o MU EPSILO/V
JOURNAL

VOLUME 9 SPRING 1992 NUMBER 6

CONIENTS
Dedication to Joseph D.E. Konhauser, .................... 349
Puzzle Section . ./.....l. .4 . L W, 1 bsel s daboreln 65 ao g ha g a 350
The Richard V. Andree/Awards . ... ... ... L A | 355
Rings-of Small,Order
Michael HLEIn ... o0 .. ... - o il oo o, 356

Change Ringing: Mathematical Music
HeatherDe Simone ............. .4 ¢cceeceediendabns 361

Elementary Symmetric Polynomials, an Intuitive
Approach with Applications to College
Algebra and Beyond
Daniel Replogie .. wi...... L8 0056 06 B080 o-bii B 4 oot d & 367

Solutions to Antiderivafives Using a Hyperbotic
Functional Transformation
Timothy Holland . . . isa s v 1 o o v 2 seieniane 10064 00D 0600 370

The Easter Date Problem
Richard L. Francis .. ............ < ' o B Bt5 JIE o e 374

(continued on inside back cover)




JOURNAL

VOLUME 9  SPRING 1992 NUMBER 6

P
Deditation to Joseph\D.E.
o
Puzzle Sectioh . ./:n ..\ 1.
S
The hard V. e
AN ﬂ:“lb_*,m‘_%\m
Rings-6f Smal,Qrder
ichdel H L%n .......

[r




P1 MU EPSILON JOURNAL
THE OFFICIAL PUBLICATION OF THE |

NATIONAL HONORARY MATHEMATICS SOCIETY *&

EDITOR

|
Richard L Poss |‘

ASSOCIATE EDITORS

Clayton W. Dodge
Joseph D. E Konhauser

OFFICERS OF THE SOCIETY

President-Elect: Robert C. Eslinger, Hendrix College
Secretary-Treasurer: Robert M. Woodside, East Carolina University
Past-President: Efleen Poiani, St Peter's College

i
1
President: David W. Ballew, Western lllinois University l
|

COUNCILORS

J. Douglas Faires, Youngstown State University i
Richard A. Good, University of Maryland
Joseph D.E. Konhauser, Macalester College
Doris Schattschneider, Moravian College

Editorial correspondence, including books for review, chapter reports, news items and manuscripts (two copies) should be mailed
to Pl MU EPSILON JOURNAL, Richard L Poss, EDITOR, St. Norbert College, De Pere, Wl 54115; E-Mail Address
poss@sncac.snc.edu; FAX # 414-337-4033. Students submitting mansucriptsare requested to identify their collage or university
and their class or expected graduationdate. Others are requested to provide their affiliation, academic, or otherwise.

Problems for solutionand solutionsto problems should be mailed directly to the PROBLEMEDITOR Puzzle proposalsand puzzle
solutions should be mailed to the EDITOR.

The Pl MU EPSILON JOURNAL is published at St. Norberl College twice a year—Fall and Spring. One volume consists of five years
(10 issues) beginning with the Fall 19x4 or Fall 19x9 Issue, starling in 1949. For rates, see inside back cover.

DEDICATION

Thisissue of the B Mu Epsilon Journalis dedicated to Joe Konhauser. Joseph D. E. Konhauser,
Councillor for Pi Mu Epsilon, Editor of the Puzzle Section of the B Mu Epsilon Journal, and former
Editor of the Journal, died on February 28, 1992, of complications following heart surgery. He was
67 yearsold. Heissurvived by hiswife, Aileen, and his son, Dan.

Joe earned his bachelor's, master's, and doctorate degrees from Penn State University. From
1949 to 1955 he taught math at Penn State and was a mathematician at HRB-Singer Inc. in State
College, PA. He was an associate professor of mathematics at the University of Minnesotafor four
years before joining the staff at Macalester Collegein St. Paul, MN, in 1968. He had retired from
full time teaching at Macalester in 1991, but had returned to teach his popular geometry course this
semester.

Besides his teaching and his wntributions to Pi Mu Epsilon, Joe had been a member of the
committees that designed and evaluated testsfor the USA Mathematical Olympiad and the William
Lowell Putnam Mathematics Competition. He also had served as Fleviews Editor of the American
Muthematical Monthly.

Joe had a real talent as a problem poser and solver. He had been Editor of the Puzzle Section
since 1983; he had been creating Mathacrostics for the Puzzle Section since 1978. Perhaps even
more remarkably, he had been posing a " Problem of the Week” at Macalester College for over 20
years, without repeating a problem.

Joe will be missed as a mathematician, as a renowned teacher, and as afriend.
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PUZZLE SECTION

The Puzzle Section is for the enjoyment of those readers who are addicted to working dou-
blecrostics or who find an occasional mathematical puzzle or word puzzle attractive. We consider
mathematical puzzles to be problems whose solutions consist of answers immediately recognizable
as correct by simple observation and requiring little formal proof.

COMMENTS ON PUZZLES 1-7, FALL 1991

For Puzzle #1, WILLIAM CHAU, RICHARD |. HESS, HENRY LIEBERMAN, and BOB
PRIELIPP noted the following: Let K be the area of the triangle, s be its semi-perimeter, and r
itsinradius. Then rs = K = 2s, thus » = 2. Other relationships satisfied by these triangles were
provided by MARK EVANS and CHARLES ASHBACHER.

The answer to Puzzle #2, the “Bronzebach Conjecture,” is yes. Several decompositions were
submitted. Perhaps the most concise was by BOB PRIELIPP:
If nisodd, n = (n-2)+2 Ifn=4kn=(3-D+(3+1)
fn=4k+2,n=(3-2)+(%3+2).
Solutions weresubmitted by CHARLES ASHBACHER, WILLIAM CHAU, VICTOR FESER,
RICHARD |. HESS, HENRY LIEBERMAN, and DAVID SHOBE.

The first of the two solutions to Puzzle #3 was submitted hy DAVID SHOBE; the second
solution appeared in The Oxford Guide to Word Games by Tony Augarde, 1984, p.44.

CcC 1 R CL E C 1 R CLE
I NURE S | CARU §
R UDEST R AREST

C REASE C REATE
L ESSOR L USTRE
E S TER S E STETEWM

Thesolution to Puzzle # 4 is no. Suppose there were a solution with the set {7,8,9}. Consider
the set containing 15. To complete the sum of 24, we need either 1 & 8 (but 8 is gone), or 2
& 7 (but 7 isgone), or 3 & 6, or 4 & 5. In either of these last two cases, there are no pairs of
remaining numbers that will go with 14 to reach a sum of 24. (Solution by VICTOR FESER.)
Others submitting solutions were CHARLES ASHBACHER, WILLIAM CHAU, MARK EVANS,
RICHARD |. HESS, and HENRY LIEBERMAN.

There were several different solutions to Puzzle # 5. The one that kept the three piecesthe
most similar in shape was submitted by MARK EVANS.

I b

I ' om
/ wherea= 4L — W
w ST b=-13—
] a
II \ —

Others submitting solutions were WILLIAM CHAU, RICHARD I. HESS, DAVID SHOBE, and
STAN WAGON.
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For Puzzle #6, several solutions were submitted. The most common was

/ N N
Z —
Submitting solutions were WILLIAM CHAU, MARK EVANS, VICTOR FESER, RICHARD |I.
HESS, and DAVID SHOBE.

For Puzzle #7, the resistance was found to be the Golden Ratio: (v/5 — 1)/2. Solvers were
MARK EVANS, ROBERT GEBHARDT, HENRY LIEBERMAN, and DAVID SHOBE.

SOLUTION TO MATHACROSTIC NO. 33 (FALL 1991)

WORDS:

A openness K. entify U. Florentine enigma
B Verdict of Twelve L. |eft-handed V. theremin

C extenuate M. Y mir w. hypergraphics
D. roses of grandi N. hem and haw X. even steven

E. Baily’s beads 0. earth Y. corkscrew

F. yatata yatata P. Alan Smithee Z. odd

G extent Q. right a. spread

H lute R. The Great White Way b. Modern Times
L on the charts S. switch c. Of Thee | Sing
J. nines T overtone d. spherical cow

AUTHOR AND TITLE: OVERBYE LONELY HEARTS OF THE COSMOS

QUOTATION: The veneer of existence was getting very, very thin, but it wasin that last little crack
of time - where space foamed into chaos and the spheres rang with harmonies undreamed of and
symmetries were enfolded more intricately than a rose, where nothing happened and everything was
possible - that the secret of gravity and existence lay.

SOLVERS: THOMAS F. BANCHOFF, Brown University, Providence, RI; JEANETTE BICKLEY,
St. Louis Community Collegeat Meramec, MO; CHARLES R. DIMINNIE, St. Bonaventure Univer-
sity, NY; ROBERT C. GEBHARDT, Count College of Morris, Randolph, NJ; META HARRSEN,
New Hope, PA; HENRY S. LIEBERMAN, Waban, MA; CHARLOTTE MAINES, Rochester, NY;
STEPHANIE SLOY AN, Georgian Court College, Lakewood, NJ; JOHN L. VANIWAARDEN, Hope
College, Holland, M1, and DONNA D. ASHBRIDGE, University of North Carolina- Asheville, NC;
ALBERT WILANSKY, Lehigh University, Bethiehem, PA; and BARB ZEEBERG, Denver, CO.

MATHACROSTIC NO. 34
Proposed by Joseph D. E. Korhkauser, shortly before his death.

The 223 letters to be entered in the numbered spaces in the grid will be identical to those in
the 23 keyed words at the matching numbers. The key numbers have been entered in the diagram
to assist in constructing the solution. When completed, the initial letters on the Words will give
the name of an author and the title of a book; the completed grid will be a quotation from that
book. Solutions to Mathacrostic No. 34 should be sent to: Richard Poss, Pi Mu Epsilon Journal,
St. Norbert College, De Pere, W1 54115.
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DEANITIONS
a migratory Australian cuckoo (2 wds.)

popular name of Dilwarth’s 1740 "A New
Guide to the English Tongue" (comp)

study of disease by symptoms

probability the first to give a
theoretical construction for all the five
regular solids and to shéw how to
inscribe then in a sphere (3 wds.)

game plan

secret asset or ploy (4 wds.)

a musical means by which to identify
characters, ideas, and objects as
they occur in different situations
and at different times

invented and patented by Kenneth
Snelson, it has added a new component
to the elegance and airiness

must starting point of the space frame
for a cycle on a graph (2 wds.)

a fanciful product of the mind
afield of granular snow

used in prescriptions - of each an equal
quantity

the nicknasie of the largest simple
sporadic group (2 wds.)

to deprive of vital content or force

rural setting for Schubert opera
(2 wds.)

incident

leaving no 1oophole

mark=d vessel anchored at a chartered
point to serve as an aid to navigation

fawous or unfamous (3 wds.)

all out (3 wds,)

unpublished

7 105
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V. biotecwology @ ____ __ o o
79 138 119 196 58 40 18 202 8
: 172
¥. originally developed around 1968-70 in an _— —
attempt to understand the strong nuclear 146 81 206 189 45 26 174 11 131
force; if successful would provide the —_———
—— leonification of physics (2 wds.) 222 95 201
1 6|2 S 3 H |4 F F Q6 HWij7 T 8 V 11 ¥ |12 W
13 1 |14 S 15 P J16 R 17 L 18 vV 2 T [23 A
24 F |25 & 26 W |27 D |28 E 29 T 32 F {33 H
34 B |35 A |36 D |37 O |38 M 39 MW 40 V 43 B |44 C
45 VW |46 H |47 O 48 A |49 B |50 C 51 J |52 N 5 Q (57 0
58 V 59 T |60 B |61 R [62 P [63 H |64 Q 65 J |66 C [67 A |68 D 69 0
70 D (71 U 72 N |73 I |74 B |75 P |76 O |77 E |78 S |79 V |80 L (81 W
82 R |83 M 84 H |85 J |86 B |87 T |88 Q [89 E |90 D 91 U 92 T [93 F
94 I |95 W [96 M 97 S [98 P 99 L 1006 [101 F 1020 [103 R [104 O
1057 106 R |107 A {108 0 109P 1105 111 6 [112J 1130 (114 A 115 E
116 H |117 T 118U 119V 120D 121 M [122C 123 F (124 0 [125B [126 K 127 6 128 R
129 E (1300 |131 W 132 N 1331 |134J 135D 136 S {137 K 138V (139C |140 F
141 H 142 R [143 S 144 M [145D (146 W 147 C (148 P (1491 |1S0S (151 F [152 U
153 R [154 N 1S5 E [156 T |157 U 158 J {159 D 160 P {161 A 162 B |163 S [164 N
165 0 166 6 |167 I 168 T 169 C (170 Q 1716 [172 V¥ 173 F 1174 ¥
175 E (176 D |177 8 |178 F |179C |180 M |181 B [1820 [183 U [184 S {185 H 186 T 187 I
188 D |189 W 190 R (191 Q [192 A [193 S [194 F 195 N 1196 ¥ 197 D (198 J 199 U
200 A 201 W 202V 1203 1 204 M (205 S [206 W 207 U 208D [209 T |210 6 [211 O
212 N |213E (214K 2151 (216 0 (217 H |218C [219S [220 F (221 D [222 W [223 N
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PUZZLES FOR SOLUTION

To give some idea of the typesd problem that Joe Konhauser liked to devise, this issue's
Puzzle Section will present some of Joe's puzzlesthat had previously appeared in the Journal. The
solution to each puzzle was discussed in the issue immediately following the puzzle's appearance.

1 This problem first appeared in the Spring, 1988, issue of the Journal.

In the square array AB C

C B D
E CF

each letter represents one of the digits 0 through 9. Determine the correspondence, given that:
(1) ABC and CBD are primes,
(2 BBCand CDF are perfect squares, and
(3) ACE and ECF are perfect cubes.

2. (Fall, 1983)

Sketch a graph (afinite collection of nodes and ares) such that exactly three arcs terminate at
each node and such that it is not possible to color the arcs with three colors so that no two arcs
that are the same color terrninate at the same node.

3. (Fall, 1983)

The eight numbers {2, 3, 4, 6, 9, 14, 22, 31} have sum 91 and the property that taken two at
a time the 28 sums obtained are all different. Areyou able tofind 8 positive integers with sum less
than 91 with the same property?

4. (Spring, 1984)

Using just two colors, in how many distinguishable ways can one color the edges of a regular
tetrahedron?

5. (Fall, 1984)

Thetrio of positive integers {5, 20, 44} hasthe property that the sum of any two of itsmembers
is a perfect square. Can you find a set of four distinct positive integers such that the sum of any
three is a perfect square?

6. (Spring, 1985)

With a pair of compasses draw a circleon a plane. Then, without changing the opening of the
compasses, draw a circle on a sufficiently large sphere. Which circle encloses the larger area?

7. (Fall, 1987)

Bored in a calculus class, a student started to play with a hand-held calculator. A four-digit
number was entered, followed by the "square” key. To the surprise (and delight) of the student,
the four terminal digits of the result were the same digits in the same order as those in the number
which had been squared. What was that number?
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THE RICHARD V. ANDREE AWARDS

Richard V. Andree, Professor Emeritus of the University of Oklahoma, died on May 8,1987,
at the age of 67. Professor Andree was a Past-President of Pi Mu Epsilon. He had also served the
society as Secretary-General and as Editor of the Pi Mu Epsilon Journal. The Society Council has
designated the prizes in the National Student Paper Competition as Richard V. Andree Awards.

First prize winner for 1991 is Amy Pinegar, for her paper "Inversions and Adjacent Trans-
positions,” which appeared in the fall issue of the Journal. Amy prepared this paper, under the
supervision of Dr. David Sutherland, while she was a senior at Middle Tennessee State University.
She also presented the paper at the August, 1990, national Pi Mu Epsilon meeting at Columbus,
Ohio. Amy will receive $200.

Second prize winner is Shannon Spittler, for her paper "A Math Problem Within an Antique
Clock Label," which also appeared in the fal issue of the Journal. Shannon prepared this paper
whileshe was a junior English major at Miami University in Ohio. She will receive $100.

Third prize winner is Judy Kenney, for her paper “Turning Trianglesinto Circles," which also
appeared in the fall issue of the Journal. Judy prepared this paper while she was a senior at the
College of St. Benedict. The problem was suggested to her by Dr. Steven Krantz while she was
participating in an NSF Summer Research program at Washington University in St. Louis. Judy
will receive $50.

There were three other student-written papers that appeared in 1991:
"Computerized Segmentation of Liver Structures from CT Images by Heng Hak Ly, of Illinois
Benedictine College. Heng prepared this paper with the help of Dr. Maryellen Giger and Dr. Rose
Carney.

“A NoteonaPaper d S. H, Friedberg,” by Janet Valasek, of Penn State University - New Kensington
Campus. Janet prepared this paper with the assistance of Dr. Javier Gomez-Calderon.

"A Pre-Calculus Method for Deriving Simpson's Rule," by John White, of Marshall University.
The current issue of the Journal contains two papers written by students:

"Change Ringing: Mathematical Music" was written by Heather DeSimone whileshe was a senior at

Y oungstown State University. She is currently attending graduate school at the College of William

and Mary.

“Rings of Small Order" waswritten by Michael Lin while he was a senior at Moorhead High School,
in Moorhead, MN. Heis currently a freshman at Stanford University.

Joel Atkins, the winner of third prize in the 1990 Competition, wishes to acknowledge the
guidance of Dr. Jack Kinney of Rose-Hulman Institute of Technology.




RINGS OF SMALL ORDER

Michael H. Lin
Stanford University

Introduction

Since dl finite abelian groups have a simple structure, a straightforward way to find al finite
ringsis to begin with its additive group. If we are given one particular additive group, say G, +, to
work with, the problem isreduced to finding all binary operations -” on G that areassociative and
that areleft and right diitributive over “+". This will largely be a matter of trial and error, and
thus in general will be computation-intensive. One naive approach would be to try all n®* possible
multiplication tables and to check associativity and distributivity for each one of them.

In this paper, a more efficient approach is developed, and a computer program implementing it
waswrittenfor useon an IBM PC compatible. This program takesasinput a standard decomposition
of the additive group, and outputs the multiplication tables of all possible rings with that additive
group. The program does not determine which outputs are isomorphic. 1t works for any additive
group with order up to 127, although in many cases a complete run would be impractical because
of both the amount of generated output and the length of run time.

Notation

The order of any group G will be denoted by |G|; likewise, the order of any element g will be
denoted by |g|. The cyclic group of order n will be denoted by C,,.

Let our given additive group G of order n be expressed as a direct product of nontrivial cyclic
groups Hy X Ha X ... X Hy, where |H| divides |Hx—,| for 1 < k < r. (Such a representation is
uniquely determined by G.)

For 1 <k < r, pick A in G such that
(hk)={0} x ... x {0} x He x {0} x...x {0}.

Let B = {hy,hs,...,h,},sothat (B)= G.

Algorithm
1. Input the orders of the Hy.

2. Compute the addition table and other information about G (such as the multiples and order of
each element).

3. Set up a loop so that each passage through the loop assigns a value in G to each of the r?
products obtained from B. Successive passages through the loop assign every possible valuein
G toeach of the r? products.

4. Check the necessary condition that |h;|(k;j . he) = |he|(h; . he) =0 Vkj, ke € B.
5. Definethe remaining products within G by distributivity: The distributive properties

albtc)=abtaec and (atb)c=actid

can be restated as

(=) (Cw) =X sme
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Sofor any = Y ajh;, y =3 bihs, distributivity gives

zy= (P aih) - (3 tue)
=3 (ashy - behe)
=" ajbe(h; - he).

Using the condition of Step 4, it can be shown that the operation “-” as given here is wdl-
defined.

6. Check for associativity within B; i.e., that
(h;'h]')-hk=h,--(hj-hk) Vh,',hj,thB. (*)

Thisis sufficient because, if (*) is satisfied,

(S ashi- 3obihs) - S cuhe = [0 3 aubi(hi - hy)] - 3 cu
=337 " aibjer[(hi - hy) - e
=3 3> aibjelhi - (hy - b))
= aihi- (S bihy - Y uhi)

7. If Steps4 and 6 are both satisfied, we have generated a ring. Output it.
8. Repeat Steps 4 through 7 as indicated in Step 3.

Results

The computer program was written in IBM PC assembly language. In addition to the multi-
plication tablesfor each ring and the total number of rings generated, the program aso outputs the
first n= 1 powers of each element for each ring. This shows certain properties of the ring at a glance
- for example, how many squares are non-zero, and whether all cubes are zero - and thus makes it
easier to see which rings might be isomorphic. It also tells at a glance that some pairs of rings are
not isomorphic.

The generated rings for some additive groups were hand-classified according to isomorphism.
Theobtained results agreed with the list published in [1] of all 24 rings, up to isomorphism, of order
less that 8.

The data in the following table were obtained using an 8Mhz IBM PC/XT clone running a
stripped-down version of the computer program. The deleted parts of the program were those that
computed the multiples and powersof each element. It should be noted that this trimmed version
is significantly faster than the origina program.

For cyclic additive groups of order n, the program produced a total of n rings. |t was proved
in [2] that the number of non-isomorphic rings with additive group C, is the number of divisors of
n; this was verified for n up to 10.
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Structure of Total Number of

Additive Group Rings Produced Computation Time
Cax Gy 28 (8 non-isomorphic) ~ 03 sec.
Cyx C2 60 (20 non-isomorphic) 1 sec.
Cs x Gy 84 (16 non-isomorphic) 3 sec.
Cs x Cy 120 7 sec.
b x Cz 140 14 sec.
Ciz x Cy 180 25 sec.
Cis x C2 196 309 sec.
C3 xC3 121 (8 non-isomorphic) 17 sec.
Cs x Ca 242 116 sec.
Cy xCs 405 6.2 min.
Ci12 xCs 484 15.0 min.
Cis X C3 605 28.9 min.
C4 X C4 616 7.8 min,
CsxCy 1376 57 min.
Ciz x Cs 1848 196 min.
Cie X C4 2816 76 hr.
Cao X Cy 3080 14.8 hr.
Cs xCs 793 106 min.
C1o x Cs 1586 14.1 hr.

The above data suggest that if s and t are relatively prime, the number of rings produced for
additive group Cy; x C, ist times the number for C, x C,.

For large n and small r (as defined in Notation), Step 5, i.e., the completion of the multiplication
table, dominates the other stepsin terms of the computation time needed. Also, the time required
for one execution of Step 5 is approximately proportional to the size of the multiplication table.
Thus, for large » and small r, a rough indicator of the total computation time would be

(the number of potential rings that pass Step 4) x (n?).
For an additive group of the form Gy, x Cy, this expression simplifies to s'%¢2,

Additional Observations
While the rings with additive group Cs X C; were being hand-classified up to isomorphism, it
was noticed that four rings were anti-automorphic; i.e., that there existed a bijection f on each of

the ringssuch that f(z.y) = f(y) - f(z) for al z and y in the ring. The following theorems were
then formulated.

Preliminaries

Let A,,+ bethe abelian group Cy X C, = (@) x (6). We definef : A, — 4, by f(patgb) =
p(a - D) + ¢(-b) 0Or all p,q € Z. It can beshown that f isitsown inverse; sof isa bijection. Also,
it followsimmediately from the definition that f preserves the operation “+”.
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Theorem 1. Let R, be the ring with additive group A, and with multiplication defined by the
relations

=a-b= 5
b-a=b-b=sa.

Then R, isa non-commutative ring that is anti-isomorphic to itself.
Proof. It can be verified that

lel(z-y) = lvl(z-y) =0 V=z,y € {a,b},

and that
(z-y)-z=z-(y-2) Vz,y,2 € {a,b}.

It followsfrom Steps 5 and 6 that R, isa ring. Also, R, isobviously non-commutative.
By the preliminaries, f is a bijection and f(zty) = f(y) Tf(z) Vz,y€R,.
Weshall show that f(z.y) = f(y).f(2) Vxy€ Rs.

fla-a)=f(0)=0;
f(a).f(a)z(a—b)-(a—b):a~a—a-b—b-a+b-b=0—0—sa+sa=0.

f(a-b)=f(0)=0;
F(b)-fa)=—b-(a—b)=—b-a+b-b=—sa+sa=0.

f(b-a) = f(se) = sf(a) = s(a— b) = sa — sb=sa — 0= sa;
f(a).f(b)=(a-—b).(—b)=—a-b+b~b=0+sa=sa.

fo-b)=f(sa) =... = s
() - f(b) = (—6).(—6) =6.6 = sa.
The general fact that f (x.y) = f(y) - f (z) now follows by distributivity.

Therefore, f isan anti-automorphism of R,.

Theorem 2 Let @, be the ring with additive group A. and with multiplication defined by the
relations

a-
a-
Then @, is a non-commutative ring that is anti-isomorphic to itself.

The proof is exactly as for Theorem 1, except

f(a-a)= f(sa)=...=sa;
f(a)-f(a)=(a—b)-(a—b)=a-a—a-b—b-a+b-b=sa—0—sa+sa=sa.




These two theorems raise some interesting questions about anti-automorphic non-commutative
rings: What conditions upon an additive group are necessary and sufficient for there to exist anti-
automorphic non-commutative rings with this additive group? How many anti-automorphic non-
commutative rings exist, up toisomorphism, for any given additivegroup? Can a general description
of their multiplication tables be given? What can be said about their structure? What other
properties do they have?

References
1 C. R. Fletcher, "Kingsof Small Order," The Mathematical Gazette 64 (1980), pp 9-22.

2. W. C. Waterhouse, "Rings with Cyclic Additive Group,” American Mathematical Monthly 71
(1964), pp 449-450.

A computer program listing and a sample of the program output can ke obtained by writing the
author at P.O. Box 4048 Stanford, C4 94809 (e-mail: mickelin@leland.stanford. edu).

Michael Lin prepared this paper white he was a senior at Moerhead Senior High School, in
Moorhead, MN. He now attends Stanford University.

The Pi Mu Epsilon Journal wasfounded in 1949 and is dedicated to undergraduate and begin-
ning graduate students interested in mathematics. Submitted articles, announcements, and contri-
butions to the Puzzle Section and Problem Department of the Journal should be directed toward
this group.

Undergraduates and beginning graduate students are urged to submit papersto the Journal for
consideration and possible publication. Student papers are given top priority. Expository articles
by professionalsin all areas of mathematics are especially welcome. Some guidelines are:

1. Papersmust be correct and honest.

2. Most readers of the Pi Mu Epsilon Journal are undergraduates; papers should be directed to
them.

3. With rare exceptions, papers should be of general interest.

4. Assumed definitions, concepts, theorems, and notations should be part of the average under-
graduate curriculum.

5. Papersshould not exceed 10 pages in length.
. Figures provided by the author should be camera-ready.
7. Papers should be submitted in duplicate to the Editor.

@ printed on recycled paper
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CHANGERINGING: MATHEMATICAL MUSIC

Heather DeSimone
Youngstown State University

1 Introduction

Before the eighth century most church bells were small and rung by hand. These bells were
made of iron and did not have good tone quality. Making bells from different alloys began around
the eighth century. Using bronze, it became possible to create much bigger and louder bells. It was
also discovered that different tones could be made by varying the thickness of the bell wall and the
composition of the bell metal. Thesize of the bell also affected itssound. For example, the bigger
bells made deeper sounding notes. At this time, large bells were being installed in church towers
all over Europe. At the turn of the thirteenth century a gradual change in the shape of bells took
place. The sides became longer and more concave, which improved tone.

As bells became larger and heavier, they became more difficult to ring. Consequently, methods
of ringing evolved that did not require shifting the full weight of the bell. One of the methods,
which is still employed today, is to swing a bell by a rope attached to the top until it is almost
upside-down and then swing it back to complete the other half of the swing. This method was
refined by mounting the bell on a half-wheel. A rope was then run around it and down to thefloor,
which provided a "stay" on the whed's rim thereby preventing the bell from swinging al the way
over. A final improvement was implemented soon after the Reformation when a whole whedl was
introduced, allowing complete control over the bell. This improvement not only enabled the bell to
stay in an upright position for as long as was needed, but more importantly, it alowed control over
the speed of the swing. Pulling harder on the rope as it lowered sped up the swing. Conversely,
retarding the rope as the bell swung up dowed down the swing. It wasfound that if two ringers of
two different bells carried out these moves, the bells would change place in their order of ringing.
‘It was this discovery, when applied to a number of bells, that made 'change-ringing' possible; and
thisis the foundation on which the wholeart of bellringing is based”(Camp, 15).

2 Change Ringing
The basic strategy of change ringing is:
(1) toring agivenset of bells in al possible sequences;
(2) to movein a methodical fashion from one sequence to another; and
(3) toavoid repeating any sequence.

There are n! possible sequences for n bells. Each number of bells has a specific name aslisted in the
table.

Number of Bells Name Number of Changes
4 Singles 24
5 Doubles 120
6 Minor 720
7 Triples 5,040
8 Major 40,320
9 Caters 362,880
10 Royal 3,628,800
11 Cinques 39,916,800
12 Maximus 479,001,600

The object of change ringing isto produce all of the permutationson a set of bells according
to aset of rules. The highest bell is called the treble bell and the lowest, the tenor. When they ring
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in descending order, from treble to tenor, they are said to be in rounds. The rules the bellringers
must satisfy are:

(i) the peal must begin and end in rounds;
(i) no bell may move more than one position from one change to the next; and
(iii) no bell may occupy the same position for more than two successive changes.
Thelast rule is sometimes relaxed.
The six changes on three bells can be rung as fallows:

123
213
231
321
312
132
123

or in the reverse order, but only these two waysfollow the rules. These bellsfollow a hunting course.
This means each bell works by steps of one to the right or left until the bell isfirst or last in the
change. Thefirst bell movesfrom thefirst position, to the second position, and to the third position.
The bell then stays in the third position for two consecutive changes before it moves back to the
second position. |t then movesto thefirst position and stays there for the last two changes.

Look at thefirst transition. It can be denoted by the transposition (12) meaning that the bells
in position 1 and 2 change places. The two operators applied in the changes on the three bells
alternately are A = (12) and B = (23). These generate the entire group of order six. Algebraicaly,
thesix changes on three bells can be represented as (AB)? because A and then B are applied three
times.

With four bells thisis a little more complicated.

1234 1342 1423 1234
Plain Bob 2143 3124 4132
Method 2413 3214 4312
4231 2341 3421
4321 2431 3241
3412 4213 2314
3142 4123 2134
1324 1432 1243

These bells aso follow a hunting course. In the beginning, bell 1 is moved one position to the right.
It then staysin the last position for two changes before moving backwards to its original position.
The other three bellsfollow asimilar hunting pattern. Asfour bells hunt, they create eight changes.
In general, if n bells hunt, the hunting generates agroup of order 2n. The process of hunting on four
bells consistsof alternately applying the two operators A = (12)(34) and B = (23). Asstated before,
these generate thefirst eight changes. Continuing to use these operators, specifically using B , would
make the next sequence 1234. This is commonly known to bellringers as "replacing roundd' It is
not desirable because all of the possible changes would not have been rung. In order to prevent this,
and to continue, we employ the irregular move C' = (34). The second eight elements are generated
by again applying A and B. After theirregular move C is applied again, the third eight elements
are generated the same as thefirst two sets. The Plain Bob method can be algebraically symbolized
with the operators as:

((AB)*(AC)).
This notation means operators A and B are alternately applied three times.
Then A and C are applied. This complete pattern is repeated three times.

B =(23)
C =(34)
D =(12)
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3 Hamiltonian Circuits

Any particular set of complete changes can be graphically represented as a Hamiltonian cycle.
Let the nodes of the graph symbolize each change, that is, an ordering in which the bells are rung,
and the edges connect the possible consecutive changes. Graphing the changes on three bells, the
Hamilton circuit iseasily found. It isalsoeasy toseethat thisistheonly onesince there are noedges
left out of the circuit. Thisshows that there are only two ways of ringing the changes dependingon
which direction theidentity node is exited.

1dentity

Node @ @

Nz m

4>
OER®

In general, the number of nodes isequal to »!, where n is the number of bells. The number of edges
going to or coming from one node depends on the number of possible changes. In the example of
three bells, we can interchange bells 1 and 2, (12) or bells 2 and 3, (23). These are the only two
possibilities; therefore, there are two edges per node.

By increasing the number of bells by one, the number of nodes increases, as does the number
of permutations. There are four possible ways to change from one sequence to another. The first
three, which were discussed earlier, are (12)(34), (23), and (34). The last is switching only the first
two, (12). Soevery one of the 24 nodes has four edges or is connected to four different nodes. This
graph is more complicated than the one for three bells. A Hamiltonian circuit is not easy tofind in
the maze of 48 edges and 24 vertices; however, severa can be found. Theset of sequences discussed
earlier is one example. The figure uses the form given in White [9].

A =(12)(34)




Thismethodisthe most commonly rung and the most commonly displayed mathematically; however,
there are others.

Names Algebraic Description
Plain Bob ((AB)3AC)?
Reverse Bob (ABAD(AB)?)?
Double Bob (ABADABAC)®
Canterbury (ABCDCBAB)?
Reverse Canterbury (DB(AB)?DC)?
Double Canterbury (DBCDCBDC)3
Single Court (DB(AB)’DB)?
Reverse Court (AB(CB)?AB)?
Double Court (DB(CB)*DB)?
St. Nicholas (DBADABDC)?
Reverse St. Nicholas (ABCDCBAC)®

It isworth noting that only the first three of these methods satisfy all three rules listed in section
2. Theremaining methods fail condition (iii) that states no bell may stay in the same position for
more than two consecutive changes.

Using the given operators, two original sequences will be demonstrated. Alternating D and B
with every sixth change using the A transition completes the necessary Hamiltonian cycle. Alge-
braically, this is represented as ((DB)?(DA))*. And using the similar pattern ((CB)*(CA))* dso
produces the circuit. The patterns are alike in that the second set replaces the D's of the first set
with C’s.

All methods with four bells use exactly 24 of the 48 edges to complete the Hamiltonian circuit.
So it seems possible to find two independent cycleson the same graph. Noneof the above examples
are independent of each other. In other words, two completely different Hamiltonian circuits can not
be found with the previous instances. Therefore, starting with 48 edges and completing a Hamil-
tonian circuit in 24 edges does not necessarily mean there are two totally independent Hamiltonian
circuits on that graph, even though there are 24 unused edges.

We will now show that such examples exist. By breaking down theearlier diagram into asimpler
form where only the B connectors are left and each group of other lines are thought of as separate
entities, we have:

From this diagram two independent Hamiltonian circuits can easily be determined. Studying
further, we find that there are exactly six different pairs. Also, notice that this graph and the other
five are not symmetric. All of the previous examples are symmetric. Now that we know what path
tofollow going in and out of each vertex, we havetolook at the vertices which represent the separate
entities. For example, the bottom vertex looks like this:
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There are two possibilities to complete the Hamiltonian circuit.

All six verticesare similar, sothereare 2¢ possibilities. Multiplying the 26 waystimes the 6 waysfrom
the B connectors, we have the 384 possibilities for two totally independent hamiltonian circuits on
four bells. Noneof these graphs can be symmetric since the graph of B connectors is not symmetric.
Notice this in thefollowing example of two independent hamiltonian cycles.

Without symmetry, a pattern in theletterscan not befound, and the changes can not be represented
in ashort algebraic form like the ones given earlier.

Going on to five bells causes even a bigger problem. The graph of the possibilities, aone, is
complicated. There are seven possible changes from sequence to sequence: (12), (34), (45), (23),
(12)(34), (12)(45), and (23)(45). So each of the 120 vertices is connected to seven other vertices.
That isa total of 420 edges. It takes 120 of these edges to complete a Hamiltonian circuit. Since 420
is not a multiple of 120, independent Hamiltonian circuits can not be found that use all the edges.

For six bells there are 720 changes, 12 transitions, and 4320 edges on the graph. Because there
is an even number of transitions, the number of edges is a multiple of the number of changes. So
it seems likely that independent Hamiltonian circuits that use all of the edges exist. Since there is
no easy method for determining which graphs are Hamiltonian and each graph must be considered
individually, determining whether there exists more than one Hamiltonian circuit on one graph can
not be found using a theorem. Therefore, finding a method to find the Hamiltonian circuitsis part
of the problem.
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ELEMENTARY SYMMETRIC POLYNOMIALS, AN INTUITIVE APPROACH
WITH APPLICATIONS TO COLLEGE ALGEBRA AND BEYOND

Daniel Replogle

Thisarticle will present an intuitive introduction to the elementary symmetric polynomialsand
describesome of their uses. It iswritten with the good college algebrastudent in mind. Everything
it contains should be accessible to the student who has mastered college algebra.

Elementary symmetric polynomials are used frequently in advanced courses in algebra, and are
not usually presented until then. However, seeing them earlier might give undergraduates a greater
sense of the structure of algebra. Just as journals frequently use methods from advanced calculus
to throw light upon topics from standard calculus courses, so topics from advanced algebra may
sometimes be used to throw light upon topicsfrom earlier algebra courses. An early introduction to
elementary symmetric polynomiasisseeing how each term in a polynomia depends upon the roots
of that polynomial. This dependence will be shown and stated as a theorem, though no proof of
this result will be given.

Consider the following products:
(1) (z—a)(z—b = 22— (atb)ztTab.

@ (z—a)(z — b)(z — ) = (2% — (a + b)z + ab)(z — ¢)
= 2% — (a + b)z® + abz — cz? + c(a + b)z — abe
= 2% — (a+ b+ ¢)z? + (ab + ac + be)z — abe.
@) (z-ae—bd)z-c)(z—d = [2°~ (atbt )z’ + (@bt act be)z - abe](z - d)
= 28— (a+ b+ c+ d)z® + (ab + ac + ad + be + bd + cd)z?
— (abct abd+ acd + bed)z + abed.

()
(z—a)(z—b)(z—c)z—d)(z— o = z° - (atbtctdt+ ez
+(ab+ac+ad+ae+bc+bd+be+cd+ce+de)z®
- (abct abd+ abe+ acd + ace + ade t bed + bee + e T ede)z?
+ (abed T aboet abde+ acde T bede)x — abede.

Noting the above pattern, let a,,ag, a3, as, ..., ar be the zeros o a monic polynomia (a poly-
nomial where the coefficient of the highest degree termis 1) of degree k. Then define:

sig=ay+aytaz+...+a;
su=alaz+a1a3+...+a1ak+aga3+...+agak+a3a4+...+ak_1ak

S3p = 610203 + 18204 + ... + G1020; + a18304 + . .. + @103a; + G1ak 105+
...+ asazaq + ...+ ar_2ar_1a;

S4 = 1820304 T ...+ Qk_30;_20k-18%
S5k = @1a2a30405 + ... + Qk_40k-3Qk—20k-1Ck

Sk = @1@20304 ...Qk—2Ck—1C%.




The preceding definea the elementary symmetric polynomials on k letters.” The following might be
helpful to keep in mind:

81, is thesum of all of the zeros,
895 isthesumof all of thedisjoint pairwise product8 of zeros,
83 isthe sum of all of the disjoint 3-wise products of zeros, etc.

With al of this in mind and recalling the pattern observed above, we have the following theorem
(which can be proved rigorously, for those who desire to do so):

Theorem: Themonic polynomia p(z) of degree &, with zeros a;,az, as, . .., e is given by:

p(z) = z* - slk:c"”’ + .’sz.z‘k—z - sakz"”a + et (_l)rsszk—r + oo E 8k 1 kT F Skk-

Applications:
1. Find the monic polynomia p(z) with zeros1, 2, V2, =2
514 =1+2+\/§—‘/§= 3.

s24 = 1(2) +1(v2) T 1(-v2) T 2(v2) T 2-v3) + (V2)(~V2)
=24+V2-V2+2/2-2v/2-2=0.

s34 = 1(2)(vV2) T 1(2)(-v2) T 1(V2)(—V3) + 2(V2)(—V2)
=2/2-2v/2-2-4=-6.
44 = 1(2)(V2(-V2) = - 4.
So, p(z) = z* — 323+ 022 — (—6)z + (- 4)= 2% - 33+ 6z - 4.
2 Find the polynomia p(z) having zeros iv/2, —iv/2, and 2 with p(3) = 2.
si3=24+iV2-iv2=2
s23 = iV2(-iv2) T (iv2)(2) - ivV2(2)
=242iV2-2iv2=2
sa3 = iVE(—-1V3)(2) = 4.
S0, p(z) = r(z® — 222+ 2z = 4) = ra® — 2rz? t 2rz - 4r.

3_' r =2r 2r —4r

p(3) isgiven by: $r 3r Ior

r r 5 1lr

So, p(3) = Ir. But p(3) = 2, making r = 2/11. Thus

2, 4 8

_ 23 4., 4 8
PE) = -2 1t 1
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3 Show that if pisa prime number, p> 2, then the sum of the pth roots of unity is zero, and their
product is one.

Each of the pth roots of unity satisfies the equation z? = 1 = 0, Further, this polynomia
equation has proots. So, if ay,as,...,ap are the rootsof z? —1 =0, then

(z—a1)(z—ap)...(x—ap)=2P —s1p 2P Lt 59, 2P P — Lt 51T — 8y
=zf -1

(We can be definite about the choice of signs because a prime > 2 is necessarily odd.) It follows
that 83, = 0 and —s,, = —1. Thus s1, = 0, so the sum of the pth rootsof unity is zero (where pis
a prime > 2).

Als0 8p, = 1, so0 the product of the pth roots of unity (pa prime > 2) is one.

Additional Comments:

The usua method for finding the polynomialsin Examples 1and 2 might be quicker and simpler,
but it will not help one to solve problems like that in Example 3. Also, to me, the usual method
seems 1O be just a bit too tedious and it fails to reveal any structure. For comparison, here is how
Example 1 is usually solved:

la. Find the monic polynomial p(z) with zeros 1,2,v2,—V2.

p(z) = (z - 1)(z - 2)(z - V2)(= - (-V2))
= (z - 1)(z - 2)(z — V2)(z + V2)
=(z2-38z+2)(z? - 2)
=z - 323 + 6z — 4.

A careful look at this and Example 1 above, I think, reveas that the method using symmetric
polynomials is somewhat less tedious and reveals more structure.

Daniel Replogle prepared this article shortly after completing his master's at St. Louis Univer-
sity. He is currently a graduate student at the State University of New York ai Albany.
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If your chapter presents award for Outstanding Mathematical Papers or for Student Achieve-
ment on Mathematics, you may apply to the National Officefor an amount equal to that spent by
your Chapter, up to a maximum of fifty dollars. Contact Professor Robert Woodside, Secretary-
Treasurer.
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SOLUTIONSTO ANTIDERIVATIVES
USING A HYPERBOLIC FUNCTIONAL TRANSFORMATION

Timothy Holland
Alabama State University and St. Jude High School, Montgomery, AL

Most textbooks for elementary integral calculus include a section titled 'miscellaneous substitu-
tions.' Among the types of problems that these sections generally consider are thcae which involve
finding the antiderivatives of rational functions of sin(@)and cos(#). The traditional method of
solving some of these problems uses the following substitution [1]:

; 2z 1-z? 2
sm(ﬂ) = '1—'+—z‘2', COS(ﬂ) = '1—+Tz-, and dﬁ = .].—-I-? dz.

However, the use of theexponential and hyperbolic functions offersan alternative method for solving
these integrals. It has the additional benefit of providing a pedagogical tool for expanding the use
of the hyperbolic functions in elementary calculus.

We begin by noting the following:

Theorem 1. [sech(z) dz = 2tan-'(e¥)
Proof: 9 9
- ass e” e —-1f
/sech(z) dz-_/e"+e" dz_/e""-{-l dz = 2tan'(e").

Corollary 1, If g = 2tan—!(e*), then dB = sech(z) dz.

Corollary lindicatesthat if 8 = 2tan—!(e*), then thereisa relationship between the hyperbolic
functions of z and the trigonometric functions of 8. We can now establish expressions for the other
hyperbolic functions.

Theorem 2. sinh(z) = — cot(@).

Proof:
sinh(z) = sinh{In [m (g)]}

=1 [m (g) - cot (g)]
- [l—cos(ﬁ) _ _sin(f) ]
sin(8) 1 — cos(B)

_ [1 — cos(B)]? — sin?(B)
2sin(B)[1 — cos(8)]

1—92cos(B) + cos?(B) — 1 4+ cos? (A
_ APy TS APy T ST WS Ay

2sin(B)[1 — cos(B)]
—2cos(B)]1 — cos(f)]
2sin(B)[1 — cos(5)]
— cot(B).
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Theorem 3. cosh(z) = csc(B).

Proof: cosh(z) = cosh (ln [‘a" (g)])
“3 [ (2) rt(8)]

1[1—cos sin|
=3[t o)

[1 - cos(B)} + sin®(B)

2sin(B)[1 — cos(f)]
1—2cos(f) + cos?(B) + 1 — cos*(B)
2sin(B)[1 — cos(B)]

21 —cos(B)]
~ 2sin(B)[1 — cos(8)]

= csc(f).

Thefollowing corollaries are the direct results of Theorems 2 and 3:

Corollary 2. tanh(z) = - cos(8).
sinh(z)

Proof: tanh(z) = coshiz) = - co(t(gﬂ)) = —cos(f).

Corallary 3.  sech(z) =sin(@).
1 1 .

Proof: sech(z) = ) = coetd) = sn(@).
Corollary 4.  csch(x) = — tan(f).

Proof: csch(z) = smﬁ;) = a:tlﬁj = - tan(@).

Thefollowing examples illustrate how to apply these transformations to some antiderivatives:

Example1.

/ dpg _ / sech(z) dz
1Fsin(@)— cos(8) ~ J 1+ sech(z) T tanh(z)
dr
= / 1+ cosh(z) + sinh(z)
_ dz
) 146
=z—In|l+e*|+C [Letz = In(y) and integrate by partial fractions]

tan (g)l—ln V

1+ tan (E) | +C
tan(4)

2
1+ tan(%)

=In

+C. e
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Example 2. _ _/ d[cosh(z)]
- cosh?(z) — 1
/ _ sech(z)dz = coth™!{cosh(z)]
3 —2cos(p) 3 + 2 tanh(z) "
de = coth™*[csc(B)]
3cosh(z) + 2sinh(z) = In|sec(f) + tan(B)| + C.
2¢e% dr
be 41 Example 5.
f ;e(:;{_fl) /csc(ﬂ) df = /cosh(x)sech(a:) dr = /dz =z+C= [tan (%)] +C.
2
= 7 tan~*(v5e®) + C
g In summary, as an alternative to
= —=tan"! |5 tan B +C.
VB [ (2 : z? _ s
sin(8) = + —, cos(f) = T3 22 and df = T3
Example 3. the substitutions
/ sin(3) = sech(z), cos(f) = —tanh(z), and df = sech(z) dz
5+4sin(f) / 5 cosh(z) + can be used to solve-many antiderivativesinvolving rational functions of sin(8) and cos(f).
/5e2=+5 +4 Reference
Iz 1. §. M. Farrand and N. J. Poxon, Calculus, Harcourt, Brace, Jovanovich, 1984.
2e*dz
5e% +8e” +5 Timothy Holland prepared this paper while he was teaching at St. Jude High School and enrolled
( ) / d(e®) in a master's program at Alabama State University.
E+2+ @7
_(2 _1 {4+ 5e%
- ()0
= 2 pap-t |41 5tan() 8
=g — | +C
Example 4.
/Sec(ﬂ)dﬂ = —/coth(z)sech(z)dz CHANGES OF ADDRESS
- _/’ cosh(z)dz
sinh(z) cosh(z) Subscribers to the Journal should keep the Editor informed of changes in mailing address.
dz Journals are mailed at bulk rate and are not forwarded by the postal system. The cost of sending
= —/ m replacement copies by first class mail is prohibitive.
_ / sinh(z)dz
sinhz(::) o
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THE EASTER DATE PATTERN

Richard L. FMncis
Southeast Missouri State University

Anintriguing date is that of Easter. By a seemingly erratic pattern, it makes its appearance
on the calendar each year. Sometimes in March and at other times in April. Sometimes very early
and at other times, quite late. But alwayson Sunday. The date of Easter for a given year was fixed
in A.D. 325 by the Council of Nicaea. In this ancient decree, Easter became accordingly the first
Sunday after thefirst full moon on or after the vernal (spring) equinox. As both lunar and solar
cycles areinvolved as well as the day of the week pattern, challenging mathematical problems come
tolight. In particular, how is Easter to be calculated for a given year? What too can be said about
the frequency of the various Easter dates and their subtle, hardly noticeable calendar patterns?

Several wel known formulas come to mind in pursuit of these and similar mathematical ques-
tions. One such approach is a variation on the Easter formula as given by the great mathematician
Carl Friedrich Gauss (1777-1855). Before elaborating however on computational techniques, a brief
historical noteisin order.

Much diversity characterized the Easter observance pattern prior to theyear 325. Even in later
years, recurring problems arose as a consequence of the far-reaching calendar change of 1582. In
that year, the ancient Julian calendar was replaced by the modern calendar of Pope Gregory XIII
(the Gregorian calendar). The motivation for the change was essentially one of alignment of dates
with seasons. Controversy surrounded the new calendar's introduction; various nations werelikewise
dow in adoption. Although the Gregorian calendar is the one in present worldwide civil use, some
today, for ecclesiastical purposes, celebrate Easter in accordance with the ancient Julian calendar.
Coincidentally, the Julian and Gregorian calculations of Easter will occasionaly give the same date
(ashappened in 1865, 1905, and 1954 for example).

A Metonic cyclefrom ancient times essentially equated 235 full moons with 19 vernal equinoxes.
Hence, a time period of 19 years denotes the cycle in which the sun and moon patterns eventually
prove commensurable. (The Athenian astronomer Meton devised a calendar pattern in 432 B.C.
whereby the new moons repeat in 19 year cycles.) More precisely, an integral multiple of one cycle
coincided with an integral multiple of the other. However, the calendar reformers of 1582 realized a
very slight discrepancy in this equation, namely, the one which blended the lunar cycle with the 19
year solar pattern. Theassumption of equality wasimplicit in the Julian calculation of Easter. The
Gregorian correction incorporates the fact that the Dominical Letter of a year (the symbol for the
year's first Sunday) and the Golden Number (a given year's placein the overall 19 year cycle) will
not, in and of themselves, give the exact Easter date.

Because of the complexity of the relationship between thelunar cycleand the solar cycle, various
Easter formulas are restricted to but a single century. Each century thus has its own full moon
sequence. Such a complexity of relationships is accounted for concisely by appropriate references to
time called EPACTS, (The word "epact" stems from the Greek and denotes the "age'" of the moon
in days at thestart of a new year.) Mathematicians can verify (see the Kluepfel reference) that there
are exactly 30 epacts as wel as 30 sets of correspondences involving epacts and Golden Numbers.
I't is therefore possible to construct an Easter formula or set of Easter correspondences which will
prove accurate for al time.

I't can also be shown that the Gregorian calendar's period, namely, its perfect date-day cycle of
repetition, is exactly 400 years. Hence, as December 25, 1994 falls on a Sunday, so Wl Christmas
Day 400 years later. By examining any 400 year interval of time, it can be establiihed that, for
example, the thirteenth of a month falls more often on Friday than any other day of the week.
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Likewise, it can be proved that Presidential Inauguration Day occurs more often on Sunday than
any other day of the week (as last happened in 1985 and will next occur in 2013).

A more relevant point isthat the Easter period can also be calculated. What then isthesmallest
interval of time which implies consistently a perfect cycle of Easter date repetition? Suppose a key
symbol isassociated with each of the thirty Golden Number and Epact associations mentioned above.
Let these key symbols for convenience be the integers 0 through 29. It can be shown (see Klugpfel)
that any cycleof 100 centuries has a new key symbol (number). This accounts for 30 (100)sr3000
centuries. Yet each of these century intervals is associated with one of the nineteen possible Golden
Numbers, no two of which are aike. Accordingly, the Easter period becomes 19(3000) centuries or
5,700,000 years. Acknowledging thus this Easter period of 5,700,000 years, a tabulation of Easter
date frequencies becomes possible. Note among other things that 5,700,000 is divisible by 400, in
which case the day of the week pattern (Sunday restriction) is maintained.

VARIATION ON THE GAUSSIAN EASTER FORMULA

The sequence of steps which permits calculating the date of Easter for a particular year isgiven
below

1 year _a plus remainder B
19
year .
- -C
2. 00 plus remainder D
c )
3. Z = E plusremainder ¥
4. g2_+5§ = G plusdiscarded remainder
5, C__+;_G - H plus discarded remainder
19B + 15— (E
6. C+30 ( +H) = (quotient (discard) plusremainder Z
D )
7. Z = plus remainder L
2F + 2K —
8. + +32 E+L) = quotient (discard) plus remainder N
9. B2+ 2N =P plusdiscarded remainder
451
10 . Z+N+—114—-7P=Q plus remainder R

31

Then Q denotes the month and R+ 1 denotes the day on which Easter fallsfor a given year,
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THE TWENTIETH CENTURY

The Easter Sunday frequency pattern for the twentieth century appears in the graph below.
Note that all possible Easter dates are represented except March 22 and April 24.

Anillustration reinforces the formula. To calculate Easter for the year 1998, thefollowingletter
values are obtained.

1. A=105 B=3

EASTERSUNDAY FREQUENCY
2. C=19 D=98 the twentieth century (1901 —2000)
March 22
3. E=4 F=3 March 23 °___l
(Lo —
4. G=1 March25 o 1
Mach 26 ormemsmrrr— 3
e —
5 M=% March 28 ps—— 2
Marcﬂ Y e 1
- March 30
. Z= e
6 z=2 March31 _:
AL —————————————
7. K=24 L=2 April 2 EEE——
APILS  o——————
= ANl A e ———
8. V=0 ApLS e ————— ¢
AP 6 oo s S 4
9. P=0 A7 e —— 3
Aprill b e
= = AplY e
0. @=4 k=1 April 10 _:
AP e m———
ARl 12 o R 0
AP 13 eommm—
A
T —
AP s —————
AP LT o o |
As Easter is given by month Q and day R+ 1, the actual date of Easter for 1998 is April 12. It ﬁpr!l %g s s
is also the most common Easter date of the twentieth century (occurring six times). AB”I 20 “: ‘4
. B —
AP 2L e m—
APl 22 e —— 5
HOW EARLY AND HOW LATE? AN e
April 24 o
Apl 25 e 1

Easter may occur as early as March 22. This last occurred in 1818 and before that in 1761
and 1693. Such an early occurrence is actually a rarity. Easter will not comeso early again in this
century or in the next. Not until the year 2285 will Easter fall on March 22.

At the other extreme, Easter may comeas late as April 25. Itslast such occurrence wasin 1943
and, prior to that, in 1886. Easter will next occur on this latest possible date in the year 2038.

All of theabovedatesrelate to the Gregorian calendar. Thecalculation of Easter datesaccording
to other schemes frequently deviates from this as mentioned earlier. For example, Easter Sunday in
Russiain 1989 occurred on April 30. Such a late date stem from Julian results which are assigned
corresponding Gregorian dates.

As noted, there are 35 possible dates for Easter Sunday according to the modern Gregorian
calendar. Ten such dates are in March; the remaining twenty-fiveare in April.

TABLE |
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ENTIRE EASTER PERIOD OF 5,700,000 Y EARS

Not only do al possible Easter dates appear in thisvast period of time (that of a perfect Easter
date cycledf repetition), it isalsoeasy to tell which of the dates is the least frequent and which isthe
FIRST 2000 YEARS OF THE GREGORI AN CAL ENDAR most Sequent. Note that March 22 (the least frequent date) occurs 27, 550 times. The runner-up

) . . ) ) . is April 25 (occurring 42, 000times). Note likewise that April 19 is the most frequent; it occurs
All possible Easter dates appear in this 2000 year period of time. The least frequent date is 220,400times. Thi s year, 1992, Easter falls on its most frequent date. The middle Easter

Mar ch 22, occurring but 13 times. The most frequent are April 4 and April 10, each occurring 83 date (from March 22 to April 25) isApril 8; it occurs192, 850times. Moreover, the averagefrequency
times. isobtained by dividing5, 700, 000ky 35. This average is approximately 162, 857.

EASTER SUNDAY FREQUENCY
theentire Easter period of 5, 700, 000years

EASTER SUNDAY FREQUENCY March 22
thefirst two-thousand years of the Gregorian Calendar( 1583 — 3582) March 23  Smmmmm— 21550 s
March 24 opmmemmmmme—————— 51125
March 22 e 13 s 3L
March 23— March 26 oo s g 133000
March 24 ss— 11 March 27 e T 165300
m:gﬂ gg e Marc?] gg e e e ||| 100
] Marcl O e A ] 192850
marc?] % O ——————— L “ Marcn D o e 189525
arc — ] March 3l  prerr——————— e e 189525
Marcﬂ %g _5| 7 AP”I 5 —————— s R
arci Apri 186200
. — T
March 3l ——————————————— 17 " Asfﬂ 3 S e T G 192850
April 1 S | April 4 e e 111200
April 2 L —— April 5 e e e i) 192850
April 3 _—— April 6 T e ) 180525
April 4 e 70 L1 I G ———— e ——— e B
April 5 e e e S s — 63 April 8 e e 191850
April 6 1 APl oo ——— o e TS 11200
AR 7 o ————— 58 Al Y er——— ———— T R 197650
April 8 e —— e ———— T ] A o R 186200
N I st —————— Al 17 e S 191850
AN 10' o — (63 Al 13 e e s 189575
April 11 e ————— e m——T Apil Y s e g 199525
i April 15 192850
e — j e e
i e o e LY
ADML 13— ———————— i
i April 17 192850
April 14 —_— 3 ! T e oot
April 15 i Apil 18 s e 197400
April 16 L ;i ALl kb B L MIAMAZ ”Mi%i;BAss  E I - I i i L e ———— e e R
! e e S i
April 17 .} April 20 189525
April 18 April 2 e e e e 162450
N I e ————————————————————— AP 2 o 137750
April Sy 1 AT 2 ————————————————— 106400
April 21 A ————— ¢ I —————— S PTI
Agril 22 e ————— O m——_—, 13 APl 2 p—— 42000
! e s e T
Aprl 23 —— 20
T L —————————
APL2S — 1 " -

TABLEIII

TABLEII
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EXPLORATIONS

Various questions and conjectures arise in examining a long list of consecutive Easter dates.
Consider for example the thousand year Easter listing given below.

EASTER SUNDAY EASIER SUNDAY
far Easter Vtar Easter Vtar Easter Year Eastee  Year Easter Year Easter Year Easter Year Easter Year Easter Year Easter .gar Easter  Vtar Easter Year Easter Vtir Enter Year Easter  Year Easter Year Easter Year Easter _ i
1600 Apr 2 1801 dpr 22 1402 Apr 7 1603 Kir 30 1808 Apr 18 1405 Apr 10 1504 Mar 26 1607 Apr 15 1408 Apr & 1609 Apr 19 200 War 28 2101 Apr 17 2102Apr 9 2103 Mar 25 2104 Apr 13 2105Apr 5 2104 Apr 18 2107 tor 10 2108 Apr 1 2109 for 21
1610 dpr 11 1811 Apr 3 1112 Apr 22 1613 Bpr 7 164 tar 10 1115Apr 1% 1816 Air 3 1117 Mar 21 1618 Apr |5 1619 Mar 31 A0 dpr & 2Allmar 21 202 Apr 17 213 Apr 2 1M Apr 22 213 Apr 14 2L16 Mar 21 2117 Apr 11 21114pr 10 2119 Kar 21
1620 Apr 19 1620 Apr 11 1622 Mar 27 1623 Apr 16 1624 Apr 7 1623 KIT 10 1626 Apr 12 1527 Apr & 1678 Apr 23 1829 Apr |5 MW kpr 1 220 Apr & 22War 7 21234 11 224 Apr 2 21218pr 22 22 Apr 14 2127 iy 10 2121 Apr 18 2129 Apr 10
1630 Mar 31 1631 Apr 20 1832 Apr 11 1633 Mar 27 1434 Apr 16 1635 Apr 8 1834 Mar 23 1137 Apr 12 1638 Apr 4 1639 Apr 2% 30 Mar 26 2131 Apr IS 2132 8pr & 213 Apr 1% 2134 Apr 4l 21314pr 3 2136 Apr 22 2137 Apr 7 NI fir 30 239 Apr 19
1600 Apr B 1141 Mar 31 1642 Apr 20 1143 Apr 8 S6AN Mar 27 1643 Ase 16 1646 Mpr ) 18A7 Apr 21 1648 Apr 12 1649 Apr 4 240 A 3 2N MF 26 242 Apr 15 2143 Mar 33 2144 Apr 19 2145Apr 11 2M46 Apr 3 2047 Apr 16 2148 Apr 7 2049 Mar 10
1150 fpr 17 1650 Apr 9 1152 Mar 31 1633 Apr 13 1834 dpr 5 1635 War 28 1856 Apr 16 1157 ) 1 1438 Apr 21 1439 Apr 13 2030 dpr 12 21S1Apr 4 US2Apr 23 21534pr 15 23 Mar 31 2155 Apr 20 210 Apr 11 2057 War 27 2138 Apr 16 2159 Apr 8
1660 Mar 21 1661Apr 17 1852 Apr V  1U3Mar 25 1664 Apr 13 1643 Apr 5 1666 Apr 25 1667 fpr 10 1668 Apr 1 1889 dpr 21 260 Mar 23 2461 Apr 12 2162 Apr 4 2113 Apr 34 2064 Apr 8  2165Mar 31 2066 Apr 20 2117 Apr S 2168 Rar 27 2169 Apr 11
1670 Apr & 1171 Mer 29 16724pr 17 1173 Apr 2 1674 Kar 25 1673 Apr 14 1676 Apr $ 1177 Apr 18 1678 Apr 10 1679 Apr 2 Modpr 1 A7 Apr 21 T2 8pr 12 273 Rpr 4 207AApr 17 2073 Apr 9 2171Mar 3L 2177 4pr 20 278 Apr 5 207% mar 21
1660 Apr 21 1481 Apr & 1682 Mar 29 1183 4Apr 18 1484 Apr 2 1685 Apr 22 1686 Apr 14 1687 Mar 10 1689 Apr 18 1689 Apr 10 2180 dpr 16 2181 4pr 1 2182 Apr 21 2183 Apr 13 2184 Mar 28 2185 Apr 17 218b Apr 9 2187 Mar 23 2188 Apr I3 218% Apr 5
1890 mar 21 1693 Apr 15 1692 Apr & 1493 Mar 22 [H4 Apr 11 1693 Mpr 3 1496 Apr 22 1697 Apr 7 1498 Mar 10 1499 Apr 19 [19 fpr 25 2090 Apr 10 2192 Apr | 2193 Apr 21 219 Apr 1 2193 War 29 1% Apr 17 2197 dpr ¥ 2138 Mar 25 2199 fpr 14
1700 Apr 11 1701 Mar 27 1702 pr 11 11038pr 8 1704 Mar 23 1703 Apr 12 170Lapr 4 1707 Apr 24 1708 Apr 8 1709 Mar 31 300 6pr 1 201 Apr 19 2202 Apr 11 23 Apr 3 204 Apr 22 2205 Apr 7 2206 Mar 0 MM Apr 19 2208 45 3 2209 Mar 21
1708pr 20 1700 fpr 3 1712Mar 27 1713Mpr 36 1714 Apr | 1715 4pr 2L 1716 Apr 12 1717Bar 28 1718 Apr 17 1719 Apr V 20 dpr 15 ZUMa M 212 Apr 19 213 dpr 11 204 Mar 27 2158pr 11 216 4gr 7 217 Mar 30 2218 Apr 12 2219 Apr 4
1720 War 31 1721 0pr 13 1722 8pr 5 1723 mar B 1724 Apr 11 1720 Mpr 1 1726 tor 21 1727 Apr 13 1720 HIT 21 1729 #pr 17 M0 8pr B3 222 hpr | 22Mar 31 223 Apr D 224 Apr I 2025 Mae 21 2226 Apr 11 2021 dpr 8 2BMar 23 2229 dpr 12
170 Apr V. 1731 Mar 25 1732 Apr 43 1733 Apr S 1734 Apr 25 1735Mpr 10 173k Apr 1 1737 4pr 2L 1738 Apr & IT¥ mar N a0 sr 4 S ipr it 026pe 8 TN Mar 3l W Apr 21 2358r 5 223Imar 27 237 Apr 16 23 Apr 1 2239 Apr 21
17404pr A7 1741 8pr 2 1742Mar 23 1743Apr 14 NT44 8pr 5 SN Apr 18 1746 Apr 10 1747 Apr 2 1748 Mpr 14 1749 Apr & IModpr12 2llfpr 4 242Mpr 17 I3 Apr 9 2244 War 31 22ASApr 13 2241Apr 5 247 War 28 28 Apr 16 249 hpr 1
1750 Mar 29 1751 Apr [t 1752 Apr 2 1753Apr 22 1754 Apr 14 1755 Mar 30 17% Air 18 1757 for 10 1738 Har 26 175% Air IS 20 hpr 2l M dpr 13 N2 Mar 28 S Apr 17 Z54Apr 9 2253 War 25 2251Apr I3 2257 Apr S 2258 Apr 25 2239 Apr 10
1760 apr 6 1761 Mar 22 1763 Apr 11 1763Apr 3 1764 Apr 22 1715Apr 7 1784 Mar 0 1787 Apr 19 1768 Apr 3 1789 Mar 26 1260 Apr | 7261 Rpr 2L 2262 Apr & 2363 Mar 29 2288 fpr 17 265 Apr 2 22bmar 25 2267 Apr 14 2268 Apr 5 2249 Apr 18
1770 dpr 15 1771 Mar 31 1772 Apr 19 1773 Apr 11 1774 Apr 3 11 Apr 16 1776 Air 7 1777Mer 10 1778 4pr 19 1779 Apr 4 20t 10 1M Apr 2 2 Apr 2L 23 Apr & 2274 War 2% 2205 dpr 18 226 Apr 2 207 hpr 2 2114pr 14 2219 Mar
1780 Mar 26 1781 Apr 1S 1102 Kar 31 1783Apr 20 1764 Apr 11 1785 mar 27 1786 Apr 11 1787 hpr 8 1788 fIt 23 1789 Apr 12 2250 Apr 18 2288 % 10 2382 Mar Tb 2003 Apr IS 284 hpr 6 2085 mar IL 2288 Apr 11 2087 dpr 3 2BBhpr 22 2289 hpr 7
190 for 4 119 Apr 24 17924pr 8 ATWmar 3L 1794 Apr 20 1795 Apr 3 LIS Mar 27 17 8prib 1198 Apr B 1799 Mar N0 W0 Mar 30 91 épr 19 22 Apr 10 25 mi 26 2394 Apr 1S 2295 Apr 7 229 Apr 19 rmii Apr Ll 2298 Apr 3 2299 Apr 16
1800 Apr 13 1801 Apr 5 1802 Apr 18 1803 Apr 10 1804 Apr 1 1603 Apr 14 1S0LApr & 1807 mT 29 1g0E Apr 17 1809 Apr 2 Y00 Apr 8 2301 mar 3t 2302 Apr 20 2303 Apr 5 2304 Mar 27 2305 kpr 16 2305 Apr 1 2307 Apr 21 2108 pr 12 2309 Har 21
1810 Apr 22 1811 4pr 14 1812 Mar 29 18134pr 18 1814 Apr 10 1013 mar 21 1811Apr 14 1817 Apr 1 1818 Mar 22 1819 Agr 11 S0 Apr 17 Bl Apr 9 M2 Mar 31 2BW3dpr 13 B Aer 5 M3 Mar 28 23164 11 237 Apr 1 218 apr 21 2B19Apr 1
1820 dpr 2 18218 2 1828r 1 (823 Mer 10 124 Apr 13 1823 Apr 3 1826 Mar 21 1827 Apr 1S (28 hpr & 1821 Apr 19 0Mr B MMMl 320 O 2BNr25 BWANI3 2 hpr 5 206 Aw 5 227 kpr 10 ZBAwr 1 2329 hpr 21
1830 Apr 11 18114Apr 3 18324pr 22 1833 Apr 7 1834 Mar 0 1835Apr 19 18% &% 3 1837 Ner 21 1838 Apr 15 1839 Mar 31 V0 Apr 1 23 Mar 29 2H2 pr 17 213hpr 2 M Bar 25 233Apr 14 2 hpr 5 2A” Apr 18 2338 Apr 10 2339 Mar 26
1840 Apr 19 1861 dpr 11 1342 Mar 27 1643 fpr 36 18M Apr 7 1845Mar 23 1846 Apr 12 1847 Ape 4 1948 Apr 23 1849 Apr 8 MY Apr 14 2301 Agr b BA2Mar D P Apr It 248 Atp 2 S Apr 22 2346 Apr I8 237 Mar D 2348 apr 18 2310 Apr 10
1850Mar 31 1851 Apr 20 1852 Apr 11 1833 Nar 27 1854 Apr 16 1SS Apr B 1854 Mar 23 1857 Apr 12 1850 Apr 4 1839 Apr 4 N Bar 26 MNS1Apr 15 T2 Apr 1 33 Mar 22 2354 Apr 11 2355Mpr 3 23% Apr 2 2387 Apr 7 238mar 0 2399 Aer 19
1850 Apr 8 1861 War 31 1862 Apr 20 1663 Apr 5 1814 Mar 27 1815 Mpr 16 1864 Apr | (BST Air 21 1688 Apr 12 1eey fir 28 un ape 3 2%l Mar 36 232 fpr 15 2343 Mar 31 2304 kpr 19 2385 #pr 11 2346 Apr 3 237 Apr 16 2318Apr 7 2160 Mar it
1870 4pr 17 1871 Apr O 1812 War 31 1873Mpr 13 1874 4pr S 1875Mar 28 1871Apr 11 1877Apr 1 1878Apr 2L 1870 Apr 13 Dk 19 BN Apr 4 2R2Kar 36 2U3pr 15 2374Mar 3L BISAer 0 B164pr 11 M er 77 278 dpr 16 2319 her B
1680 Mar 28 1881 #Apr 17 1882 4pr V 1833far 25 1884 Apr 13 18354pr 5 188LApr 25 IN7 Apr 10 1888 Apr 1 (689 Apr 21 SO Mar 23 2281 dpr 12 2182 Apr 4 233LApr %4 2384 Apr 8 2385 Mar 31 2181 Apr 20 2387 Apr 5 23Bmar 27 2389 Apr 16
1890 Apr 1 18L1Mar B 1812 Apr 17 1893Apr 2 1894 Mar 25 189S Apr14 189 Apr 5 Ml Apr 18 1698 Apr 10 1699 Apr 2 0 A B 209 Mar 20 TWZépr12 2393 dpr 4 2194 Apr 17 2395 fpr V2396 War 31 2397 Apr D 2%8 Apr 3 2399 Mar O
1900 dr IS HOl Apr 7 1902 Mar 30 1903 Apr 12 ITO4Apr 3 1903 Apr 23 1904 Apr 1S 1507 Mar 31 1908 Apr 19 1509 Apr 11 [00 fpr 11 2101 apr | 2402 hpr 1 2403 fpr 13 2NCA Mar 28 2403 Apr 17 206 Apr V. 2407Mar 25 2008 fpr 13 2409 dpr 5
1900 mar 27 A91dpr 16 1IZApr 7 HISKar 23 1904 Apr 12 IS Apr 4 IS APr23 1917 Apr B 1918 Mar 31 1919 Apr 20 G ger 15 MMldr 10 2M2hyr | S A W Ao b 2I5Ner 20 QG hpr U] AT Rer 2 2B Hr 35 2419 Aor 14
1920 fpr 4 1920 Mar 27 19224pr 11 1923 Apr 1 1924 Apr 2 192 Apr 12 192 Apr 4 1927 fpr 17 1978 Apr B 1929 Mar 31 M0 Gpr 5 1420 4pr 18 2422 Mpr 10 2423 Ape 2 224 fpr 21 2425kpr b 2426 Mar 0 2427 dpr 18 2628 Apr 2 7429 Apr 2
1930 bpr 20 1931 Apr 5 1932 Mar 27 1933 Apr 11 1934 Apr | 1935 Apr 21 1836 Apr 12 1937 Mar 28 1938 AT0Apr 14 3 Mer 10 32 4pr 18 33 Apr 10 2414 Mar 3 4B hpr 15 24BApr 1 2437 Mar 2 UBApr 1l 249 dpr 3
1990 fir 0 1941 Apr 13 ol . for 171939 tpr 9 3 13 apr 19 2004 Apr 10 2045 Mar 26 2048 Apr 15 247 Apr 7 248 4pr 19 2049 dpr 11
pri3 1924pr 5 193 #pr25 19 Apr 9 1M apr | D% Aor 21 (9T dpr b 198 Mar 28 1949 hpr 17 U0 dpr 22 M hpr 7 242 Mar 10 2U3 Ror l i prls s o

1950 Apr O 195k Mar 5 1952 Apr 13 1953 Apr 5 1954 Apr 18 1955 Apr 10 1936 Apr | 1957 Apr 21 1938 Apr L i Mar 21 AS)Apr 3 2451 Apr 16 3452 Apr 7 2451Mar 30 2054 mpr 19 2455 Apr 4 24% War 26 2337 hpr 15 2438 Rar 31 459 Apr D
Hid Apr 171981 dpr 2 1962 Apr 22 1983 Apr 14 194 Mar 20 1963 Apr 18 1986 Apr 10 IS67 Mar 21 1948 Apr 14 1969 o & 060 Asr 1 2061 Mar 20 2412Apr 16 483 Apr 8 2484 Mar 30 2465 Apr 12 2486 Apr 8 2487 Agr 24 2W8 Apr 15 2419 mar 31
1990 lar 29 097 fpr 11 1972 8pr 2 H13Apr I 197 Apr 14 TS Mar 30 1574 Apr 18 1977 Apr 10 1978 Mar 21 1979 dor 13 W0 D UTlior 5 IR T Sk 1L Adder BT 20306 e 22417 M 4 TR 2 20 B
1980 Apr 1 1981 Apr 19 1982 Apr 11 1983 Apr 3 1964 Apr 22 1985 Apr 7 1984 Mar 10 1987 Apr 19 1988 fpr 3 1989 gf, 21 1980 Mar 33 2481 Apr 20 02 fpr 5 1433 Mar 28 2484 Apr 16 T48S Apr 1 2186 Apr 21 2487 Apr 13 24BBApr 4 2489 Apr 17
19% fpr 48 1991 mar 3L 1992 Mpr 19 1993 Apr 11 1994 Apr 3 1993 Apr 11 (9% Apr 7 1997 Nar 30 1998 Apr 12 1999 far 4 90 dpr V491 Mar I3 24028pr 13 93 Apr 5 2494 Mar 20 2495 Apr 10 2496 dpr 1 497 Apr 2L 2498 Apr 13 2499 mar 29
2000 Apr 23 2001 Apr 15 2002War 3L 2003Apr 20 2008 Apr 11 2005 Mar 27 2006 Apr 16 2007 Apr B 2008 mar 23 200% Apr 12 3590 Apr 18 2501 8pr 10 2502 Mar 26 2503 Apr |5 2504 Apr 1 2305 Mar 22 2506 Apr 11 2307 fpr 3 2508 Apr 2 2509 Apr 7
Wioder 4 20U Apr 20 028 8 0B Mar 3L Nlbpr D 20150 5 00 Mar 77 2007 dpr 11 2018 Apr 1 2019 dpr 2 TSI Mar 30 280 Apr 19 2512 Apr 3 513 mar 26 2514 Apr 13 2515 Mar 31 2516 Apr 19 2517 Apr 11 25184pr 3 2819 Apr 16
200 dr 12 21 kpr 4 X24pr 17 2021Apr V. X04Har 3L 2054 0 202 for 5 227 Nar B 208 Apr 11 2029 g’, 1 2520 fpr 7 29 Nar 30 52 Apr 19 253 8pr 4 2524 Mr 21 208 Apr 15 2526 HT 31 2527 fpr D 25BApr 11 259 Mar 77
2030 Apr 21 2031 Apr 13 Q2 Mar 28 2033 dpr 17 2034 Apr V2035 Mar 25 2036 Apr 13 2037 dpr 5 2038 Apr 25 2039 A? 10 (530 Apr 16 7931 Apr 8 532 Mar 23 2533 Apr 2 2534 Mpr 4 2535Apr 24 2536 Apr 8 2537 Mar 31 2538 Apr 0 2539 Apr 5
000 hpr 1 2041Apr 21 0M24pr 1 2043SKk 19 2044 Apr 17 20/S8pr 9 2046 8ar 25 2047 Apr 14 2048 Apr § 2049 4': 18 ? iS00 Wer 27 25ALapr 11 252 Apr B 503 mar 24 250 fpr 12 2545 Apr 4 2546 Mpr 17 2541 Apr V. 2548 Mar 31 2349 Apr 0
2050 Ar 0 2050 for 2 2052 pr 20 XE3Apr & XBAMar It 2058 4pr18 0% Apr 2 2087 Apr 2 208 AT M4 2B/ Il:r 30 750 dpr 2550 Mar 28 2952 Mpr 11 2553MApr | 25ARpr 21 255G Apr 13 255 Mar 20 2357 Apr 17 28 Apr V2399 Mar 25
2060 Apr 18 2061 dpr 30 2012 Mar 25 2063 Apr 15 2064 fpr 1 2065 Mar 29 2068 Apr 11 2067 Apr 3 2068 4Apr 2 2069 fgr |4 2560 Apr 13 2981 fpr 5 2512 mar 28 2563 Apr 10 2564 Apr | 2515 Apr 21 2566 Apr & 2567 War 29 2568 Apr 17 2549 Apr
200 WM bpr 19 A2 bpr 10 DM 21 A7k 15 TS 7 207 r 19 2077 A il 2B 3 2070 A 23 B0V %5 2T kw14 22 M 5 I3 her 25 T4 AN 10 2575 Apr 2 2576 Apr 2L 2917 bpr & 2918 War 29 2379 dor 18
2060 Apr 7 2081far 30 20824pr 19 2083 Apr 4 2004 Mar 21 20858pr |5 2085Bar 3L 2067 Apr 20 2008 ap 1 ol 2500 Apr 2 2BImar 25 2582 Apr 14 283 Mar 10 2184 Apr 18 2585 Apr M0 2586 Mar 28 2187 Apr 15 2583 MApr 1 2180 Mar 21

' pro 1l 2089 dpr 3 1S90 Gpr 11 3390 Apr 3 2092 Apr 22 2503 Apr 14 5% tor 30 2398 Apr 19 259 Apr 10 2597 Mar 25 2398 Apr 15 2599 Apr 7

2090 Apr 11 2091 Apr 8 i Mar 30 2093 Apr 12 2094 Apr 4 2098 Apr 24 2096 Apr IS 2097 mar 31 2098 Apr 20 2099 Air 12

TABLEIV TABLE IV (cont.)




A typical question concerns the month pattern. In particular, " Can Easter occur in March
in both of any two consecutive years?* The table above strongly suggests the answer is "no’* In
order to be certain, one must examine the entire Easter period, or, by consideration of the formula,
establish that Q cannot be 3 (the March number) for consecutive year numbers. By a computer
analysis of the Q question for the entire Easter period of 5, 700, 000years, the answer of "no" is
verified. Accordingly, Easter cannot come in March two yearsin a row. Another question suggested
by the long Easter listing is "Can Easter occur on corresponding Sundays in any two consecutive
years?' Corresponding Sundays in consecutive years are those Sundays which differ by exactly 52
weeks. For example, April 9, 1950 and April 8, 1951 are corresponding Sundays. The first is an
Easter date; the second is not. Knowing for instance that April 12, 1998 is Easter (as calculated
earlier), can one now assert for afact that neither April 13, Sunday, 1997 nor April 11, Sunday, 1999
is an Easter date? Once again, by a computer analysis of the Easter period of 5, 700, 000years, the
answer is "consecutive Easters cannot occur on corresponding Sundays." Other questions likewise
stem from the Easter listing. A few are included here for the purpose of additional exploration.

1 It appears that in consecutive years, Easter dates can be no closer datewise than 8 days.
Consider for example the Easter dates April 18, 1965, and April 10, 1966. Note too that
the earlier year aways seems to contain the later date number. Are these suggested patterns
valid?

2. Theshortest interval of time separating a given Easter and its next like date occurrence is five
years. This happened, for example, on (Easter) March 29, 1959, and (Easter) March 29, 1964.
What isthe greatest interval of time separating a given Easter and its next like date occurrence?
Note that long intervals of time are suggested by examining Easter lists. Among them are the
Easter dates March 22, 1818, and March 22, 2285, which span an interval of 467 years.

3. Isit possible for a decade to consist entirely of April Easters? What is the greatest number of
consecutive April Easters possible?

4. Ponce deLeon, the European discoverer of Florida, gave theareaits name ("Florida" or "flowery
Easter'') on Easter Sunday in the year 1513. What was the exact date of this Julian calendar
Easter and could it be the same asits projected Gregorian date counterpart, namely, April 67

5. Can two like date Easters be exactly 400 years apart? Recall that the period of the Gregorian
calendar is 400 years.

Theabove are but a few of the many questions contained in the mathematical subtlety of the Easter
date pattern.

The Gregorian calendar will prove many times out of line with the seasons in the course of
5, 700, 000years. Actually, the calendar proves a day in error every 3323 years. In less than 100, 000
years, the present calendar's marginal inconsistency with the seasons will magnify and measure
roughly a month. Accordingly, it must be stressed that the computations above rest on the as-
sumptions implicit in the Gregorian calendar's construction (a calendar likely to be modified or
abandoned in the years ahead). Still, in its present, highly familiar form, it affords an opportunity
for themathematically curiousto explore an intriguing pattern of numbersand number relationships.

Appreciation is expressed to Victor Gummersheimer and Johnny Lai for their computer assis-
tance in the preparation of this manuscript.
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ERRATA

The following errors appeared in the Fall, 1991, issue of the Pi Mu Epsilon Journal:

Page280 Online4 and again on line 5, "ac— bd # 0" should have read " ad — bc # 0.

Page 292 "Theorem 2' and "Example 10" should have been "Theorem 7' and "Example 11."
'Page 296 Line7 should have read “365.25/365.25 * 11365. 25 = 24 hours/X .”

Page 297 Online5, "then Oy, 02, and Os” should have read "then 0102 and CO3.”

Page 299 Online4 of Theorem 2, “A] = C,” should have read “A;, = C».”

The Editor apologizes for any problems that these errors might have caused.
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EXTENDING A FAMILIAR INEQUALITY

Norman Scheumberger
Hofstra University

Thefollowing problem appeared on the 1973 USA Mathematical Olympiad:
Prove that if a,b,and c are positive real numbers, then

a®tbet > (al)c)(""""""’)/3 1)
A simpler version,
athb > (ab)(a+h)/2,
isafamiliar exercisein a number of texts.

The usual proofsof (1) usea not particularly simple elementary argument or Jensen's inequality.
[See M. S. Klamkin, USA Mathematical Olympiads1972-1986, MAA, 1988, p. 81.]

We start our proof by noting that if x > 0, then
zinz >z—1>Inz 2)
with equality iff x = 1.
We use (2) toextend (1) and then to obtain an important limiting relation for the power mean.

Theright side of (2) followsimmediately from the observation that f (z) = X - 1 - Inz has an
absolute minimum at x = 1 because f'(x) = 1= 1/z = 0iff x = 1, and f*(z) = |/x? is positive for
x > 0. If wenow replace x by 1/z inx - 1 > Inx weget xInx > x - 1 which completes (2).

Let A = (at b+t ¢)/3 and substitute x = afA,z = b/A, and X = ¢/A successively into (2).
Adding gives

T
Hence
In [(@/A)*/4 (/414 (c/A)4] 20 > In (%‘)
or A
(o) 212 %% (3)
It follows that
GBS > ATHIHE > (gho)(aHbHals, @

This double inequality gives (1) and somewhat more. Also, there is equality iff afA = 1,b/A = 1,
andefA =1 Thatis,iffa=b=c

The power mean, M, of order r is defined by
1 a 1/r

where a; > 0 (i = 1,2,...,n) and r # 0 are real numbers, Thus M; and M, are the arithmetic
mean and root mean square. If n = 3, then MF = (a" 1 +c")/3.
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Putting X = a"/M[, x = " /M], and x = ¢" /M in (2) and adding gives

a” r b b" cr c’ 5 a"-'}-b"+c"_3
Mr MrOUOMT U MTUMr < M:

a” 1 b 1 c"
IHW+ nJ_l/!—,'.T+ nF}_

v

In asimilar way to that used to get (3), it follows that

rya" (prybT e’ ym; rHrer
@™ e
(Mr)ur+br+cr = = n[,;';,- .

If »> 0, raising to the M7 /r power gives

a” B e abe \ M7
S 212 ( 3
M M

or
a® b et > MO YT S (abc)(a'+b'+c')/3 (5)
Z My 2

More generally, the same kind of argument can be used to get

r T i v T r r r r :
affagi ..ot > MITFSEEAN > (a10y . ap)0THeE He/ ©)

Inequality (4) is a special case of (5). If r < O, the inequdlities in (5) are reversed. Thus, for
example, if r = =1, then M_, is the harmonic mean and (5) becomes

atbiet < MUGTHE) < (abey(H+i4D09)
If r = 0, M, is not defined. However, the geometric mean, abe, is usually denoted by Ms.

The standard proof that
IirYAM,. = aja;...a, )]
r—

uses L’Hospital’s Rule and the theory of exponential functions. [See Hardy, Littlewood, and Polya,
Inequalities, Cambridge University Press, Cambridge, 1952, p. 15.]

Equation (7) follows at once from the observation that (5) can be written as

rogr o\ M/ (8THN +eT)
(a“ b et ) (a ) > M, > (abe)'/3.

Ifr =0, (a"'bb'cc')‘/(arﬂ'ﬂr) tends to v/abe and we get (7) for n = 3. The general case can be
proved in an analogous manner using (6).




PROOF OF THE CONVERGENCE OF A SEQUENCE OF RADICALS

Andrew Cusumano
@est Neck, NY

The purpose of this paper is to investigate the expression

S=\/l+2\/1+3\/1+4\/1+... ;

Wefirst note that Srepresents a sequence {ax }§2, of real numbers. Checking afew terms, either by hand or
with an easily written computer program, leads us to conjecture that the sequence convergesto 3. In order
to prove this, we first show that it is a monotone increasing sequence that is bounded above by 3. Thus,
limg_,o ar = aexistsand a £ 3. Finally, we show that a = 3.

To write Sasan increasing sequence and see that it is bounded above by the number 3, we note that

a=vit2 < V/I+2(d) = 3

a=\1+2T73 < \/1+2/1530) = 3

a3=\/1+2\/1+3\/m < \/1+2\/1+3\/m =3

a,,:\J1+2\/1+3\/1+...+(k—1) 1+k/T+(k+1)

< \\l1+2\v/1+3\/1+...+(k—1)\/1+k\/ +(k+1)k+3) =3

Since {a:}52, isan increasing bounded sequence, bounded above by 3, we know that limg_. ar = a exists

and a< 3
a:\/1+2\/1+3\/1+4\/1+... (1

Thus we can write

To provethat a = 3, we construct a sequence {b, }2., such that b, <a < 3for every », and then show
that lim,—. b, = 3. In order to construct our &,, we must get some idea of how far each a; isfrom 3. If
we consider, for example, just the part

\/l+6\/1+7\/1+8\/1+... s

thisisclearly at least as big as , where

z=\/l+6vl+6\/l+6vl+... .

We then note that v/T+ 6z = a. By using the quadratic formulaon the equation =% — 6z — 1 =0, we can
see that x > 6. We can then compare

\/1+2\/1+3\/1+4\/1+5(6)

to

r

\/1+2\/1+3\/1+4\/1+5(6+1) ,

which is exactly equal to 3. We can now generalize this approach in order to construct the by.
Notice that

d,,=\/1+(n+1)\/1+(n+2) 1+ (n+3)V1i+... > z,

a:,,:\/1+(n+l) 1+ @+ Dy/1+a+DVIt.. = V1+(n+ Dza

Since zZ — (n+ 1)z, — 1 = 0, the quadratic formula shows that ¢, > n + 1.
By replacing d, by n+ 1in (1), we get b, where

where

bn=\/1+2\/1+3\/1+...+(n—1)\/1+n(n+1)

Since nt 1< z, < d,., we have b, < a. Thus, for every n, b, <a < 3.
To complete our proof, we need only show that lima—~e bs = 3. To do this, we first note that if
0<z<y,0<w, and 0<u<1 then u</, and

x< 1+w;r< Vv1+uwz
y 14wy  VTHuwy

It followsthat

n+1<\/1+n(n+1)<\/ﬁ(n—1)\/1+n(n+_1)< b

. <

Y e RN (YRR A 3

where

3=\/l+2\/1+3\/1+...+(n—l)\/1+n(n+2) .

1 . . .
ntl_ 1, it follows that lim, . b, = 3. Thusa = 3, and our proof is complete.

Since limg .o ey




A CLOSED FORM FOR A FAMILY OF SUMMATIONS

Russell Euler
Northwest Missouri State University

Let p be an integer such that p > 2. It can be shown, by using the asymptotic relationship

G)~5%
N—T asn — 00
p P

00 -1
=3 (7) (1)
nzp \P
converges. Theseries (1) wasevaluated in [1] by using partial sums. In this paper, a closed form for
(2) will be obtained by using special functions. The specia functions that will be used are reviewed
first.

Thegammafunction is denoted by I'(z) and defined by

I'(z) = / e~teldt
0
for £ > 0. The gammafunction has the property that I'(z + 1) = zI'(z) provided z is neither zero
nor a negative integer. In particular, for n=0,1,2,..., T(n+1) =nl.
Thefactorial function is defined by

from page 33 of [2], that

(a)n =a(a+1)---(a+n—1)for n>1and (a)o=1fora #0.
In particular, »! = (1),, and, from page 9 of {2, (¢)n4r = (at n)e(a)n.
The (Gaussian) hypergeometric function isdenoted by 2F(e,b;c; ) and defined by
ez = 14 S @n®)nz"
2F1(a, b,c, 1‘) =1+ nz=:l —(C)"—:'.

provided c is neither zero nor a negative integer. If none of the parameters a, b, or ¢ are zero or
a negative integer, it is known that this series is absol utelx convergent for |z| < 1, divergent for
[z| > 1, and is absolutely convergent for |z =1 provided aTh-c < 0.

Toevaluate (1), first notice that I(p) can be written as

n!
-f ,.g (n :‘p)' @
However,
_nt _ (Wn
(n+p)! (Dpsn’

(D
=T+ ne Dy ®

Substituting (3) into (2) and simplifying yields

o~ _(Dn
I(p) = go(l_{_p)"'

Hence, o

= (Dn(D)n
I(”)=Z(§-)H§).,)n!

n=0

= oF(L ;14 p;1). 4

I't has been shown in [3], page 49, that if Re(e—a - &) > 0 and if cisneither zero nor a negative

integer, P(OI( b
c c—a—
SAHED = T atte =)
Therefore, identity (4) becomes
I(p) _ Tt UI(p-1) (5)
I(p)C(p)

SinceI'(z) = (z — 1)I'(z — 1), (5) simplifiesto give
oo -1

L R A
f{; (P) T =l
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WHAT IS"LOCALLY COMPACT"?

Raghu R. Gompa
Indiana University at Kokomo

Each textbook in Topology hasits own way o defining what it meansfor a space to be localy
compact. Some authors make an effort to give an equivalent characterization under some additional
assumptions about the topological space (see [2]). Essentially there are four wncepts with the name
of local compactness and the relations among these have been only partially studied. Even though
local compactness, by itsvery title, isaloca property (recall that a property issaid to belocal if it
can be specified for any single point in the space), there has been only global study (that is, astudy
of the spaces where the property is assumed for every point in the space) of it in theliterature. In
this paper, we study it localy at a point. Implications among these concepts will be discussed at
a particular point. Moreover, we present examples to help understand the impossibility of reverse
implications.

Throughout this paper X represents an arbitrary topological space and z denotes a fixed point
of X. Schnare [3 discussed two definitions of local compactness, which are rephrased here to define
themas properties of space X at a point z asfollows: A topological space X iscaled weakly locally
compact, or simply w-compact, at z iff there is a compact neighborhood of z in the space X.
X iscaled mildly locally compact, or m-compact, at = iff there is a neighborhood of z whose
closure iscompact. A topological spaceissaid to bel-compact iff it is1-compactat each of its points
where 1" is “w”,“m”, or any other letter that makes sense in the following discussion. Schnare [3]
showed that a w-compact space is m-compact iff the closure of any compact set is compact. Later,
Gross [4] introduced a third definition of local compactness, which is modified here as a property
at a particular point z. A space X is called bit locally compact, or b-compact, at =z iff each
neighborhood of # contains a compact neighborhood of z.

It is wdl known that all these wncepts are equivaent in Hausdorff spaces and regular spaces.
Infact, in such spaces, these are equivalent to one more concept called strongly locally compact. X
issaid to be strongly locally compact, or s-compact, at z iff each neighborhood of z contains
a compact closed neighborhood of z. The particular choice of terminology becomes apparent after
observing that s-compact is strongest, w-compact is the weakest, and b-compact, m-compact lie in
between for any general spaces. That is, we have thefollowing implicationsin any general topological
space X at the point z:

b-compact

N
v w-compact

/
/

m-compact

S—compact

These implications are strict. Moreover, b-compact and m-compact are incomparable in a general
topological space.

Even though compact spaces are obviously m-compact (and thus w-compact), compactness does
not imply either s-compactness or b-compactness. Consider the one-point compactification of the
space Q of rational numbers. Thisisa TI%-spa,ce (aspace in which each compact set is closed). It

391

can be shown that it is neither s-compact nor b-compact. This example aso tells us that even in
compact T 1-spaces
m-compact —» b-compact

at 2. However, b-compact certainly implies m-compact in 7; 3-spaces. In fact, thisimplication holds
even under a weaker assumption on the topological space. " To explain this assumption, we need
the following definition. A space is called an R-space iff the closure of a compact set is compact.
Clearly any regular or T; 4- (hence Tz-) spaceis an R-space. since m-compactness at z is equivalent'
to the statement that thereis a compact closed neighborhood of z in X, it isimmediate that in any
R-space

b-compact <~ m-compact

at £ and
m-compact —— w-compact

at z. Of course, b-compact does not imply m-compact in general spaces. Gross [4] has an example
of a b-compact normal space which is not m-compact. An easy example is the following: Consider
an infinite set X with a distinguished point z in which a set is declared to be open if it is either
empty or it contains z. Thisis a Tg-space (aspace in which distinct points have distinct closures)
which is b-compact at £ but not m-compact.

An infinite set with cofinite topology reveals that even in compact, T: - and R-spaces
b- and m-compact —~ s-compact at <.

But in-compact and s-compact at z are equivalent in a topological space which is T3 at z. A space
X iscalled Ty at = iff for any point y of X different from z, there exist two digjoint open sets G and
H in X containing y and =, respectively. It iseasy to verify that a topological space X isTz at a
point z iff to each compact set A not containing = there correspond two disjoint open sets L and M
suchthat AC Land z6 M.

Let usshow that if X is Tz at @ and m-compact at z then it iss-compact at z. Let G by any
open set containing z. Let N be a compact closed neighborhood of ® (by m-compactness at z, N
exists). Write A = N NG’, where G’ represents the complement of G. Clearly A is a closed subset
of the compact space N and hence compact. Since z ¢ A and X is Tz at =z, there are digoint open
sets L and M suchthat AC Landz € M. Now M C L' and

McCL CA'=NUG

(the bar indicates the closure of the set), which means M NN € G. ThusH = M N N° (N° is the
interior of N) isan open set containing =z and

HCMNN=MNNCG.
Moreover, #, being a closed subset of compact set N, is compact. This shows that X is s-compact

at z.
At this point note that, for any R-space that is T3 at z the implications

w-compact — m-compact — s-compact

hold at =, hence all compactness concepts are equivalent.

Notice that a space which is s-compact at z isregul ar at z; that is, to each open set G
containing z there corresponds an open set H such that z € H € H € G. In fact, this property
of the space assures the equivalence of all these concepts. To prove this, let us assume that X is?;
w-compact at # and regular at . We show that X is s-compact at z. Let G be any open set
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containing z. Since X is w-compact at z, thereis a compact neighborhood N of z. Put A = GNN°.
Then by regularity at z, there exists an open set H such that

ze HCHCA.

Clearly H is compact (because a closed subset of a compact space is compact) and H C G. Thus
X iss-compact at ¢. Thus all these concepts are equivalent in spaces which are regular at z, T, at
z with R-property, or Hausdorff spaces.

We close our discussion with an analysis of some of the standard properties of local com-
pact spaces. Clearly any local compactnessis z is closed hereditary (i.e., preserved under closed
subspaces). However,only s- and b-compactness are open hereditary (i.e., preserved under open sub-
spaces). Theone point compactification of the space Q is m-compact (hence w-compact) in which
the open set Q is neither m-compact nor w-compact. A w-compact dense subset B of aT;y-space
X is open. Indeed, suppose b € B. Since B is w-compact, there exist a compact subset C of
B and an open subset G of X such that be BNG C C. Cisclosedin X, because X isa Ty -space.

Since Bisdensein X and G isopenin X, G = BnG. Thus
beGCG=BNGCcC=CCB.
Thisshows that B isa neighborhood of b. This being true for any & € B, B isopen.
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ON THE CALCULUS OF RESIDUES

Prem N. Bajaj
The Wichita State University

In this note we give a paradox in the calculation of residues at a pole; a paradox in the sense
that an incorrect procedure gives a correct answer. Some of the well-known examples of this type
are: the incorrect cancellation of 6 in 16/64, of 9 in 19/95, or of 2 in (1+ z)’/(l - z2) gives the
correct answer. See aso [1].

Let f(z) = g(z)/2" where g is analytic and has a zero or order m at the origin; m, n being
positiveintegersand m< n. At z =0, f hasa poleof order n - m and we discuss its residue R.

Considering, INCORRECTLY, ftohbe a pole of order n, at the origin, we have,
1 a! 9(2) 1 -1
i 1 ZTHERL = " 0). 1
R= i ( ) I e O (1)

However, the pole of f at z = 0 is actually of order n - m, and, so,

(&)

Re kT ()

= (n —m — 1) dzn-m-1 zn

e ()

(n—=m—1)ldzn-m-1 \ zm

2=0 z2=0

Now let g(z) = 2™G(z) so that G isanalytic at z = 0 and G(0) # 0. Using Leibnitz's theorem,
we have

y(n—l)(z) = sz(n—l)(Z) + (n; 1) mzm_lG("_z)(l) o (n; l)m!G(n-—l-m)(Z)

0 that

!
y(n—l)(o) = (n(f — ]‘-_)cl)!G(n—l-m)(()),

reducing (2) to (2).
Incorrectly obtained result (1) can also be seen to be true by using the power series

© Lk
Zygk(o)
k=0

of g. However, the above approach illustrates an application of Leibnitz's theorem - generally
forgotten or ignored by students = for finding the nth derivative of the product of two functions.
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PROBLEM DEPARTMENT
Edited by Clayton #. Dodge
Universityof Maine

This department wel comes problems believed to be new and at a level appropriate for the readers of
this journal. Old problemsdisplaying novel and elegant methods of solution are also invited. Proposals
should be accompanied by solutionsif available and by any information that will assist the editor. An
asterisk (*) preceding a problem number indicatesthat the proposer did not submit a solution.

All communicationsshould be addressed to C. W. Dodge, Math. Dept., University of Maine, Orone,
ME 04469, Please submit each proposal and solution preferably typed or clearlywritten on a separate sheet
(one side only) property identified with name and address. Solutionsto problemsin thisissue should be
mailed by December 15, 1992.

Correction

761 [Fdl 1991} Proposed by Murray S Kiamkin, University of Alberta, Edmonton, Alberta,
Canada.
Determineadl functionsf(x) such that

f():“ 2 and -L--m(-l)" a,
x rganx o0 Z-% a,x

The error was that the exponent on the (-1) was incorrectly given asn + 1.
Problemsfor Solution

771. Proposed by Alan Wayne, Holiday, Florida.
In the base six addition

EVE + EVE + EVE + AND = 1310

the digitsof the addends have been unambiguoudy replaced by letters. Restore the digits. Where wes
EVE?

772, Proposed by Robert €. Gebhwdt, Hopatcong, New Jersgy.
Let xvd44 be a four-digit number and yy be a two-digit number in baseb > 4. Findx andy in
termsof b S0 that ()* = xx44 in every such baseb > 4 (such as 88? = 7744 in base ten).

773. Proposed by Leon Bankoff, L0S Angeles, California

In agiven circle (O)a chord CD isdrawn to intersect diameter AOB at point E. Threecircles
are inscribed, the first two in the sectorsBEC and BED, and the third in the opposite segment CED.
Let the circlein sector BEC touch CE at J and let the circlein sector BED touch DE at N.  See the
figure. If the threeinscribed circles have equa radii,

a) show that CD is perpendicular to AS,

b) find the ratio AE/EB,

¢ findtheratio 4D /438,
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d) find theratio CD/AB,

€) show that the rectangleJKMN onJN as base and with oppositesideKM passing through 4
circumscribesthe third i nscribed circle, and

f) show that the rectangles/KLD and NM W are golden rectangles.

K M L

Problem 773

774. Proposed by Robert C. Gebhwdt, Hopatcong, New Jersgy.

Thefirst player in a game who acquires 250 pointsis the winner. Because player A isa better
player than player B, hegives player B a50-point handicap. Smilarly player B givesplayer C a 50-point
handicap and player C gives player D a 50-point handicap. What handicap should player A give player
D?

775. Proposed by Norman Schaumberger, Bronx Community College, Bronx, New York.
If H is the harmonic mean o the positive numbersa,, a,, ..., a,, prove that

776. Proposed by Russell Euler, Northwest Missouri State University, Maryville, Missouri.
Let n be afixed postiveinteger and let

Po=1 42"+ w4+ 1",
Write as a polynomia in P, the expresson
15%P* + P + P + PY).

777. Proposed by Seung-Jin Bang, Seoul, Korea
It iswdl knownthat In(r + 1) < §, < Inn, where

n

1
S =1+ = +
2

wl,
+
+

sl

It isalso known (Out Mathematiconum 11 (1985) p. 109) that

nn+ )Y -n<s,<n- (n-1)ne1,




Prove that

In(n+ D <an(n+1)2-pnp and n- (N-1)n¥e ¢1 +lnn
foradln a2

778. Proposed by Laura L. Kelleher and Frank P. Battles, Massachusetts Maritime Academy,
Buzzards Bay, Massachusetts.

It isreadily established that the arclength dong the curve y = cosh x on any interval [a,b] and
the areaunder the graph of thi s same function on this same interval are numerically equal. For what
other functions if any, isthis curiousfact true?

779. Proposed by W. Moser, MeGill University, Montreal, Canada,
If 0 < asxsys 1/a, then prove that

1 1

X+ —<a+ —, i{+lg_}_’+i‘
X a y X a y
2
—’5+lsax+l, and (x+y)(i+—l-)s(a+-¥).
y x ax x y a

780.Proposed by R S. Luthar, University of Wisconsin Center, Janesville, \Wisconsin.
Let ABCD be a parallelogram with LA = 60°. Let the circlethrough A, B, and D intersect AC
at E. See thefigure. Prove that BD? + AB 4D = 4E *EC.

D C
E
A B
Problem 780

Problem 781

781. Proposed by the late Jack Garfunkel, Flushing, New York.

Erect squaresADEF, BDKL, and CDGH as shown in thefigure, on the segments 4D, DC, and
BD, where D isany point on side CA4 of given triangle ABC. Let A; Y, and Z be the centersof the
erected squares. Prove that triangles.48C and XTZ are Smilar and theratio of similarity iSv2,
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782. Proposed by Murray S. Klamkin, Universityof Alberta, Edmonton, Alberta, Canada.

In O.Bottemaet al, Geometric I nequalities, Wolters-Noordhoff, Gronigen, 1969, item 12565, p
118 it isstated that for a triangleABC with no angle = 2n/3 that

2R, t R T Rz @+ ?+ ¢ + 4Fv3,
whereR,, R, and R, are the respectivedistancesfrom an arbitrary point P inside the triangle fo its’
vertices a, b, and ¢ are the triangle's side lengths, and F isits area. Item 1255 further states that for
atrianglein which LA 2 2a/3,
R TR TRY2(b 1)

Show that the first inequdity istrue for dl triangles.

783. Proposed by the late Jack Garfunkel, Flushing, New York.
If, A, B, and C are the anglesdf a triangle ABC, then prove that

Y sinza s [Isina
Y cos? (g) I1 cos (é)

Solutions

403, [Fall 1977, Fall 1983, Fall 1984]. Proposed by David L. Silverman, \B Los Angeles,
California

Two playersplay agamedt 'Take It or Leavelt" on theunit interva (0,1). Each player privately
generatesa random number from the uniform distribution and either keepsit as hisscore or rejectsit
and generates a second number which becomes his score. Neither player knows, prior to hisown play,
what his opponent's score is or whether it is the result of an acceptance or a rejection. (However,
variants based on modifying this condition, either unilaterallyor bilaterally, are interesting.)

The scores are compared and the player with the higher scorewrs $1.00 from the other.

a What strategy will give a player the highest expected score?

b. What strategy will give a player the best chance of winning?

¢. If one player knows that his opponent is playing so as to maximize his score, how much of
an advantagewill he haveif he employsthe best counter-strategy?

II. Comment and solution by Peter Griffin, California State University Sacramento, California

Unfortunately the published solution[Fall 1984] is incorrect in two major particulars. Part (b)
is coincidentally correct because the expectationfor m = (v5 - 1)/2 turnsout to beitsdf. Ti s is not
avdid argument for establishingthat thisstrategy will beat any other strategy, however. The answer to
part (€) iswrong becauseit is based on the same fallacious reasoning as (b).

Both parts (b) and (c) have nothingto do with expectation, but involve how often one strategy
will do better than another. Here isa true historical andogy: In the 1960 World Seriesthe New York
Y ankees averaged 8 runsto only 4 runsfor the Pittsburgh Pirates, yet they lost the World Series. The
Pirateswon more often (4 gamesto 3), but when the Y ankees won, they tended to wn by many, many
more runs. | will sketch briefly how to solve parts (b) and (c).

"Using an a-rule" shall mean keeping your first random number if it exceeds the criterion =
number a, otherwisediscardingit and being left with the second random number regardlessof what it
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is Thedistribution rule of one's final score using an a-ruleisF.(x) = Pr[4 SX. T s fuction hast wo
formulas:

forx s a, F(x) = Pr[R, < & *Pr[R, s a] = or, while
fora < x, F.(x) = Prfa < Ry <x] t Pr[R, < a] Pr[R, s
=@x-a)+ax=(a+1x-a
From these formulas we derive the density function for an a-ruleto be f(x) = F,'(x), 0
fix) =aifxsa ad fix)=at1iifx>a
The density isintegrated over variousintervalsto End the probability of being in the interval. To find
the probability that the random scoreA is gpproximately equa tox, we use f,(x) dx.

The probability that an a-rule beats a b-rule, assuminga = b, isfound by approximating
2 Pr{d = x] ‘Pr[B < x] with = F(x) -f.(x) dx, which givesPr[4 > B] = = F(x) f.(x) Ax, and hence

f: Fu(x) £, (x) dx

=fabx-adx+fbbx-(a+ 1) dx+f1[(b+ 1)x - bl (a + 1) dx
[} a b

(a - b)(1 - ab - b)

> = P(a, b) .

=.i+
2

Note that P(a,b) isa quadraticin each variableseparately. First, fix b and maximize P(a,b) asafunction
o a, yidding

0P _ 1-b-2ab+ b?

op b:-b+1
da 2 )

2b

=0 implies & =

For b = 1,this gives6 = 1/2. But for b = 1/2, @ = 3/4, which is not admissible, being greater than
1/2 Admiisibiilityof 6 requiresthat (b? + b + 1)/2b < b, which impliesthat 5 + b - 1.0, and hence
that bz m = (V5- 1)/2.

Next fix a and maximize P(a,b), the probability that B losesto A. This requires that

w = 2 t = | = —
3B - 0 implies b q )

Admissibilitydt 5 followsfrom 5 2 a, implying (@ + a + 1)/(2(a + 1)) 2, 042 + a- 1S0, ad

fidlyasm = (V5- 1)/2. Fora = 1/2,weget ® = 7/12 and P(1/2, 7/12) = 95/192, D the7112-rule
begis the 1/2-rule 1 - 95/192 = 97/19 o the time Thisis better than
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_i (1 -5 -2 ]
1 5 1 8 16 8/|_ 1 1
1'P('§"§)=1‘[_+ -2 " 2s6
It is no surprisethat the published solution mentioned simulationsthat gave 50.4% w ns, since1/2 +
1/256 = 0504. The7112-rulegives1/2 + 1/19 = 0506, So, 7/12 is the answer to Part (c), not 578.
Becausem satisfiesthe relationm = 1/(1 + m) and L= m + m?, it is not hard to show that
P(m,b) > 1/2fordl b > m and P(bm) < 1/2 for dl b < m, which demonstratesthat m will beat any
rule other than itsdlf, which it ties. It provides a saddle point of the function P(a,b), namely (m,m).
Thefollowing BASIC program simulatesthe 7/12 strategy versus the 1/2 strategy 10,000,000
times, printing the results every 10,000 games. To simulate the 5/8 strategy, replace each 7 by 5 and
each12by 8 in line 12. My results d running this program were that 7/12 beats 1/2 with frequency
0505215 and 5/8 beats 1/2 with frequency 0503897, which compare with theideals97/19 = 0505218
and 129/256 = 0.503906.

2FOR J = 1 TO 1000

3 RANDOM ZE

4 FOR I = 1 TO 10000
6A = RND

8IFA < STHENA = 2*A
10 B = RND

121FB < 7/12 THEN B = 12*B/7
41F A > B THEN 18
6W=W+1

18 NEXT |

20 PR NT J, 10000*W/J

2 NEXT J

731. [Spring 1990, Spring 1991) Proposed by Roger Pinkham, Stevens Ingtituted Technology,
Hoboken, New Jarsey.

a) Show that on the lattice pointsin the plane having integer coordinatesone cannot havethe
verticesd an equilateral triangle.

*b) What about a tetrahedron in 3-space?

V1. Comment by Seung-Jin Bang Seoul, Korea

In The Newdetterd the Koreen Mathematical Society, No. 27 (Jduly 1991) p. 17, there appears
asolution by a colleagueand me to the generalization of part (a) that statesthat no regular (21 + 1)-
gon can haved! rational coordinatesin the Euclidean plane. We furthermore point out that the result
istrue for any regular n-gon provided that # is not a power of 2.

733, [Fell 1990, Rl 1991} Proposed by Roger Pinkham, Stevensingtituted Technology, Hoboken,
New Jarsey,
If p(x) isa polynomial and p(x) > Ofor all x, then
p+p +tp+.20

for allx.




1V. Solution by David Yavenditti, Alma, Michigan.

Let S¢) = p(x) * p'G) T p'(x) T -, S0 that §'(x) = p'x) + p"@) + p"(®) + - Then
S(®) = p(x) T S'(x).Sicepisa polynomial that is dways nonnegative, thenp attainsa minimum. Now
S is a polynomid with the same leading term as p, so § also must have a minimum. Since S is a
polynomid, then § attainsits minimum vaueatx = c only if $’(c) = 0. Then, for dl red x,

S(x) = min{S(x)} = S(c) = p(c) + §'(c) = p(c) = 0.

745. [Spring 1991] Proposed by Alan Wayne, Holiday, Florida.
Find all solutionsto

ENID
+ DID
DINE.

I. Solution by Victor G. Feser, University of Mary, Bismarck, North Dakota.

Since there are four symbals, we solve the problem in base B, where B 2 4 From the B?
column,D = E + 1 From the unitscolumn W = E, where the arrow is read "yields' and is equivaent
to "congruent mod B." It signifies that 1 may be carried into the next column. Then 2E + 2+ E, so
E +2-0,whenceE =B -2 NowD = B-1and 1iscaried to the B column (the tens column in
base ten).

If 1is carried to the B2 column, then it becomes1 + N + (B- 1) - |, and we haveN = |,
which is not alowed. So the B and B2 columnsmust read 2L+ 1= Nand N + (B- 1) = | + B. Thus
N =1 + 1and, from the B column, | = 0and N = 1. Hence, for each base B = 4, the uniquesolution
is

(B - 2) 1 0 (B - 1)
(B - 1) 0 (B - 1)
(B - 1) 0 1 (B - 2).

T o complete the problem we show that thereis no solution for any negativebase B < -4. Since
successive powersof a negative number alternatesigns, if we carry 1 from a column in an addition, it
carries into the next column as-1. From the B* columnwe get E - 1 = D, and from the units column,
W - E. Substituting, as before, we get 2E - 2 E,s0E = 2and D = 1. Now 21~ N, that is 21 =
N+¢|B|, wherec = 0or L Also¢c + N + 1 =1+ |B|, which demands that N = |B|, an
impossihility. So there is no solution for any negative base.

I1. Comment by the Proposer.
Easy, want it?

Also solved for any positive base by CHARLES ASHBACHER, Hiawatha, I4, SEUNG-JIN
BANG, Seoul, Koreg, W LLI AMCHAU, NewYork, N¥, HENRY S. LIEBERMAN, Waban, MA, BOB
PRIEL | PP,Universityof Wisconsin-Oshkosh, KENNETH M. WILKE, Topeka, XS, and the PROPOSER.
Baseten solutionswvere submitted by JOHN T. ANNULIS, University of Arkansas-Monticello, FRANK
P. BATTLES, Massachusetts Maritime Academy, Buzzards Bay, JAMES E. CAMPBELL, Indiana
Universtyat Bloomington, CAVELAND MATH GROUP, Western Kentucky University, Bowling Green,
MARK EVANS, Louisville, KY, HOWARD FORMAN, Parsippany, NJ, DAWN M. GALAYDA, S.
Bonaventure Universty, NY, ROBERT C. GEBHARDT, Hopatcong NJ, S. GENDLER, Clarion
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Universityof Pennsylvania,RICHARD I|. HESS, RanchoPalosVerdes, C4, NATHANJASPEN, Sevens
Ingtituteof Technology, Hoboken, NJ, LOWELL F. LYNDE, R, University of Arkansas at Monticello,
WADE H. SHERARD, Furman University, Greenville, SC, REX H. WU, New York, NY; and DAVID
YAVENDITTI, Alma, MI.

746. [Spring 1991] Proposed by Gregory Wulczyn, Bucknell University, Lewisburg, Pennsylvania,

Find the least positiveinteger » that will have remainder 1 when divided by r, the quotient will
have remainder 2 when divided by r, the new quotient will have remainder 3 when divided by r, and so
forth through# - 1 divisSons. Thatis n = g, and g, = g7 t kfork = 1,2, ..., 7 - 1,r a positiveinteger
greater than 1

1. Solution by John Putz, Alma College, Alma, Michigan.
Wehaveqo = 1+ g7, ¢, = 2+ ¢, . g, = r- 1 * g.,r. Multiply the second equation by r,
the third by 7, and so forth, and then substitute to get
n=g=1+2+37+ ..+ (-1 +gq.,r"
T 0 minimize n, we chooseq,; = Osincer > 1. So
n=1+2+3%+ .+ (-1
and
m=r+22+3+ ..+ (-0,

Subtracting, we have

1 - it

+(1-nr
T ( )

Q-An=1+r+7P+ . +r2- (-1 =

50
n=gpmo T2 -1
(r -1)2

[1. Solution by Sephen |. Gendler, Clarion University of Pennsylvania, Clarion, Pennsylvania
The numbers described seem to be no more than

(r-1) (r-2) (r-3) ... (3)(2) (1) in baser,
where each pair of parentheses is a digit, since the repeated divisionis a method for changing bases.

Such numbers appear in any positivebaser, thesmallest beingr = 2, #n = 1. A few larger examplesare
listed below.




r n (baser) n (base ten)
3 21 7

4 321 57

5 4321 586

6 54321 7456

7 654321 114381

8 7654321 2054353

9 87654321 42374116
10 987654321 987654321

HI. Comment by the Proposer.

This problemisa variant of the ordinary cocoanut-monkey problem in which the cocoanutsin
a given pile are to be divided equaly among r people the next morning. During the night one of the
peoplesneaks out to the pile and dividesit into » equal pileswith exactly s cocoanuts|eft over, where
1Ss < r. Thes cocoanuts are thrown to a waitingmonkey and the person hidesone of the equal piles
as his/her share. The remaining cocoanuts are repiled into one pile. As the night progresses, each of
the r peoplein turn sneaks out to the pile and repeats the procedure of dividing the cocoanutsintor
equal pileswith exactly s cocoanutsleft over, throwing the s cocoanutsto the monkey, and hiding one
pile as that person's share. In the morning, there remain just enough cocoanutsto be divided equally
among ther people. Heres cocoanutsplus 1/r of the remainingpileare removed exactly » timestoleave
amultipleof » cocoanutsin the pile. See problem 3242 in The American Mathematical Monthly (January
1928).

Also solved by CHARLES ASHBACHER, Hiawatha, I4, SEUNG-JIN BANG, Seoul, Korea,
JAMESE. CAMPBELL, Indiana University at Bloomington, CAVELAND MATH GROUP, Western
Kentucky University. Bowling Green, WILLIAM CHAU, New York, NY, CHARLESR. DIMINNIE, S!.
Bonaventure University, NY, MARK EVANS, Louisiille, KY, VICTOR G. FESER, Universityof Mary,
Bismarck, ND, HOWARD FORMAN, Parsippany, NI, RICHARD |. HESS, Rancho Palos Verdes, CA,
HENRY S LIEBERMAN, Waban, M4, MOHAMMAD P. SHAIKH, Western Michigan University,
Kalamazoo, KENNETH M. WILKE, Topeka, KS, REX H. WU, New York, NY, DAVID
YAVENDITTI, Alma, MI, and the PROPOSER.

747. [ Spring 1991} Proposed by the late Jack Garfunkel, Flushing, New York.

LetABC bea trianglewith inscribed circle(l) and let the line segmentsAl, Bl, and CI cut the
incircle at A', B', and C' respectively. Provethat

SinA'+SinB’+SinC’zcos§ +cos—2 +cos-§,

where:A’, B', and C' are the angles of triangle4’B'C".

Solution by William Chau, New York, New York.
Since2£4’ = LBIC = = - (£B/2 + £C/2), it follows that

B+C _gin 5= = cos

sin2a’ =sin T_A %

I

with similar equalitiesfor B and for C. Now the stated equation is equivaent to
snA tsnB' tsnC zsn24’ +sn28' +sn2C,

whichisitem 24 on p. 18 of O. Bottemaet d, Geometric Inequalities, Wolters-Noordhoff, Gronigen,
1968.

Also solved by SCOTT H. BROWN, Stuart Middle Schoal, FL, RUSSEL L EULER, Northwest
Missouri State Universty, Maryvillee, MURRAY S KLAMKIN, Universty o Alberta, Canada.
YOSHINOBU MURAYOSHI, Eugeng OR, BOB PRIELIPP, University of Wisconsin-Oshkosh, REX
H. WU, New Ytrk, NY; and the PROPOSER, Prielipp pointed out that this same problem appeared with
his solution as problem 4274 in the March 1991 School Science and Mathematics.

748. [Spring 1991] Proposed by the late John Howell, Littlerock, California.

a) An urn containsn balls numbered 1 ton. Algernon, Beauregard, and Chauncey draw a ball
one after another with replacement. The game is terminated when two consecutive drawings produce
the same ball. Find the probabilitiesaf terminating on Algernon's draw, on Beauregard's draw, and on
Chauncey’s draw.

b) Repeat the problemfor the case that the game terminateswhen three consecutive drawings
produce the same ball.

Amalgam of solutionsby David Yavenditti, Alma, Michigan, and Morris Katz, Macwahoc, Maine.

Instead, we generalize the result fork consecutivedrawingsof thesameball, k > 1. Wedenote
by P(X) the probability the game terminateson X's draw. Let the players be denoted by X;, where
X, = Algernon, Beauregard, or Chauncey according asi = 1, 2, or 3(mod 3). Thefirst personwho could
wn (terminate the game) is X, on the kth play with probabilityp= 1/n*'. Letq = 1- p. If X, doesnat
win at that turn, then X,,, could win on the (k + 1)st play with probability pg, or X, couldwn on the
(k + 2)nd play with probability pg?, etc. Hence

PX) =p+pqg + g+ pg’ + ..

1/nk-1 _ n2k-2

__ Db _ - )
1-g 1-(1-1/n%Y)3 3n%2-3pk14g

Now, let X, lose on the kth play (with probability q). Then X,,, faces the same conditionsthat X, did
on the kth play, and we have
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nzk-Z(l - 1/nk—1) n2k-2 - pk-1
P(X. = g+P(X)) = = .
Xi1) = 9°P(Xy) 3p2k2 — 3kl 4 1 3n2k-2 o 3pk-1 4 q
Similarly,
nzk—2(1 - 1/nk-1)2 nzk—z - znk-—l +1

=g°- = =
PO =0 PO = S aks —3pkt 5 1 3aE - anFt a1

It followsthat, for part (a),

n? () = n? - n P(a) = n:-2n+1
’ B o =l T s B e =

P(B) = — ., P(C
3n2-3n+1 3n2-3n+1 3n?2-3n+1

Similarly, for part (0) we have that

n4 nd _n2
P(C) = —/———— P(A) = —————, P(B) = —/————
3n*-3n2+1 3n%-3n%+1 3n*-3n2+1

Also solved by CHARLES ASHBACHER, (Part (a) only), Hiawetha, 14, JAVES E.
CAMPBELL, (Part (a) only), IndianaUniversityat Bloomington, WILLIAM CHAU, (Part (a) only). New
York, NY, MARK EVANS Louisville, KY, HOWARD FORMAN, (Part (a) only), Parsippany, NI,
RICHARD |. HESS, Rancho Palos Verdes, C4, MOHAMMAD P. SHAIKH, Western Michigan

University, Kalamazoo, REX H. WU, (Part (a) only), New York, NY, and the PROPOSER. Not all
solutions agreed with that of Morris Katz

749. [Spring 1991] Proposer by R S. Luthar, University of Wisconsin Center at Janesville,
Janesville, Wisconsin.
If sinx + siny + sinz = O, then prove that

|sin3x + sin3y + sin3z| < 12|xyz|.

Solution by Bob Prielipp, Universityof Wisconsin-Oshkosh, Oshkosh,
Wisconsin.

Ifa+b+c=0,then

atb+c.3abc=(atbtc)a®+p*+cZ-bc-ca-ab)=0.
Thus, Sncesinx + siny + sinz = 0, we have
sin'x + sin’y * sin®z = 3sinx siny sinz.
Also, dncesn¥ = 39nt-44dn t, weget tha
sin 3r + sin 3y + sin 3z = 4(sin’x + sin®y * sin®z) = -12sinxsiny sin z.

Hence the required inequality holdsif and only if
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[sinxsinysinz| < |nz],
which followsimmediately from the vl known inequality |sint| = [¢],

Al'so solved by SEUNG-JN BANG, Seoul, Kores, MARTIN BAZANT, Tucson, AZ, WILLIAM
CHAU, New York, NY; RUSSEL L EULER, Northwest Missouri Sate University. Maryville, MURRAY
S KLAMKIN, Universty of Alberta, Canada, YOSHINOBU MURAYOSHI, Eugene, OR,
MOHAMMADP. SHAIKH, Western MichiganUniversity. Kalamazoo, REX H. WU, New York, ¥7; and
the PROPOSER.

*750. [Spring 1991] Proposed by Dmitry P. Mavio, Mosocow, U.S.S.R.
Solve the sysem of equations

2%y + (3%,/1 - y2 = y3 and 3*y - (29)y1 - y% = y2.

This problem appeared in the SYMP-86 Entrance Exam Mathematica Problems.

Solution by Parush Saxena, Massachusetts Maritime Academy, Buzzards Bay, Massachusdtts.
Lettingy = sn 8, we must solve the equations

2°dn@ + 3 cos® =v3 and 3¥sn0- 28 cosO = v2.

Nowsquare these equationsand add to get 2> + 3* = 5, which has the unigue solutionx = 1/2 since
the left side of the equation is an increasing function of x. Subdtitutingx = 1/2 into the first of the
origina equationsyields

VZy + V3Y1 - ¥y = /3,

which, upon squaringand simplifying, reduuces to
y(5-2v6) =0, soy =Qory = 24/6 .

Only thelatter vaue checksin the given equations, so the uniquesolution isx = 1/2 andy = 2v6/5.

Also solved by CHARLESASHBACHER, Hiawatha, Z4, SEUNG-JIN BANG, Seoul, Korea
FRANK P. BATTLES, Massachusetts Maritime Academy, BuzzardsBay, BARRY BRUNSON, Western
Kentucky University, Bowing Green, JAMES E. CAMPBELL, Indiana University at Bloomington,
WLLI AM CHAU, New York, N¥, CHARLES R. DIMINNIE, S. Bonaventure University, NY,
ROBERT O. DOWNES, Long Beach, C4, MARK EVANS, Louisiille, KY, HOWARD FORMAN,
Parsippany, NJ, ROBERT C. GEBHARDT, Hopatcong, NJ, RICHARD |. HESS, RanchoPalos Verdes,
CA4, HENRY S. LIEBERMAN, Waban, MA, PETER A. LINDSTROM, North Lake College, Irving TX,
G. MAVRIGIAN, Youngstown Sate Universty. OH, YOSHINOBU MURAY OSHI, Eugene, OR.
W LLI AMH. PEIRCE, Stonington, CT, GEORGEW. RAINEY, LosAngeles, C4, MOHAMMAD P.
SHAIKH, Western Michigan University, Kalamazeo, DAVE SMITH, Messiah Cdllege, Grantham, PA,
REX H. WU, New York, NY, and DAVID YAVENDITTI, Alma, MI. One faulty solution wes also'
submitted,




751. [Spring 1991] Proposed by Murray S. Klamkin, Universty o Alberta, Edmonton, Alberta,
Canada.
Determineall pairsd postive numbersx andy such that

1 X

9(x+y)+i+—210+-—-—+—z.
X y X

<

. Solution by Seung-Jin Bane, Seoul, Republicd Korea
Multiply the stated inequality by the postive quantity xy and rearrange the result to get the
equivaentinequality

@ G-+ (% -D-1x+ya-y) =0

Case 1. Thel€ft sideis a quadratic polynomial whose discriminant is

D=-)-D-1)7

soD = Ofor 1/9 sy s 1, whence the origina inequality holdsfor dl x > Owhen1/9 sy < 1. By the
symmetry of the origina inequdity, it holdsalso for ally > Owhen1/9 sx s 1.
Case 2 Since Inequality (1) can be rewrittenin the form

(- Yk -x) + (1-%y(l-y) + 8y =0,

weseeitistruefor0 <x < 1/9and0 <y < 1/9,and also forx > 1landy > 1

Case3 We need only consider the region 0 < x < 1/9 andy > 1and by symmetry the region
0 <y < 1/9 andx > 1. Apply the quadratic formulato the quadratic polynomia of Inequdlity (1) to
get that, wheny > 1, we must have

-~y -Dy-1) + By-1DyOBy -1y -1}

>
* 2(9y - 1)

Now interchangex andy to get the correspondinginegudlity for the region wherex > 1.

N

Ty

"

‘k
-
b
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11, Solution by Robert €, Gebhardt, Hopatcong, New Jarsey.
Multiply the inequality by xy and rearrangeto get

9y + 9%’ +x+y-x*-y-10y 20

We graph the equation, as shownin the accompanyingfigure. The curve hasintercepts(0,0), (1,0),.and
(0,1). Then any addressin thefirst quadrant between the curves (e.g. (1,1) or (0321, 65.432)) will satisfy
the given inequdlity.

IIT, Comment by Elizabeth Andy, Limerick, Mane.
The graph in the accompanying figure clearly shows asymptotesx = 1/9,y = 1/9, andx +y
= 8/9. Replacethe origina inequality by equality and rewriteit in the form

x~1+y—l

9(x+y) =10 + v =

and firdly

x+y)(x+y-1)

9(x+y) =8+
¥ Xy

We see that, when x = + 1 and |x| islarge, the fraction is approximately zero, and we get the
equation o the oblique asymptotex +y = 8/9. Smilarly, the equation can be rewritten in the form

Oy-1){1-% [, y-1

9y =1 + 7 =

If |x| islargeandy = 1/9, then both fractionson the right are approximately zero, and the equation
reducesto the horizonta asymptote9 = 1. Thuswe get the asymptotesagebraicaly, too.

Furthermore the origina inequality showsthereis symmetry inx andy, that is in theline y =
x. Therefore, in Inequality (1) of Solution | above, replace the inequaity by equality, interchangex and
y, and apply the quadraticformula to get that

-(9x-1)(x-1) +/(9x -1)(x - 1) (3x - 1)2
2(9x - 1) !

__x-1 3x~-1 x -1
¥ = 2 T 2 \l9x-1'

When |x| islarge, then the quantity in the radical is approximately 1/9, so the solution becomes

y‘:

which reducesto

x -1 3x -1
~ - +
y 3 3 '

that is




1 2
~ = or ~-x+ 2,
¥*3 4 3

These are mot the equations of the asymptotes! What is wrong? Why does the application of the
quadratic-formula show incorrect asymptotes?

When a problemis most paradoxical,
Then don’t let it become cardiotoxical.
You just say it aloud
TotheP M E crowd.
And the answer you'll get from some foxy gal.

Al'so solved by WLLI AMCHAU, New York, NY, MARK EVANS, Louisville, KY, RICHARD
|. HESS, Rancho Palos \erdes, C4, and the PROPOSER Two other solverssent in apair of faulty
solutionsand a partial solution.

752. [Spring 1991] Proposed by the late Charles #. Trigg, San Diego, California.

Martin Gardner ("Mathematical Games" ScientificAmerican, April 1964, page 135) hasshown
that the minimum sum of three 3-digit primesthat contain the nine non-zero digitsis 999, Bind a set
o three such primes that sumsto another multipleof 37.

Solution by William Chau, New York, New York.

Let S bethe sum o the three primes. The units digit of each primeisonedf 1, 3, 7, and 9, so
t he units digit of S will be1, 3,7, or 9 according as9, 7, 3, or Lis not used as the units digit of one of
the primes. The maximum value of S is100(6 + 8 + 9) + 102+ 4+ 5 + (1+3+7) = 2421 <
6637 and the minimum vaueis 959.

Each prime is congruent to the sum o its digits modulo 9. ThereforeS =1+ 2+ 3 + .. +
9=45=(0(nod 9), 08 isamultipledf 937 = 333. The only multiple of 333 between 959 and 2421
that terminatesin 1, 3, 7, or 9is 2331, so § = 2331 and the units digitsdf the primesare 1, 3, and 7.
For Sto bethat large, the hundreds digits of the primes must be 9, 8, and 4 or 5 or 6. Since their tens
digits are then 2, and two of 4 and 5 and 6, the tens column produces a carry of exactly 1 to the
hundredscolumn, so the hundreds digitsof the primesare 9, 8, and 5. The tensdigitsare thus2, 4, and
6. From a table of primes we see that there are just 12 primes that meet the requirementsfor the
addends: 521,523,541,547,563,821,823,827,863,941,947, and 967. It iseasy now to find that there
are exactly the four solutions {521, 863, 947}, {541, 823, 967}, {563, 821, 947}, and {563, 827, 941}.

Also solved by CHARLES ASHBACHER, Hiawatha, I4, MARK EVANS, Louisville, KY,
VICTOR G. FESER, University of Mary, Bismarck, ND, DAWN M. GALAYDA, . Bonaventure
University, NY, STEPHEN |. GENDLER, Clarion University of Pennsylvania, RICHARD |. HESS,
Rancho Palm Verdes, C4, HENRY S LIEBERMAN, Waban, MA, BOB PRIELIPP, University of
Wisconsin-Oshkosh, KENNETH M. WILKE, Topeka, KS, REX H. WU, New York, &Y, and the
PROPOSER. Ashbacher, Evans, Lieberman, and Wu each found the solution to the originalproblem 149
+ 263 + 537 = 999,

733 [Spring 1991) Proposed by R. S Luthar, Universty of Wisconsin Center at Janesville,
Janesville, Wisconsin.
Solve simultaneously
e te?" =8 ad €-¢=2

Solution by George P. Evanovich, Saint Peter's College, Jersey City, New Jersgy.
Lete* =u + vande’ = u - v. From the second given equation, v = 1, so we have

W+ 1)+ @-1)°=82 or u'+6u’-40=0,

and henceu = +2 or +iv10. Then (¢*, € = (3, 1), (-1, -3), (A + iv10, -1 t+ iv10), or (1- W10;-1-
iv10). Now (5,y) = (n3, 0) (the only real solution), (wi + 2ak, In 3 + 2nki), or (N v11 + i(tan’ (+v10)
+ 27k), Inv11 T i(tan’(+v10) + 2mk)), wherek is an integer.

Also solved by JOHN T. ANNULIS, University of Arkansas-Monticello, CHARLES
ASHBACHER, Hiawatha,I4, SEUNG-JIN BANG, Seoul, Koreg, FRANK P. BATTLES, Massachusetts
Maritime Academy, Buzzards Bay, DIETER BENNEWITZ, Koblenz, Germany, SCOTT H. BROWN,
Suart Middle School, FL, BARRY BRUNSON, Western Kentucky University, Bowling Green, JAMES
E. CAMPBELL, IndianaUniversity at Bloomington, CAVELAND MATH GROUP, Western Kentucky
University, Bowling Grew, JEAN CHAPMAN, Creston, I4, WILLIAM CHAU, New York. NY,
PATRICK COSTELLO, Eagtern Kentucky Universty, Richmond, CHARLES R. DIMINNIE, S.
BonaventureUniversity, NY, ROBERT O. DOWNES, Long Beach, CA, RUSSEL L EULER, Northwest
Missouri Sate University, Maryville, MARK EVANS, Louisiille. KY; VICTOR G. FESER, Universityof
Mary, Bismarck, ND, HOWARD FORMAN, Parsippany, NJ, DAWN M. GALAYDA, . Bonaventure
University, NY, ROBERT C. GEBHARDT, Hopatcong,NJ, STEPHEN |. GENDLER, ClarionUniversty
of Pennsylvania,RICHARD A. GIBBS, Fort LewisCollege, Durango, CO, STAN HARTZLER, Messiah
College, Grantham, PA, RICHARD |. HESS, Rancho Palos Verdes, C4, NATHAN JASPEN, Sevens
Ingtitute of Technology, Hoboken, NJ, HENRY S. UEBERMAN, Waban, AM, PETER A.
LINDSTROM, North Lake Callege, Irnving, 7X, LOWELL F. LYNDE, JR., University of Arkansasat
Monticello, G. MAVRIGIAN, Youngstown SateUniversity, OH, Y OSHINOBU MURAY OSHI, Eugene,
OR, WILLIAM H. PEIRCE, Stonington, CT, BOB PRIELIPP, Universty of Wisconsin-Oshkosh,
GEORGE W. RAINEY, Los Angeles, CA, PARUSH SAXENA, Massachusetts Maritime Academy,
Buzzards Bay, MOHAMMAD P. SHAIKH, Wesern Michigan University, Kalamazoo, WADE H.
SHERARD, Furman University, Greenville, SC, KENNETH M. WILKE, Topeka, KS, REX H. WU, New
York, NY, DAVID YAVENDITTI, Alma, MI. and the PROPOSER.

754. [Spring 1991] Proposed by Seung-Jin Bang, Seoul, Korea.
Leta,=a,=1,a,=2 and@a,,, = Q, - a,, T a,,forn >3 Show that

2 2 3 _
Qn,28p45 0 ~ 8p,28p-1 = Qpuadp, t Zamlanan_l - anp + 3=0.

|. Solution by the Proposer.
It suffices to show that

an.z anfl an

aﬂ*l an an-l =

n an-l an—2

To that end, we have
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Qnyz Qpa1 2, 1 -1 1}|8+2 @n @p-1
Q1 @, 8py|=(1 0 0|j&, @, a -2|s
an an-l. an-z 010 an-l an—z‘an-B
and hence

Qpsz2 Qpa1 4, 1 -1 1% 2 2
ané], an an—1 = 1 0 0 2 2 1
a, a,, a,, 010 211

Since the two matrices on the right side of this last equation have determinants1 and -3 respectively,
the determinant of the matrix on theleft sideis-3

I, Solution by Murray S Klamkin, Universty of Alberta, Edmonton, Alberta, Canada.
As stated, &, is not determined, so that the given equation is not necessarilytrueforn = 3 If
therecursion formulaisvaid forn = 3, thena, = 4, - a, + a, = 2and a; = 1. Sincewe now havea,,,

= a,, for n 2 3, it suffices to check the desired equation for n = 3 4, 5, and 6, for which vauesit is
true.

1. Solution by Rex H. W, New York, New York
To expressa, in termsd n, let a, = A. Then

antt = Af-amht a2 sothat A3 = A At
(A-1)(A* + 1) =0, andfindly A=1, +i.
Any linear combination of solutionsis also a solution, so we have that
a, =a+ B + y(-i)*
for some complex constantsa, g, and v. By hypothesiswe must have
Gy=a+Bi-yi=14, ay=a-B-y=1,
andg; =a-Bi + yi =2,

which we solve simultaneouslyto get that

3 i=1 i+
o = — = = +
2! B 4i ’ and ¥ 4i .

Therefore,

i-1.p, 1+1, +n
17+ — (-1) 78,
4] 41( )
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It followsimmediately that a,.4 = a. By tedious but straightforward algebra one can show that
@, *Guz = 2and that @2 + a2,, = 5 Now we have

2 2 _ 3
Qn28n8p.2 ~ 8p2@n-1 ~ @na18pp ¥ 285,18,89 T 8p * 3

2 2 3
= 28,5, - 8,851 ~ @518, + 48, — @ + 3

3
=2a,,-5a,, +4a,-a, +3

-3a,, + 4a, - a5 + 3.

n-2

Sincea, = 1ifn=10r2(mod4) anda, = 2ifn =0 or 3(mod 4), we need verify only that the last
displayed lineiszerofor a,, = 1and a, = 2, and for @,, = 2and a = 1, which iseasily accomplished.

Editor's comment. Only Klamkin spotted the omission, which was my etror. The proposer had
dated aly the definingequations; | added the inequality. So | shall do my penanceat leastn > 3times.

Also solved by CHARLESASHBACHER, Hiawatha, L4, SCOTT H. BROWN, Suart Middle
School, FL, JAMES E. CAMPBELL, Indiana Universityat Bloomington, CAVELAND MATH GROUP,
Western Kentucky University, Bowling Green, WILLIAM CHAU, New York, NY, RUSSELL EULER,
Northwest Missouri Sate University, Maryvitie, MARK EVANS, Louisville, KY, VICTOR G. FESER,
Universityof Mary, Bismarck, ND, HOWARD FORMAN, Parsippany, NI, ROBERT C. GEBHARDT,
Hopatcong NJ, RI CHARD |. HESS, Rancho PalosVerdes, C4, HENRY S, LIEBERMAN, Waban, MA,
WILLIAM H. PEIRCE, Stonington, CT, MOHAMMAD P, SHAIKH, Western Michigan Uriversity,
Kalamazoo, KENNETHM. WILKE, Topeka, KS, and DAVID YAVENDITTI, Alma, MI.

736, [Spring 1991] Proposed by Sanley Rabinowitz, Alliant Computer Systems Carp,, Littleton,
Massachusetts.

Intriangle ABC, acircled radiusp isinscribedin the wedge bounded by sidesAB and BC and
theincircle (1) of the triangle. A circle of radiusq isinscribed in the wedge bounded by sidesAC and
BC and the incircle. If p = g, prove that. AB = AC.

I. Solution by Richard |. Hess, Rancho PalosVerdes, California.
Let theincircle (7) touchBC at X. If the two side circleshave thesameradius, then areflection
about the line X leaves the picture unchanged, whenceAB = AC.
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I1. Solution by Murray S. Klamkin, University of Alberta, Edmonton, Alberta, Canada.

Draw the angle bisector BI of angle B and let r denote the inradius. Let the parallel to BC
through the center P of thecircleof radiusp cut Zx at ¥: ThenIY =r -pand 2 =r + p, and it now
follows easily that

inB_-zx-p L . C_r-q
sin= b and similarly sin 3 = 52

Finally, p = q impliesthat Sn (B/2) = sn (C/2) and hence that AB = AC.

Al'so solved by SEUNG-JIN BANG, Seoul, Korea, DIETER BENNEWITZ, Koblenz, Germany,
SCOTT H. BROWN, Suart Middle School, FL, WILLIAM CHAU, New York, NY, STEPHEN |.
GENDLER, Clarion University of Pennsylvania, HENRY S. LIEBERMAN, Waban, MA, T. R. K.
PAPPU, Occidental College, Los Angeles, C4, MOHAMMAD P. SHAIKH, Western MichiganUniversity,
Kalamazoo, WADE H. SHERARD, Funnan University, Greenville, §G, REX H. WU, New York, N7,
DAVID YAVENDITTI, Alma, MI, and the PROPOSER.

756. [Spring 1991] Proposed by Basil Rennie, Bumside, South Augtralia.

Consider covering the unit interval [0,1] with n messurable subsets, under the constraint that
al # subsets must have the same centroid. The centroidm of aset E may be definedby [g(x - m) dx
= 0. How can you choose then sets to minimizem?

For example, if # = 4, it is possble to makem = 7/20 by choosing the four sets
[0,2/5][9/10,1], [0,1/5}u[4/5,9/10], {1/20,1/4]u[7/10,4/5], and [0,7/10]).

Solution by the Proposer.

The smallest valueof m is1/(1 + va), which we denote by c. For, let E, (forr = 1, 2,.., n)
consist of the union of the two intervals[0, c] and [c+ ev{r - 1), ¢ T cvr]. Each E, has centroidc and
together they cover the interval.

To show thisvaluec is best possible, taken setsE, coveringthe interval and with centroidsat
m. Divide each set into E; to the left of m and E? to theright of m. The first moments of the two
subsetsabout m must add to zero, and thereforethe moment of £7 about m can be no more than m?/2,
but the sum of all these moments over then setsisat least (1- m)?/2. Hence, nm* a (1- m)?, or
[m(va + 1) - 1}[m(va - 1) * 1] @ 0, which is true whenever the quantity in the first bracketsis
nonnegative; that is whenm 2 c.

757. [Spring 1991] Proposed by Paul Anthony Courtney, graduate student, San Diego Sate
University, Sen Diego, California.

Find the overall height of the pyramid formed from four spherical balls of radiusr. Student
solutionsare especialy solicited.

Solution by David Yavenditti, high school student, Alma, Michigan.

Consider instead the pyramid formed by n triangular stacks of spheres, each of radiusr. Let h
be the overal height and let A, B, G, D be the centers of the four comer spheres, which determine a
regular tetrahedron of edge2r(n - 1), as shown in the accompanying figure. We must find the length of
the altitude BO of the tetrahedron, O being the center o the equilateral triangle ACD. Then OM is
perpendicularto AC and triangle AOM is a 30°-60° right triangle, S0.40 = 2r(n - 1)/v3. Since ABO
isa right triangle, then BO = 2r(n - 1)v6/3, and the overall height is given by
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3

h=Bo+2r=zr(1+—_——£(”‘l) 6).

The caseweseek isn = 2,soh = 2/(1 + v6/3).

Also solved by CHARLES ASHBACHER, Hiawatha, I4, MARTIN BAZANT, Tucson, AZ,
W LLI AMCHAU, New York, NY, ROB DOWNES, Long Beach, C4, RUSSEL L EULER, Northwest
Missouri Sale University, Maryville, MARK EVANS, Louisville, KY, RICHARD |. HESS, Rancho Palos
Verdes, CA, HENRY S LIEBERMAN,Waban, M4, LOWELL F. LYNDE, JR., Universityof Arkansas
at Monticello, MOHAMMAD P. SHAIKH, Western Michigan University, Kalamazoo, REX H. WU, New
York, NY, and the PROPOSER.

MESSAGE FROM THE SECRETARY-TREASURER

Copies of the new, revised Constitution and Bylaws are now available. The prices are: $1.50
for each of thefirst four copies and $1 for each copy thereafter. Le., $(1.50 n)for n < 4 and $(n +2)
forn> 4.

The videotapedf Professor Joseph A. Gallian’s AMS-MAA-PME Invited Address, "The Mathe-
maticsof Identification Numbers™ given as part of PME’s 75th Anniversary Celebration at Boulder,
CO, in August, 1989, isalsotill available. The tape may be borrowed free of chargeby PME chap-
ters, and by others upon an advance payment of $10. Please contact my officeif you desireto borrow
the tape, telling me the date on which you would like to useit. | prefer to mail the tape directly to
faculty advisors, and expect them to take responsibility for returning it to my office. Please submit
your reguest in writing and include a phone number and a time that | might reach you if there are
problems. Robert M. Woodside, Secretary-Treasurer, Department of Mathematics, East Carolina
University, Greenville, NC 27858.
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UPCOMING Pl MU EPSILON 1992 NATIONAL MEETING

The-national meeting for Pi Mu Epsilon this year will be very special. Usually, the national
meeting:is held in conjunction with the national meetings of the American Mathematical Society
and the Mathematical Association of America. In 1992, however, the International Congress of
Mathematics Educators (ICME) will hold its annual meeting in Quebec City, in Canada. It has
been the policy of the AMS and MAA that in order to avoid a conflict in scheduling, summer
meetings are not held in years when an international mathematics meeting (e.g., ICME or the
International Congress of Mathematicians) takes place in North America. For this reason, there will
be no AMS-MAA national meeting this summer.

Becauseof thesespecial circumstances, Pi Mu Epsilon will hold its summer meeting in conjunc-
tion with the meeting of the MAA Student Chapters. The meeting will take place August 5-8, at
Miami University in Oxford, Ohio.

The meeting will begin on the evening of Wednesday, August 5, with a Student Pizza Party and
Reception. (Registration and room check-in will begin in the afternoon and continue throughout
the evening.)

Highlights of Thursday's program (August 6) will include the MAA Invited Lecture, by Peter
Hilton; a reception for Professor Hilton; sessions for contributed papers by PME and MAA student
chapter members; presentations by the MAA Modeling Contest winners; meetings of the PME
Council and the MAA Student Chapter Committee; and an excursion to the nearby King's Island
Theme Park.

The program on Friday, August 7, will feature more student presentations; a choice of two
minicourses (open to students and faculty); a panel discussion and display on careers; the Pi Mu
Epsilon Banquet; and, finally, the J. Sutherland Frame lecture. This year's Frame lecturer will
be Underwood Dudley. The Pi Mu Epsilon portion of the meetings will conclude with informal
gatherings after the Frame Lecture.

The meeting will conclude on Saturday, August 8, with thefinal session of MAA student papers
and a choice of two minicourses.

TRAVEL SUPPORT FORTHE SUMMERMEETING

Pi Mu Epsilon will provide travel support for one student speaker from each chapter. |If
a chapter is not represented by a student speaker, Pi Mu Epsilon will provide one-half support
for a student delegate. Full support is defined to be full round-trip air fare (including ground
transportation) from the student's school or home to Oxford, Ohio, up to a maximum of $600.
(Delegates will receive up to $300.) A student who chooses to drive will receive 25 cents per mile
for the round trip from school or home to Oxford, up to $600. (Delegates will receive 124 cents
per mile, up to $300. Travel support will be provided for only one student per chapter. However, if
several students from the same chapter wish to attend, they may share the travel support, if they
choose to do so. (Specia discounted group airline tickets are available on Delta Airlines through
Travel Unlimited, the official travel agency for the conference: 1-800-466-7555.)

For further information about the meeting and the travel support:

SEE YOUR PI MU EPSILON ADVISOR
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GLEANINGSFROM THE CHAPTER REPORTS

CONNECTICUT GAMMA (Fairfield University) During thefall semester the chapter sponsored the
second annual Math Bowl Contest. Eight teams of four students competed in a "' GE College Bowl"
type of competition, in which all the questions were mathematical. In the spring, members of Pi Mu
Epsilon assisted the Mathematics Department in coordinating the activities for Math Counts,-which
isa mathematics contest for junior high school students. At the annual spring initiation ceremony
thirty-two new members wereinducted. “Biostatistics: Who, What, Why, and When?' by Kerrie
Eileen Boyle of the Research Triangle Institute was the title of the Pi Mu Epsilon Lecture during
the induction ceremony. Dr. Boyle, a 1974 graduate of Fairfield, was also inducted. During the
Annual Artsand Sciences Awards Ceremony, two members, Thomas Lipka and Francis Maurais
received recognition for their outstanding performance in mathematics. Each was given a Pi Mu
Epsilon certificate of achievement, a book each selected in an area of mathematics, and a one-year
membership in the Mathematical Association of America

INDIANA GAMMA (Rose-Hulman I nstitute of Technology) In thefall of 1990, six students attended
the Miami University Conference, with John O°’Bryan, Jeff Dierckman, and Omar Zaidi pre-
senting papers.

The chapter helped administer the RHIT-St. Mary of the Woods Mathematics Competition
(for area high school students) and the 2nd Annua Alfred R. Schmidt Freshmen Mathematics Com-
petition at Rose-Hulman. M ark Roseberry took first place and Jonathan Atkins took second.
Our chapter helped the Rose-Hulman Mathematics Department stage the Annual Rose-Hulman Un-
dergraduate Mathematics Conference, which involved over 80 participants and 25 papers. Seven d
our students gave papers: John O'Bryan, Jeff Dierckman, Omar Zaidi, Mark Roseberry,
Jonathan Atkins, Ben Nicholson, and Tony Hinrichs. Five teams of three members each par-
ticipated in thelndianaCollege Mathematics Competition, with the RHIT team of John O’Bryan,
M ark Roseberry, and Jonathan Atkins taking first place.

On April 24, 32 new memberswereinitiated into the Indiana Gamma Chapter. It was the 25th
anniversary of thefounding of the Chapter. The speaker at our initiation banquet was Dr. David
Ballew, President of Pi Mu Epsilon and Chairman of the Computer Science Department at Western
Ilinois University.

KANSAS GAMMA (The Wichita State University) The chapter had a number of speakers during
the year. The speakers were: Joseph Stafford, "Tilings” Abdelmalek Kemmou, "Fuzzy Set
Theory & the Logic of the Continuum;" Ming Liu "Design of Experiment;" Rajiv Bagai, "Formal
Logic asa Programming Language;" Dewi Saleh, "Some Mathematical Puzzles"" Members of the
chapter held free help sessions for undergraduate courses. One of the members, Abdelmalek
Kemmou, gave a tak at the joint meetings of the Kansas Section of the MAA and the Kansas
Association of Teachers in Mathematics, held at Southwestern Collegein April, 1991. The chapter
alsostarted a publication, called ALEPH TWO. The publication isintended to contain mathematical
investigations, mostly by students.

MINNESOTA ZETA (St. Mary's College) The Chapter conducted a number of mathematics col-
loquia and several chapter-wide business meetings. The Chapter celebrated Math Awareness Week
in April with two main activities: Professor K en Kasin, of St. Mary's presented a talk entitled
"Elementary Concepts of Mathematical Chaos"; and eleven new members were initiated into the
chapter.
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OHIO ZETA (University of Dayton) The chapter continued to be active this year. Among other
activities, the members presented several talks at various meetings and conferences. Fiye students
presented talks at the Pi Mu Epsilon Meeting in Columbus, Ohio, jn August. Four of them presented
the results of the research they conducted in the program " Research Experiences for Undergraduates
in Algebraic Graph Theory at the University of Dayton." This program was sponsored by the NSF
and Professors Higgins and Mushenheim conducted the program during the summer of 1990.
All of these five students also gave talks at the Pi Mu Epsilon Regiona Conference held at Miami
University, Oxford, Ohio, in September, 1990. These students are Marjorie August, David
Gebhard, Tom Bohman, Chicako Mese, and Colleen Hoover. David Gebhard and David
Kaas presented talks at the Spring Meeting of the Ohio Section of the MAA held at Bowling Green,
Ohio, in April, 1991.

Chicako Mese, Tom Bohman, and Colleen Hoover jointly received UD’s Faculty Award for
Excellencein Mathematics, whileKristen Toft and Kristine Fromm shared thisyear's Sophomore
Class Award.

VIRGINIA ALPHA (University of Richmond) In the fall, in addition to an initiation ceremony,
the Chapter co-sponsored a Math/Computer Science Department colloquium on October 22. The
speaker, Professor Jim Kuzmanovich, from Wake Forest University, spoke on "The Lore of
Infinity." In the spring, the Chapter held a research forum where four student members, who were
engaged in independent research projects, gave 15-minute talks on their projects and how they got
started. The speakers were Fran Centofante, Jeff Michel, John Murphy, and David Flader.
David Flader presented his paper on Game Theory and Pseudo-Boolean Functions at the National
Pi Mu Epsilon Meeting in Orono, Maine, in August. The final event of the year was the annual
Pi Mu Epsilon picnic (co-sponsored with the Computer Science Club). At this picnic, Jeff Michel
was presented with the award for Outstanding Computer Science Student and David Flader was
presented with the award for Outstanding Mathematics Student. Freshman. Kelly Donnellon,
was presented with the Pi Mu Epsilon Book Award for outstanding work in Calculus| and IL.

WISCONSIN DELTA (St. Norbert College) In August, 1990, three students attended the Pi Mu
Epsilon Nationa Conference in Columbus, Ohio. Amy Krebsbach, Mike Lang, and Dave Ol-
son were in attendance, with Mike Lang presenting a paper. In April, 1991, Amy Krebsbach
presented a paper at the St. John's University Regional Math Conference. Also in attendance were
Dawn Boyung, Chris Cypcar, Amy Gerrits, Mike Lang, and Mike Zittlow.

SNC was host to several speakers during the year. Dr. Bill Shay (UW-Green Bay) spoke on
"Cyclic Redundancy Check - Error Detection Using Polynomial Division." Other speakerswere: Dr.
Alan Parks (Lawrence University) on "Genetic Assembly Line Balancing" and Richard Witalka
and John Towne (Schneider National Corporation) on 'The C Programming Language.”

Perhaps the biggest event of the year for the chapter was hosting the Fifth Annua Pi Mu
Epsilon Regional Conference in November. The featured speaker was Dr. Jeanne LaDuke, of
DePaul University, who spoke about the role of women in American mathematics. L aura Donzelli
of SNC presented one of the 14 student papers at the conference.

Other significant events included the Ninth Annual SNC High School Math Meet held in con-
junction with SNC’s math club, Sigma Nu Delta. Theannual Brenda Roebke Volleyball Tournament
was also held in cooperation with Sigma Nu Delta. Part of the proceeds from this tournament go
toward a scholarship fund for SNC students majoring in mathematics. Thisyear's winner wasLinda
Mueller.
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IN MEMORIAM

John T. O’Bryan, the president of the Indiana Gamma Chapter of Pi Mu Epsilon, at Rose-
Hulman | nstitute of Technology, died December 16, 1991, as a result of injuries he receivedin & car
accident.

John was one of the most active and productive members the IndianaGamma Chapter has ever
had. Between April, 1990, and September, 1991, he presented five different papers at six different
conferences and meetings. John's most outstanding work resulted from his participation in an NSF-
funded REU project at Rose-Hulman, which he attended between his sophomore and junior years.
His paper "Maximal Order Three-Rewriteable Subgroups of Symmetric Groups" became the initial
Rose-Hulman Institute of Technology Technical Report. John also presented this paper at a special
session during the 1991 Winter Meeting of the MAA held in San Francisco.

John's REU experience also led to a paper titled "Large '‘Almost Abelian’ Subgroups of the
Symmetric Group,”" which he presented at the 17th Annual Regional Pi Mu Epsilon Meeting held
at Miami University, Oxford, Ohio. This paper became part of ajoint paper written with Dr. Gary
Sherman, of Rose-Hulman, titled "Undergraduates, CALEY, and Mathematics," which has been
submitted to the Journal of Technology in Mathematics.

But John's work wasn't limited to pure mathematics. During the summer between his junior
and senior year, John worked as a summer researcher, in applied mathematics, as a member of the
Outstanding Student Summer Program sponsored by Sandia National Laboratories in New Mexico.
This experience led to his paper "Paral€lization of a Parameter Identification Problem," which he
gave at the 18th Annual Pi Mu Epsilon Conference at Miami University, in September, 1991. This
was to be John's fina Pi Mu Epsilon paper.

As a mathematics/physics double major at Rose-Hulman, John participated in many math-
ematics competitions as a leading member of the Rose-Hulman team. As a scholar, he received
numerous awards, including the top freshman mathematics award, the top freshman student award,
the top sophomore student award, and the top junior student award. Thisspring he will be awarded,
posthumously, the Clarence P. Sousley Award as *'a graduating mathematics major who has demon-
strated exceptional performancein hisfidd.

John truly lived by the Pi Mu Epsilon pledge “... | will exert my best efforts to promote true
scholarship, particularly in mathematics; and that | will support the objectives of the Pi Mu Epsilon
Society."

(Elton Graves, RHIT Mathematics Department)
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