,  
y-.l Iny y-.111y 

so limy+l f(y) = 1 and f is continuous at y = 1. Accordingly, we make the 
definition 

Now if l i m m  I, exists, then this limit must be equal to the given integral, 
which we denote as I. 



We make the substitution y = e h  in (1). Then dy = -2e&dx,  and we 
obtain 

if it exists. 
Now, more generally, we let 

n e-bx -e-ax 
F(a, b) = lim I I 

dx.  
n-ot> 0 

Then 

aF(al b, = lim Jn(-e-bx)h = lim L e - b x  " -. 1 
ab n-w o w b  ' o = - b  

Therefore 

for some function g and constant C. Since F(b, a) = -F(a, b), it follows that 
g(a) = In a. Also F(a, a)  = 0 = In a - In a + C, so C = 0. That is, 

a F(a, b) = In a - l ab  = In - whence I - In 3 . 
b ' 

11. Solution by Murray S. Klamkin, University of Alberta, Edmonton, 
Alberta, Canada. 

More generally, we evaluate 

w - (1  -n)t - -(m +l -n)r 
I(m, n) = I0 dx . 

x 
This is a Frellani integral and it is known that 

provided the integral exists and that 

Hence Km, n) = In [(m + 1 - n)/(l - n)] .  For the given problem, / ( I ,  112) = 
In 3. 

For the case when liiii,_., F(x) = F(m), then Elliot has shown that 
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As an example, 

joa tan'l ax - tan-I bx dx = -ln_. JI a 
x 2 b  

Also solved by BORIS BAEUMER, Louisiana State University, Ba 
Rouge, SEUNG-JIN BANG, Seoul, Korea, FRANK P. BATTLES, Massachusetts 
Maritime Academy, Buzzards Bay, SCOTT H. BROWN, Auburn University, AL, 
DAVID E. MANES, SUM at Oneonta, JOHN D. MOORE, Westbrook, ME, 
HARRY SEDINGER, St. Bonaventure University, NY, STAN WAGON, 
Macalester College, St. Paul, MN, J .  ERNEST WILKINS, JR., dark Atlanta 
University, GA, and the PROPOSER. 

Several solvers found references to the integrals F(a, b) of Solution I 
and I(m, n) of Solution I.: Sokolnikoff, Advanced Calculus, p. 364, Gradsftteyn 
& ~yz'hik, Table of Integrals, Series, and Products, 4th ed, Academic Press, 
1965, Formula 8, p. 543, Borden, A Course in Advanced Calculus, North- 
Holland, 1983, Problem 37, p. 364. A common method of solution for integral 
F(a, b) was to rewrite it as a double integral and then apply Fubini's theorem 
to reverse the order of integration. 

790. [Fall 19921 Proposed by Florentin Smarandache, Phoenix, 
Arizona. 

In base 6 how many digits does the nth prime contain? 

Solution by Paul T. Bateman, University of Illinois, Urbana, Illinois. 
More generally, the number of digits of the number N to the base b is 

the integral part of 1 + (In N)/(ln b). The known formula 

where 6(w) is a positive quantity that approches zero when n gets large, makes 
it possible to approximate the number of digits in the nth prime pn within one 
unit for large n. That is, the number of digits in pn to base b is given by the 
integral part of 

for large n. 

Also solved by PAUL S. BRUCKMAN, Everett, WA, and DAVID E. , 
MANES, SUNY at Oneonta. 



791. [Fall 19921 Proposed by Seung-Jin Bang, Seoul, Republic of 
Korea. 

Prove that 2" + 1, where n is a nonnegative integer, is never a multiple 
of 143. 

I. Solution by Kenneth M. Wilke, Topeka, Kansas. 
Suppose that 2" + 1 R 0 (mod 143) for some nonnegative integer n. 

Then n simultaneously satisfies both congruences 2" + 1 = 0 (mod 11) and 2" 
+ 1 = 0 (mod 13). By trial one finds that 2' + 1 = 33 - 0 (mod 11). That is, 

2' - -1 (mod 1 I), so 2'' = ( - I )~  = 1 (mod 11). 

Thus the congruence 2" + 1 - 0 (mod 11) is satisfied when n = 5 + lor for any 
nonnegative integer r. By similar trial one finds that 2" + 1 = 0 (mod 13) is 
satisfied when n = 6 + 12s for any nonnegative integers. Hence we must have 
that 5 + lor  = 6 + 12s for integral r and s. Since the left side of the equation 
is always odd while the right side is always even, there is no solution. 

11. Solution by David E. Manes, State University of New York College, 
Oneonta, New York. 

We disregard 0 since 2' + 1 = 2 is not a multiple of 143. The order of 
2 modulo 143 is 60; i.e., 60 is the smallest positive integer t such that 2' - 1 
(mod 143). Also 2'" - 1 (mod 143) if and only if m is a multiple of 60. Now 
assume there is a positive integer n such that 2" + 1 9 0 (mod 143). Then 2" Ã 

-1 (mod 143), which implies 22" * 1 (mod 143). Then I n  = 60k for some 
positive integer k, or n = 30k. We have, however, that 230 a -12 (mod 143). 
Accordingly, 

22 = 230k = 1 (mod143), if k is even 
(modl43), if k is odd; 

that is, 2" 4 -1 (mod 143) for any positive integer n. 

Also solved by CHARLES ASHBACHER, Cedar Rapids, IA, who 
calculated that 260 = 1152921504606846976, SCOTT H. BROWN, Auburn 
University, AL, PAUL S. BRUCKMAN, Everett, WA, BILL CORRELL, JR., 
Cincinnati, OH, CHARLES R. DIMINNIE, St. Bonaventure University, NY, 
MARK EVANS, Louisville, KY, STEPHEN I. GENDLER, Clarion University 
of Pennsylvania, RICHARD I. HESS, Rancho Palos Verdes, CA, MURRAY S. 
KLAMKIN, University of Alberta, Canada, HENRY S. LIEBERMAN, Waban, 
MA, JOHN D. MOORE, Westbrook, ME, KANDASAMY MUTHUVEL, 
University of Wisconsin-Oshkosh, WILLIAM H. PEIRCE, Delray Beach, FL, 
BOB PRIELIPP, University of Wisconsin-Oshkos/r, HARRY SEDINGER, St. 
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Bonaventure University, NY, REX H. WU, Brooklyn, NY, and the PROPOSER. 

792. [Fall 19921 Proposed by Seung-Jin Bang, Seoul, Republic of 
Korea. 

Given any thirteen distinct real numbers, prove that there exists at least- - 
one subset {x, y, z} of three of them such that 

Solution by Oxford Running Club, University of Mississippi, University, 
Mississippi. 

The arctangents of the thirteen numbers are thirteen distinct numbers in 
the interval (-n/2,31/2). Then some three of these must lie in one of the 
subintervals (-42,-re/3), [-~13,-n/6), [-n/6,0), [0,n/6), [n/6,Ji/3), [n/3,n/2). Say 
that x > y > z are three of the original thirteen and that arctan x > arctan y > 
arctan z are in the same subinterval. Then each of the differences 

arctan x - arctan y, arctan y - arctan z, arctan x - arctan z 

is positive and strictly less than n/6. Hence, by the increasing nature of the 
tangent function, each difference has a tangent between 0 and 1N3, so the 
product of their three tangents is less than 1/(343). Since 

x - Y  tan(arctanx - arctany) = - 
1 + x y  

and two similar relationships, the result follows. 

Also solved by PAUL S. BRUCKMAN, Everett, WA, BILL CORRELL, 
JR., Cincinnati, OH, and the PROPOSER. 

793. [Fall 19921 Proposed by Dieter Bennewitz, Koblenz, Germany. 
Given any trapezoid, its diagonals divide its interior area into four 

triangular areas: A and B adjacent to the parallel bases, and C and D adjacent to 
the nonparallel sides, as shown in the figure. 

a) Prove that the areas C and D are equal and that A'B = C-D.  
b) Find area C in terms of the lengths of the altitude and the bases of 

the trapezoid. 

Solution by Richard I. Hess, Rancho Palos Verdes, California. 
Let the upper and lower bases of the trapezoid have lengths a and b and A 

let its altitude be h. Let the segment of the diagonal common to triangles A and 
D have length x and that common to B and C have length y, See the figure. 
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a) Since the triangle formed by 
B + C and that formed by B + D have a 
the same base b and altitude h, 

B + C = B + D = b h / 2  

and hence C = D. Similarly, A + C = A 
+ D = ah/2. Thinking of the diagonal x 
+ y as base, then triangles B and D have 
a wmmon altitude, so D/B = x/y. b 
Similarly A/C = x/y, whence AB = CD. 

b) Since AB = CD = c2, then B = C~/A and we have 

c2 bh ah B + C = - + C = _  and A + C = - .  
A 2 2 

We solve these equations simultaneously to get that 

c = D  = abh A = a2h and B = b ̂ h 
2(a + b) ' 2(a + b) ' 2(a + b) ' 

Also solved by ALMA COLLEGE PROBLEM SOLVING GROUP, MI, 
SEUNG-JIN BANG, Seoul, Korea, PAUL S. BRUCKMAN, Everett, WA, BILL 
CORRELL, JR., Cincinnati, OH, MARK EVANS, Louisville, KY, STEPHEN I. 
GENDLER, Clarion University of Pennsylvania, HENRY S. LIEBERMAN, 
Waban, MA, BARBARA J. LEHMAN, Brigantine, NJ, DAVID E. MANES, 
SUNY at Oneonta, JOHN D. MOORES, Westbrook, ME, YOSHINOBU 
MURAYOSHI, Eugene, OR, HARRY SEDINGER, St. Bonaventure University, 
NY, REX H. WU, Brooklyn, NY, SAMMY YU and JIMMY YU (jointly), 
Vermillion, SD, and the PROPOSER. 

794. [Fall 19921 Proposed by Peter A. Lindstrom, North Lake College, 
Irving, Texas. 

For -3 s x s 6, show that 2x is equal to the sum of the zeros of 

f(x) = sin@ + cos x). 

Solution by George P. Evanovich, St. Peter's College, Jersey City, New 
Jersey. 

Because ws  (-1) = .54 and cos 0 = 1 and the cosine function is 
continuous, there exists a number a such that 0 < a < 1 and cos (-a) = a. 
(Actually, a - 0.739085.) Therefore -a is a zero of sin (x + cos x). Also note 
that 

cos (a + 11) = -a, cos (-a + 2 4  = a, and cos (a - n) = -a 
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Thus -a, a + x, -a + 2x, and a - n are the zeros of sin (x + ws x) in the 
interval (-3, 6). Their sum is 2x. See the figure for the graph of y = 
sin(x + ws x) over this interval. 

y = sin (x + cos x). 

Also solved by SEUNG-JIN BANG, Seoul, Korea, PAUL S. 
BRUCKMAN, Everett, WA, MARK EVANS, Louisville, KY. MURRAY S. 
KLAMKIN, University of Alberta, Canada, HENRY S. LIEBERMAN, Waban, 
MA, DAVID E. MANES, SUNY at Oneonta, JOHN D. MOORES, Westbrook, 
ME, OXFORD RUNNING CLUB, Univers ity of MISsISs@pi, University, BOB 
PRIEUPP (who supplied the figure), University of Wisconsin-Oshkosh, REX H. 
WU, Brooklyn, M, and the PROPOSER. 

795. [Fall 19921 Proposed by Russell Euler, Northwest Missouri State 
University, Maryville, Missouri. 

Find all solutions on the interval [O, 2n] to 

2ws3x - 2 w s x  + 1 = 0. 

I. Solution by Henry S. Lieberman, Waban, Massachusetts. 
The equation has no solutions. We have that 

Then sin x = sin 2x = Â±I Now sin x = 21 for x = h/2 where k is an odd 
integer. Then sin 2x = sin hi = 0. Hence, there are no solutions to sin x sin 2x 
= 1, and hence to the original equation also. 

11. Solution by Rex H. Wu, Brooklyn, New York 
If t = cos x, then we must solve 

(I) 2t3 - It + 1 = 0, where -1 s t -s, 1. 



That is, ? = t - 112. However, ? > t - 112 in the interval (-1,l). Hence the 
original equation has no real solution. In fact, the only real solution to equation 

Also solved by CHARLES ASHBACHER, Cedar Rapids, L4, 
SEUNG-JIN BANG, Seoul, Korea, PAUL S. BRUCKMAN, Everett, WA, BILL 
CORRELL, JR., Cincinnati, OH, GEORGE P. EVANOVICH, Saint Peter's 
College, Jersey City, NJ, MARK EVANS, Louisville, KY, STEPHEN I. 
GENDLER, Clarion University of Pennsylvania, RICHARD I. HESS, Rancho 
Palos Verdes, CA, MURRAY S. KLAMKIN, University of Alberta, Canada, 
PETER A. LINDSTROM, North Lake College, Irving, TX, DAVID E. MANES, 
S U M  at Oneonta, JOHN D. MOORES, Westbrook, ME, OXFORD RUNNING 
CLUB, University of MISsISsIppi, University, WILLIAM H. PEIRCE, Delray 
Beach, FL, BOB PRIELIPP, University of Wisconsin-Oshkosh, HARRY 
SEDINGER, St. Bonaventure University, NY, KENNETH M. WILKE, Topeka, 
KS, J. ERNEST WILKINS, JR., Clark Atlanta University. GA. and the . - 
PROPOSER. 

796. [Fall 19921 Proposed by 
Michael W. Ecker, darks  Summit, 
Pennsylvania. 

a) A die is thrown until a 
prescribed face (e.g. say 3) shows. What 
is the mathematically expected number 
of throws required for this to occur? 

b) Same question, but suppose 
a throw now consists of rolling 2 dice. 
In particular, should we expect this 
expectation to be half that of part (a)? 

c) What is the smallest whole number of dice needed to constitute one 
throw, if we wish to have the mathematically expected number of throws 
required to roll our prescribed number not exceed 2? 

Solution by Charles Ashbacher, Cedar Rapids, Iowa. 
a) If an event has probabilityp and all trials are equally likely, then the 

expected number E of trials until the event occurs is given by 
rn 

where q = 1 - p. Hence the expected number of trials for a six-sided die to 

show a 3 is 1/(1/6) = 6. 
b) With two dice the probability of throwing at least one 3 is 1 - (516)~ 

= 11/36, so E = 1/(11/36) = 36/11 a 3.3 trials. 
c) For three dice the probability is 1 - ( 5 ~ 6 ) ~  = 911216, so E = 216P1 

2.37. For four dice, p = 1 - ( 5 ~ 6 ) ~  = 67111296, so E = 12961671 = 1.93 < 2, 
so the answer is that four dice are necessary. 

* - 

Note that the die you have in the sketch is wrong! You have 3 and 4 
both showing on one die, but 3 and 4 are always on opposite sides of a die. 

Also solved by ALMA COLLEGE PROBLEM SOLVING GROUP, MI, 
PAUL S. BRUCKMAN, Everett, WA, GEORGE P. EVANOVICH, Saint Peter's 
College, Jersey City, NJ, MARK EVANS, Louisville, KY, STEPHEN I. 
GENDLER, Clarion University of Pennsylvania, RICHARD I .  HESS, Rancho 
Palos Verdes, CA, HENRY S .  LIEBERMAN, Waban, MA, JOHN D. MOORES, 
Westbrook, ME, OXFORD RUNNING CLUB, University of Mississippi, 
University, HARRY SEDINGER, St. Bonaventure University, NY, and the 
PROPOSER. Only Ashbacher noticed the error in the die on the left: the top 
face should be a six, not a four. The right die is correct. 

Anecdotes Wanted 

Mathematics is full of peoples' names: Format's theorem, Newton's 
method, the Euclidean algorithm, Bernoulli numbers, Euler's $-function, 
L'H6pital's rule, Pell's equation, Gauss's lemma, ... . 

However, the people behind the names are hardly known at all. Writers 
of mathematical biography tend to concentrate on their subjects' mathematical 
life and ignore the rest. Pick up a book of mathematical history at random and 
see if that is not true. Here is an excerpt from the middle of page 154 of 
Hilbert, by Constance Reid (Springer-Verlag, New York, 1970): 

The next summer Hilbert lectured on relativity theory as part of a 
U~veisi ty series for all of the faculties. 

In the middle of page 154 of Niels Henrik Abel, by Oystein Ore (U. of 
Minnesota Press, 1957) we find 

With very few acquaintances and low ebb in his purse Abel could do 
little else than write mathematics, and the last months in Paris turned 
out to be extremely fruitful. A few days after his great memoir had 
been submitted to the Institute, he completed a lesser paper on 
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equations, which he presented to Gergonne's Annals. 

The middle of page 154 of Carl Friedrich Gauss, by G. Waldo Dumington 
(Hafner, New York, 1955): 

By January, 1832, he had thrown himself with all force into the 
investigation of magnetism, and by February of that year had succeeded 
in reducing the intensity of terrestrial magnetism to absolute units. 

Page 154 (middle) of Joseph Fourier, by I. Grattan-Guinness (MIT Press, 
Cambridge, 1972): 

On calculera de meme la valeur de d pour Ie cas de quatre inconnues 
et on multiplera cette valeur par 

92/(92 - 72), 1 12/(1 12 - 72), 1 3 ~ / ( 1 3 ~  - 72), ... 
It is hard to make mathematics human. Mathematicians mostly live dull 

lives, so  colorful anecdotes bringing them alive as people are rare. It is a shame 
that mathematicians as people have been so  neglected. (If you doubt that they 
have been neglected, can you tell which of Lagrange, Laplace, Legendre, 
L'Hopital, and Lhulier was the tallest, or had the most children? Can you even 
tell them apart?) The names of mathematicians are not the names of people, 
they are the names of gods who produce theorems. 

This is too bad because mathematicians were and are people, and 
mathematics is a human activity. When we cannot make a connection between 
our subject and the humans who were and are responsible for it, mathematics can 
be viewed as inhuman, artificial, sterile, and boring. In fact, it is so viewed by 
a rather large number of people. 

To fix this, we need a supply of anecdotes about mathematicians. The 
state of mathematical anecdotes is now so bad that even the false anecdotes are 
no good. For example, you can find in print in more than one place the story 
of how, when he was old, De Moivre each night slept for fifteen minutes more 
than the previous night until he slept the clock around; then he died. It was 
clearly made up by a non-mathematician, and not by a clever non-niathenlatician. 
It is obviously false and pointless even if true. The often-printed anecdote about 
Euler's algebraic proof of the existence of God is another example. Why would 
Euler deliver such nonsense as "(a + b)/c = n;  hence God exists."? Why 
would Diderot who according to the anecdote knew no niathematics (not true) 
have consented to listen? Ridiculous! That such feeble stories should gain 
acceptance and be constantly repeated shows how easy it is for counterfeit 
anecdotes to get into circulation and stay there. 

We need good anecdotes about n~athen~aticians, illustrating their human 
qualities. We have George Washington chopping down the cherry tree, but we 
have nothing similar for Euler. Benjamin Franklin flew a kite: what did Gauss 
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do? 
Since the historians of mathematics are not going to supply us with what 

we need, we must turn elsewhere. Let us turn to the readers of the Pi Mu 
Epsilon Journal. This is an appeal for you to make up anecdotes about 
mathematicians. Length and subject are immaterial as long as the anecdote - 
good. It should be memorable, it should illustrate something, it can be funny, 
touching, sentimental, stirring: anything as long as it is good. It does not have 
to be true. Many of the best anecdotes, for example G. W. and the cherry tree, 
are not. Nevertheless, they serve valuable purposes. 

The best anecdotes received will be printed in a future issue of the 
Journal, either anonymously or with attribution, as their authors choose. a 

The 1993 National Pi Mu Epsilon Meeting 

The meeting took place at the summer meeting of the American 
Mathematical Society, the Mathematical Association of America, and the 
Canadian Mathematical Society, in Vancouver, British Columbia, from August 
15 to 19, 1993. 

There were thirty-three student papers delivered in five sessions: 

Upper chromatic numbers, by Aaron Abrams (University of California) 
Optimal material layout in a problem of heat transfer, by Ray V. A d a m  

(Worcester Polytechnic Institute) 
Math anxiety, by Dawn Boyung (St. Norbert College) 
The analytic hierarchy process with Bayes' Theorem, by Frank Castro 

(Youngstown State University) 
An introduction to the theory of K2(R), by John Davenport (Miami 

University) 
Functional integrals in a theory of absolute integration, by Anthony F. 

De Lia (Univeisity of Central Florida) 
Riemann Zeta Function on the distribution of prime numbers, by Rondel 

DeLong (Marshall University) 
A marble drop method for solving linear programs, by Vladimir 

Dimitrijevic (Youngslown State University) 
Math methods down under, b Sandra S. Gestl (St. Norbert College) 
Sailing down the river of 3x' + &y - 5 ~ 7 ~ ~  by Francis Fung (Kansas A 

State University) 
Bayesian probability and credibility theory in insurance ratemaking, by 



Jennifer Garrett (Miami University) 
Differential hyperbolic geometry, by Lauren D. Hartman (Washington 

and Lee University) 
Data structures in the implementation of the Huffman algorithm, by Jon 

Hester (Hendrix College) 
Allocations for matching games on weighted graphs, by Jennifer Howes 

(Drew University) 
The economics of exhaustible resources, by Benjamin Keen (Miami 

University) 
Stokes7 Theorem and its application, by Deborah Kellogg (East Carolina 

University) 
A matrix-balancing problem, by Julie Labbiento (Youngstown State 

University) 
Hilbert's seventeenth problem, by Pasquale Lapomarda 111 (College of 

the Holy Cross) 
Some proofs without words, by Cheryl McClellan (Youngstown State 

University) 
One sample study of variance focusing on type I error, by Julie Mullett 

(Miami University) 
The life table approach in determining actuarial mortality, by Umagasen 

C. Naidoo (Miami University) 
Automatic differentiation, by Mai Nguyen (Miami University) 
Dead horses in the desert, by Kathryn Nyman (Carthage College) 
A combinatorial queuing model related to the ballot problem, by David 

C. Ogden (Wichita State University) 
Three proofs of Kaplansky's Theorem, by Thomas Peppard (John 

Carroll University) 
Jentzsch's Theorem in two complex variables, by Xiaoling Qian 

(University of Illinois) 
The Shapley value and partially defined games, by Jennifer Rich (Drew 

University) 
A generalization of triangular numbers, by Bonnie A. Sadler (East 

Carolina University) 
Implementation of diva procedure calls on a ring of processors, by Scott 

Shauf (University of Richmond) 
Continued fractions, by Traca Slusher (Youngstown State University) 
Values of games in partition function form, by Maria Theoharidas 

(Drew University) 
Matrices and AIDS, by Jeffrey A. Wallace (University of West Florida) 
A study of the representations of even numbers as the sum of two 

primes, by Joel M. Wisdom (University of Tennessee, Chattanooga). 
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Some of these papers, the editor hopes, will appear in forthcoming 
issues of the Journal. 

Five prizes, for papers of unusual merit, were awarded to Vladimir 
Dimitrijevic, Jennifer Garrett, Lauren D. Hartman, Jon Hester, and Joel M. - 
Wisdom. .. - 

At the meeting of the Pi Mu Epsilon Council, it was announced that the 
National Security Agency had again granted Pi Mu Epsilon $5000 for the support 
and encouragement of student speakers and that the American Mathematical 
Society had contributed $1000 towards prize awards. In addition, a donor who 
wished to remain anonymous has made a contribution that will more than double 
the fund for the Richard V. Andree Awards, given to the best student papers that 
appear in the Journal. The Council expressed gratification and thanks for the 
support. In other business, the Council decided to increase the cost of Pi Mu 
Epsilon pins from $8 to $12, but to leave all other fees unchanged. 

After the annual Pi Mu Epsilon banquet, an inexpensive and well- 
attended event, the J. Sutherland Frame lecture was delivered by Professor 
George E. Andrews of Pennsylvania State University. His topic was "Ramanujan 
for students" and with energy and clarity he went from how Fibonacci numbers 
could aid travelers in Canada to properties of continued fractions, giving the 
impression, as skilled lecturers can, that mathematics is really a simple subject. 

The next meeting of Pi Mu Epsilon will take place in conjunction with 
the summer meeting of the MAA and AMS in Minneapolis, August 15-17,1994. 

Editorial Statement 

The Journal is always seeking manuscripts from student members of Pi 
Mu Epsilon. 

The main purpose of the Journal is to interest and inform its readers, 
who are mostly undergraduates or recent graduates. Thus, the results of 
specialized research, of interest to experts in a field, are not in general 
appropriate for the readers of the Journal who, along with its editor, are experts 
in no Geld. Papers should give background information and place the results of 
research in context. The audience that authors should keep in mind is a group 
of bright young mathematicians who know next to nothing about your area of 
expertise, but who are able and willing to learn. 
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Miscellany 

Those "problems" of the form "Find the next number in the following 
sequence" are not problems in the usual mathematical sense at all. You may 
think that the next number in the sequence 2, 4, 6, 8, ... is 10, but you are 
wrong. It is x, because the formula that I had in mind when writing the terms 
for n = 1, 2, 3, 4 was 

The problems would be better stated as, "What was in the mind of the author as 
the following sequence was being written?" This of course is a problem of 
psychology and not of mathematics. 

Nevertheless, such problems can be entertaining, especially if you can 
guess the next number. The British periodical Eureka, a publication of the 
undergraduate mathematical society at Cambridge University, had a tradition of 
posing such problems. Here is a selection of 40-year-old sequences, which 
incidentally illustrates the timeless and eternal nature of mathematics. They 
range from the fairly obvious to the completely impossible, which is why 
solutions will be given in the next issue of the Journal. 

While looking through old issues of Eureka, I discovered another reason 
why students should publish papers in the Journal. In #17 (1954) there was a 
problem by Roger Penrose, then (I think) a student, now eminent in the extreme 
(deviser of Penrose tiles, author of the recent best-seller The Emperor's New 
Mind, Rouse Ball Professor of Mathematics at Oxford, etc.). Here it is (it is not 
trivial): in a semigroup, where multiplication is associative but there are no 
inverses, you are given that aba = a, bab = b, ab = ba, and ac = ca. Show that 
bc = cb. Though the problem may be difficult, the conclusion to be drawn from 
its existence is easy: if Roger Penrose published while a student, and Roger 
Penrose has gone on to impressive achievements, then if you are a student, it 
follows that ... . 

Eighth Annual 

Bethlehem, Pennsylvania 
Saturday, February 26, 1994 

We invite you to join us, whether to present a talk or just 
to listen and socialize. The invited speaker will be Diane 
Souvaine, Acting Director of DIMACS (The Center for Discrete 
Mathematics and Theoretical Computer Science), and associate 
professor of Computer Science at Rutgers University. Her topic 
will be "Geometric Computation and Applications." The 
conference will start at 9:00 a.m. and continue into late afternoon. 
After the morning invited address, the rest of the day will be 
devoted to student talks. Talks may be fifteen or thirty minutes 
long. They may be on any topic related to mathematics, operations 
research, statistics or computing. We encourage students doing 
research or honors work to present their work here. We also 
welcome expository talks, talks about interesting problems or 
applications and talks about internships, field studies and summer 
employment. We need your title, time of presentation (15 or 30 
minutes) and a 50 word (approximate) abstract by February 18, 
1994. 

Sponsored by the Moravian College Cha 
lon and the Lehigh Valley Association of Independent 

Please contact: Alicia Sevilla 
Department of Mathematics 
Moravian College 
1200 Main St. 
Bethlehem, PA 18018-6650 
(Telephone: (215) 861-1573) 
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