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As 2013 marks the 100th anniversary of Pi Mu Epsilon, we thought it would be fun to
celebrate with 100 problems related to important mathematics milestones of the past cen-
tury. The problems and notes below are meant to provide a brief tour through some of the
most exciting and influential moments in recent mathematics. No list can be complete, and
of course there are far too many items to celebrate. This list must painfully miss many peo-
ple’s favorites. As the goal is to introduce students to some of the history of mathematics,
accessibility counted far more than importance in breaking ties, and thus the list below is
populated with many problems that are more recreational. Many others are well known and
extensively studied in the literature; however, as our goal is to introduce people to what
can be done in and with mathematics, we’ve decided to include many of these as exercises
since attacking them is a great way to learn. We have tried to include some background text
before each problem framing it, and references for further reading. This has led to a very
long document, so for space issues we split it into four parts (based on the congruence of the
year modulo 4). That said: Enjoy!

• 1913: Erdős: How many contacts do you have in your cell phone? How many friends
do you have on Facebook? Over the course of his life, Paul Erdős (March 26, 1913
to September 20, 1996) published over 1,500 mathematical papers with over 500
different people. These are truly staggering numbers. He worked in many fields,
especially in combinatorics, number theory and probabilistic methods. The famous
Kevin Bacon name (or six degrees of Bacon) has been adopted to describe an actors
or actress’ collaborative distance from him, known as a Bacon number. This game
of collaborative distance was originally inspired by Erdős’ extreme collaboration; see
the problem from 1969 for more details. His main interest was in solving assorted
problems and open conjectures as opposed to developing theory. Many conjectures
formulated by him are still open, and have small cash prizes associated with them to
attract and reward. One of his famous conjectures deals with primes in arithmetic
progression (which are sequences of integers that successively differ by adding a fixed
amount). For instance, 5, 8, 11, 14, 17 is an arithmetic progression of length five,
containing the primes 5, 11 and 17. Erdős conjectured that any set of natural numbers
that is “not too sparse” contains “lots” of arithmetic progressions. More specifically,
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if S is an infinite set of natural numbers, the sum of whose reciprocals diverges, then
S contains arithmetic progressions of any given length. Currently $5000 is offered
for the prof of this. Progress includes the Green-Tao Theorem (see the 2004 entry),
stating that the primes (the sum of whose reciprocals diverge) contain arithmetic
progressions of any given length. Even though this is one particular case of the more
general conjecture, it is a profound one: this special case shows that a set of naturals
as erratic as the primes can have some sort of regularity here and there.

He used to remark that one didn’t have to believe in G-d to be a mathematician,
but one had to believe in THE BOOK, where the supreme being collected the most
elegant, ‘a-ha’ proofs of results. See the book of Aigner and Ziegler for a beautiful
approximation of what that book might be (the first chapter gives six proofs of the
infinitude of primes, including a proof (see the 1955 entry) that uses a non-standard
topology on the integers).

On the other hand, one of Erdős’ most famous proofs was his work with Selberg on
an elementary proof of the Prime Number Theorem: if π(n) is the number of primes
less than or equal to n, then π(n)/(x/ log x) goes to 1 as n goes to infinity. That is,
π(n) is asymptotically equal to x/ log x. This was not a proof from the book. This
was not a particularly elegant proof that showed a deep connection in mathematics.
His proof wasn’t even the first. The Prime Number Theorem was proven earlier us-
ing complex analysis, and it was believed for awhile that complex analysis or other
similarly “deep” methods were needed to prove it. This was unsatisfying to many
in the mathematics community, as why should one have to use complex numbers to
count integers! (If you know complex analysis it isn’t surprising that it can allow you
to deduce powerful theorems, and many searched for a more elementary approach. A
famous, humorous dictum is that the shortest path between two statements involving
real numbers is through the complex plane; that is certainly the case here.) Even
though the complex variable proof provides more information, it is nice to see just
what machinery is really needed for the proof.

Problem (proposed by Craig Corsi and Steven J. Miller, Williams Col-
lege): One open conjecture is the Erdős-Gyarfas Conjecture in graph theory, which
states that every graph of minimum degree three contains a cycle whose length is a
power of two. Erdős offered $100 for a proof and $50 for a counterexample. Here are
some related questions for you to consider. (1) True or false: There exists some n
such that every finite graph of minimum degree n contains an odd cycle. (2) True
or false: For every n there exists some finite graph G of minimum degree n such
that every cycle contained in G is odd. (3) True or false: For every n there exists
some finite graph G of minimum degree n whose automorphism group is trivial. (If
a counterexample exists, how small can you make it?)

References:
– M. Aigner and G. M. Ziegler, Proofs from THE BOOK, Springer-Verlag, Berlin,

1998.
– Paul Hoffman, The Man Who Loved Only Numbers: The Story of Paul Erdos
and the Search for Mathematical Truth, Hyperion, 1996.
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– http://www.ams.org/notices/199801/vertesi.pdf

– http://www.math.ucsd.edu/~erdosproblems/All.htmlformoreproblems

• 1917: Morse’s thesis: Marston Morse was inspired by the work of the mathematicians
Jacques Hadamard, Henri Poincaré, and his advisor George Birkhoff. In choosing a
topic for his thesis, he wished to combine the fields of analysis and geometry, a theme
throughout his life’s work. The shortest distance between two points is a straight
line, and straight lines have constant slope. Suppose, however, one is considering two
points on a surface. The analog for the straight line is a curve called a geodesic. For
example, the geodesics on a sphere are the great circles. The analog for constant
slope is that the tangent vectors to the curve are parallel. Morse focused on surfaces
with negative curvature, such as the “pair of pants” below.

In a first paper, Morse gave a combinatorial representation of the geodesics on
surfaces of negative curvature that lie wholly in a finite portion of space. Building
on this work, in his thesis, he established that on such surfaces, there exist geodesics
that are recurrent without being periodic.

Problem (proposed by Joanne Snow, Colleen Hoover, and Steven Broad,
Saint Mary’s College): The following problem (from Michael Spivak’s text named
below, p. 29) concerning a specific surface of negative curvature lies at the intersection
of analysis and topology, a recurring theme in much of Morse’s work. Let C ⊂ R ⊂ R2

be the Cantor set. Show that R2\C is homeomorphic to the surface pictured below.

References :
– M. Morse, A One-to-One Representation of Geodesics on a Surface of Negative
Curvature, American Journal of Mathematics 63 (1921), no. 1, 33–51.
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– M. Morse, Recurrent Geodesics on a Surface of Negative Curvature, Transactions
of the AMS 22 (1921), no. 1, 84–100.

– M. Spivak, A Comprehensive Introduction to Differential Geometry, Volume
One, Publish or Perish, Inc, Houston, Texas, 1970.

• 1921: Mordell’s Theorem: Let E : y2 = x3 + ax + b where a and b are integers;
if the discriminant −16(4a3 + 27b2) is non-zero this is called an elliptic curve, and
there are many fascinating questions we can ask, as well as important applications
(elliptic curves are the building block of some powerful modern encryption systems).
In 1921-1922 Mordell proved that the group of rational points on an elliptic curve,
E(Q) := {(x, y) : x, y ∈ Q and y2 = x3 + ax + b}, is finitely generated. This means
that this group is isomorphic to Zr ⊕ T for some positive integer r and some finite
group T. Massive generalizations of this theorem were conjectured and proved. One
of the reasons elliptic curves are so important in cryptography is that they have
a more complicated group structure than other popular choices, such as the cyclic
groups (Z/pqZ)× with p, q distinct primes which is used in RSA (see the problem
from 1977).

Problem (proposed by Steven J. Miller, Williams College): The miracle be-
hind elliptic curves is that if we take two points with rational coordinates there is
a way to generate a third on it, also with rational coordinates, and obtain a com-
mutative group law. To see this, draw a straight line connecting P1 = (x1, y1) with
P2 = (x2, y2) (for simplicity assume the two points are distinct). The line hits the
curve in a third point (which may be ‘the point at infinity’, requiring some care);
the reflection of that point about the x-axis is considered the sum of the two points.
Consider quartics of the form y2 = x3 + ax2 + bx + c; for what choices of coefficients
will there be an analogous definition of adding two rational points and obtaining a
rational point? Or any definition for adding two rational points?

References:
– L. J. Mordell, On the rational solutions of the indeterminate equations of the
third and fourth degrees, Proc Cam. Phil. Soc. 21 (1922).

– J. H. Silverman, The arithmetic of elliptic curves, Graduate Texts in Mathemat-
ics, Vol. 106, Springer-Verlag, New York, 1986.

• 1925: The Schrödinger equation. One of the most important intersections between
mathematics and physics is differential equations. Probably the most famous differ-

ential equation of all is Newton’s second law:
−→
F = m−→a (here F is the force, m is the

mass, and a is the acceleration, which is the second derivative of position). There are
many equivalent formulations, such as the Euler-Lagrange equations and Hamilton’s
equations. The analogue for quantum systems is the Schrödinger equation, formu-

lated in 1925: i~ ∂
∂t

Ψ = ĤΨ, where i =
√
−1, ~ = h/2π (with h Planck’s constant),

Ĥ is the Hamiltonian operator of the system and Ψ is the wave function we are trying
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to find.

Problem (proposed by Steven J. Miller, Williams College): Solving differ-
ential equations in general is enormously difficult, and is the subject of extensive
research in many disciplines. Inspired by the success of Hilbert’s list of problems at
the start of the twentieth century, in 2000 the Clay Mathematics Institute published
7 Millennium Prize Problems, each carrying a million dollar prize. To date only one
has been solved (though the prize money was declined; see the problem from 2003).
Two of the six open problems involve solving differential equations: the Navier-Stokes
problem and Yang-Mills theory. Read the descriptions from the Clay Mathematics
institute of these (and the other problems) to get a sense of the big open questions.

References:
– Clay Mathematics Institute, Navier-Stokes,
http://www.claymath.org/millennium/Navier-Stokes_Equations/.

– Clay Mathematics Institute, Yang-Mills,
http://www.claymath.org/millennium/Yang-Mills_Theory/.

– E. Schrödinger, An Undulatory Theory of the Mechanics of Atoms and Molecules,
Phys. Rev. 28 (1926), no. 6, 1049–1070.

• 1929: Gödel’s Incompleteness Theorems: Suppose that this very sentence is false. Of
course, if it is false, it is true, and likewise, if it is true it is false. This apparent self-
contradiction does not allow for a single truth value, true or false, to be attributed to
the statement. This is known as the Liar’s Paradox and relates to Austrian logician
Kurt Gödel’s proof of the Incompleteness Theorems in 1931, extending his earlier
results on the Completeness Theorem in 1929. Around the turn of the 20th century,
the mathematician David Hilbert initiated a program that proposed to show that all
theory in mathematics can be derived by a set of consistent axioms. The program
was pursued in earnest by two theorists, Bertrand Russell and Alfred North White-
head, who in their three volume work Principia Mathematica set out to show that
the foundations of mathematics are consistent and complete. This was an ambitious
task. For instance, using methods in formal logic, it took over 300 pages in their
prolific work to establish the consistency that 1 + 1 = 2. However, Gödel’s proof of
the Incompleteness Theorems brought light to the true complexity and impossibility
of such tasks. The First Incompleteness Theorem states that any adequate axiomati-
zable theory is incomplete. In a similar manner, the Second Incompleteness Theorem
states that the consistency of a system is not provable in a system that is formed by
any consistent axiomatizable theory. Together, the First and Second Theorems show
that Hilbert’s program is not attainable. In other words, all truths about an ax-
iomatizable theory cannot necessarily be derived by its axioms. Ultimately, Gödel’s
contribution influenced other theories and revolutionized the way we, as mathemati-
cians, view the foundations of mathematics.
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Problem (proposed by Avery T. Carr, Emporia State University and
Steven J. Miller, Williams College): Consider the standard model of set theory,
ZFC (Zermelo-Fraenkel plus Choice), and let ℵ0 be the cardinality of the natural
numbers. Then ℵ1 equals....

References: K. Gödel, Über die Vollständigkeit des Logikkalküls, Doctoral disserta-
tion, University Of Vienna, 1929.

• 1933: Skewes’ number. For many years, Skewes’ number may have held the record
as the largest finite number to meaningfully appear in a research paper. Let π(x)
denotes the number of primes at most x, and define Li(x) to equal

∫ x

2
dt/ log t. The

Prime Number Theorem says that π(x) is asymptotic to Li(x); however, for small val-
ues of x it was noticed that the approximation Li(x) always overcounted the number
of primes. It was natural to conjecture that this held for all x, but Littlewood showed
in 1914 that this is not the case. In fact, the flip infinitely often as to which is larger.
He tasked one of his students, Skewes, to compute how high one must go to find
π(x) > Li(x). Assuming the Riemann Hypothesis is true, in 1933 Skewes proved that
one can find an x with x < exp(exp(exp(79))); in 1955 he showed that if the Riemann
Hypothesis is false then one can take an x at most exp(exp(exp(exp(7.705)))). While
much progress has been made, the best bounds are on the order of e728, far too large
to be checked by a computer. See Rubinstein and Sarnak’s paper on Chebyshev’s
Bias for generalizations to primes in arithmetic progression.

Problem (proposed by Steven J. Miller, Williams College): Let e↑n(x) mean
exp(exp(· · · exp(exp(x)))) (so we have the n exponentials). Thus Skewes’ 1955 result
is a bound of e↑4(7.705). If we were to write this as 10y, what would y equal? More
generally, if e↑n(x) = 10f(x;n), how fast does f grow with n? With x? This is also
known as iterated towers; for more enormously growing quantities look at Graham’s
number.

References:
– M. Rubinstein and P. Sarnak, Chebyshev’s bias, Experimental Mathematics 3

(1994), no. 3, 173–197.
– S. Skewes, On the difference π(x) − Li(x), Journal of the London Mathematical

Society 8 (1933), 277–283.
– S. Skewes, On the difference π(x)−Li(x) (II), Proceedings of the London Math-

ematical Society 5 (1955), 48–70.
– Wikipedia, Graham’s number :
http://en.wikipedia.org/wiki/Graham%27s_number.

• 1937: Vinogradov’s Theorem. There are many interesting properties of the primes.
Though we normally think of them in a multiplicative way (as every integer can be
written uniquely as a product of prime powers), there are many interesting additive
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questions we can investigate. A particularly interesting conjecture, due to Gold-
bach, is that every ‘sufficiently large’ even number can be written as the sum of two
primes; we believe that ‘sufficiently large’ means at least 4! This is sometimes called
the binary Goldbach problem, and is significantly easier than the ternary Goldbach
problem, which states that every ‘sufficiently large’ odd number is the sum of three
primes; it was believed that 7 suffices. A major advance towards the proof of the
ternary case was made by Vinogradov in 1937, who proved that there is some finite
C such that every odd number exceeding C is the sum of three primes. Sadly, the
value of C produced is much too large for computers to check; until a short time ago
the best C was over 101000! Recently, though, there have been major breakthroughs
in obtaining better bounds on the error terms. The problem was solved in full by
Harald Helfgott in May 2013, who showed C = 7 suffices by obtaining better esti-
mates on the error term which brought C down to a range checkable by computers.
These approaches use the Circle Method, which converts the problem to estimating
integrals of exponential sums of primes. For example, the number of ways an integer
N can be written as the sum of three primes is just

∫ 1

0

(
∑

p≤N, p prime

e2πipx

)3

e−2πiNxdx

with eiθ = cos θ + i sin θ and i =
√
−1. To see this, if we expand the sum and in-

corporate the other exponential factor, we have terms such as e2πi(p1+p2+p3−N)x; the
integral of this from 0 to 1 is 1 if p1 + p2 + p3−N = 0 (as then we are integrating the
constant function 1) and 0 otherwise (as then we are integrating sines and cosines
over full periods). Thus we have reduced the Goldbach problems to determining if
an integral, which is clearly integer valued, is non-zero! Unfortunately, this is a very
difficult integral to analyze, as we need to know how the primes are distributed if
we are to understand the exponential sum. All approaches to date involve highly
technical arguments to understand these sums.

Problem (Proposed by Steven J. Miller, Williams College): Perhaps if we
are willing to allow more primes we can prove a related result more elementarily.
Let’s consider writing integers as sums and differences of primes. Can you prove, in
an elementary manner, whether or not there is a finite integer I such that every odd
number is the sum and difference of at most I primes? For example, if I = 4 we could
consider quantities of the form p1 +p2 +p3 +p4, p1 +p2 +p3−p4, p1 +p2−p3−p4 and
p1−p2−p3−p4. There is a beautiful set of conjectures, called the Hardy-Littlewood
Conjectures, which state that for every even number 2k there is a non-zero constant
C2k (which can be explicitly written down in terms of functions of the factors of
2k) such that, for all x sufficiently large, the number of pairs of primes of the form
(p, p + 2k) with p ≤ x is approximately C2kx/ log2 x. Unwinding the above, it says
that for any even number 2k there are a lot of pairs of primes up to x where the two
primes differ by 2k. Amazingly, it is an open problem whether or not for each even
number 2k there is at least one pair of primes differing by 2k. This shows just how
poor the state of our knowledge is. We believe (and have strong numerical evidence
supporting) that the number of prime pairs differing by 2k tends to infinity; however,
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for a general 2k we cannot even prove the existence of one such pair! The situation
has improved recently, though. In a phenomenal work, in April 2013 Yitang Zhang
proved that there is some 2k ≤ 70, 000, 000 such that infinitely many pairs of primes
differ by that 2k; subsequent work has lowered seventy million to under 10,000. Prove
that if for any even 2k you knew there was at least one pair of primes differing by 2k
then you could take I = 2013 in the original problem. Can you get a better value of
I than 2013?

References:
– Dan Goldston, Zhang’s Theorem on Bounded Gaps Between Primes,
http://www.aimath.org/news/primegaps70m/

– Harald Helfgott, Major arcs for Goldbach’s theorem,
http://arxiv.org/abs/1305.2897.

– Harald Helfgott, The ternary Goldbach conjecture, posted on July 2, 2013,
http://valuevar.wordpress.com/2013/07/02/the-ternary-goldbach-conjecture/.

– PoylMath, Bounded gaps between primes,
http://michaelnielsen.org/polymath1/index.php?title=Bounded_gaps_between_primes.

– Terry Tao, Online reading seminar for Zhangs “bounded gaps between primes”,
http://terrytao.wordpress.com/2013/06/04/online-reading-seminar-for-zhangs-bounded-gaps-between-primes/ .

– I. M. Vinogradov, The Method of Trigonometrical Sums in the Theory of Num-
bers (Russian), Trav. Inst. Math. Stekloff 10, 1937.

– Yitang Zhang, Bounded gaps between primes, Annals of Mathematics
http://annals.math.princeton.edu/wp-content/uploads/YitangZhang.pdf.

• 1941: On August 1, 1941, Isaac Asimov visited John Campbell, editor of Astounding
Science Fiction. The meeting led to the Foundation series, one of the most influential
science-fiction series of all time (the original Foundation Trilogy won the Hugo for
best series ever, beating out Tolkien’s Lord of the Rings). The story is modeled on
Gibbons’ “The Decline and Fall of the Roman Empire”, and tells the story of how the
Galactic Empire will fall and 30,000 years of anarchy will reign before a new empire
arises. Hari Seldon develops the mathematical theory of psycho-history. Inspired by
statistical mechanics, while it is impossible to predict the behavior of individuals with
accuracy, in this story it is possible to mathematically predict the general behavior
of galactic populations with high precision. While it is too late to stop the fall, he
and his colleagues analyze the equations and take steps to minimize its impact, so
that a new empire will rise after just a thousand years.

Asimov’s work is but one of many examples of science-fiction writers whose work
has inspired scientists and engineers. NASA seriously considered adopting the Star
Trek logo; while that never happened, the first shuttle was named Enterprise.

Problem (proposed by Steven J. Miller, Williams College): One of the most
famous quotes in Asimov’s original trilogy is “A circle has no end”; in case you’re
not familiar with the story I won’t spoil it for you by divulging its meaning in the
work. While mathematically a circle has no end (as we can just keep going around
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and around), it does have a perimeter and it does have an area. Consider, then, the
following generalization. Consider the ellipse (x/a)2 + (y/b)2 = 1. (1) Find the area
enclosed by the ellipse. (2) Find the perimeter of the ellipse. Note: the first prob-
lem is often done in multivariable calculus problems. The second problem has been
studied by many, and how difficult it is to solve may surprise you, and beautifully il-
lustrates that for many problems the boundary is harder to deal with than the interior.

References:
– I. Asimov, The Foundation Trilogy,
http://www.angelfire.com/un/corosus/books/Asimov_the_foundation.pdf.

• 1945: As the prime numbers are the building blocks of the integers (since every integer
can be written uniquely as a product of prime powers), it’s not surprising that much
of number theory is concerned with counting these objects and determining their
properties. A very useful approach is through the Riemann zeta function, ζ(s).
For Re(s) > 1 it is defined by the infinite series

∑∞
n=1 1/ns; however, by unique

factorization it also equals
∏

p prime(1 − p−1)−1. This product formula gives a hint
as to why it is so useful, as it allows us to pass from information about the integers
(which are well understood) to information about the primes. It turns out this
function can be continued and defined for all s, and the location of its zeros are
intimately connected to questions concerning the distribution of the primes. The
famous Riemann hypothesis says that all the complex zeroes of ζ(s) lies on the line
Re(s) = 1

2
; this is one of the biggest open problems in mathematics (see the 2nd and

5th references).
It is frequently easier to prove results for function fields instead of number fields,

and the Riemann hypothesis is no exception. Let F be a field (not necessarily a
finite field). A function field in one variable over F is a field K, containing F and
at least one element x, transcendental over F , such that K/F (x) is a finite algebraic
extension. Such a field is said to have transcendence degree one over F . A function
field in one variable over a finite constant field is called a global function field.

Our next goal is to define the zeta function of a global function field K/Fq, where
Fq is a finite field with q elements. A prime in K is, by definition, a discrete valuation
ring R with maximal ideal P such that F ⊂ R and the quotient field of R equal to
K. The group of divisors of K, DK , is by definition the free abelian group generated
by the primes. For A ∈ DK we define the norm of A, NA, to be qdeg(A). The zeta
function of K, ζK(s), is defined by

ζK(s) =
∑

A≥0

1

NAs
=

∏

P primes in K

(
1 − 1

NP s

)−1

, Re(s) > 1.

The most amazing thing is that the analogous statement of the Riemann Hypothesis
over global function fields is a theorem, first proved by Weil in the 1940s.

The Riemann Hypothesis for Function Fields: Let K be a global function field
whose constant field F has q elements. All the roots of ζK(s) lie on the line Re(s) =
1/2.
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The theorem above was first conjectured for hyper–elliptic function fields by Artin
in his thesis. The simplest case, i.e., for elliptic curves, was proven by Hasse. The first
proof of the general result was published by Weil in 1948. Weil presented two, rather
difficult, proofs of this theorem. The first used the geometry of algebraic surfaces
and the theory of correspondences. The second used the theory of abelian varieties
(see references 6 and 7). The whole project required revisions in the foundations of
algebraic geometry since he needed these theories to be valid over arbitrary fields not
just algebraically closed fields in characteristic zero. In the early seventies, a more
elementary proof appeared due, in a special case to Stepanov, and in the general case
to Bombieri (building on Stepanov’s ideas).

Problem (proposed by Julio Andrade, IHÉS:) Let K be a global junction field
in one variable with a finite

constant field Fq with q elements. Suppose that the genus of K is g. Prove that
there is a polynomial LK(u) ∈ Z[u] of degree 2g such that

ζK(s) =
LK(q−s)

(1 − q−s)(1 − q1−s)
,

where the genus g is a natural number which is an invariant of the function field K.
(Hint: You will need to use the Riemann–Roch theorem. For more details about the
genus of a function field and the Riemann–Roch theorem see references 4.)

References:
– E. Artin, Quadratische Körper in Geibiet der Höheren Kongruzzen I and II,

Math. Z. 19 (1924), 153–296.
– E. Bombieri, Riemann Hypothesis in The Millenium Prize Problems, edited by:

J. Carlson, A. Jaffe and A. Wiles (AMS, 2006; CLAY 2000).
– E. Bombieri, Counting Points on Curves over Finite Fields, Séminaire: Bour-

baki, No. 430, 1972/3.
– C. Moreno, Algebraic Curves over Finite Fields, Cambridge University Press,

Cambridge (1993).
– P. Sarnak, Problems of the Millennium: The Riemann Hypothesis (2004), Clay

Mathematics Institute.
– A. Weil, Sur les Courbes Algébriques et les Variétés qui s’en Déduisent, Her-

mann, Paris, 1948.
– A. Weil, Variétés Abéliennes et Courbes Algébriques, Hermann, Paris, 1948.

• 1949: 100th Anniversary of Kummer proving Fermat’s Last Theorem for regular
primes. Fermat’s Last Theorem says that, for a fixed integer n ≥ 3, there cannot be
x, y, z ∈ Z such that xyz 6= 0 and xn + yn = zn. As a solution for some n produces
solutions for all multiples of n, the proof reduces to the cases where n is 4 or an odd
prime. 1949 marks the centennial of Kummer’s proof of Fermat’s Last Theorem for
regular primes. In brief, if p ≥ 3 is prime and ζp is a primitive pth root of unity, then
the class number of the pth cyclotomic field Q(ζp) is a positive integer that measures
the extent to which unique prime factorization fails in Z[ζp]. We say p is regular if and
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only if it does not divide the class number of Q(ζp). Essentially, Kummer’s idea was
to use Lamé’s factorization zp − yp =

∏p
j=1(z − ζjpy) and study the ideals generated

by the z − ζjpy in Z[ζp]. In developing the theory of the p-adic numbers, Kummer
also found an elementary characterization of regular primes in terms of the Bernoulli
numbers Bn. Recall that B0 = 1, and that for all positive n ∈ Z, 0 =

∑n
k=0

(
n+1
k

)
Bk.

Using combinatorics, one can prove that Bn = 0 for all odd n ≥ 3. The first few
Bernoulli numbers of even index n ≥ 2 are: B2 = +1/6, B4 = −1/30, B6 = +1/42,
B8 = −1/30, B10 = +5/66, B12 = −691/2730, . . ..

Kummer proved that an odd prime p is regular if and only if p does not divide the
numerator of Bn, in lowest terms, for all even n ≤ p− 3. Little is known about the
Bernoulli numerators; by contrast, a theorem by Clausen-von Staudt says that

B2n +
∑

p prime
(p−1)|2n

1

p
∈ Z,

so the denominator of B2n in lowest terms divides
∏

(p−1)|2n p. Unfortunately, we do
not even know whether infinitely many regular primes exist, though we believe in the
limit e−1/2 percent of all primes are regular and we know there are infinitely many
irregular primes.

Problem (proposed by Minh-Tam Trinh, Princeton University): The fol-
lowing is called Kummer’s Congruence: If p is prime and n1, n2 are positive even
integers such that n1 ≡ n2 6≡ 0 mod p− 1, then Bn1

/n1 ≡ Bn2
/n2 mod p, where a/b

modulo p is the solution x to the congruence bx ≡ a mod p, when the latter exists.
Use Kummer’s Criterion and the Clausen-von Staudt’s Theorem to show that if n is
a product of irregular primes and 2n < B2n, then there is an irregular prime p ∤ n.
(Note: with more work, one can build on this and prove there are infinitely many
irregular primes.)

• 1953: The Metropolis Algorithm. While it is wonderful to solve problems exactly,
with explicit parameter dependence, for many real world problems this is not even
remotely feasible. This year honors the Metropolis Algorithm. It and various gener-
alizations have led to the explosive growth of Markov chain Monte Carlo (MCMC)
algorithms, which have revolutionized subjects from statistical physics to Bayesian
inference to theoretical computer science to financial mathematics by giving us the
ability to simulate in real time.

A Markov chain is a random sequence of states, each of whose probabilities depend
iteratively on the previous state. Metropolis et al. realized in 1953 that Markov chains
could be run on then-new electronic computers to converge to, and hence sample
from, a probability distribution of interest. Consider the special case where the set
of possible states is equal to the integers, Z. Let {πi}i∈Z be any positive probability
distribution on S, i.e., a collection of real numbers πi > 0 with

∑
i∈Z πi = 1. Let

{pi,j}i,j∈Z be Markov chain transition probabilities, so pi,j equals the probability, given
that the state at time n equals i, that the state at time n+ 1 equals j. The question
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is, can we find simple transition probabilities pi,j, such that the chain “converges to
π”, i.e., for each i ∈ Z, the probability that the state at time n is equal to i converges,
as n → ∞, to πi.

The answer is yes! For i ∈ Z, let pi,i+1 = 1
2

min[1, πi+1/πi], pi,i−1 = 1
2

min[1, πi−1/πi],
and pi,i = 1−pi,i+1−pi,i−1, with pi,j = 0 otherwise. Then this Markov chain is easily
run on a computer (for an animated version see for example www.probability.ca/met),
and has good convergence properties as the following problem shows.

Problem (proposed by Jeffrey Rosenthal, University of Toronto): Show
that the above Markov chain:
(a) is irreducible, i.e., for any i, j ∈ Z there are m ∈ N and k1, . . . , km ∈ Z such that
pi,k1 > 0 and pkm,j > 0 and pkn,kn+1

> 0 for 1 ≤ n ≤ m− 1.
(b) is aperiodic, in particular there is at least one i ∈ Z with pi,i > 0.
(c) is reversible, i.e., πipi,j = πjpj,i for all i, j ∈ Z.
(d) leaves π stationary, i.e.,

∑
i∈Z πipi,j = πj for all j ∈ Z. [Hint: Use part (c).]

(e) converges to π as described above. [Hint: This follows from parts (a), (b), and
(d) by the standard Markov chain convergence theorem, see e.g. Section 1.8 of Norris
(1998).]

References:
– N. Metropolis, A. Rosenbluth, M. Rosenbluth, A. Teller and E. Teller, Equations
of state calculations by fast computing machines, J. Chem. Phys. 21 (1953),
1087–1091.

– J. R. Norris, Markov Chains, Cambridge University Press, 1998. Available at:
http://www.statslab.cam.ac.uk/∼james/Markov/

• 1957: The Ross Program. The Ross Mathematics Program is an intensive residential
summer program for high school students who are talented and well trained in math.
In 1957 Arnold Ross founded his program at the University of Notre Dame and moved
it to the Ohio State University in 1964. Dr. Ross stepped down in 2000, but the
Ross Program continues to run, involving about 40 first-year students every sum-
mer. The central goal of this Program is to inspire students to learn how to think
like mathematicians, and to write convincing, logical proofs of their mathematical
observations. Dr. Ross chose number theory as the vehicle for this learning process.
Starting from axioms for Z (the ring of integers), Ross participants analyze topics
like modular arithmetic, Euclid’s algorithm, quadratic reciprocity, and existence of
primitive roots. They also consider analogues of those ideas in other contexts, like
Gaussian integers, and the ring of polynomials over Z/pZ. Further information about
the Ross Program is posted at http://www.math.osu.edu/ross. The problems be-
low are taken from some of the Ross problem sets.

Problems (sent by Dan Shapiro, The Ohio State University): We write
gcd(a, b) for the “greatest common divisor” of integers a and b. The sequence 2n − 1
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enjoys a curious property: gcd(2m − 1, 2n − 1) = 2gcd(m,n) − 1. Let’s give that prop-
erty a name: A sequence {An}n≥1 of positive integers has the GCD-property if:
gcd(Am, An) = Agcd(m,n) for every pair of indices m,n.

Problem 0. Show that the following sequences have the GCD-property.
(1) For r ∈ Z+, the constant sequence Cn = r, and linear sequence Ln = rn.
(2) For k, c ∈ Z+, let

E(k, c)n =

{
c if n is a multiple of k,

1 otherwise.

(3) If a > b, let Rn = an − bn.
(4) Fibonacci numbers Fn.

For a sequence {bn}n≥1 of positive integers, define Bn =
∏

d|n

bd. For instance,

B2 = b1b2, B4 = b1b2b4, and B6 = b1b2b3b6. If gcd(bm, bn) = 1 whenever m 6= n,
check that {Bn} has the GCD-property.

Problem 1.
(1) Which {bn} produce sequences {Bn} with the GCD-property?
(2) Does every {Bn} with the GCD-property arise from some (unique) integer se-

quence {bn}?

This is related to the factorization xn − 1 =
∏
d|n

Φd(x). Those factors Φd(x) are

polynomials with integer coefficients (the “cyclotomic polynomials”). Consequently,
if Bn = 2n − 1 then bd = Φd(2) is a sequence of integers.

If Ln = n what is the corresponding sequence ℓn ?
The Fibonacci sequence Fn: 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, . . . arises

from fn: 1, 1, 2, 3, 5, 4, 13, 7, 17, 11, 89, 6, 233, . . . . Why is every term fn an
integer?

References: M. Dziemiańczuk and Wies law Bajguz, On GCD-morphic sequences,
http://arxiv.org/abs/0802.1303.

• 1961: When starting out in math classes, we get used to homework assignments
where not only are we are asked to find exact answers, but we can. For example,
if we’re given a quadratic ax2 + bx + c we can solve explicitly for the two roots as
functions of the coefficients a, b, c by using the quadratic formula. We find the roots
are (−b±

√
b2 − 4ac)/2a. A very nice feature is that if we vary the coefficients a bit,

the roots continuously change.
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You can’t be blamed if you are thus led to believe that all math is like this, namely
that if we have enough accuracy in our inputs we can approximate the output arbi-
trarily well. Beginning just before the start of the twentieth century, with the work
of Poincaré on the orbits of planets, this belief began to be tested. A milestone
in our understanding of how wild behavior can be is the work of Lorenz. One of
his seminal papers in the subject is Deterministic Nonperiodic Flow, published in
1963 (but based on work started in 1961), which introduces a property of dynamical
systems now known as sensitive dependence on initial conditions. This refers to a
system where minute changes in the initial conditions affect drastically the behavior
of the system over time. To put it simply, very small changes in the starting con-
figuration very quickly lead to wildly different behavior. He was considering a very
simple deterministic system in an attempt to understand weather. He wanted to
re-run some calculations from a certain point, and when he inputed the output from
a previous run was shocked to see the system behave very differently very quickly.
What happened was the printer only displayed three digits of the output, while the
computer code worked with six. Many people are familiar with such behavior under
the phrase ‘Butterfly Effect’, which insinuates that the flap of a butterfly’s wings may
cause (or prevent) the onset of a tornado hundreds of miles away. The application of
this theory to meteorology shows that long-term weather or climate forecasting may
be impossible if can be affected by seemingly trivial changes to wind speed and other
factors, as we will never know all the parameter values with perfect accuracy.

Problem (proposed by Craig Corsi and Steven J. Miller, Williams Col-
lege): Imagine playing billiards, where the billiards table is the unit square in R2,
and the ball is a point. You place the ball on the lower-left edge of the table (that is,
the point (0, 1)) and strike the ball at some angle θ with the x-axis with θ ∈ (0, π/2).
Assume that there is no friction, so that after striking the ball, the ball will keep
bouncing off the walls of the table forever. For instance, if θ = π/1, then the ball
will bounce back and forth forever between the lower left and upper right corners of
the table.

Let t be time in seconds, and let x̂θ(t) be the function representing the position
of the billiards ball in the plane at time t if it was struck at angle θ with the x-
axis. (a) For any N ∈ N, show that if θ 6= φ, then there exists a t > N such that
|x̂θ(t) − x̂φ(t)| > 1/2. (b) For any θ ∈ (0, π/2), show that either (i) the number
of points on the edge of the billiards table hit by the ball is finite, or (ii) any line
segment contained in the boundary of the unit square, however small, is hit infinitely
often by the ball. (c) Classify all angles for which (i) is satisfied.

References:
– http://eaps4.mit.edu/research/Lorenz/Deterministic_63.pdf

– http://eaps4.mit.edu/research/Lorenz/How_Much_Better_Can_Weather_Prediction_1969.pdf

• 1965: Fast Fourier Transform: 1965: It is hard to understate just how important it
is to do something fast and with minimal effort. The following example does a great
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job. Imagine you are a young Babylonian math scholar. Your education would be
very different from a child of today, due to the Babylonian love of 60. Yes, instead
of working base 10 they worked base 60 (and before you laugh too much at them,
think of how many days there are (approximately) in a year, how many degrees we
have in a circle, how many hours in a day, ...). To learn one’s multiplication table
requires memorizing 60 · 60 = 3600 values (instead of the 10 · 10 = 100 that we
must do). Of course, one can be a bit more clever and notice that x · y = y · x,
which almost cuts our work in half (1830 versus 55). As stone tablets are expensive
and heavy to carry, one clearly doesn’t want to memorize this many multiplications.
The Babylonians, fortunately, had a very clever idea. They noticed that x · y =
((x + y)2 − x2 − y2) /2; thus if they could just memorize squaring (or bring tables of
120 or so squares), they could compute any multiplication by squaring, subtraction
and division by two (the last two operations are significantly easier). This simple idea
is incredibly powerful, and is the basis of the look-up table (if you can pre-compute
useful expressions and then combine them intelligently later, there is the potential
for enormous computational savings).

There are many milestones in our efforts to find better and faster ways to solve
problems. In 1965, a paper written by mathematicians James William Cooley and
John Tukey described a more efficient way of calculating Discrete Fourier Transforms,
which decompose a signal into its component frequencies. The Fast Fourier Trans-
form (FFT) was based on a technique developed by Gauss, in 1805, to calculate the
coefficients in a trigonometric expansion related to a the trajectories of two asteroids.
Cooley and Tukey’s new approach to Gauss’ techniques, the Fast Fourier Transform
Algorithm, had a major impact on the science and engineering community, partic-
ularly in the field of digital signal processing. The Fast Fourier Transform allowed
a variety of problems, in mathematics and science, to be solved more efficiently and
quickly. There are currently a wide range of Fast Fourier Transform variations, most
based on Cooley and Tukey’s algorithm, that can be used to solve problems in many
areas of both pure and applied mathematics.

Problem (Proposed by Steven J. Miller, Williams College, and Bree
Yeates, Emporia State University): Frequently we find a problem that appears
to require a certain approach to be solved, but in fact can be done in significantly
less time if we adopt a better vantage. One of my favorites is the Strassen algorithm
from 1969. Assume when multiplying matrices that multiplication is expensive and
addition is cheap (this is a reasonable assumption, as for large numbers it is signifi-
cantly faster to add than multiply). If A and B are n× n matrices then there are n2

entries in their product. Each entry requires n multiplications and n − 1 additions.
Thus to find AB it seems like we need n3 multiplications. It turns out that, at the
cost of changing which multiplications and additions we do, we can do this in less.
(1) Show that we can group terms and compute the 4 entries of the product of two
2 × 2 matrices with just 7 multiplications (and 18 additions). (2) You might think
saving one multiplication isn’t a big deal. While that is correct for small matrices,
the saving scales, and we can do the product of two n × n matrices with on the
order of nlog2 7 multiplications (the savings from 8 to 7 multiplications becomes the
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exponent log2 8, which is 3, being replaced by log2 7, which is about 2.807). While
there has been constant improvement since, with the exponent now down to about
2.3727, the original implementation already leads to enormous computational savings.

References:
– C. Burrus, Fast Fourier Transforms, Retrieved from the Connexions, (November

18, 2012). http://cnx.org/content/col10550/1.22/
– V. Strassen, Gaussian Elimination is not Optimal, Numer. Math. 13 (1969),

354–356.
– J. M. Pollard, The Fast Fourier Transform in a Finite Field, Mathematics of

Computation 25 (1971), 365–374.

• 1969: Erdős Numbers: Mathematicians like to have fun with their profession. The
most prolific mathematical researcher of the 20th century was Paul Erdős (1913–
1996). He wrote about 1500 articles and had about 500 different coauthors. People
started to think of Paul as the center of the research collaboration world. In 1969
Casper Goffman, an analyst with about 100 papers himself, wrote a whimsical article
in which he described a notion that was making the rounds, a way to measure one’s
distance from Erdős in terms of mathematical collaborations. Paul Erdős has Erdős
number 0. A person who has published a joint paper with Erdős has Erdős number 1.
A person who has published a paper with a person with Erdős number 1 (but does
not qualify for a smaller number) has Erdős number 2, and so on. Everyone wanted to
have a small Erdős number. As of today, nearly 10,000 people have Erdős number 2,
and nearly every practicing mathematician has Erdős number 6 or less.

From a mathematical point of view, we can view Erdős numbers simply as distances
in the “collaboration graph.” The vertices of this graph are researchers, and an edge
is present between every pair of researchers who have published together. (Actually
there are two such graphs, depending on whether an edge appears only for two-
authored papers, or whether all the authors of a multi-authored paper are considered
to be adjacent to each other.) A tool on MathSciNet allows people to calculate
these distances. See the Erdős Number Project website for a wealth of information
about Erdős numbers, the collaboration graph, and related topics. The collaboration
graph is just one example of a large social network; other examples include Facebook
and graphs recording telephone calls. Research into the structure and dynamics of
such networks has reached a feverish pace in the past several years. Much of that
work deals with how graphs can evolve randomly, a topic pioneered by Erdős himself
decades ago.

Near the end of his life, Paul Erdős expressed the opinion that this fuss over Erdős
number numbers was all a bit silly. But even he had gotten into the game, having
written a short paper in 1972 in which he proved that the (more restrictive, two-
author version of the) collaboration graph could not be drawn in the plane without
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its edges crossing.

Problem (Proposed by Jerrold Grossman, Oakland University): Here is a
problem about a social network. Suppose that in a group of at least three people,
it happens that every pair of them have precisely one common friend. Prove that
there is always a person who is everybody’s friend, and describe the structure of this
“friendship graph.” Paul Erdős solved this problem in a paper with Alfréd Rény and
Vera Sós in 1966.

References:
– P. Erdős, On the fundamental problem of mathematics, Amer. Math. Monthly
79 (1972), 149–150. http://www.math.ucla.edu/~mwilliams/erdos.pdf.

– P. Erdős and A. Rényi, On the evolution of random graphs, Magyar Tud. Akad.
Mat. Kutató Int. Közl. 5 (1960), 17–61.
http://www.renyi.hu/~p_erdos/1961-15.pdf.

– C. Goffman, And what is your Erdős number?, American Mathematical Monthly
76 (1969), no. 7, 791.

– J. W. Grossman, The Erdős Number Project , www.oakland.edu/enp.
– M. Newman, A.-L. Barabási, and D. J. Watts, eds., The Structure and Dynamics
of Networks , Princeton University Press (2006).

• 1973: 100th Anniversary that e is transcendental. If there exists a polynomial p(x) of
finite degree and integer coefficients such that p(α) = 0 then we say α is an algebraic
number; if there is no such polynomial then α is transcendental. Thus all rational
numbers are algebraic, as are numbers such as

√
2, i =

√
−1, and more interestingly√

5 +
√

3 +
√

1 +
√

2. Using a diagonalization argument, Cantor proved that almost
all real numbers are transcendental, although his method could not give a specific
example.

It’s hard to prove specific numbers are transcendental, but Charles Hermite es-
tablished the transcendence of e in 1873, and Ferdinand von Lindemann proved the
transcendence of π in 1882.

Problem (Proposed by Steven J. Miller): Find a 1-to-1, increasing function
f : [0, 1] → R such that f(x) is transcendental for all x.

References: There are many proofs of the transcendence of e online; see for example
http://www.math.brown.edu/~res/M154/e.pdf.

• 1977: RSA: U.S. Patent 4,405,829 was given to Ronald Rivest, Adi Shamir and
Leonard Adleman for RSA (Clifford Cocks developed something similar a few years
earlier while working for Britain’s Government Communications Headquarters, where
his work was understandably classified). RSA was a major breakthrough in cryptog-
raphy. Using prime numbers, it allows two people who have never met to securely

17

http://www.math.ucla.edu/~mwilliams/erdos.pdf
http://www.renyi.hu/~p_erdos/1961-15.pdf
www.oakland.edu/enp
http://www.math.brown.edu/~res/M154/e.pdf


sign and exchange messages. Both aspects are important, as it is essential that one
be able to verify the identity of the sender as well as protect the information to be
sent. One of the key steps of RSA is to compute high exponents of a message (which
can be assumed to be a number) modulo a large number quickly. Without algorithms
such as RSA, modern e-commerce would be impossible; the entire point is that we
can buy something from Amazon.com or pay our bills online without going in person
to the vendors and proving who we are.

One of the key inputs in RSA is Fermat’s little Theorem (FℓT), which says that if
a is relatively prime to p and p is prime then ap−1 ≡ 1 mod p. Note that FℓT can be
turned into a primality test: if an−1 6≡ 1 mod n then n is composite; unfortunately
the converse is not true and there are integers n such that an−1 ≡ 1 mod n for all
a relatively prime to n. Such numbers are called Carmichael numbers (see the 2010
entry), and cause minor headaches in the field. RSA is based on the assumption that
while it is easy to multiply two numbers, it is hard to factor a product unless you
have extra information (such as, for example, one of the factors!). If a method for fast
factorization were to be found, then RSA would cease being a secure method. Shor
found such an algorithm for fast factorization, but it requires a quantum computer.
So far, the largest number such computers can successfully factor is 21, though the
potential exists for them to do so much more. Other cryptographic systems, such
as lattice based methods, are believed to be more secure against quantum computer
attacks.

Problem (Proposed by Steven J. Miller, Williams College): Rivest, Shamir
and Adleman formed RSA Laboratories to market and further develop applications
of RSA. The company put forth factoring challenges in 1991 to encourage research
into cryptographic methods, and to get a sense of how large a number must be so
that, with existing technology, it is impractical to factor. These challenge numbers
are all the product of two primes, and thus once one factor is found the number is
completely factored. Cash prizes were offered, ranging from $1,000 t0 $200,000. The
challenge was officially closed in 2007, though many people continue to try to factor
them. The smallest RSA challenge number is RSA-100, with 100 decimal digits. It
is

15226050279225333605356183781326374297180681149613

80688657908494580122963258952897654000350692006139.

While it was successfully factored in 1991 (less than a month after the challenge
began), don’t let that stop you: find the factors yourself! The full list is available
online (see either RSA laboratories or Wikipedia); for the unfactored numbers, no
factorization is known (when generated, the computers were not connected to the
network, and after finding the products they were destroyed!).

References:
– R. Rivest, A. Shamir and L. Adleman, RSA patent (1977).
http://www.google.com/patents/US4405829.

– RSA Laboratories, The RSA Challenge Numbers,
http://www.emc.com/emc-plus/rsa-labs/historical/the-rsa-challenge-numbers.htm.
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– Wikipedia, RSA Factoring Challenge,
http://en.wikipedia.org/wiki/RSA_Factoring_Challenge.

– Wikipedia, Shor’s Algorithm,
http://en.wikipedia.org/wiki/Shor’s_algorithm.

• 1981: The Mason-Stothers Theorem: A child learns of the nonnegative numbers at an
early age. Polynomials, on the other hand, demand a little more sophistication and
are reserved in a U.S. child’s education for middle school. Those fortunate enough
to take an undergraduate abstract algebra class realize that the chasm between the
integers and polynomials is not so vast. One learns there are similarities: both
integers and polynomials form rings; and that there are analogies: the integers have
prime factors as their basic building blocks, whereas polynomials (over C) have linear
factors. Given this, it is not that surprising that we have the following definitions.

– The Radical of an Integer: For n ∈ Z+ suppose n = p1
e1 · · · pkek where the pi’s

are distinct primes and the ei’s are positive integers. We the define the radical
of n to be r(n) = p1 · · · pk with r(1) := 1. In other words, r(n) is the greatest
square-free factor of n or, more simply, the product of distinct prime factors of
n. As an example, r(100) = r(22 · 52) = 2 · 5 = 10.

– The Radical of a Polynomial: Let p(t) be a polynomial whose coefficients belong
to an algebraically closed field of characteristic 0. We put n0(p(t)) = the number
of distinct zeros of p(t). (In a ring R, if there exists a n ∈ Z+ such that na = 0
for all a ∈ R, then the least such positive integer is called the characteristic of
the ring. Algebraically closed just means we are in the right place for all the
roots of the polynomial to exist; think of polynomials with coefficients in C -
they can be written as a product of linear factors if we allow roots from C).

With these definitions we state the Mason-Stothers Theorem: Let a(t), b(t), and
c(t) be polynomials whose coefficients belong to an algebraically closed field of charac-
teristic 0. Suppose a(t), b(t), and c(t) are relatively prime and that a(t) + b(t) = c(t).
Then max deg{a(t), b(t), c(t)} ≤ n0(a(t) · b(t) · c(t)) − 1.

This beautiful theorem is easily understood, and it’s proof requires just a little
knowledge of abstract algebra. What is intriguing is that the analogous statement
for the integers is still unproven (though we note that Shinichi Mochizuki of Kyoto
University has offered a proof in the form of a series of papers on his website; a
review is in progress). This is an important open problem in Number Theory, and
is known as the abc Conjecture. It was originally posed in 1985 by David Masser
(considering an integer analog of Mason’s Theorem) and in 1988 by Joseph Oesterlé
(considering a conjecture of Szpiro regarding elliptic curves). Explicitly, the abc Con-
jecture (Masser’s Version) says that for a nontrivial triple of integers (a, b, c) such that
a + b = c and gcd(a, b, c) = 1, then for every ǫ > 0 there exists a universal constant
µ(ǫ) such that max{|a|, |b|, |c|} ≤ µ(ǫ)[r(abc)]1+ǫ. Hence, the remarkable fact that
we have a problem for polynomials that is much easier to establish than the analo-
gous statement for integers. This is not the only one. We offer the following problem.
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Problem (proposed by Jeffery Paul Wheeler, University of Pittsburgh)
Use the Mason-Strother’s Theorem to establish a polynomial Fermat’s Last Theorem:
Let x(t), y(t), and z(t) be relatively prime polynomials whose coefficients belong to
an algebraically closed field of characteristic 0 such that at least one of them has
degree > 0. Then x(t)n + y(t)n = z(t)n has no solution for n ≥ 3.

References:
– R. C. Mason, Diophantine Equations over Function Fields, London Mathemati-

cal Society Lecture Note Series 96, Cambridge, England, Cambridge University
Press, 1984.

– D. W. Masser, Open problems. In Chen, W. W. L. Proceedings of the Symposium
on Analytic Number Theory. London: Imperial College, 1985.

– S. Mochizuki, http://www.kurims.kyoto-u.ac.jp/∼motizuki/top-english.html.
– J. Oesterlé, Nouvelles approches du ≪théoréme≫ de Fermat, Séminaire Bour-

baki exp. 694 (1988), 165–186.
– W. W. Stothers, Polynomial identities and hauptmoduln, Quarterly J. Math.

Oxford 32 (1981), no. 2, 349–370.

• 1985: The Jones Polynomial: Knot theory is a branch of topology that primarily deals
with embeddings of circles in 3-dimensional space. The major motivating problem
of knot theory is this: How can we tell if two knots are really the same? In other
words, given two knots is it possible to manipulate one so that it becomes the other?
Mathematicians try to solve this problem by finding invariants of knots, mappings
from knots to some other type of object defined in such a way that equivalent knots
have the same image. Thus knots which have different images under a particular
invariant must be different knots.

Finding and studying knot invariants is a thriving area of research that can be
traced back to Vaughan Jones’ discovery of the Jones Polynomial. The Jones Poly-
nomial is a Laurent polynomial in a variable t assigned to a knot in R3. It exposed
links between knot theory and physics that revitalized interest in the subject. In ad-
dition, Jones’ discovery has led to the discovery of new polynomial invariants (such
as the HOMFLY polynomial) and new methods for calculating polynomial invariants
(such as the Kauffman bracket).

Jones’ original method for calculating his polynomial is complicated, but easier
methods are available. A good example can be found in chapter 6 of Colin Adams’
The Knot Book (for a method using braids, see http://arxiv.org/abs/math/0505064).

Problem (proposed by Chad Wiley, Emporia State University): The Jones
polynomial of the unknot is the constant polynomial 1. Are there any nontrivial
knots which also have this property? Surprisingly, despite all the research that has
been done on the Jones polynomial, we still don’t know the answer to this question.
A more accessible problem would be to show, perhaps using Rolfsen’s tables, that a
nontrivial knot with Jones polynomial 1 must have at least 11 crossings. (In fact,
it can be shown that such a knot would need to have at least 18 crossings; see the
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paper by Dasbach and Hougardy for details.)

References:
– C. Adams, The Knot Book, American Mathematical Society, 2004.
– O. T. Dasbach and S. Hougardy, Does the Jones Polynomial detect unknotted-
ness?, Experimental Mathematics 6 (1997), 51–56.
http://www.or.uni-bonn.de/~hougardy/paper/does_the.pdf.

– V. F. R. Jones, A polynomial invariant for knots via von Neumann algebra, Bull.
Amer. Math. Soc. (N.S.) 12 (1985), 103–111.

• 1989: PROMYS: Twenty-five years ago, David Fried and Glenn Stevens (graduates
of Ross’ Secondary Science Training Program; see the problem from 1957) co-founded
PROMYS. Since then over 1000 students have gone through the program. Currently
about 80 high school students each year come to Boston University for six weeks of
challenging discovery, mentored by top graduate students and faculty drawn from all
over the world. Programs like this play a key role in both exciting young students
into mathematics, as well as teaching older students how to mentor and design classes
and research programs. In addition to standard classes and challenging problems,
students have the opportunity to participate in research, and there are numerous
advanced lectures on topics ranging from “The Schoenflies Conjecture and Morse
Theory” to “Statistical Inference and Modeling the Unseen: How Bayesian statistics
powers Google’s voice search.”

Problem (proposed by Steven J. Miller, Williams College): I’ve had the for-
tune of speaking at PROMYS several times. In 2009 I gave a talk on heuristics and
ballpark estimates. It’s very important to be able to approximate answers. One item
I discussed was a standard heuristic to estimate how many of the Fermat numbers
are prime (the nth Fermat number, Fn, is 22n + 1). The Prime Number Theorem
says the number of primes at most x is approximately x/ log x (so for large n the
probability it is prime is about 1/ logn). Use this and some (hopefully!) reasonable
assumptions to show that we expect about 2 or 3 of the Fermat numbers to be prime.
It’s an open question whether or not there are infinitely many of these (we believe
there are exactly five, corresponding to n ∈ {0, 1, 2, 3, 4}). Fermat primes occur in
many different places in mathematics. A regular n-gon is constructable by straight
edge and compass if and only if n = 2mp1 · · · pk, where m is a non-negative integer
and the pi’s are Fermat primes (thus a regular 17-gon is constructable, but a 7-gon
is not). Another occurrence is that there is a proof of the infinitude of the primes by
considering the sequence of Fermat primes – find that proof! (This is one of the six
proofs from Chapter 1 of THE BOOK, see the problem from 1913).

References:
– M. Aigner and G. M. Ziegler, Proofs from THE BOOK, Springer-Verlag, Berlin,

1998.
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• 1993: Lagrange’s well-known “Four Squares Theorem” shows that every positive in-
teger can be expressed as a sum of four squares of integers. That is, for any positive
integer k, there is a representation of k in the form k = x2

1+x2
2+x2

3+x2
4 = xT Ix, where

x ∈ Z4 and I is the 4×4 identity matrix. More generally, we say that a quadratic form
Q—a degree-two homogeneous polynomial in n independent variables—represents an
integer k if there is a solution x ∈ Zn to the equation k = Q(x). In 1993, John Con-
way and William Schneeberger found a striking criterion, the “Fifteen Theorem,”
that characterizes the integral quadratic forms that represent all positive integers:
Suppose that Q(x) = xTAx is a quadratic form with positive definite, integral matrix
A. Then Q represents all positive integers if and only if it represents the positive
integers up to 15. Thus, verification of representations up to 15 suffices to confirm
verifications for all positive integers—even large ones like 15365639. (While 15365639
is interesting for its own reasons, that’s another story.) Manjul Bhargava gave an
elegant proof of the Fifteen Theorem in 2000. Since then, a number of beautiful
generalizations and analogs have been found: Bhargava obtained a criterion for the
representation of primes. Then, in joint work with Jonathan Hanke, he proved the
“290 Theorem,” an analog of the Fifteen Theorem for quadratic forms that have inte-
ger coefficients but do not have integral matrices (e.g., x2

1+x1x2+x2
2+x2

3+x3x4+x2
4).

Meanwhile, Wieb Bosma and Ben Kane obtained a version of the Fifteen Theorem
for representation of integers by sums of triangular numbers. And Byeong Moon
Kim, Myung-Hwan Kim, and Byeong-Kweon Oh found criteria for representation of
quadratic forms by other quadratic forms(!).

Problem (proposed by Scott Duke Kominers, Harvard University): (1)
Prove that every positive integer can be represented in the form Tp+Tq+Tr, where Tp,
Tq, and Tr are triangular numbers. (2) Prove that every positive integer can be rep-
resented in the form pp̄+3qq̄, where p = p1 +p2

√
−2 (p1, p2 ∈ Z) and q = q1 +q2

√
−2

(q1, q2 ∈ Z) are integers in the quadratic field Q(
√
−2). (3) Can you characterize the

complete set of integers that the quadratic form p2 + q2 + 10r2 does not represent?

References:
– M. Bhargava, On the Conway-Schneeberger fifteen theorem, Quadratic forms

and their applications: Proceedings of the Conference on Quadratic Forms and
Their Applications, July 5–9, 1999, University College Dublin, Contemporary
Mathematics, vol. 272, American Mathematical Society, 2000, pp. 27–37.

– J. H. Conway, Universal quadratic forms and the fifteen theorem, Quadratic
forms and their applications: Proceedings of the Conference on Quadratic Forms
and Their Applications, July 5–9, 1999, University College Dublin, Contempo-
rary Mathematics, vol. 272, American Mathematical Society, 2000, pp. 23–26.

– M.-H. Kim, Recent developments on universal forms, Algebraic and Arithmetic
Theory of Quadratic Forms, Contemporary Mathematics, vol. 344, American
Mathematical Society, 2004, pp. 215–228.
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– S. D. Kominers, On universal binary hermitian forms, INTEGERS 9 (2009),
no. 1, 9–15.

– J. Liouville, Nouveaux théorèmes concernant les nombres triangulaires, Journal
de Mathématiques Pures et Appliquées 8 (1863), 73–84.

– I. Niven, H. S. Zuckerman, and H. L. Montgomery, An Introduction to the Theory
of Numbers, Wiley, 2008.

– K. Ono and K. Soundararajan, Ramanujan’s ternary quadratic form, Inventiones
Mathematicae 130 (1997), no. 3, 415–454.

• 1997: Merton and Scholes Nobel Prize: In addition to applications in the physical
sciences, mathematics plays a key role in many other fields, including economics and
finance. While there isn’t a Nobel prize in economics or in mathematics, the Royal
Swedish Academy of Sciences awards the Bank of Sweden Prize in Economic Sci-
ences in Memory of Alfred Nobel, which is for all practical purposes a Nobel prize in
economics. From their award announcement in 1997: Robert C. Merton and Myron
S. Scholes have, in collaboration with the late Fischer Black, developed a pioneering
formula for the valuation of stock options. Their methodology has paved the way
for economic valuations in many areas. It has also generated new types of financial
instruments and facilitated more efficient risk management in society. When one
considers the trillions of dollars traded annually in the world economy, the impact
and importance of such mathematics is clear. (See the problem from 1962 for another
Nobel prize in economics from very interesting mathematics.)

Problem (proposed by Steven J. Miller, Williams College): One of the
inputs in the Black-Scholes-Merton formula is the cumulative distribution function
of the standard normal. If X is a normal variable with mean µ and variance σ2,
it’s density is fµ,σ(x) = (2π)−1/2 exp(−(x−µ)2/2σ2), and its cumulative distribution
function Fµ,σ(x) =

∫ x

−∞
fµ,σ(t)dt. Unfortunately there is no closed-form expression

for the cumulative distribution function, but one can derive a rapidly converging se-
ries expansion; find it! Note: this function is well-studied in the literature, and is a
simple rescaling of the error function.

References:
– The Royal Swedish Academy of Sciences, Press Release, 14 October 1997.

http://www.nobelprize.org/nobel_prizes/economic-sciences/laureates/1997/press.html.

– Wikipedia, Black-Scholes,
http://en.wikipedia.org/wiki/Black%E2%80%93Scholes.

• 2001: Project Euler was created by Colin Hughes in 2001. It’s an outstanding web-
site, and has provided countless hours of enjoyment to mathematicians, computer
scientists, and other computationally minded people. From the website: Project Eu-
ler is a series of challenging mathematical/computer programming problems that will
require more than just mathematical insights to solve. Although mathematics will help
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you arrive at elegant and efficient methods, the use of a computer and programming
skills will be required to solve most problems. The motivation for starting Project
Euler, and its continuation, is to provide a platform for the inquiring mind to delve
into unfamiliar areas and learn new concepts in a fun and recreational context.

Problem (proposed by Steven J. Miller, Williams College): There are over
400 problems of varying level of difficulty on its website: http://projecteuler.net/.
To solve these problems quickly (typically in a minute or less) requires a deep un-
derstanding of both mathematics (which often has formulas to cut down on the
computations) and computer science (to efficiently code the problem). Form a group
at your school and see how many of these problems you can solve.

• 2005: Today computers are indispensable tools for many researchers, and they are
constantly being tasked with more and more different assignments. Unfortunately,
many of the popular programs are closed-source, which means the actual nuts and
bolts of the algorithms and the implementations are hidden from the user. This makes
it difficult for a researcher to check and verify that the program will do what it claims.
William Stein developed Sage in response to these issues. Starting in 2005 word of
Sage began to spread. From its homepage: Sage is a free open-source mathemat-
ics software system licensed under the GPL. It combines the power of many existing
open-source packages into a common Python-based interface. Mission: Creating a
viable free open source alternative to Magma, Maple, Mathematica and Matlab.

Problem (proposed by Steven J. Miller, Williams College): Go to Sage’s
homepage and see what it can do.

References:
– http://www.sagemath.org/.
– http://sagemath.blogspot.com/2009/12/mathematical-software-and-me-very.html

• 2009: 100th Anniversary of Brouwer’s Fixed Point Theorem. Whether one admires
the elegance of a far-reaching theorem in mathematics or its applications, Luitzen
E.J. Brouwer proved one in 1912 (a specific case in 1909) that captures both tastes.
Let f : Bn → Bn be a continuous function on the unit ball Bn := {x ∈ Rn : ‖x‖ ≤ 1}
in a Euclidean space Rn. Brouwer showed that f always has at least one fixed point.
In other words, there exists an x ∈ Bn such that f(x) = x.

Theorems of this nature can spend decades in the the realm of abstraction, devoid
of visible applications to other fields. However, Brouwer’s Fixed-Point Theorem is
found in areas beyond its classical use in Analysis and Topology. John Forbes Nash
Jr. sealed its place in the field of Game Theory with his groundbreaking 1950 thesis,
“Non-Cooperative Games”. Using Brouwer’s Fixed-Point Theorem, Nash proved the
existence of equalibria in the theory of non-cooperative games. Nash Equilibria, as
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they later became to be known, are equalibrium points in an n person non-cooperative
game in which each of the n players with pure or mixed strategies make the best de-
cision possible taking into account the best decision that can be made by the other
n−1 players. In 1994, Nash received the Nobel Prize in Economics for his epic contri-
bution. This application, among others, highlights the importance of such theorems
in the past, present, and the future to come.

Problem (Proposed by James M. Andrews, University of Memphis, and
Avery T. Carr, Emporia State University): Let n be a natural number and
C(Bn) be the set of continuous functions f such that f : Bn → Bn. By Brouwer’s
Fixed-Point Theorem there exists a set D := {x ∈ Bn : ∃f ∈ C(Bn), f(x) = x}.
Show that D = Bn. What if we only assume that C(Bn) is the set of all continuous
functions that are 1-1 and onto? What if we consider them to be onto only? Fur-
thermore, what if we consider them to be 1-1 only?

References:
– J. Nash’s Thesis, Non-Cooperative Games, PhD Thesis, Princeton University

1950.
http://www.princeton.edu/mudd/news/faq/topics/Non-Cooperative_Games_Nash.pdf.

– Wikipedia, Brouwer’s fixed-point theorem,
http://en.wikipedia.org/wiki/Brouwer_fixed_point_theorem.
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