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DEDICATION 

This issue of the Pi Mu Eps:lon Journalis dedicated to Joe Konhauser. J m p h  D. E. Konhauser, 
Councillor for Pi  Mu Epsilon, Editor of the Puzzle Section of the Pi Mu Epsilon Journal, and former 
Editor of the Journal, died on February 28, 1992, of complications following heart surgery. He was 
67 years old. He is survived by his wife, Aileen, and his son, Dan. 

Joe earned his bachelor's, master's, and doctorate degrees from Penn State University. born  
1949 to 1955 he taught math at Penn State and was a mathematician at  HRB-Singer Inc. in State 
College, PA. He was an associate professor of mathematics at the University of Minnesota for four 
years before joining the staff at Macalester College in St. Paul, MN, in 1968. He had retired from 
full time teaching at  Macalesterin 1991, but had returned to teach his popular geometry course this 
semester. 

Besides his teaching and his wntributions to Pi  Mu Epsilon, Joe had been a member of the 
' 

committees that designed and evaluated tests for the USA Mathematical Olympiad and the William 
Lowell Putnam Mathematics Competition. He also had served as Fleviews Editor of the American 
Muthematical Monthly. 

Joe had a red  talent as a problem poser and solver. He had been Editor of the Puzzle Section 
since 1983; he had been creating Mathacrastics for the Puzzle Section since 1978. Perhaps even 
more remarkably, he had been posing a "Problem of the Weekn at Macalester College for over 20 
years, without repeating a problem. 

Joe will be missed as a mathematician, as a renowned teacher, and aa a friend. 



PUZZLE SECTION 

The Puzzle Section is for the enjoyment of those readers who are addicted to working dou- 
blecrostics or who find an occasiond mathematical puzzle or word puzzle attractive. We consider 
mathematical puzzles to  be problems whose solutions consist of answers immediately recognizable 
as correct by simple observation and requiring little formal proof. 

COMMENTS ON PUZZLES 1-7, FALL 1991 

For Puzzle #I, WILLIAM CHAU, RICHARD I. HESS, HENRY LIEBERMAN, and BOB 
PRJELIPP noted the following: Let I< be the area of the triangle, s be its semi-perimeter, and r 
its inradius. Then r s  = I< = 23, thus r = 2. Other relationships satisfied by these triangles were 
provided by MARK EVANS and CHARLES ASHBACHER. 

The answer to Puzzle #2, the "Bronzebach Conjecture," M yes. Several decompositions were 
submitted. Perhaps the most concise was by BOB PRIELIPP: 

If n is odd, n = (n - 2) + 2. I f n = 4 k , n = ( ; - l ) + ( ; + l ) .  

I f n = 4 k + 2 , n = ( ; - 2 ) + ( ; + 2 ) .  

Solutions were submitted by CHARLES ASHBACHER, WILLIAM CHAU, VICTOR FESER, 
RICHARD I. HESS, HENRY LIEBERMAN, and DAVID SHOBE. 

The first of the two solutions to Puzzle #3 waa submitted hy DAVID SHOBE; the second 
solution appeared in The Oxford Guide t o  Word Games  by Tony Augarde, 1984, p.44. 

C I R C L E  C I R C L E  
I N U R E S  I C A R U  S  
R U D E S T  R A R E S T  
C R E A S E  C R E A T E  
L E S S O R  L U S T R E  
E S T E R S  E S T E E M  

The solution to Puzzle # 4 is no. Suppose there were a solution with the set {7,8,9}. Consider 
the set containing 15. To complete the sum of 24, we need either 1 & 8 (but 8 is gone), or 2 
& 7 (but 7 is gone), or 3 & 6, or 4 & 5. In either of these last two cases, there are no pairs of 
remaining numbers that will go with 14 to  reach a sum of 24. (Solution by VICTOR FESER.) 
Others submitting solutions were CHARLES ASHBACHER, WILLIAM CHAU, M A W  EVANS, 
RICHARD I. HESS, and HENRY LIEBERMAN. 

There were several different solutions to Puzzle # 5. The one that kept the three pieces the 
most similar in shape was submitted by MARK EVANS. 

where a = &L - iW 

Others submitting solutions were WILLIAM CHAU, RICHARD I. HESS, DAVID SHOBE, and 
STAN WAGON. 

For Puzzle #6, several solutions were submitted. The most common was 

Submitting solutions were WILLIAM CHAU, MARK EVANS, VICTOR FESER, RICHARD I. 
HESS, and DAVID SHOBE. 

For Puzzle #7, the resistance was found to be the Golden Ratio: (6 - 1112. Solvers were 
MARK EVANS, ROBERT GEBHARDT, HENRY LIEBERMAN, and DAVID SHOBE. 

SOLUTION TO MATHACROSTIC NO. 33 (FALL 1991) 

WORDS: 

A. openness 
B. Verdict of Twelve 
C. extenuate 
D. roses of grandi 
E. Baily's beads 
F. yatata yatata 
G. extent 
H. lute 
I. on the charts 
J. nines 

entify 
left-handed 
Ymir 
hem and haw 
earth 
Alan Smithee 
right 
The Great White Way 
switch 
overtone 

Florentine enigma 
theremin 
hypergraphics 
even steven 
corkscrew 
odd 
spread 
Modern Times 
Of Thee I Sing 
spherical cow 

AUTHOR AND TITLE: OVERBYE LONELY HEARTS OF THE COSMOS 

QUOTATION: The veneer of existence was getting very, very thin, but it was in that last little crack 
of time - where space foamed into chaos and the spheres rang with harmonies undreamed of and 
symmetries were enfolded more intricately than a rose, where nothing happened and everything was 
possible - that the secret of gravity and existence lay. 

SOLVERS: THOMAS F. BANCHOFF, Brown University, Providence, RI; JEANETTE BICKLEY, 
St. Louis Community College at Meramec, MO; CHARLES R. DIMINNIE, St. Bonaventure Univer- 
sity, NY; ROBERT C. GEBHARDT, Count College of Morris, Randolph, NJ; META HARRSEN, 
New Hope, PA; HENRY S. LIEBERMAN, Waban, MA; CHARLOTTE MAINES, Rochester, N x  
STEPHANIE SLOYAN, Georgian Court College, Lakewood, NJ; JOHN L. VANIWAARDEN, Hope 
College, Holland, MI, and DONNA D. ASHBRIDGE, University of North Carolina - Asherille, NC; 
ALBERT WILANSKY, Lehigh University, Bethlehem, PA; and BARB ZEEBERG, Denver, CO. 

MATHACROSTIC NO. 34 

Proposed by Joseph D. E. Konhauser, shorily before his death. 

The 223 letters to be entered in the numbered spaces in the grid will be identical to  those in 
the 23 keyed words a t  the matching numbers. The key numbers have been entered in the diagram 
to assist in constructing the solution. When completed, the initial letters on the Words will give 
the name of an author and the title of a book; the completed grid will be a quotation from that 
book. Solutions to  Mathacrostic No. 34 should be sent to: Richard Po%, Pi Mu Epsilon Journd, 
St. Norbert College, De Pere, WI 54115. 



DEFINITIONS 

A. a migratory Australian cuckm (2 4 s . )  

0. popular nan~ of Dilmrth's 1740 "A N e w  
6ui& to  the English Tongue." ( c w )  

C. study of disease by s M c m 8  

0- probability the f i r s t  to  give a 
theoretical construction for a l l  the five 
regular sol ids and to  s h w  ku t o  
insc r ik  then in a sphere (3 wds.) 

E. gam plan 

F. secret asset or ploy (4 &.) 

6. a msical means by which to  identify 
characters, ideas, and objects as 
they occur in different situations 
and a t  different times 

H. invented and patented by Kenneth 
Snelson, i t  has added a nm caIponent 
to  the elegance and airiness 

I. must starting point of the space fr- 
for a cycle on a graph (2 ds.) 

.I. a fanciful product of the mind 

K. a f ie ld of granular s m  

1. u s d  in prescriptions - of each an equal 
quantity 

N. the nicknmm of the largest s i w l e  
sporadic group (2  wds.) 

N. t o  deprive of vital content or force 

0. rural setting for Schubert opera 
(2 d s . )  

P. incident 

Q. leaving no lmphole 

R. mrkd vessel anchored a t  a chartered 
point to  serve as an aid to  navigation 

S. fannus or u n f m s  (3 ds.1 

T. al l  out (3  ds.) 

U. unpublished 

M. originally ckveloped around 1968-70 in an - - 
att* to umhrstawl the strung nuclear 146 8 1  206 189 45 26 174 11 131 
force; i f  successful w l d  p m i &  the --- 
- l e t ~  mification o f  physics (2 mds-) 222 95 201 



PUZZLJB FOR SOLUTION 

To give some idea of the types of problem that Joe Konhauser liked to devise, thii issue's 
Puzzle Section will present some of Joe's puzzles that had previously appeared in the Journal. The 
solution to  each puzzle was discussed in the issue immediately following the puzzle's appearance. 

1. This problem first appeamd in the Spring, 19831 issue 01 the Journal. 

In the square array 
A B C 
C B D  
E C F  

each letter represents one of the digits 0 through 9. Determine the corrapondence, given that: 

(1) ABC and CBD are primes, 

(2) BBC and CDF are perfect squares, and 

(3) ACE and ECF are perfect cubes. 

2. (Fall, 1983) 

Sketch a graph (a finite collection of nodes and arw) such that exactly three arcs terminate at  
each node and such that it is not possible to  color the arcs with three colors so that no two arcs 
that are the same color terrninate at the same node. 

3. (Fall, 1983) 

The eight numbers 12, 3 ,4 ,  6, 9, 14, 22, 311 have sum 91 and the property that taken two a t  
a time the 28 s u m  obtained are all different. Are you able to find 8 positive integers with sum less 
than 91 with the same property? 

4. (Spring, 1984) 

Using just two colors, in how many diitinguishable ways can one color the edges of a regular 
tetrahedron? 

5. (Fall, 1984) 

The trio of positive integers {5, 20,441 has the property that the sum of any two of its members 
is a perfect square. Can you find a set of four distinct positive integers such that the sum of any 
three is a perfect square? 

6 .  (Spring, 1985) 

With a pair of compasses draw a circle on a plane. Then, without changing the opening of the 
compasses, draw a circle on a sufficiently large sphere. Which circle enclcmes the larger area? 

Bored in a calculus claaa, a student started to play with a hand-held calculator. A four-digit 
number was entered, followed by the "square" key. To the surprise (and delight) of the student, 
the four terminal digits of the result were the same digits in the same order as those in the number 
which had been squared. What was that number? 

THE FUCHARD V. ANDREE AWARDS 

Richard V. Andree, Professor Emeritus of the University of Oklahoma, died on May 8,-1SS7, 
a t  the age of 67. Professor Andree was a Past-President of Pi  Mu Epsilon. He had a h  served the 
society aa Secretary-General and as Editor of the Pi Mu Epsilon Journal. The Society Council ha6 
designated the prizes in the National Student Paper Competition as Richard V. Andree Awards. 

First prize winner for 1991 is Amy Pinegar, for her paper "Inversions and Adjacent lkans- 
positions," which appeared in the fall issue of the Journal. Amy prepared this paper, under the 
supervision of Dr. David Sutherland, while she was a senior at  Middle Tennessee State University. 
She also presented the paper at  the August, 1990, national Pi Mu Epsilon meeting a t  Columbus, 
Ohio. Amy will receive $200. 

Second prize winner is Shannon Spittler, for her paper "A Math Problem Within an Antique 
Clock Label," which also appeared in the fall issue of the Journal. Shannon prepared this paper 
while she was a junior English major at  Miami University in Ohio. She will receive $100. 

Third prize winner is Judy Kenney, for her paper '"Ibrning Triangles into Circles," which alao 
appeared in the fall issue of the Journal. Judy prepared this paper while she was a senior a t  the 
College of St. Benedict. The problem was suggested to her by Dr. Steven Krantz while she was 
participating in an NSF S u m m r  &search prog~am at Washington University in St. Louis. Judy 
will receive $50. 

There were three other student-written papers that appeared in 1991: 

"Computerized Segmentation of Liver Structures from C T  Images," by Heng Hak Ly, of Illiiois 
Benedictine College. Heng prepared this paper with the help of Dr. Maryellen Giger and Dr. F&ae 
Carney. 

"A Note on a Paper of S. H. Friedberg," by Janet Vdasek, of Penn State University - New Kensington 
Campus. Janet prepared this paper with the assistance of Dr. Javier Gomez-Calderon. 

"A Pre-Calculus Method for Deriving Simpson's Rule," by John White, of Marshall University. 

The current issue of the Journal contains two papers written by students: 

"Change Ringing: Mathematical Music" was written by Heather DeSimone while she was asenior a t  
Youngstown State University. She is currently attending graduate school a t  the College of William 
and Mary. 

"Ringa of Small Order" was written by Michael Lin while he was a senior a t  Moorhead High School, 
in Moorhead, MN, He is currently a freshman at  Stanford University. 

Joel Atkins, the winner of third prize in the 1990 Competition, wisha to  acknowledge the 
guidance of Dr. Jack Kinney of h - H u l m a n  Institute of Technology. 



RINGS OF SMALL OFLDER 

Mtchoel H. Ltn 
Sianfod Untversaiy 

Introduction 

Since all finite abelian groups have a simple structure, a straightforward way to find all finite 
rings is to begin with its additive group. If we are given one particular additive group, say G ,  +, to 
work with, the problem is reduced to finding all binary operations .'' on G that are associative and 
that are left and right diitributive over "+". This will largely be a matter of trial and error, and 
thus in general will be computation-intensive. One naive approach would be to try all nn2 possible 
multiplication tables and to check associativity and distributivity for each one of them. 

In this paper, a more efficient approach is developed, and a computer program implementing it 
was written for use on an IBM PC compatible. This program takes as input a standard decomposition 
of the additive group, and outputs the multiplication tables of all p-ible rings with that hdit ive 
g~oup.  The program does not determine which outputs are isomorphic. It works for any additive 
group with order up to 127, although in many cases a complete run would be impractical because 
of both the amount of generated output and the length of run time. 

Notat ion 

The order of any group G will be denoted by IGI; likewise, the order of any element g will be 
denoted by lgl. The cyclic group of order n will be denoted by Cn. 

Let our given additive group G of order n be expressed as a direct product of nontrivial cyclic 
groups HI x Hz x . . . x Hr ,  where IHkI divides IHk-11 for 1 < k 5 T. (Such a representation is 
uniquely determined by G . )  

For 1 5 k 5 r ,  pick ht in G such that 

(hk) = {O} x . . . x {O} x Hk x {O} x . .. x {O}. 
Let B = { h l ,  h ~ ,  . . . , h r } ,  so that ( B )  = G. 

Algori thm 

1. Input the orders of the Hk. 

2. Compute the addition table and other information about G (such as the multiples and order of 
each element). 

3. Set up a loop so that each passage through the loop assigns a value in G to each of the r2 
products obtained from B.  Successive passages through the loop assign every possible value in 
G to each of the r2  products. 

4. Check the necessary condition that lhj [ (hj  . hk) = lhk[(hj . hk) = 0 Vhj,  hk â B.  

5 .  Define the remaining products within G by distributivity: The distributive properties 

a(b + c )  = ab + ac and ( a  + b)c = ac + bd 

So for any z = E a j h j ,  y = x b k h b ,  distributivity gives 

Using the condition of Step 4, it can be shown that the operation " . I '  as given here is well- 
defined. 

6. Check for associativity within B; i.e., that 

This is sufficient because, if (*) is satisfied, 

7. If Steps 4 and 6 are both satisfied, we have generated a ring. Output it. 

8. %peat Steps 4 through 7 as indicated in Step 3. 

Resul t s  

The computer program was written in IBM PC assembly language. In addition to the multi- 
plication tables for each ring and the total number of rings generated, the program also outputs the 
first n - 1 powem of each element for each ring. This shows certain properties of the ring a t  a glance 
- for example, how many squares are non-zero, and whether all cubes are zero - and thus makes it 
easier to  see which rings might be isomorphic. It also tells at a glance that some pairs of rings are 
not isomorphic. 

The generated rings for some additive groups were hand-classified according to isomorphism. 
The obtained results agreed with the list published in [I] of all 24 rings, up to isomorphism, of order 
1- that 8. 

The data in the following table were obtained using an 8Mhz IBM PC/XT clone running a 
stripped-down version of the computer program. The deleted parts of the program were those that 
computed the multiples and powers of each element. It should be noted that this trimmed version 
is significantly faster than the original program. 

For cyclic additive groups of order n, the program produced a total of n rings. It waa proved 
in [2] that the number of non-isomorphic rings with additive group C,, is the number of divisors Gf 
n; this was verified for n up to 10, 



S t r u c t u r e  of  Total Number  of 
Addit ive G r o u p  Rings Produced  Computa t ion  T i m e  

cz  X cz 28 (8 non-isomorphic) - 0.3 sec. 
(24 X C'z 60 (20 non-isomorphic) 1 sec. 
c6 X cz  84 (16 non-isomorphic) 3 sec. 
Ca x c2 120 7 sec. 
do x d 140 14 sec. 
c n  X cz  180 25 sec. 
CM x Cz 196 39 sec. 

c3 x c3 121 (8 non-isomorphic) 
C'e x (23 242 
c s  X c3 405 
c i s  X c3 484 
c i s  X c3 605 

17 sec. 
116 sec. 
6.2 min. 
15.0 min. 
28.9 min. 

7.8 min. 
57 min. 
196 min. 
7.6 hr. 
14.8 hr. 

106 min. 
14.1 hr. 

The above data suggest that if s and t are relatively prime, the number of rings produced for 
additive group Cn x C, is t times the number for C, x C,. 

For large n and small r (as defined in Notation), Step 5, i.e., the completion of the multiplication 
table, dominates the other steps in terms of the computation time needed. Also, the time required 
for one execution of Step 5 is approximately proportional to the size of the multiplication table. 
Thus, for large n and small r, a rough indicator of the total computation time would be 

(the number of potential rings that pass Step 4) x (n2). 

For an additive group of the form C,t x C,, this expression simplifies to slat3. 

Additional Observations 

While the rings with additive group C4 x C2 were being hand-classified up to  isomorphism, it 
was noticed that four rings were anti-automorphic; i.e., that there existed a bijection f on each of 
the rings such that f ( z  . Y) = f ( ~ ) .  f(x) for all z and y in the ring. The following theorems were 
then formulated. 

Preliminaries 

Let A,,+ be the abelian group C,i x C, = (a) x (6). We define f : A, - A, by /(pa + qb) = 
p(a - b) + ((-6) for all p, q ? Z. It can be shown that f is its own inverse; so f is a bijection. Also, 
it follows immediately from the definition that f preserves the operation "+". 

Theorem 1. Let R, be the ring with additive group A, and with multiplication defined by the 
relations 

a . a = a . b = O ,  
b . a = b . b = s a .  

- - 
Then R, is a non-commutative ring that is anti-isomorphic to itself. 

Proof. I t  can be verified that 

and that 
( 2 - y ) - z = z - ( y - z )  Vz,y,z6{a,6}. 

I t  follows from Steps 5 and 6 that R, is a ring. Also, R, is obviously non-commutative. 

By the preliminaries, f is a bijection and f ( z  + y) = f (y) + f (x) Vz, y 6 Rs. 
We shall show that f (z . y) = f (y) . f (2 )  Vx, y ? R,. 

f (6 - 6) = f (sa) = . . . = sa; 
f(6). f(6) = (-6). (-6) = 6 . 6  = sa. 

The general fact that f (x . y) = f(y) f (z) now follows by distributivity. 

Therefore, / is an anti-automorphism of R,. 

Theorem 2. Let Q, be the ring with additive group A. and with multiplication defined by the 
relations 

Then Q, is a non-commutative ring that is anti-isomorphic to itself. 

The proof is exactly as for Theorem 1, except 



These two theorems raise some interesting questions about anti-automorphic non-commutative 
rings: What conditions upon an additive group are necessary and sufficient for there to  exist anti- 
automorphic non-commutative rings with this additive group? How many anti-automorphic non- 
cornmutativerings exist, up to isomorphism, for any given additive group? Can a general description 
of their multiplication tables be given? What can be said about their structure? What other 
properties do they have? 

References 

1. C. R. Fletcher, "Kings of Small Order," The Mathematical Gazette 64 (1980), pp 9-22. 

2. W. C. Waterhouse, "Rings with Cyclic Additive Group," American Mathematical Monthly 71 
(1964), pp 449-450. 

A computer program listing and a sample of the program output can be obtained by writing the 
author at P.O. Box 4048 Stanford, CA 94309 (e-mail: micheUn@leland.stanfonl.edu). 

Michael Lin prepared this paper white he was a senior at Moorhead Senior High School, in 
Moorhead, MN. He now attends Stanford University. 

The Pi Mu Epsilon Journal was founded in 1949 and is dedicated to undergraduate and begin- 
ning graduate students interested in mathematics. Submitted articles, announcements, and contri- 
butions to the Puzzle Section and Problem Department of the Journal should be directed toward 
this group. 

Undergraduates and beginning graduate students are urged to submit papers to the Journal for 
consideration and possible publication. Student papers are given top priority. Expository articles 
by professionals in all areas of mathematics are especially welcome. Some guidelines are: 

1. Papers must be correct and honest. 

2. Most readers of the Pi Mu Epsilon Journal are undergraduates; papers should be directed to 
them. 

3. With rare exceptions, papers should be of general interest. 

4. Assumed definitions, concepts, theorems, and notations should be part of the average under- 
graduate curriculum. 

5. Papers should not exceed 10 pages in length. 

6. Figures provided by the author should be camera-ready. 

7. Papers should be submitted in duplicate to the Editor. 
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C H A N G E  RINGING:  MATHEMATICAL M U S I C  

Heather DeSimone 
Youngstown State University 

- - 

1. Introduction 

Before the eighth century most church bells were small and rung by hand. These bells were 
made of iron and did not have good tone quality. Making bells from different alloys began around 
the eighth century. Using bronze, it became possible to create much bigger and louder bells. It was 
also discovered that different tones could be made by varying the thickness of the bell wall and the 
composition of the bell metal. The size of the bell also affected its sound. For example, the bigger 
bells made deeper sounding notes. At this time, large bells were being installed in church towers 
all over Europe. At the turn of the thirteenth century a gradual change in the shape of bells took 
place. The sides became longer and more concave, which improved tone. 

As bells became larger and heavier, they became more difficult to ring. Consequently, methods 
of ringing evolved that did not require shifting the full weight of the bell. One of the methods, 
which is still employed today, is to swing a bell by a rope attached to the top until it is almost 
upside-down and then swing it back to complete the other half of the swing. This method was 
refined by mounting the bell on a half-wheel. A rope was then run around it and down to the floor, 
which provided a "stay" on the wheel's rim thereby preventing the bell from swinging all the way 
over. A final improvement was implemented soon after the Reformation when a whole wheel was 
introduced, allowing complete control over the bell. This improvement not only enabled the bell to 
stay in an upright position for as long as was needed, but more importantly, it allowed control over 
the speed of the swing. Pulling harder on the rope as it lowered sped up the swing. Conversely, 
retarding the rope as the bell swung up slowed down the swing. It was found that if two ringers of 
two different bells carried out these moves, the bells would change place in their order of ringing. 
' I t  was this discovery, when applied to a number of bells, that made 'change-ringing' possible; and 
this is the foundation on which the whole art of bellringing is basedn(Camp, 15). 

2. Change  Ringing 

The basic strategy of change ringing is: 

(1) to ring a given set of belk in all possible sequences; 

(2) to  move in a methodical fashion from one sequence to another; and 

(3) to  avoid repeating any sequence. 

There are n! possible sequences for n bells. Each number of bells has a specific name as listed in the 
table. 

N u m b e r  of Bells N a m e  Number  of Changes 

4 Singles 24 
5 Doubles 120 
6 Minor 720 
7 Triples 5,040 
8 Major 40,320 
9 Caters 362,880 

10 Royal 3,628,800 
11 Cinques 39,916,800 
12 Maximus 479,001,600 

The object of change ringing is to produce all of the permutations on a set of bells according 
to a set of rules. The highest bell is called the treble bell and the lowest, the tenor. When they ring 



in descending order, from treble to tenor, they are said to be in rounds. The rules the bellringers 
must satisfy are: 

(i) the peal must begin and end in rounds; 

(ii) no bell may move more than one position from one change to the next; and 

(iii) no bell may occupy the same position for more than two successive changes. 

The last rule is sometimes relaxed. 

The six changes on three bells can be rung as follows: 

or in the reverse order, but only these two ways follow the rules. These bells follow a hunting course. 
This means each bell works by steps of one to the right or left until the bell is first or last in the 
change. The first bell moves from the first position, to the second position, and to the third position. 
The bell then stays in the third position for two consecutive changes before it moves back to  the 
second position. It then moves to the first position and stays there for the last two changes. 

Look at the first transition. It can be denoted by the transposition (12)  meaning that the bells 
in position 1 and 2 change places. The two operators applied in the changes on the three bells 
alternately are A = (12)  and B = (23) .  These generate the entire group of order six. Algebraically, 
the six changes on three bells can be represented as ( A B ) 3  because A and then B are applied three 
times. 

With four bells this is a little more complicated. 

1234 1342 
Plain Bob 2143 3124 
Method 2413 3214 

4231 2341 
4321 2431 
3412 4213 
3142 4123 
1324 1432 

These bells also follow a hunting course. In the beginning, bell 1 is moved one position to  the right. 
It then stays in the last position for two changes before moving backwards to its original position. 
The other three bells follow a similar hunting pattern. As four bells hunt, they create eight changes. 
In general, if n bells hunt, the hunting generates a group of order I n .  The process of hunting on four 
bells consists of alternately applying the two operators A = (12)(34)  and B = (23) .  As stated before, 
these generate the first eight changes. Continuing to use these operators, specifically using B ,  would 
make the next sequence 1234. This is commonly known to bellringers as "replacing rounds!' I t  is 
not desirable because all of the possible changes would not have been rung. In order to  prevent this, 
and to  continue, we employ the irregular move C = ( 3 4 ) .  The second eight elements are generated 
by again applying A and B .  After the irregular move C is applied again, the third eight elements 
are generated the same as the first two sets. The Plain Bob method can be algebraically symbolized 
with the operators as: 

((AB)^))=. 

This notation means operators A and B are alternately applied three times. 

Then A and C are applied. This complete pattern is repeated three times. 

3. Hamiltonian Circuits  

Any particular set of complete changes can be graphically represented as a Hamiltonian cycle. 
Let the nodes of the graph symbolize each change, that is, an ordering in which the bells are rung, 
and the edges connect the possible consecutive changes. Graphing the changes on three bells, the 
Hamilton circuit is easily found. It is also easy to see that this is the only one since there are no edges 
left out of the circuit. This shows that there are only two ways of ringing the changes dependingon - - 
which direction the identity node is exited. 

In general, the number of nodes is equal to n!, where n is the number of bells. The number of edges 
going to or coming from one node depends on the number of possible changes. In the example of 
three bells, we can interchange bells 1 and 2 ,  (12)  or bells 2 and 3 ,  ( 2 3 ) .  These are the only two 
possibilities; therefore, there are two edges per node. 

By increasing the number of bells by one, the number of nodes increases, as does the number 
of permutations. There are four possible ways to change from one sequence to another. The first 
three, which were discussed earlier, are (12)(34) ,  ( 2 3 ) ,  and (34) .  The last is switching only the first 
two, (12) .  So every one of the 24 nodes has four edges or is connected to four different nodes. This 
graph is more complicated than the one for three bells. A Hamiltonian circuit is not easy to find in 
the maze of 48 edges and 24 vertices; however, several can be found. The set of sequences discussed 
earlier is one example. The figure uses the form given in White [9]. 



This method is the most commonly rung and the most commonly displayed mathematically; however, 
there are others. 
Names  Algebraic Description 

Plain Bob ( ( A J ~ ) ~ A C ) ~  
Reverse Bob (ABAD(AB)2)3 
Double Bob ( A B A D A B A q 3  
Canterbury (ABCDCBAB)3 
Reverse Canterbury ( D B ( A B ) ~ D C ) ~  
Double Canterbury ( D B C D C B D C ) ~  
Single Court (DB(AB)2DB)3  
Reverse Court (AB ( C B ) ~  
Double Court (DB(CB)aDB)3  
St. Nicholas (DBADABDC)3 
Reverse St. Nicholas ( A B C D C B A C ) ~  

It is worth noting that only the first three of these methods satisfy all three rules listed in section 
2. The remaining methods fail condition (iii) that states no bell may stay in the same position for 
more than two consecutive changes. 

Using the given operators, two original sequences will be demonstrated. Alternating D and B 
with every sixth change using the A transition completes the necessary Hamiltonian cycle. Alge- 
braically, this is represented as ( ( D B ) 2 ( D A ) ) 4 .  And using the similar pattern ( (CB)2(CA))4  also 
produces the circuit. The patterns are alike in that the second set replaces the D's of the first set 
with C's. 

All methods with four bells use exactly 24 of the 48 edges to complete the Hamiltonian circuit. 
So it seems possible to find two independent cycles on the same graph. None of the above examples 
are independent of each other. In other words, two completely different Hamiltonian circuits can not 
be found with the previous instances. Therefore, starting with 48 edges and completing a Hamil- 
tonian circuit in 24 edges does not necessarily mean there are two totally independent Hamiltonian 
circuits on that graph, even though there are 24 unused edges. 

We will now show that such examples exist. By breaking down the earlier diagram into a simpler 
form where only the B connectors are left and each group of other lines are thought of as separate 
entities, we have: 

From this diarram two independent Hamiltonian circuits can easily be determine 
further, we find that there are exactly six different pairs. Also, notice that this graph a 

d. Studying 
nd the other 

five are not symmetric. All of the previous exan~ples are symmetric. Now that we know what path 
to  follow going in and out of each vertex, we have to look at  the vertices which represent the separate 
entities. For example, the bottom vertex looks like this: 

There are two possibilities to complete the Hamiltonian circuit. 

All six vertices are similar, so there are Z6 possibilities. Multiplying the 26 ways times the 6 ways from 
the B connectors, we have the 384 possibilities for two totally independent hamiltonian circuits on 
four bells. None of these graphs can be symmetric since the graph of B connectors is not symmetric. 
Notice this in the following example of two independent hamiltonian cycles. 

Without symmetry, a pattern in the letters can not be found, and the changes can not be represented 
in a short algebraic form like the ones given earlier. 

Going on to five bells causes even a bigger problem. The graph of the possibilities, alone, is 
complicated. There are seven possible changes from sequence to  sequence: (12), (34), (45), (23), 
(12)(34), (12)(45), and (23)(45). So each of the 120 vertices is connected to seven other vertices. 
That is a total of 420 edges. It takes 120 of these edges to complete a Hamiltonian circuit. Since 420 
is not a multiple of 120, independent Hamiltonian circuits can not be found that use all the edges. 

For six bells there are 720 changes, 12 transitions, and 4320 edges on the graph. Because there 
is an even number of transitions, the number of edges is a multiple of the number of changes. So 
it  seems likely that independent Hamiltonian circuits that use all of the edges exist. Since there is 
no easy method for determining which graphs are Hamiltonian and each graph must be considered 
individually, determining whether there exists more than one Hamiltonian circuit on one graph can 
not be found using a theorem. Therefore, finding a method to find the Hamiltonian circuits is part 
of the problem. 



References 

1. F. J. Budden, The Fascination of Groups, New York, Cambridge University Press, 1972. 

2. J. Camp, Bell Ringing, Newton Abbot, David and Charles, 1974. 

3. T. J. Fletcher, uCampanological Groups," The American Mathematical Monthly 63 (1956), 
619-626. 

4. S. B. Parry, The Story of Handbells, Boston, Whittemore Associates, 1957. 

5. B. D. Price, "Mathematical Groups in Campanology," The Mathematical Gazette, May, 1969, 
' 129-133. 

6. P. Price, Bells and Man, New York, Oxford University Press, 1983. 

7. T. D. W i g ,  "The Acoustics of Bells," American Scientist 72 (1984), 446-447. 

8. A. T. White, Graphs, Groups and Surfaces, New York, American Elsevier, 1973. 

9. __, "Ringing the Changes," Cambridge Philosophical Society 94 (1983), 203-215. 

10. __, "Ringing the Cosets," The American Mathematical Monthly 94, 1987, 721-746. 

11. W. G. W i n ,  Change Ringing, New York, October House, 1965. 

PI  MU EPSILON KEY-PINS 

Gold-clad key-pins are available at the National Office at the price of $8.00 each. Write to  
Secretary-Treasurer Robert M. Woodside, Department of Mathematics, East Carolina University, 
Greenville, NC 27858. 

AWARD CERTIFICATES 

Your chapter can make use of the Pi Mu Epsilon Award Certificates available to help you 
recognize the mathematical achievements of your students. Contact Professor Robert Woodside, 
Secretary-Treasurer. 

ELEMENTARY SYMMETRIC POLYNOMIALS, AN INTUITIVE APPROACH 
WITH APPLICATIONS TO COLLEGE ALGEBRA AND BEYOND 

Daniel Replogle - 

This article will present an intuitive introduction to the elementary symmetric polynomials and 
describe some of their uses. It is written with the good college algebra student in mind. Everything 
it contains should be accessible to the student who has mastered college algebra. 

Elementary symmetric polynomials are used frequently in advanced courses in algebra, and are 
not usually presented until then. However, seeing them earlier might give undergraduates a greater 
sense of the structure of algebra. Just as journals frequently use methods from advanced calculus 
to throw light upon topics from standard calculus courses, so topics from advanced algebra may 
sometimes be used to throw light upon topics from earlier algebra courses. An early introduction to 
elementary symmetric polynomials is seeing how each term in a polynomial depends upon the roots 
of that polynomial. This dependence will be shown and stated as a theorem, though no proof of 
this result will be given. 

Consider the following ~roducts: 

(1) (z - a)(z - b) = x2 - (a + b)z + ab. 

(3) (x - a)(z - b)(x - c)(x - d) = [z3 - (a + b + c)x2 + (ab + ac + bc)x - abc](z - d )  
= z 4 - ( a + b + c + d ) z 3 + ( a b + a c + a d + b c + b d + c d ) x 2  
- (abc + abd + acd + bcd)x + abcd. 

(4) 
(z - a)(z - b)(z - c)(x - d)(z - e) = z5 - (a + b + c + d + e)z4 

+ ( a b + a c + a d + a e + b c + b d + b e + c d + c e + d e ) z 3  

- (abc + abd + abe + acd + ace + ade + bcd + ice + bde + cde)z2 
+ (abcd + abce + abde + acde + 6cde)z - abode. 

Noting the above pattern, let a \ ,  a;, 03, a4, . . . , ak be the zeros of a monic polynomial (a poly- 
nomial where the coefficient of the highest degree term is 1 ) of degree k. Then define: 



The preceding definea the elementary symmetric polynomials on k lettersaSThe following might be 
helpful to keep in mind: 

Elk  is the sum of all of the zeros, 

82k is the sum of all of the disjoint pairwise product8 of zeros, 

S3k is the sum of all of the disjoint %wise products of zeros, etc. 

With all of thii in mind and recalling the pattern observed above, we have the following theorem 
(which can be proved rigorously, for those who desire to  do so): 

Theorem: The monic polynomial p(z )  of degree k, with zeros a l ,  az,a3,. . . ,a& is given by: 

p(z) = zk - s,&zk-l + z ~ & z ~ - ~  - s3kzk-= + . . . + (-~Ys,~z'-' + . . . k S~-I ,&Z 7 Skk.  

Applications: 

1. Find the monic polynomial p(z)  with zeros 1, 2, fi, -a. 
s 1 4 = 1 + 2 + f i - & = 3 .  

s24 = l ( 2 )  + I(&) + I(-&) + 2(&) + 2(-&) + (A)(-fi) 
= 2 + & - f i + 2 & - 2 & - 2 = 0 .  

834 = 1 ( 2 ) ( d i )  + 1(2)(-45) + I(&)(-&) + 2 ( f i ) ( - 4 )  
= 2 & - 2 f i - 2 - 4 = - 6 .  

844 = 1 ( 2 ) ( h ) ( - f i )  = -4. 

So, p(z)  = z4 - 3z3 + 0z2 - (-612 + (-4) = z4 - 3z3 + 62 - 4. 

2. Find the polynomial P(Z)  having zeros i f i ,  - i f i ,  and 2 with p(3) = 2. 

s 1 3 = 2 + i f i - i f i = 2 .  

s23 = i & ( - i d )  + (i&)(2) - i f i ( 2 )  

=2+2i&-2i&= 2. 

sm = i&(-1&)(2) = 4. 

so, p(z )  = r (z3  - 2z2 + 22 - 4) = rz3 - 2rz2 + 27.2 - 4r. 

3J r -2r 2r -4r 

p(3) is given by: 3r 3r 15r 

So, p(3) = l l r .  But p(3) = 2, making r = 2/11. Thus 

3. Show that if p is a prime number, p > 2, then the sum of the pth roots of unity is zero, and their 
product is one. 

Each of the pth roots of unity satisfies the equation zP - 1 = 0. f ir ther ,  this polynomial 
equation has p roots. So, if al ,  a2,. . . ,ap are the roots of zP - 1 = 0,  then 

(We can be definite about the choice of signs because a prime > 2 is necessarily odd.) It follows 
that alp = 0 and -app = -1. Thus slP = 0, so the sum of the pth roots of unity ia zero (where p ia 
a prime > 2). 

Also spp = 1, so the product of the pth roots of unity ( p  a prime > 2) is one. 

Additional Comments: i 

The usual method for finding the polynomials in Examples 1 and 2 might be quicker and simpler, 
but it will not help one to solve problems like that in Example 3. Also, to me, the usual method 
s e e m  to be just a bit too tedious and it fails to reveal any structure. For comparison, here is how 
Example 1 is usually solved: 

la. Find the monic polynomial p(2) with zeros 1 , 2 , 4 ,  -8. 

A careful look at  this and Example 1 above, I think, reveals that the method using symmetric 
polynomials ia somewhat less tedious and reveals more structure. 

Daniel Replogle prepared this article shorily after completing his master's at St. Louis Univer- 
sity. He is cumntly a gmduate student at the State Universiiy ojh'ew York at Albany. 
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SOLUTIONS TO ANTIDEFUVATWES 
USING A HYPERBOLIC FUNCTIONAL TRANSFORMATION 

Tjmothy Holland 
Alabama State University and St. Jude High School, Montgomery, AL 

Most textbooks for elementary integral calculus include a section titled 'miscellaneous substitu- 
tions.' Among the types of problems that these sections generally consider are thcae which involve 
finding the antiderivatives of rational functions of sin(@) and cm(@). The traditional method of 
~olving some of these problems uses the following substitution [I]: 

However, the use of the exponential and hyperbolic functions offers an alternative method for solving 
these integrals. It has the additional benefit of providing a pedagogical tool for expanding the use 
of the hyperbolic functions in elementary calculus. 

We begin by noting the following: 

Theorem 1. Jsech(z) dz  = 2 tan-'(ex) 

Corollary 1. If @ = 2 tan-'(eS), then d@ = sech(z) dz. 

Corollary 1 indicates that if @ = 2 tan-'(er), then there is a relationship between the hyperbolic 
functions of z and the trigonometric functions of 0. We can now establish expressions for the other 
hyperbolic functions. 

Theorem 2. sinh(z) = - cot(@). 

PrwE 

sinh(z) = sinh {ln ban (!)I} 
= ; [tan (;) - cot (f)] 

The following corollaries are the direct results of Theorems 2 and 3: 

Corollary 2. tanh(z) = - cos(@). 

sinh(z) - cot(@) = - c,,@), Proofi 
tanh(z) = - cmh(z) = - csc(@) 

Corollary 3. sech(z) = sin(@). 
1 1 - sin(@). PrmE 

sech(z) = - cosh(z) = - csc(@) - 

Corollary 4. csch(z) = - tan(@). 
1 -1 

PrwE wch(z) = - = - = - tan(@). 
sinh(z) wt(@) 

The following examples illustrate how to apply these transformations to some antiderivatives: 

Example 1, 

d@ sech(z) dz  1 1 + sin(@) - cm(@) = 1 1 + sech(z) + tanh(z) 

= ln Itan (f) 1 
' 1  + C [Let z = ln(y) and integrate by partial fractions.] 



Example 2. 

Example 3. 

Example 4. 

Example 5. 

In summary, as an alternative to 

the substitutions 

sin(p) = sech(z), cos(0) = - tanh(z), and d p =  sech(z) dz 

can be used to solvemany antiderivatives involving rational functions of sin(p) and cos(p). 
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THE EASTER DATE PATTERN 

Richad L. Fmncis 
Southeast Missouri Siate University 

An intriguing date is that of Easter. By a seemingly erratic pattern, it makes its appearance 
on the calendar each year. Sometimes in March and a t  other times in April. Sometimes very early 
and a t  other times, quite late. But always on Sunday. The date of Easter for a given year was h e d  
in A.D. 325 by the Council of Nicaea. In this ancient decree, Easter became accordingly the first 
Sunday after the first full moon on or atter the vernal (spring) equinox. As both lunar and solar 
cycle8 are involved as well as the day of the week pattern, challenging mathematical problems come 
to light. In particular, how is Easter to be calculated for a given year? What too can be said about 
the frequency of the various Easter dates and their subtle, hardly noticeable calendar patterns? 

Several well known formulas come to mind in pursuit of these and similar mathematical ques- 
tions. One such approach is a variation on the Easter formula as given by the great mathematician 
Carl Fliedrich Gauss (1777-1855). Before elaborating however on computational techniques, a brief 
historical note is in order. 

Much diversity characterized the Easter observance pattern prior to the year 3%. Even in later 
years, recurring problems arose as a consequence of the far-reaching calendar change of 1582. In 
that year, the ancient Julian calendar was replaced by the modern calendar of Pope Gregory XI11 
(the Gregorian calendar). The motivation for the change was essentially one of alignment of dates 
with seasons. Controversy surrounded the new calendar's introduction; various nations were likewise 
slow in adoption. Although the Gregorian calendar is the one in present worldwide civil use, some 
today, for ecclesiastical purposes, celebrate Easter in accordance with the ancient Julian calendar. 
Coincidentally, the Julian and Gregorian calculations of Easter will occasionally give the same date 
(as happened in 1865, 1905, and 1954 for example). 

A Metonic cycle fiom ancient times essentially equated 235 full moons with 19 vernal equinoxes. 
Hence, a time period of 19 years denotes the cycle in which the sun and moon patterns eventually 
prove commensurable. (The Athenian astronomer Meton devised a calendar pattern in 432 B.C. 
whereby the new moons repeat in 19 year cycles.) More precisely, an integral multiple of one cycle 
coincided with an integral multiple of the other. However, the calendar reformers of 1582 realized a 
very slight discrepancy in this equation, namely, the one which blended the lunar cycle with the 19 
year solar pattern. The assumption of equality was implicit in the Julian calculation of Easter. The 
Gregorian correction incorporates the fact that the Dominical Letter of a year (the symbol for the 
year's first Sunday) and the Golden Number (a given year's place in the overall 19 year cycle) will 
not, in and of themselves, give the exact Easter date. 

Becauae of the complexity of the relationship between the lunar cycle and the solar cycle, various 
Easter formulas are restricted to but a single century. Each century thus has its own full moon 
sequence. Such a complexity of relationships is accounted for concisely by appropriate references to 
time called EPACTS, (The word "epact" stems from the Greek and denotes the "age" of the moon 
in daya at  the start of a new year.) Mathematicians can verify (see the Kluepfel reference) that there 
are exactly 30 epacts as well aa 30 sets of correspondences involving epacts and Golden Numbers. 
I t  is therefore pcemble to  construct an Easter formula or set of Easter correspondences which will 
prove accurate for all time. 

I t  can also be shown that the Gregorian calendar's period, namely, ita perfect date-day cycle of 
repetition, ia exactly 400 years. Hence, as  December 25, 1994 falls on a Sunday, so will Christmas 
Day 400 years later. By examining any 400 year interval of time, it can be establiihed that, for 
e x b P l e ,  the thirteenth of a month falls more often on Friday than any other day of the week. 

Likewise, i t  can be proved that Presidential Inauguration Day occurs more often on Sunday than 
any other day of the week (as last happened in 1985 and will next occur in 2013). 

A more relevant point is that the Easter period can also be calculated. What then is the smallest 
interval of time which implies consistently a perfect cycle of Easter date repetition? Suppme a key 
symbol is associated with each of the thirty Golden Number and Epact associations mentioned above. 
Let these key symbol6 for convenience be the integers 0 through 29. It can be shown (see Klucpfel) 
that any cycle of 100 centuries has a new key symbol (number). This accounts for 30 (100) br-3000 
centuries. Yet each of these century intervals is associated with one of the nineteen possible Golden 
Numbers, no two of which are alike. Accordingly, the Easter period becomes 19(3000) centuries or 
5,700,000 years. Acknowledging thus this Easter period of 5,700,000 years, a tabulation of Easter 
date frequencies becomes possible. Note among other things that 5,700,000 is divisible by 400, in 
which case the day of the week pattern (Sunday restriction) is maintained. 

below 

1. 

2. 

3. 

4. 

5. 

6.  

7 .  

8. 

9.  

= A plus remainder B 
19 

-- year - C plus remainder D 
100 

c - = E plus remainder F 
4 

-- + a - G plus discarded remainder 
25 

-- + I - - H plus discarded remainder 
3 

l g B  + l 5  - (E = quotient (discard) plus remainder Z 
30 

D - = K plus remainder L 
4 

2 F +  2K 32 - (' + L, = quotient (discard) plus remainder N 
7 

+ ' I z  22N = P plus discarded remainder 
45 1 

VARIATION ON THE GAUSSIAN EASTER FORMULA 

The sequence of steps which permits calculating the date of Easter for a particular yLar is given 

10 . + + ' I 4  - 7 p  = Q plus remainder R 
31 

Then Q denotes the month and R + 1 denotes the day on which Easter falls for a given year, 



An illustration reinforces the formula. To calculate Easter for the year 1998, the following letter 
values are obtained. 

As Easter is given by month Q and day R+ 1, the actual date of Easter for 1998 is April 12. It 
is also the most common Easter date of the twentieth century (occurring six times). 

HOW EARLY A N D  HOW LATE? 

Easter may occur as early as March 22. This last occurred in 1818 and before that in 1761 
and 1693. Such an early occurrence is actually a rarity. Easter will not come so early again in this 
century or in the next. Not until the year 2285 will Easter fall on March 22. 

At the other extreme, Easter may come as late as April 25. Its last such occurrence was in 1943 
and, prior to that, in 1886. Easter will next occur on this latest possible date in the year 2038. 

All of the above dates relate to  the Gregorian calendar. The calculation of Easter dates according 
to other schemes frequently deviates from this as mentioned earlier. For example, Easter Sunday in 
Russia in 1989 occurred on April 30. Such a late date s t e m  from Julian results which are assigned 
corresponding Gregorian dates. 

As noted, there are 35 possible d a t a  for Easter Sunday according to  the modern Gregorian 
calendar. Ten such dates are in March; the remaining twenty-five are in April. 

THE TWENTIETH C E N T U R Y  

The Easter Sunday frequency pattern for the twentieth century appears in the graph beliw. 
Note that all possible Easter dates are represented except March 22 and April 24. 

March 22 
March 23 
March 24 
March 25 
March 26 
March 27 
March 28 
March 29 
March 30 
March 31 
April 1 
April 2 
April 3 
April 4 
April 5 
April 6 
April 7 
April 8 
April 9 
April 10 
April 11 
April 12 
April 13 
April 14 
April 15 
April 16 
April 17 
April 18 
April 19 
April 20 
April 21 
April 22 
April 23 
April 24 
April 25 

EASTER SUNDAY FREQUENCY 
the twentieth century (1901 - 2000) 

TABLE I 



ENTIRE EASTER PERIOD O F  5,700,000 YEARS 

Not only do all possible Easter dates appear in this vast period of time (that of a perfect Easter 
date cycle of repetition), it is also easy to tell which of the dates is the least frequent and which is the 
most Sequent. Note that March 22 (the least frequent date) occurs 27,550 times. The runner-up 
is April 25 (occurring 42,000 times). Note likewise that April 19 is the most frequent; it occurs 
220,400 times. This year, 1992, Easter falls on  i t s  most frequent date. The middle Easter 
date (from March 22 to April 25) is April 8; it occurs 192,850 times. Moreover, the average frequency 
is obtained by dividing 5,700,000 by 35. This average is approximately 162,857. 

FIRST 2000 YEARS OF THE GREGORIAN CALENDAR 

All possible Easter dates  appear in this 2000 year period of time. T h e  least frequent date  is 
March 22, occurring bu t  13 times. The  most frequent are April 4 and April 10, each occurring 83 
times. 

EASTER SUNDAY FREQUENCY 
the entire Easter period of 5,700,000 years 

EASTER SUNDAY FRE UENCY 
the first two-thousand years of the Gregorian ̂ . alendar (1583 - 3582) March 22 

March 23 
March 24 
March 25 
March 26 
March 27 
March 28 
March 29 
March 30 

March 22 
March 23 
March 24 
March 25 
March 26 
March 27 
March 28 
March 29 
March 30 
March 31 
April 1 
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April 3 
April 4 
April 5 
April 6 
April 7 
April 8 
April 9 
April 10 
April 11 
April 12 
April 13 
April 14 
April 15 
April 16 
April 17 
April 18 
April 19 
April 20 
April 21 
April 22 
April 23 
April 24 
April 25 
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I l l  

March 31 
April I 
April 2 
Aoril3 
~ $ 1 4  
April 5 
April 6 
April 7 
April 8 
April 9 
April 10 
April 11 

I l l  

I l l  

April 12 
April 13 
April 14 

April 16 
April 17 
April 18 
~ p r i l  19 
April 20 
Aoril 21 
~ $ 1  22 
April 23 
April 24 
April 25 

21 

TABLE I1 

TABLE 1II 

, 



EXPLORATIONS 

Various questions and conjectures arise in examining a long list of consecutive Easter dates. 
Consider for example the thousand year Easter listing given below. 

EASTER SUNMY 

f a r  Easter Vtar Easter Vtar Easter Â¥Ha Easter 1m Easter Year Easter Ãˆe i  Easter V u r  Easter Vear Easter Year Easler 

IbM Apr 2 IM1 Apr 22 
1110 Ã‡p 11 IU1  bpr 3 
I120 Apr If I121 Ã‡p 11 
I W  Msr 31 1631 Apr 20 
1144 Apr 8 1141 HIT 31 
1150 Apr 17 I U I  Ã‡p 1 
I M  War 21 1661 Apr 17 
I170 Apr 1 1171 K i r  29 
ItTO A i r  21 1U1 Apr 1 
I M  mar 21 1HI Apr I5 
1704 Ã§p l l  1701 Mar 27 
1710 Apr 20 1711 Apr 5 
1720 mar 31 1721 Apr 13 
1730 A i r  V 1731 Mar 25 
1740 Apr 17 1741 t p r  2 
1750 Kar 2V 1751 tor I t  
1760 Apr 6 1761 Mar 22 
I770 Ã‡p 15 1771 Mar 31 
1780 K i r  26 1781 Apr I$ 
1790 Apr 4 1791 Ã‡p 24 
1800 Apr 13 1801 apr 5 
1810 Apr 22 1811 A i r  14 
1120 Apr 2 1821 Ã‡p 22 
I830 Apr 11 1811 Apr 3 
I840 Apr 19 1811 Apr 11 
1850 mar 31 1851 Apr 20 
i e w  a i r  a WI MW 11 
1870 Apr 17 1871 Apr 9 
1880 Mar 28 1881 Ã‡p 17 
l8VO Apr 1 1811 Har 29 
I904 Apr IS HOI Apr 7 
1910 mar 27 U l l  Apr 16 
1920 Apr 4 lV21 Mar 27 
H30 t p r  20 1931 Ã‡p 5 
Hi0  fir 24 HI! Apr 13 
Hi0  t p r  9 lV5l Mar 25 
Hid Apr 17 1111 Apr 2 
H70 H i r  29 IV7l Apr 11 
1980 hpr 1 IWt Apr 19 
lV90 Apr I5 1VVI mar 31 
1064 Avr 23 2001 Apr I5 
2010 Apr 4 2011 Apr 24 
2020 Ã§p 12 2021 Apr 4 
B M  Avr 21 2031 t o r  13 
2040 t o r  1 2041 Apr 21 
20% hr I0 2051 Apr 2 
20111 Avr 10 2061 Apr 10 
2070 Mar 30 2071 Apr I9 
2080 A i r  7 2081 f a r  30 
2010 Apr 11 2W1 Ã‡p 8 

1102 Apr 7 
1112 Air 22 
1622 X i r  27 
I632 Apr 11 
M l  Apr 20 
1152 mar 31 
IU2 AT V 
1672 Apr 17 
1U2 Mar 29 
11V2 Apr 1 
1702 Apr 11 
1712 Kar 27 
1722 A i r  5 
1712 Apr 11 
1742 K i r  25 
I752 Apr 2 
I162 Apr 11 
m Ãˆp n 
1102 Rar 31 
17V2 Apr 8 
1802 Apr 18 
1812 Mar 29 
1822 Apr 1 
1812 Apr 22 
1842 K i r  27 
1852 Apr 11 
1862 A i r  20 
1812 mar 31 
1882 Apr V 
1812 Apr 17 
mi fir a 
1112 Apr 7 
lV22 Apr 11 
IV32 Bar 27 
I942 A i r  5 
1952 Apr I3 
Hi2 Apr 22 
1972 A i r  2 
1982 Apr 11 
I l l 2  Apr 11 
2002 mr 31 
2012 Apr 8 
2022 Apr 17 
2032 Hir 28 
2042 A i r  1 
2052 Apr 21 
2012 mr 26 
2072 tor I0 
2082 Apr I? 
mi Mar 30 

1603 Ibr 10 
1113 Ipr 7 
I123 Apr I1 
1633 mar 27 
1143 Apr 5 
I153 Ã‡p 13 
I U 3  Mar 25 
1173 Apr 2 
1183 Apr 18 
mi ~ i r  22 
1103 Apr 8 
1713 tor I t  
1721 mar 28 
1711 Apr 5 
1743 Apr I4 
1753 Ã ‡ p  22 
1763 Apr 3 
1773 Ã‡p 11 
1783 Ã‡p 20 
17Vl mar $1 
1803 Apr 10 
1813 Apr I8 
1823 mar 10 
1831 Apr 7 
I843 Apr I 1  
I833 X i r  27 
I861 Apr 5 
1873 Ã‡p IS 
1883 fa r  25 
1893 Apr 2 
HOI Apr 12 
H I 3  Bar 21 
1123 Apr 1 
HIS  Ã‡p 11 
1143 Apr 25 
lV53 Apr 5 
1961 l o r  14 
H13 Ã‡p 11 
IV83 Apr 3 
1993 Apr 11 
2003 Apr 20 
2011 hr  31 
2021 Apr V 
2011 Apr 17 
2043 Sir 29 
2053 Apr 1 
2063 Apr I5 
2073 Mar 21 
20BI Ãˆp 4 
2093 Apr 12 

IMÃ Apr 18 
1114 tar 10 
1624 Apr 7 
1654 Apr I6 
Ml Mar 27 
16% hpr 5 
IU4  Ã‡p I1 
1674 hr 25 
I W  Apr 2 
IH4  Apr 11 
1704 Mar 23 
1714 A i r  1 
1714 A i r  11 
1734 Apr 25 
1744 Apr 5 
1754 A i r  14 

1M5 tor 10 
1115 A i r  I t  
l U 5  KIT 10 
IU5  Apr 8 
I145 tar I t  
1655 lir 21 
l U l  tor 5 
M 5  A i r  14 
1685 Apr 22 
l1VHpr 3 
1705 Apr 12 
1715 Apr 21 
1721 bpr 1 
1735 Apr 10 
1749 Apr 10 
1755 K i r  SO 

I M ~  Mar 2b 
l i l t  A i r  3 
I U b  tor 12 
l iu Mar 23 
l i U A p r  1 
11% t p r  I t  
1666 A T  25 
1b7b A i r  1 
UU Apr 14 
IbV1 Ã‡p 22 
1701 Apr 4 
1716 tor 12 
1726 tor 21 
1731 Apr 1 
I741 Apr 10 
17% Air 18 

1607 Ã‡p I5 
1117 l ir 21 
I127 Ã‡p 4 
1137 Apr I2 
1b47 AM- 21 
1157 Ap I 
l U 7  Ã‡p 10 
1177 tar 18 
1607 mar 10 
lbV7 ter 7 
1707 A i r  24 
1717 Bar 28 
1727 Apr 13 
1737 Apr 21 
1747 Apr 2 
1737 Avr 10 

l U 8  Apr b 
1118 Apr I 5  
I121 Apr 23 
1638 Apr 4 
I M  far 12 
1150 tor 21 
l W  Ã‡p 1 
1178 10 
l iW Apr 18 
l i t 8  Mar 10 
1708 Apr 8 
1718 Apr 17 
1720 HIT 21 
1738 Apr 6 
1748 Apr 14 
1738 A i r  21 

1601 Apr 19 
UlV M i r  31 
1621 Apr I5 
Ml Apr 24 
1149 Apr 4 
Ib5V Apr 13 
IUV i p r  21 
1679 2 
I W  Apr 10 
uw 4pr  IV 
17M Kar 31 
i7lV Apr V 
I721 tor 17 
1 n v  mar CT 
114V Apr 6 
175V A i r  IS 

1764 Apr 22 1715 Apr 7 17U mar 10 1767 Apr IV 1768 Apr 1 17H &r 26 
1774 Apr 3 I115 A i r  I t  I776 A i r  7 1777 mar 10 1778 Anr IV 1719 Ã‡t 4 
1184 Apr I1 
1794 Apr 20 
1801 Apr 1 
UK Apr 10 
1824 Apr 18 
1834 mar 30 
1844 Apr 7 
1854 Apr I1 
1814 K i r  27 
1874 Avr 5 
I884 Apr 13 
1814 K i r  25 
IT04 Apr 3 
I914 Apr 12 
1924 Apr 20 
1934 Apr I 
1944 Apr 9 
1954 Apr 18 
lV14 Mar '8 
I974 Apr 14 
IVH Apr 22 
1994 A i r  3 
2004 Apr 11 
2014 A i r  20 
2024 mar 31 
2034 Apr V 
2044 Ã‡p 17 
2054 Rar It 
2064 Apr 1 
2074 Apr 15 
2004 mar 21 
2W4 tor 4 

1785 mar 27 
IlVJ Ã‡p 5 
1805 Apr 14 
1015 mar 21 
1821 A i r  3 
1835 A i r  11 
1845 K i r  23 
I155 Apr 1 
1815 Apr 11  
1875 mar 28 
1885 Ã‡p 5 
I895 Apr 14 
1VM A i r  23 
IVIStpr 4 
1725 Apr 12 
1935 Apr 21 
m 5  Ã§p I 
1955 Ã‡p 10 
lV15 Apr 18 
H75 X i r  10 
K85 Apr 7 
mi i p r  11 
2005 mar 27 
2015 Apr 5 
2025 Apr 20 
2035 Rar 25 
2045 Ã‡p 9 
2031 Apr 18 
2065 Mar 27 
2075 Ã‡p 7 
2085 Apr I5 
2095 IT 24 

1786 Apr 11 
17Vb K i r  27 
1801 Apr b 
1811 A i r  14 
1BU K i r  21 
18% bpr 3 
1046 Apr 12 
18% K i r  23 
18U Apr I 
1871 I p r  11 
1881 Apr 25 
18% Apr 5 
IWb A i r  IS 
IVIb Apr 23 
mi A i r  4 
I931 Ãˆp 12 
1941 Apr 21 
I?% Apr I 
1VU Ã‡p 10 
lV76 Apr 18 
1186 Kar 10 
IVV6 Apr 7 
20U Apr I 1  
2011 Mar 27 
Ã̂ Apr 5 
2 0 s  Apr 13 
2046 l i r  25 
20% Apr 2 
2066 Apr I I 
2076 A i r  IV 
2086 Bar 31 
2096 Apr 15 

I l V  tor 8 
17V7 Apr 11 
1807 IT 39 
1817 Apr 1 
1627 tor 15 
1837 mar 21 
1847 Apr 4 
1851 tar 12 
1867 A i r  21 
1877 If 1 
IN7  Apr 10 
mi Ã§p 10 
1W7 K i r  31 
I917 Apr 8 
IV27 Apr 17 
IV31 X i r  28 
1947 Apr 6 
1957 Apr 21 
1167 K i r  21 
1977 Apr 10 
1187 Apr I? 
1917 mar 10 
2047 A i r  8 
2017 Apr 11 
2027 lir 28 
2037 Apr 5 
2047 Apr 14 
2037 Apr 22 
2067 Apr 3 
1W Apr I1 
2087 Apr 20 
2ov7 mar s t  

1lM fit 23 
17w Apr 8 
lW Apr 17 
1818 K i r  22 
1128 AT 1 
US0 Apr 15 
U4B Apr 23 
1850 Apr 4 
1 M  Apr 12 
1878 A i r  21 
IBff Apr 1 
liÃˆ Apr 10 
1964 Her 1V 
1918 K i r  31 
I928 A i r  8 
LVB Apr 17 
Ml K i r  28 
If58 Ã‡p 1 
IV18 A i r  14 
1978 Kar 21 
1 W  A i r  3 
l9W A i r  12 
Mi8 mar 23 
2018 Apr 1 
2028 A i r  11 
2038 l p r  25 
2048 Apr 5 
2058 AT 14 
2068 A i r  22 
2078 Apr 3 
2008 Apr II 
W 8  Apr M 

1781 Apr 12 
l1W X i r  24 
1809 Air 2 
UK tor 11 
1821 A i r  IV 
1839 X i r  31 
I849 #pr 8 
1851 @ r  24 
1 W  fir 28 
1879 tor I3 
IWV HIT 21 
1mv tar 2 
1W9 Apr 11 
191V Apf 20 
lV21 K i r  31 
mi Apr 9 
I949 Apr 17 
mi X i r  21 
IVtV tor 6 
W 9  Apr 15 
Imv su 21 
IVVV far 4 
ZOO? Apr 12 
2019 Apr 21 
20Ã Apr 1 
2031 Apr 10 
2049 Apr 18 
205V I lar I0 
206V Apr I4 
2079 Apr 23 
2089 A i r  I 
2097 A i r  I2 

,ear Easter ....----- --. 
:I00 War 28 
2110 t p r  1 
:ti0 Apr I4 
:I30 Mar 26 
2140 Apr 3 
2150 Apr 12 
:1bO Ilar 23 
1170 A i r  I 
21!0 Apr I1 
:I90 Apr 25 
3 0  t o r  1 
2210 A i r  15 
2220 Apr 23 
.::a r t r  4 
1:W Spr 12 
;:50 Ãˆv 21 
::A0 Apr I 
1:;O t p r  10 
.:a3 Apr 18 
'i70 Mar 30 
SO0 Apr 8 
::Ill Bpr 17 
.'W mar 28 
;!;0 t p r  1 
2:w apr I4 
;::a Bar :b 
"9 :,r 1 
' ; o  apr ~q 
:SO Mar 23 
:Vll Apr 0 
.4MI Ã‡p 11 
:110 Spr 15 
:420 t p r  5 
.4:0 i p r  14 
:UO Apr 22 
Xi) Apr 3 
c1b0 tor I1 
:m i p r  20 
'.W Mar 31 
:W S-pr V 
i$H Apr I8 
:>I0 fir 30 
2520 Ã‡p 7 
;5:0 Apr 11 
:540 Bar 27 
350 Apr 5 
2!i0 Apr I3 
2570 Mar 25 
2530 Ã‡p 2 
i5V0 t p r  I1 

Vtar Easter V t i r  E n t e r  

EASIER SUNMV 

Y u r  E a s t u  Year Easler Year Easter 

2101 A i r  17 
2111 mar 21 
2121 Apr 6 
2131 Apr 11 
2141 Nar 26 
2151 A i r  4 
2111 Apr 12 
2171 Apt 21 
2181 Apr 1 
2111 t o r  I0 
2201 t p r  I? 
2211 Mar 31 
m i  t o r  I! 
Â¥;! spr :1 
2211 l p r  4 
2251 i p r  I1 
2211 l o r  21 
OT1 Ã‡p 2 
2 x 1  ;;r 10 
22Vl t o r  19 
2301 mar 31 
2311 Apr 9 
2321 Apr 17 
2311 v i r  17 
2341 hpr 6 
:?51 Apr 15 
2Jil War 26 
2371 A i r  4 
1 3 1  Apr I2 
!HI Har 24 
2401 I p r  I 
1411 i p r  111 
1421 tsr I8 
:431 Mar 10 
2 W  Apr 1 
2451 Apr I6 
2111 war 21 
2471 apr 5 
2481 Apr :0 
24v1 Ur 25 
2501 Apr 10 
U l l  A i r  19 
2521 mar 10 
2531 l p r  8 
2541 A i r  11 
2551 Mar 20 
2561 Apr 5 
2571 A i r  14 
2581 mar 25 
2591 Ã‡p 3 

2102 A i r  9 
2112 Ã‡p 17 
2122 Kar 29 
2132 Apr 6 
2142 tor 15 
2152 Apr 23 
2162 A i r  4 
2172 A i r  12 
2182 A i r  21 
2192 Apr I 
2:02 A i r  11 
2212 Apr 19 
2222 Mar 31 
:I12 t p r  8 
2242 Ã‡p 17 
2252 Mar :8 
1212 Apr 1 
2212 A i r  21 
2:82 mar :1 
2272 Ã‡p 10 
2102 A i r  20 
1112 Mar 31 
2322 npr 9 
2H2 npr 17 
2342 Mar 29 
2352 Apr 1 
2362 Car 15 
2172 mar :6 
2302 l o r  4 
ZV Apr 12 
7402 A i r  i 1  
2412 tv I 
2422 6pr I0 
:412 A i r  18 
2442 Bar 10 
i4H Spr 7 
2412 Apr I1 
:412 Mar 27 
2482 Ã‡p 5 
2492 Apr I3 
2502 Mar 21 
2512 Apr 3 
2522 Ã‡p 19 
:512 Bar 21 
2542 Apr 8 
2552 Apr 11 
2512 mar 28 
2572 Apr 5 
2582 Apr 14 
25V2 Apr 22 

2103 X i r  25 
2111 Apr 2 
2123 Apf I1 
2133 A i r  IV 
2143 "ir Ã 
2153 Apr 15 
2113 Apr :4 
2173 Ã‡p 4 
2183 Apr 13 
2H3 Apr 21 
2233 Apr 3 
2213 A i r  11 
2221 Apr 20 
3213 Har 31 
l241 Apr 1 
2251 Apr 17 
2:bS mar :V 
2213 Apr 1 
!:El Apr IS 
im mi, Zh 
2303 Apr 5 
2313 S i r  I1 
2323 Mdr 25 
2133 t p r  2 
IM A i r  I t  
2153 Hat 22 
23is mar 11 
2113 Ã‡p I5 
2381 Apr 24 
2H1 a i r  4 
24OS Apr 13 
:413 Apr 21 
2423 Apr 2 
2431 apr 10 
2 W  Apr 19 
2451 H i t  Ill 
3 5 3  Apr 8 
:41S f o r  11 
2431 mar 28 
249s Apr 5 
2503 Apr I5 
2513 mar 21 
2523 Apr 4 
2533 Apr I2 
2543 mar 24 
2553 Apr I 
2513 Apr 10 
2571 Ã‡p 25 
2583 mar 10 
2593 Apr I4 

2104 Apr 13 
i l l 4  AT 22 
2124 A i r  2 
2134 ftpr 11 
2144 Apr 11 
2154 Mar 31 
2164 Ã‡p 8 
2174 Apr 17 
2184 mar 28 
W 4  Apr 1 
2204 Apr 22 
2214 hr 27 
2224 Apr I1 
;:I4 Ã‡p 21 
2244 mar 31 
Z54 Avr 9 
2264 Apr 17 
nn Mar 2v 
2:84 t p r  1 
12V4 Apr I5 
2:04 Mar 27 
2514 Apr 5 
SH Apr 13 
2314 Rar 25 
2344 Ã‡p 2 
2554 fo r  11 
2164 t p r  1V 
2374 Mar 31 
2384 Apr 8 
2 M  Apr 17 
2404 Mar 28 
2 W t w  6 
2424 t o r  21 
2414 Rar 21 
2444 A i r  10 
2454 6pr 17 
2414 mar 30 
2474 Avr 8 
2484 Apr I6 
2H4 Mar 28 
2504 Ã‡p 1 
2514 Aor 15 
2524 K i r  21 
2534 Apr 4 
2544 Apr 12 
2554 t p r  21 
2564 Apr I 
2574 Apr 10 
2184 Apr 18 
2594 t o r  30 

2105 AT 5 
2111 kpr 14 
2121 Ã‡p 22 
2131 tor 3 
2145 A i r  11 
2155 Apr 20 
2165 Bar 31 
2171 Apr 9 
2183 Apr 17 
im mr Ã 
2205 Apr 7 
2215 Ã‡p 11 
222s mr n 
2235 A i r  5 
2245 Apr 13 
2255 mar 25 
2215 Apr 2 
2275 Apr 18 
2285 mar 11 
2195 Apr 7 
2305 hpr I1 
2315 Mar 28 
2325 Apr 5 
2335 Apr 14 
2345 Apr 22 
2355 Apr 3 
2365 Apr 11 
2315 Apr 20 
2385 "ir 31 
23V5 Apr V 
2405 Apr 17 
2415 Rat it 
2425 Cpr 6 
2435 t o r  15 
2445 mar 26 
2455 Apr 4 
2465 Apr 12 
2475 mar 24 
2485 Apr 1 
1W Ã‡p 10 
2503 mar 22 
2515 mar 31 
2523 l p r  I5 
2535 Apr 24 
2545 Apr 4 
2555 Apr I3 
2515 Apr 21 
2575 Apr 2 
2585 Apr 10 
25Vi AT 19 

21U A i r  18 
ill! K i r  21 
212b A i r  14 
2136 tor 22 
Mi Apr 3 
21% Apr 11 
21U A i r  20 
2171 mar 31 
21K Apr 9 
21% Apr 17 
2201 MK 30 
2216 kn 7 
2221 Apr 11 
2231 mar 27 
2241 Apr 5 
2251 Apr 13 
2216 mar 25 
2271 A i r  2 
2206 A i r  11 
W 6  I p r  I9 
2S06 AT 1 
2316 A i r  11 
2326 Apr 25 
2 s  t p r  1 
2346 Apr I4 
23% Apr 22 
2361 t p r  3 
2316 Apr 11 
2181 Apr 20 
23Vt War 31 
2406 Apr V 
24l1 A i r  17 
2426 Mar 29 
2436 Apr 1 
2441 hpr  15 
24% mar 21 
2466 Or 4 
2476 A i r  12 
2186 Apr 21 
2491 Apr 1 
2506 Apr II 
2511 Apr IV 
2526 IT 31 
2531 Apr 8 
2546 Avr 17 
2551 f i r  l0 
Zit1 Apr 6 
2576 Apr 21 
2586 Kar 26 
25Vb Apr 10 

Vear Easter -------------- 
2107 tor 10 
2117 Upr 11 
2127 Kir 10 
2137 far 7 
M7 Apr 11  
2117 Kir 27 
2117 Apr 5 
2177 A i r  20 
2187 mar Ã 
2lV7 Apr 9 
mi Apr I9  
2217 Har SO 
2227 tor 8 
2237 A i r  16 
2:47 War ;8 
W1br 1 
2267 tor 14 
2217 Apr 22 
2287 Apr 3 
mi Ã‡p 11 
2307 Apr 21 
2317 Apr 1 
2327 Apr 10 
2Ãˆ Apr 18 
2347 Bar 30 
2M7 Apr 7 
2 M  Apr I1 
mi mar 27 
2Ãˆ Ã‡p 5 
23V7 Ã‡p 20 
2407 thr 25 
2417 Afir 2 
2427 Apr 18 
2437 Hir 22 
2447 Apr 7 
:ti7 t p r  I5 
2467 tor 24 
2411 Apr 4 
2487 A i r  I! 
2497 A i r  21 
2501 Apr 3 
2517 Apr I1 
l527 Apr 20 
2537 mar 31 
2541 Apr V 
2557 Apr 17 
2%; mar 27 
2577 Ã‡p 1 
2187 Ã‡p 15 
2517 mar 26 

Year Easter - - - - - -- - - - - - . 
21M Apr 1 
2111 Ã‡p 10 
2121 Ã‡p 18 
2 1 s  fir SO 
2148 Apr 7 
2118 tor 11 
2118 IT 27 
2171 Apr 5 
2180 tar I3 
un hr 25 
2208 tw 3 
2218 A i r  12 
2228 mar 23 
22:8 t p r  1 
2248 Apr 11 
we i p r  2s 
2218 A i r  5 
2211 Apr 14 
2288 Apr 22 
2298 Apr 3 
2108 tcr 12 
2118 Apr 21 
2328 Apr 1 
2338 Apr 10 
2148 A i r  I8 
2358 mar 30 
2318 Apr 7 
2378 Apr I6 
2388 mar 27 
2118 Ã‡p 5 
M 8  Apr 13 
2418 Kar 25 
2K8 A i r  2 
UÃ Apr 11 
2448 t o r  19 
2458 Rar 31 
2418 Apr I5 
2478 Apr 24 
2488 Apr 4 
24V8 Apr 13 
2508 A i r  22 
2518 t o r  3 
2528 Apr 11 
2538 Apr 20 
2548 Kar 31 
2558 Apr V 
2518 Apr 17 
2578 fa r  W 
2588 Apr 1 
2578 Apr 15 

vear tuiw -------------- 
2109 tor 21 
2119 Su 21 
2 W  Apr 10 
2139 tor I9  
2149 K i r  10 
1W Apr 8 
2 W  Apr 11 
217v mar 21 
2189 Apt 5 
im upr 14 
2201 R i r  21 
m t s r  4 
2 2 n  far 12 
223V Apr 21 
2249 Apr 1 
W1 Apr 10 
22U Ã‡p 18 
W1 K i r  30 
2209 t p r  7 
22vV Apr I6 
2309 Mar 21 
2319 Apr 1 
2321 tor 21 
2131 Mar 26 
2349 Apr 10 
235V Avr IV 
2169 Kar it 
2319 AÃˆ 8 
2M9 Ã‡p 16 
21vv fir a 
2409 Apr 5 
2419 A i r  14 
2429 Apr 22 
2439 apr 1 
2449 Apr 11 
2459 Apr 20 
2419 mar 31 
zm apr 9, 
2489 Apr 17 
24VV mar 29 
2509 Apr 7 
2 5 1 ~  A i r  I t  
2529 mar 27 
W 9  Apr 5 
2549 Apr 20 
2539 mar 25 
MV Apr V 
257v Apr 18 
2189 mar 21 
25W ti1 7 

TABLE IV TABLE IV (cont.) 



A typical question concerns the month pattern. In particular, "Can Easter occur in March 
in both of any two consecutive years?" The table above strongly suggests the answer is "no." In 
order to be certain, one must examine the entire Easter period, or, by consideration of the formula, 
establish that Q cannot be 3 (the March number) for consecutive year numbers. By a computer 
analysis of the Q question for the entire Easter period of 5,700,000 years, the answer of "no" is 
verified. Accordingly, Easter cannot come in March two years in a row. Another question suggested 
by the long Easter listing is "Can Easter occur on corresponding Sundays in any two consecutive 
years?" Corresponding Sundays in consecutive years are those Sundays which differ by exactly 52 
weeks. For example, April 9, 1950 and April 8, 1951 are corresponding Sundays. The first is an 
Easter date; the second is not. Knowing for instance that April 12, 1998 is Easter (as calculated 
earlier), can one now assert for afact that neither April 13, Sunday, 1997 nor April 11, Sunday, 1999 
is an Easter date? Once again, by a computer analysis of the Easter period of 5,700,000 years, the 
answer is "consecutive Easters cannot occur on corresponding Sundays." Other questions likewise 
stem from the Easter listing. A few are included here for the purpose of additional exploration. 

1. I t  appears that in consecutive years, Easter dates can be no closer datewise than 8 days. 
Consider for example the Easter dates April 18, 1965, and April 10, 1966. Note too that 
the earlier year always seems to contain the later date number. Are these suggested patterns 
valid? 

2. The shortest interval of time separating a given Easter and its next like date occurrence is five 
years. This happened, for example, on (Easter) March 29, 1959, and (Easter) March 29, 1964. 
What is the greatest interval of time separating a given Easter and its next like date occurrence? 
Note that long intervals of time are suggested by examining Easter lists. Among them are the 
Easter dates March 22, 1818, and March 22, 2285, which span an interval of 467 years. 

3. Is it possible for a decade to consist entirely of April Easters? What is the greatest number of 
consecutive April Easters possible? 

4. Ponce de Leon, the European discoverer of Florida, gave the area its name ("Florida" or "flowery 
Easter") on Easter Sunday in the year 1513. What was the exact date of this Julian calendar 
Easter and could it be the same as its projected Gregorian date counterpart, namely, April 6? 

5. Can two like date Easters be exactly 400 years apart? Recall that the period of the Gregorian 
calendar is 400 years. 

The above are but a few of the many questions contained in the mathematical subtlety of the Easter 
date pattern. 

The Gregorian calendar will prove many times out of line with the seasons in the course of 
5,700,000 years. Actually, the calendar proves a day in error every 3323 years. In less than 100,000 
years, the present calendar's marginal inconsistency with the seasons will magnify and measure 
roughly a month. Accordingly, it must be stressed that the computations above rest on the as- 
sumptions implicit in the Gregorian calendar's construction (a calendar likely to be modified or 
abandoned in the years ahead). Still, in its present, highly familiar form, it affords an opportunity 
for the mathematically curious to explore an intriguing pattern of numbers and number relationships. 

Appreciation is expressed to Victor Gummersheimer and Johnny Lai for their computer assis- 
tance in the preparation of this manuscript. 
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ERRATA 

The following errors appeared in the Fall, 1991, issue of the Pi  Mu Epsilon Journal: 

Page 280 On line 4 and again on line 5, "ac - bd # 0" should have read "ad - bc # 0." 
Page 292 "Theorem 2" and "Example 10" should have been "Theorem 7" and "Example 11." 

'Page 296 Line 7 should have read "365.251365.25 + 11365.25 = 24 hourslx!' 

Page 297 On line 5, "then Oi,O2,  and 03" should have read "then Oi02 and CO3:' 

Page 299 On line 4 of Theorem 2, "A; = C2" should have read "A- = C2." 

The Editor apologizes for any problems that these errors might have caused. 

1. J. Dutka, "On the Gregorian Revision of the Julian Calendar," The Mathematical Intelligencer 
10, Winter 1988, pp. 56-64. 



EXTENDING A FAMILIAR INEQUALITY 

Norman Schaumberger 
Hofstm University 

The following problem appeared on the 1973 USA Mathematical Olympiad: 

Prove that if a,b,and c are positive real numbers, then 

a'bbc' 2 (abc)(5+b+c)/3 

A simpler version, 
aabb > (ab)(5+b)/2, 

is a familiar exercise in a number of texts. 

The usual proofs of (1) use a not particularly simple elementary argument or Jensen's inequality. 
[See M. S. Klamkin, USA Mathematical Olympiads 1972-1986, MAA, 1988, p. 81.1 

We start our proof by noting that if x > 0, then 

with equality iff x = 1. 

We use (2) to  extend (1) and then to obtain an important limiting relation for the power mean. 

The right side of (2) follows immediately from the observation that f (2) = x - 1 - In x has an 
absolute minimum at  x = 1 because f t(x)  = 1 - l /x  = 0 iff x = 1, and ftt(x) = l/x2 is positive for 
x > 0. If we now replace x by l /x  in x - 1 > In x we get x In x > x - 1 which completes (2). 

Let A = (a + b + c)/3 and substitute x = a/A,x = b/A, and x = c/A successively into (2). 
Adding gives 

a a b b c c  a b c  
- In-+- In-+- In->  -- 3 2 I n - + l n - + I n -  
A A B A A A -  A A A A  

Hence 

In [(a/^)"" ( b / ~ ) ~ h  (C/A)~/"] > 0 2 In ($1 
abc (-1 A3 

It follows that 
a'-bbcc 2 ~ a + b + c  2 (abc)(a+b+c)/3. (4) 

This double inequality gives (1) and somewhat more. Also, there is equality iff a/A = 1, b/A = 1, 
and c/A = 1. That is, iff a = b = c. 

The power mean, Mr, of order r is defined by 

where a; > 0 (i = 1,2,. . . , n) and r # 0 are real numbers. Thus Mi and M i  are the arithmetic 
mean and root mean square. If n = 3, then M: = (ar + br + cr)/3. 

Putting x = avM:, x = br/M:, and x = cr/M: in (2) and adding gives 

In a similar way to that used to get (3), it follows that 

arbrcr > 1 2 -  M-"- . 

If r > 0, raising to the M:/r power gives 

More generally, the same kind of argument can be used to get 

Inequality (4) is a special case of (5). If r < 0, the inequalities in (5) are reversed. Thus, for 
example, if r = -1, then M_,  is the harmonic mean and (5) becomes 

If r = 0, Mr is not defined. However, the geometric mean, ifahc, is usually denoted by Mo. 
The standard proof that 

lim Mr = v n  
r-0 

(7) 

uses L'Hospitalls Rule and the theory of exponential functions. [See Hardy, Littlewood, and Polya, 
Inequalities, Cambridge University Press, Cambridge, 1952, p. 15.1 

Equation (7) follows at once from the observation that (5) can be written as 

If r - 0, (aa^bbrcc~^a"+br tc^)  tends to and we get (7) for n = 3. The general case can be 
proved in an analogous manner using (6). 



this is clearly at  least as big as x,  where 

PROOF OF THE CONVERGENCE OF A SEQUENCE OF RADICALS 

Andrew Cusumano 
Great Neck, NY 

The purpose of this paper is to investigate the expression 

We first note that S represents a sequence {aJ;}r=l of real numbers. Checking a few terms, either by hand or 
with an easily written computer program, leads us to conjecture that the sequence converges to 3. In order 
to prove this, we first show that it is a monotone increasing sequence that is bounded above by 3. Thus, 
l i m ~ ; ~ ~  ak = a exists and a < 3. Finally, we show that a = 3. 

To write S as an increasing sequence and see that it is bounded above by the number 3, we note that 

Since {ak}?Â¡= is an increasing bounded sequence, bounded above by 3, we know that limtdoo aJ; = a exists 
and a < 3. 

Thus we can write 

(1) 

We then note that \/l+6a: = a;. By using the quadratic formula on the equation x2 - 6x - 1 7 0 ,  we can 
see that x > 6. We can then compare 

* - 

, where 
To prove that a = 3, we construct a sequence {bn}FZi such that bn < a < 3 for every n, and then show 

that limnÃ‘o bn = 3. In order to construct our bn, we must get some idea of how far each at is from 3. If 
we consider, for example, just the part 

which is exactly equi 

Notice that 

il to 3. We can now generalize this approach in order to construct the bn. 

Since x i  - (n + l)xn - 1 = 0, the quadratic formula shows that in > n + 1.  
By replacing dn by n + 1 in (I), we get in ,  where 

Since n + 1 < xn < dn, we have bn < a. Thus, for every n, bn < a < 3. 
To complete our proof, we need only show that limn_co bn = 3. To do this, we first note that if 

0 < 2 < y, 0 < w ,  and 0 < u < 1, then u < fi, and 

It follows that 

n + 1  
Since limnÃ‘s - = 1, it follows that limn_oo bn = 3. Thus a = 3, and our proof is complete. 

n + 2  



A CLOSED FORM FOR A FAMILY OF SUMMATIONS 

Russell Euler 
Northwest Missouri State University 

Let p be an integer such that p > 2. It can be shown, by using the asymptotic relationship 

from page 33 of [2], that 

converges. The series (1) was evaluated in [1] by using partial sums. In this paper, a closed form for 
(1) will be obtained by using special functions. The special functions that will be used are reviewed 
first. 

The g a m m a  function is denoted by H z )  and defined by 
00 

r ( ~ )  = e-' t Ã  dt 

for z > 0. The gamma function has the property that r ( z  + 1) = zr (z )  provided z is neither zero 
nor a negative integer. In particular, for n = 0,1,2, .  . . , r ( n  + 1) = n!. 

The factorial function is defined by 

( a ) n = a ( a + l ) . . . ( a + n - l ) f o r n > l  a n d ( a ) o = l  fora#O.  

In particular, n! = (l)n and, from page 9 of [2], ( ~ ) ~ + b  = (a + n ) t ( ~ ) ~ .  

The (Gaussian) hypergeometric  function is denoted by zFl(a. b; c; z )  and defined by 

provided c is neither zero nor a negative integer. If none of the parameters a ,  b, or c are zero or 
a negative integer, it is known that this series is absolutely convergent for 1x1 < 1, divergent for 
x \  > 1, and is absolutely convergent for lzl = 1 provided a + b - c < 0. 

To evaluate (I), first notice that I(p) can be written as 

However, 

Substituting (3) into (2) and simplifying yields 

Hence, 

I t  has been shown in [3], page 49, that if Re(c- a - b) > 0 and if c is neither zero nor a negative 
integer, 

Therefore, identity (4) becomes 
r ( p  + 1 ) r b  - 1) 

I(p) = 
r(p)r(p) 

. 

Since r ( z )  = (z - l ) r ( z  - I) ,  (5) simplifies to give 
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WHAT IS "LOCALLY COMPACTn? 

Raghu R. Gompa 
Indiana University at Kokomo 

Each textbook in Topology has its own way of defining what it means for a space to be locally 
compact. Some authors make an effort to  give an equivalent characterization under some additional 
assumptions about the topological space (see [2]). Essentially there are four wncepts with the name 
of local compactness and the relations among these have been only partially studied. Even though 
local compactness, by its very title, is a local property (recall that a property is said to be local if it 
can be specified for any single point in the space), there has been only global study (that is, a study 
of the spaces where the property is assumed for every point in the space) of it in the literature. In 
this paper, we study it locally a t  a point. Implications among these concepts will be discussed a t  
a particular point. Moreover, we present examples to help understand the impossibility of reverse 
implications. 

Throughout this paper X represents an arbitrary topological space and z denotes a fixed point 
of X. Schnare [3] discussed two definitions of local compactness, which are rephrased here to  define 
them as properties of space X at  a point z as follows: A topological space X is called weakly locally 
compact ,  or simply w-compact, at z iff there is a compact neighborhood of z in the space X. 
X is called mildly locally compact ,  or m-compact, a t  z iff there is a neighborhood of z whose 
closure is compact. A topological space is said to be 1-compact iff it is 1-compact at  each of its points 
where 1" is "w","m", or any other letter that makes sense in the following discussion. Schnare [3] 
showed that a w-compact space is m-compact iff the closure of any compact set is compact. Later, 
Gross [4] introduced a third definition of local compactness, which is modified here as a property 
at  a particular point z .  A space X is called b i t  locally compact ,  or b-compact, a t  z iff each 
neighborhood of z contains a compact neighborhood of z. 

I t  is well known that all these wncepts are equivalent in Hausdorff spaces and regular spaces. 
In fact, in such spaces, these are equivalent to one more concept called strongly locally compact. X 
is said to be strongly locally compact ,  or s-compact, a t  z iff each neighborhood of z contains 
a compact closed neighborhood of z. The particular choice of terminology becomes apparent after 
observing that s-compact is strongest, w-compact is the weakest, and b-compact, m-compact lie in 
between for any general spaces. That is, we have the following implications in any general topological 
space X a t  the point z:  

s-compact / \ w-compact 

\ / 
Â¥S 

m-compact / 

These implications are strict. Moreover, b-compact and m-compact are incomparable in a general 
topological space. 

Even though compact spaces are obviously m-compact (and thus w-compact), compactness does 
not imply either s-compactness or b-compactness. Consider the one-point compactification of the 
space Q of rational numbers. This is a TI+-space (a space in which each compact set is closed). It 

can be shown that it is neither s-compact nor b-compact. This example also tells us that even in 
compact TI +-spaces 

m-compact -+* b-compact 

at  z. However, b-compact certainly implies m-compact in Ti+-spaces. In fact, this implication holds 
even under a weaker assumption on the topological space. To explain this assumption, we need 
the following definition. A space is called an R-space iff the closure of a compact set is compact. 
Clearly any regular or Ti+- (hence T2-) space is an R-space. since m-compactness at  z is equivalent' 
to  the statement that there is a compact closed neighborhood of z in X, it is immediate that in any 
R-space 

b-compact Â¥Ã m-compact 

at  z and 
m-compact ++ w-compact 

at z .  Of course, b-compact does not imply m-compact in general spaces. Gross [4] has an example 
of a b-compact normal space which is not m-compact. An easy example is the following: Consider 
an infinite set X with a distinguished point z in which a set is declared to be open if it is either 
empty or it contains z. This is a To-space (a space in which distinct points have distinct closures) 
which is b-compact at  z but not m-compact. 

An infinite set with cofinite topology reveals that even in compact, Ti - and R-spaces 

b- and m-compact Ã‘(- s-compact at x. 

But in-compact and s-compact a t  x are equivalent in a topological space which is Ti at  z. A space 
X is called Ti at z iff for any point y of X different from z ,  there exist two disjoint open sets G and 
H in X containing y and z,  respectively. I t  is easy to verify that a topological space X is T; at  a 
point z iff to each compact set A not containing z there correspond two disjoint open sets L and M 
such that A C L and z 6 M. 

Let us show that if X is Ti at  z and m-compact at  z then it is s-compact at z. Let G by any 
open set containing z. Let N be a compact closed neighborhood of z (by m-compactness at  z ,  N 
exists). Write A = N fl G', where G' represents the complement of G. Clearly A is a closed subset 
of the compact space N and hence compact. Since z f. A and X is T2 at z ,  there are disjoint open 
sets L and M such that A C L and z E M. Now M C L' and 

(the bar indicates the closure of the set), which means xfl N C G. Thus H = M II N o  (No is the 
interior of N )  is an open set containing x and 

Moreover, r, being a closed subset of compact set N ,  is compact. This shows that X is s-compact 
at  z. 

At this point note that, for any R-space that is Ti at z the implications 

w-compact - m-compact --+ s-compact 

hold at  z ,  hence all compactness concepts are equivalent. 

Notice that a space which is s-compact at  z is regular at z i t h a t  is, to  each open set G 
containing z there corresponds an open set H such that z 6 H C H C G .  In fact, this property 
of the space assures the equivalence of all these concepts. To prove this, let us assume that X is; 
w-compact a t  z and regular a t  2. We show that X is s-compact at  2. Let G be any open set 



containing z. Since X is w-compact a t  z ,  there is a compact neighborhood N of z.  Put A = Gri No. 
Then by regularity at  z, there exists an open set H such that 

Clearly is compact (because a closed subset of a compact space is compact) and C G. Thus 
X is s-compact a t  z. Thus all these concepts are equivalent in spaces which are regular a t  z ,  Ty at 
z with Rproperty, or Hausdorff spaces. 

We close our discussion with an analysis of some of the standard properties of local com- 
pact spaces. Clearly any local compactness is z is closed hereditary (i.e., preserved under closed 
subspaces). However, only s- and b-compactness are open hereditary (i.e., preserved under open sub- 
spaces). The one point compactification of the space Q is m-compact (hence w-compact) in which 
the open set Q is neither m-compact nor w-compact. A w-compact dense subset B of a Ti#-space 
X is open. Indeed, suppose b E B .  Since B is w-compact, there exist a compact subset C of 
B and an open subset G of X such that b E 5 DG C C. Â£ is closed in X, because X is a Ti+-space. 
Since B is dense in X and G is open in X, = m. Thus 

This shows that B is a neighborhood of b. This being true for any b e  B, B is open. 
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ON T H E  CALCULUS OF RESIDUES 

Prem N.  Bajaj 
The Wichfta State University 

- -  .- 
In this note we give a paradox in the calculation of residues a t  a pole; a paradox in the sense 

that an incorrect procedure gives a correct answer. Some of the well-known examples of this type 
are: the incorrect cancellation of 6 in 16/64, of 9 in 19/95, or of 2 in (1 +#/ ( I  - z2) gives the 
correct answer. See also [I]. 

Let f(z) = g(z)/zn where g is analytic and has a zero or order m at  the origin; rn, n being 
positive integers and m < n .  At z = 0, f has a pole of order n - m and we discuss its residue R. 

Considering, INCORRECTLY, / to be a pole of order n, at  the origin, we have, 

However, the pole o f f  a t  z = 0 is actually of order n - m, and, so, 

Now let g(z) = zmG(z) so that G is analytic at  z = 0 and G(0) # 0. Using Leibnitz's theorem, 
we have 

so that 

reducing (2) to  (1). 

Incorrectly obtained result (1) can also be seen to be true by using the power series 

of g. However, the above approach illustrates an application of Leibnitz's theorem - generally 
forgotten or ignored by students - for finding the nth derivative of the product of two functions. 
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PROBLEM DEPARTMENT 
Edited by Clayton W Dodge 

University of Maine 

This department welcomes problems believed to be new and at a level appropriate for the readers of 
this journal. Old problems displaying novel and elegant methods of solution are also invited. Proposals 
should be accompanied by solutions i f  available and by any information that will assist the editor. An 
asterisk (*) preceding a problem number indicates that the proposer did not submit a solution. 

All communications should be addressed to C. W Dodge, Math. Dept., University of Maine, Orono, 
ME 04469. Please submit each proposal and solution preferably typed or clearly written on a separate sheet 
(one side only) property identified with name and address. Solutions to problems in this issue should be 
mailed by December 15, 1992. 

Correction 

761. [Fall 19911 Proposed by Murray S. Klamkin, University of Alberta, Edmonton, Alberta, 
Canado. 

Determine all functions f(x) such that 

f(x1 = z a n x n  and - - - z (-1) nanxn. 
n-0 f(x)  ,,-0 

The error was that the exponent on the (-1) was incorrectly given as n + I. 

Problems for Solution 

771. Proposed by Alan Wayne, Holiday, Florida. 
In the base six addition 

EVE + EVE + EVE + AND = 1310 

the digits of the addends have been unambiguously replaced by letters. Restore the digits. Where was 
EVE? 

772, Proposed by Robert C. Gebhwdt, Hopatcong, New Jersey. 
Let xt44 be a four-digit number and y be a two-&it number in base b > 4. Fmd x and y in 

terms of b so that (w)' = m44 in every such base b > 4 (such as 88' = 7744 in base ten). 

773. Proposed by Leon Bankoff, Los Angles, California 
In a given circle (0) a chord CD is drawn to intersect diameterA0B at point E. Three circles 

are inscribed, the first two in the sectors BEC and BED, and the third in the opposite segment CED. 
Let the circle in sector BEC touch CE at J and let the circle in sector BED touch DE at N. See the 
figure. If the three inscribed circles have equal radii, 

a) show that CD is perpendicular to AS,  
b) find the ratio AE/EB, 
c) find the ratio AD/AB, 

d) find the ratio CD/AS, 
e) show that the rectangle JKMN on JN as base and with opposite side KM passing throughA 

circumscribes the third inscribed circle, and 
f) show that the rectangles JKLD and N M W  are golden rectangles. 

Problem 773 

774. Proposed by Robert C. Gebhwdt, Hopatcong, New Jersey. 
The first player in a game who acquires 250 points is the winner. Because player A is a better 

player than player B, he gives player B a 50-point handicap. Similarly player B gives player C a %point 
handicap and player C gives player D a 50-point handicap. What handicap should player A give player 

775. Proposed by Norman Schaumbetger, Bronx Community College, Bronx, New York. 
I f  H is the harmonic mean of the positive numbers a,, a;, ..., an, prove that 

776. Proposed by Russell Euler, Northwest Missouri Stale University, Maryville, Missouri. 
Let n be a fixed positive integer and let 

Write as a polynomial in P, the expression 

777. Proposed by Seung-Jin Bang, Seoul, Korea 
It is well known that ln(n + 1) < S,, < In n,  where 

It is also known (Out Mathematicomm 11 (1985) p. 109) that 



Prove that 

l n ( n +  1) < n ( n +  l ) l I n - n  and n -  ( n -  ~ ) n - ~ / ~ - l )  < 1 + I n n  

for all n a 2. 

778. Proposed by Laura L. Kelleher and Frank P. Battles, Massachusetts Maritime Academy, 
Buzzards Bay, Massachusetts. 

It is readily established that the arc length along the curvey = coshx on any interval [a,b] and 
the area under the graph of this same function on this same interval are numerically equal. For what 
other functions, if any, is this curious fact true? 

779. Proposed by W. Moser, McGill University, Montreal, Canada, 
If 0 < a s x Â£y l/a, then prove that 

780. Proposed by R. S. Luthar, University of Wisconsin Center, Janesville, Wisconsin. 
Let ABW be a parallelogram with LA = 60". Let the circle through A,  B, and D intersect AC 

at E. See the figure. Prove that BD2 + AB -AD = AE -EC. 

Problem 780 

Problem 781 

781. Proposed by the late Jack Gatfunkel, Flushing, New York. 
Erect squares ADEF, BDKL, and CDGH as shown in the figure, on the segmentsAD, DC, and 

BD, where D is any point on side C4 of given triangle ABC. Let A; X and Z be the centers of the 
erected squares. Prove that triangles ARC and XYZ are similar and the ratio of similarity is q2 

782. Proposed by Murray S. Hamkin, University of Alberta, Edmonton, Alberta, Canada. 
In 0. Bottema et al, Geometric Inequalities, Wolters-Noordhoff, Gronigen, 1969, item 12.55, p. 

118, it is stated that for a triangle ABC with no angle 2 2r/3 that 

2(R, + R, + R3)' & (a2 + b2 + c2) + 4FV3, 

where R,, R',, and R3 are the respective distances from an arbitrary point P inside the triangle toits" 
vertices, a, b, and c are the triangle's side lengths, and F is its area. Item 12.55 further states that for 
a triangle in which LA a 2r/3, 

(R, + R, + R3)' 2 (b + c)'. 

Show that the first inequality is true for all triangles. 

783. Proposed by the late Jack Garfunkel, Flushing, New York. 
If, A, B, and C are the angles of a triangle ABC, then prove that 

Solutions 

403. [Fall 1977, Fall 1983, Fall 19841. Proposed by David L. Silvennan, West Los Angeles, 
California 

Two players play a game of 'Take It or Leave It" on the unit interval (0,l). Each player privately 
generates a random number from the uniform distribution and either keeps it as his score or rejects it 
and generates a second number which becomes his score. Neither player knows, prior to his own play, 
what his opponent's score is or whether it is the result of an acceptance or a rejection. (However, 
variants based on modifying this condition, either unilaterally or bilaterally, are interesting.) 

The scores are compared and the player with the higher score wins $1.00 from the other. 
a. What strategy will give a player the highest expected score? 
b. What strategy will give a player the best chance of winning? 
c. If one player knows that his opponent is playing so as to maximize his score, how much of 

an advantage will he have if he employs the best counter-strategy? 

11. Comment and solution by Peter Griffin, California State University Sacramento, California 
Unfortunately the published solution [Fall 19841 is incorrect in two major particulars. Part (b) 

is coincidentally correct because the expectation for rn = (rf5 - 1)/2 turns out to be itself. This is not 
a valid argument for establishing that this strategy will beat any other strategy, however. The answer to 
part (c) is wrong because it is based on the same fallacious reasoning as (b). 

Both parts (b) and (c) have nothing to do with expectation, but involve how often one strategy 
will do better than another. Here is a true historical analogy: In the 1960 World Series the New York 
Yankees averaged 8 runs to only 4 runs for the Pittsburgh Pirates, yet they lost the World Series. The 
Pirates won more often (4 games to 3), but when the Yankees won, they tended to win by many, many 
more runs. I will sketch briefly how to solve parts (b) and (c). 

"Using an a-rule" shall mean keeping your first random number if it exceeds the criterion ; 
number a, otherwise discarding it and being left with the second random number regardless of what it 



is. The distribution rule of one's final score using an a-rule is F.(x) = P r p  s x]. This function has two 
formulas: 

for x s a, Fa@) = Pr[R, s a] .Pr[R2 s a] = or, while 

for a < x, F.(x) = Pr[a c R, s x] + Pr[R, S a].Pr[R2 S a] 

From these formulas we derive the density function for an a-rule to bef.(x) = Fa), so 

fa@) = a if x s a, and f.(x) = a + 1 ifx > a. 

The density is integrated over various intervals to End the probability of being in the interval. To find 
the probability that the random score A is approximately equal to x, we use f.(x) dr. 

The probability that an a-rule beats a b-rule, assuming a s b, is found by approximating 
E P r p  = x] -Pr[B c x] with E FJx) -fa@) dx, which gives Prp > B] Â¥ E Fb(x) f.(x) Ar, and hence 

Note that P(a,b) is a quadratic in each variable separately. First, fix b and maximize P(a,b) as a function 
of a, yielding 

For b = 1, this gives 6 = 1/2. But for b = 112, a = 3/4, which is not admissible, being greater than 
1/2 Admiisibiility of 6 requires that (b2 + b + 1)/B 6, which implies that b2 + b - 1 a 0, and hence 
that b 2 m = (V5 - 1)/2 

Next fix a and maximize P(a,b), the probability that B loses to A. This requires that 

Admissibility of b follows from b 2 a, implying (a2 + a + l)/(2(a + 1)) 2 a, so a2 t a - 1 s 0, and 

finally a s m = (V5 - 1)/2. For a = 1/2, we get b = 7/12 and P(l/Z, 7/12) = 951192, so the 7112-rule 
beats the 1/2-rule 1 - 95/19 = 97/19 of the time. This is better than 

It is no surprise that the published solution mentioned simulations that gave 50.4% wins, since 112 + 
1/256 = 0.504. The 7112-rule gives 1/2 + 1/19 = 0.505. So, 7/12 is the answer to Part (c), not5j8,- 

Because m satisfies the relation m = 1/(1 t m) and 1 = m + m2, it is not hard to show that 
P(m,b) > 112 for all b > m and P(b,m) < 1/2 for all b < m, which demonstrates that m will beat any 
rule other than itself, which it ties. It provides a saddle point of the function P(a,b), namely (m,m). 

The following BASIC program simulates the 7/12 strategy versus the 1/2 strategy 10,000,000 
times, printing the results every 10,000 games. To simulate the 5/8 strategy, replace each 7 by 5 and 
each 12 by 8 in line 12. My results of running this program were that 7/12 beats 112 with frequency 
0.505215 and 518 beats 112 with frequency 0.503897, which compare with the ideals 97/19 = 0.505218 
and 129/256 = 0.503906. 

2 F O R J  = IT01000 
3 RANDOMIZE 
4 F O R I  = 1TO10000 
6 A  = RND 
8 I F A  < .5THENA = 2*A 
10B = RND 
12 IF B < 7/12 THEN B = 12*B/7 
l 4 I F A  > BTHEN18 
1 6 W = W t 1  
18 NEXT I 
20 PRINT J, 10000*W/J 
22 NEXT J 

731. [Spring 1990, Spring 19911 Proposed by Roger Pinkham, Stevens Institute of Technology, 
Hoboken, New Jersey. 

a) Show that on the lattice points in the plane having integer coordinates one cannot have the 
vertices of an equilateral triangle. 

*b) What about a tetrahedron in 3-space? 

VI. Comment by Seung-Jin Bang Seoul, Korea. 
In The Newsletter of the Korean Mathematical Society, No. 27 (July 1991) p. 17, there appears 

a solution by a colleague and me to the generaliition of part (a) that states that no regular (2n + 1)- 
gon can have all rational coordinates in the Euclidean plane. We furthermore point out that the result 
is true for any regular n-gon provided that n is not a power of 2 

733. [Fall 1990, Fall 19911 Proposed by Roger Pinkham, Stevens Institute of Technology, Hoboken, 
New Jersey, 

U p @ )  is a polynomial and p@) _>. 0 for all x, then 

for allx. 



IV. Solution by David Yavenditti, Alma, Michigan. 
Let S(x) = p(x) + pf(x) + pl'(x) + -., so that S'(x) = pl(x) + pn(x) + pm(x) + ma-. Then 

S(x) = p(x) + S1@). S i c e p  is a polynomial that is always nonnegative, thenp attains a minimum. Now 
S is a polynomial with the same leading term as p, so S also must have a minimum. Since S is a 
polynomial, then S attains its minimum value at x = c only if S1(c) = 0. Then, for all real x, 

745. [Spring 19911 Proposed by Alan Wayne, Holiday, Florida. 
Find all solutions to 

ENID 
+ DID 
DINE. 

I. Solution by Victor G. Feser, University of Mary, Bismarck, North Dakota. 
Since there are four symbols, we solve the problem in base B, where B s 4. From the B3 

column, D = E + 1. From the units column W -Ã E, where the arrow is read "yields" and is equivalent 
to "congruent mod B." It signif~es that 1 may be carried into the next column. Then 2E + 2 -Ã E, so 
E + 2 -Ã 0, whence E = B - 2. Now D = B - 1 and 1 is carried to the B column (the tens column in 
base ten). 

If 1 is carried to the B2 column, then it becomes 1 + N + (B - 1) -Ã I, and we have N = I, 
which is not allowed. So the B and B2 columns must read 21 + 1 = N and N + (B - 1) = I + B. Thus 
N = I + 1 and, from the B column, I = 0 and N = 1. Hence, for each base B 2 4, the unique solution 
is 

To complete the problem we show that there is no solution for any negative base B S -4. Since 
successive powers of a negative number alternate signs, if we carry 1 from a column in an addition, it 
carries into the next column as -1. From the B3 column we get E - 1 = D, and from the units column, 
W -Ã E. Substituting, as before, we get 2E - 2 -Ã E, so E = 2 and 0 = 1. Now 21 -> N, that is, 21 = 
N + ~ 1 ~ 1 ,  where c = 0 or 1. Also -c + N + 1 = I + 1 ~ 1 ,  which demands that N 2 1 ~ 1 ,  an 
impossibility. So there is no solution for any negative base. 

II. Comment by the Proposer. 
Easy, wasn't it? 

Also solved for any positive base by CHARLES ASHBACHER, Hiawalha, IA, SEUNG-JIN 
BANG, Seoul, Korea, WILLIAM CHAU, New York, NY, HENRY S. LIEBERMAN, Waban, Mi4, BOB 
PRIELIPP, University of Wisconsin-Oshkosh, KENNETH M. WILKE, Topeka, KS, and the PROPOSER. 
Base ten solutions were submitted by JOHN T. ANNULIS, University ofArkansas-Monticello, FRANK 
P. BATTLES, Massachusetts Maritime Academy, Buzzards Bay, JAMES E. CAMPBELL, Indiana 
University at Bloomington, CAVELAND MATH GROUP, Western Kentucky University, Bowling Green, 
MARK EVANS, Louisville, KY, HOWARD FORMAN, Parsippany, NJ, DAWN M. GALAYDA, St. 
Bonaventure University, NY, ROBERT C. GEBHARDT, Hopatcong, NJ. S. GENDLER, Clarion 

University of Pennsylvania, RICHARD I. HESS, Rancho Palos Verdes, CA, NATHAN JASPEN, Stevens 
Institute of Technology, Hoboken, NJ, LOWELL F. LYNDE, JR., University of Arkansas at Monticello, 
WADE H. SHERARD, Furman University, Greenville, SC, REX H. WU, New York, NY, and DAVID 
YAVENDITI'I, Alma, MI. 

746. [Spring 19911 Proposed by Gregmy Wulczyn, Bucknell University, Lewisburg, Pemisyl~ania 
Find the least positive integer n that will have remainder 1 when divided by r, the quotient dl 

have remainder 2 when divided by r, the new quotient will have remainder 3 when divided by r, and so 
forth through r - 1 divisions. That is, n = go, andqb1 = q,r + k for k = 1,2, ..., r - 1, r a positive integer 
greater than 1. 

I. Solution by John Pu(2, Alma College, Alma, Michigan. 
We have qo = 1 + qlr, ql = 2 + q;r, ..., qp2 = r - 1 + sir. Multiply the second equation by r, 

the third by 3, and so forth, and then substitute to get 

To minimize n, we choose q,., = 0 since r > 1. So 

and 

Subtracting, we have 

II. Solution by Stephen I. Gendler, Clan'on University of Pennsylvania, Claridn, Pennsylvania 
The numbers described seem to be no more than 

(r-1) (r-2) (r-3) ... (3) (2) (1) in baser, 

where each pair of parentheses is a digit, since the repeated division is a method for changing bases. 
Such numbers appear in any positive base r, the smallest being r = 2, n = 1. A few larger examples are 
listed below. 



r n (base r) n (base ten) 

HI.  Comment by the Proposer. 
This problem is a variant of the ordinary cocoanut-monkey problem in which the cocoanuts in 

a given pile are to be divided equally among r people the next morning. During the night one of the 
people sneaks out to the pile and divides it into r equal piles with exactly s cocoanuts left over, where 
1 s s < r. The s cocoanuts are thrown to a waiting monkey and the person hides one of the equal piles 
as &/her share. The remaining cocoanuts are replied into one pile. As the night progresses, each of 
the r people in turn sneaks out to the pile and repeats the procedure of dividing the cocoanuts into r 
equal piles with exactly s cocoanuts left over, throwing the s cocoanuts to the monkey, and hiding one 
pile as that person's share. In the morning, there remain just enough cocoanuts to be divided equally 
among the r people. Heres cocoanuts plus l/r of the remaining pile are removed exactly r times to leave 
a multiple of r cocoanuts in the pile. See problem 3242 in The American MathematicalMonthly (January 
1928). 

Also solved by CHARLES ASHBACHER, Hiawatha, L4. SEUNG-JIN BANG, Seoul, Korea, 
JAMES E. CAMPBELL, Indiana University at Bloomington, CAVELAND MATH GROUP, Western 
Kentucky University. Bowling Green, WILLIAM CHAU, New Yo& NY, CHARLES R. DIMINNIE, St. 
Bonaventme University, NY, MARK EVANS, Louisville, KY, VICTOR G. FESER, University of Mmy, 
Bismarck, ND, HOWARD FORMAN, Parsippany, NJ, RICHARD I. HESS, Rancho Palos Verdes, CA, 
HENRY S. LIEBERMAN, Waban, MA, MOHAMMAD P. SHAIKH, Western Michigan University, 
Kalamazoo, KENNETH M .  WILKE, Topeka, KS, REX H. WU, New York, NY, DAVID 
YAVENDI'ITI, Alma, MI, and the PROPOSER. 

747. [Spring 19911 Proposed by the late Jack Garfunkel, Flushing, New York. 
Let ABC be a triangle with inscribed circle (I) and let the line segments AI, BI, and CI cut the 

incircle at A', B', and C' respectively. Prove that 

A B C sin A' + sin B' + sin C' > cos - + cos - + coS - 
2 2 2 ' 

where^', B', and C' are the angles of triangle A'B'C'. 

Solution by William Chau, New York, New York. 
Since 2fA' = LBIC = n- - ( 0 1 2  + LC/2), it follows that 

w - A  A  sin 2~~ = sin LC = sin - = cos-, 
2 2 2 

with similar equalities for B and for C. Now the stated equation is equivalent to 

sin A' + sin B' + sin C' & sin 24' + sin 2 . '  + sin W ,  

which is item 2.4 on p. 18 of 0. Bottema et al, Geometric Inequalities, Wolters-Noordhoff, Gronigen, 
1968. 

Also solved by SCOTT H. BROWN, Stuart Middle School, FL, RUSSELL EULER, Northwest 
Missouri State University, Maiyvi-Ile, MURRAY S. KLAMKIN, University of Alberta, Canada. 
YOSHINOBU MURAYOSHI, Eugene, OR, BOB PRIELIPP, University of Wisconsin-Oshkosh, REX 
H .  WU, New York, NY, and the PROPOSER, Prielipppointed out that this same problem appeared with 
his solution as problem 4274 in the March 1991 School Science and Mathematics. 

748. [Spring 19911 Proposed by the late John Howell, Littlerock, California. 
a) An urn contains n balls numbered 1 to n. Algernon, Beauregard, and Chauncey draw a ball 

one after another with replacement. The game is terminated when two consecutive drawings produce 
the same ball. Find the probabilities of terminating on Algernon's draw, on Beauregard's draw, and on 
Chauncey's draw. 

b) Repeat the problem for the case that the game terminates when three consecutive drawings 
produce the same ball. 

Amalgam of solutions by David Yavenditti, Alma, Michigan, and Morris Kak, Macwahoc, Maine. 
Instead, we generalize the result fork consecutive drawings of the same ball, k > 1. We denote 

by P(X) the probability the game terminates on X's draw. Let the players be denoted by X,, where 
X, = Algernon, Beauregard, or Chauncey according as i s 1 2, or 3 (mod 3). The first person who could 
win (terminate the game) isXk on the kth play with probabilityp = l/nk"'. Let q = 1 - p .  If Xk does not 
win at that turn, then Xk+, could win on the (k + 1)st play with probability pq, or Xk^ could win on the 
(k + 2)nd play with probability pq2, etc. Hence 

Now, let Xk lose on the kth play (with probability q). Then Xw, faces the same conditions that Xk did 
on the Mi play, and we have 

A 



Similarly, 

It follows that, for part (a), 

Similarly, for part (b) we have that 

Also solved by CHARLES ASHBACHER, (Part (a) only), Hiawatha, IA, JAMES E. 
CAMPBELL, (Part (a) only), Indiana University at Blmmington, WILLIAM CHAU, (Part (a) only). New 
Yo&, NY, MARK EVANS, Louisville, KY, HOWARD FORMAN, (Part (a) only), Porsippany, NJ, 
RICHARD I. HESS, Rancho Palos Verdes, CA, MOHAMMAD P. SHAIKH, Western Michigan 
University, Kalamazoo, REX H. WU, (Part (a) only), New York, NY, and the PROPOSER. Not all 
solutions agreed with that of Morris Katz. 

749. [Spring 19911 Proposer by R. S. Luthar, University of Wisconsin Center at Janesville, 
Janesville, Wisconsin. 

If sinx + sin y + sin z = 0, then prove that 

Solution by Bob Prielipp, University of Wisconsin-Oshkosh, Oshkosh, 
Wisconsin. 

I f a + b  + c = O , t h e n  

a3 + b3 + c3 - 3abc = (a + b + c)(a2 + b2 + c2 - bc - ca - ab) = 0. 

Thus, since shut + sin y + sin z = 0, we have 

sin3x + sia'y + sin'z = 3sinxsiny sinz. 

Also, since sin 3 = 3 sin t - 4 sin' t, we get that 

sin* + sin3y + sin32 = -4(sin3x + sin3y + sin3z) = -12sinxsinysinz. 

Hence the required inequality holds if and only if 

which follows immediately from the well known inequality I sin t 1 \t\ . 

Also solved by SEUNG-JIN BANG, Seoul, Korea, MARTIN BAZANT, Tucson, AZ, WILLIAM 
CHAU, New York, NY, RUSSELL EULER, Northwest Missouri State University. Mwille,  MURRAY 
S. KLAMKIN, University of Alberta, Canada, YOSHINOBU MURAYOSHI, IZugene, 04 
MOHAMMAD P. SHAIKH, Western Michigan University. Kalamazoo, REX H. WU, New York, NY, and 
the PROPOSER. 

*750. [Spring 19911 Proposed by Dmitry P. Mavlo, Moscow, U.S.S.R. 
Solve the system of equations 

Z X y  + (3~ ) i / l -  = 0 and 3 ^ y  - ( 2 ~ ) i / l V  = fl.' 

This problem appeared in the SYMP-86 Entrance Exam Mathematical Problems. 

Solution by Pamsh Saxena, Massachusetts Maritime Academy, Buzzards Bay, Massachusetts. 
Letting y = sin 8, we must solve the equations 

2" sin 0 + 3" cos 8 = V3 and 3" sin 0 - 2" cos 0 = V2. 

Now square these equations and add to get 22" + 32" = 5, which has the unique solution x = 112 since 
the left side of the equation is an increasing function of x. Substituting x = 112 into the first of the 
original equations yields 

which, upon squaring and simplifying, reduces to 

y(5y-2f6) = 0, s o y  = Oory = 2 6 .  
5 

Only the latter value checks in the given equations, so the unique solution is x = 112 and y = 2f6/5. 

Also solved by CHARLES ASHBACHER, Hiawatha, IA, SEUNG-JIN BANG, Seoul, Korea. 
FRANK P. BATTLES, Massachusetts Mari'time Academy, Buzzards Bay, BARRY BRUNSON, Western 
Kentucky University, Bowling Green, JAMES E. CAMPBELL, Indiana University at Bloomington, 
WILLIAM CHAU, New York, NY, CHARLES R. DIMINNIE, St. Bonaventwe Universiiy, NY, 
ROBERT 0. DOWNES, Long Beach, CA, MARK EVANS, Louisville, KY, HOWARD FORMAN, 
Pmippany, NJ, ROBERT C. GEBHARDT, Hopatcong NJ RICHARD I. HBSS, Rancho Palos Verdes, 
C4, HENRYS. LIEBERMAN, Waban, MA, PETER A. LINDSTROM, North Lake College, Irving, m, 
G. MAVRIGIAN, Youngstown State University. OH, YOSHINOBU MURAYOSHI, Eugene, OR. 
WILLIAM H. PEIRCE, Stonington, CT, GEORGE W. RAINEY, Los Angeles, C4, MOHAMMAD P. 
SHAIKH, Western Michigan University, ffilamazoo, DAVE SMITH, Messiah College, Grantham, PA, 
REX H. WU, New York, NY, and DAVID YAVENDITTI, Alma, MI. One faulty solution was also' 
submitted, 



751. [Spring 19911 Proposed by Murray S. Klamkin, University of Alberta, Edmonton, Alberta, 
Canado. 

Determine all pairs of positive numbers x and y such that 

I. Solution by Seung-Jin Bane, Seoul, Republic of Korea 
Multiply the stated inequality by the positive quantity xy and rearrange the result to get the 

equivalent inequality 

(1) (9)i- l)x2 + (9)i - l ) @ -  l)r + y(l  -y) so. 

Case 1. The left side is a quadratic polynomial whose discriminant is 

SOD s 0 for 119 s y s 1, whence the original inequality holds for all x > 0 when 119 s y s 1. By the 
symmetry of the original inequality, it holds also for ally > 0 when 119 s x s 1. 

Case 2. Since Inequality (1) can be rewritten in the form 

weseeitistruefor0 c x  c 1/9and0 c y  c 1/9,andalsoforx > l a n d y  > 1. 
Case 3. We need only consider the region 0 c x c 119 and y > 1 and by symmetry the region 

0 c y < 119 andx > 1. Apply the quadratic formula to the quadratic polynomial of Inequality (1) to 
get that, when y > 1, we must have 

Now interchange x and y to get the corresponding inequality for the region where x > 1. 

11. Solution by Robert C. Gebhardt, Hopatcone, New Jersey. 
Multiply the inequality by xy and rearrange to get 

We graph the equation, as shown in the accompanying figure. The curve has intercepts (0,0), (1,0),and 
(0,l). Then any address in the first quadrant between the curves (e.g. (1,l) or (0321,65.432)) will satisfy 
the given inequality. 

111. Comment by Elizabeth Andy, ~imenck, Maine. 
The graph in the accompanying figure clearly shows asymptotes x = 119, y = 119, andx + y 

= 819. Replace the original inequality by equality and rewrite it in the fonn 

and finally 

We see that, when x = -y + 1 and \x \ is large, the fraction is approximately zero, and we get the 
equation of the oblique asymptotex + y = 819. Similarly, the equation can be rewritten in the form 

If \x\ is large and y = 119, then both fractions on the right are approximately zero, and the equation 
reduces to the horizontal asymptote 9y = 1. Thus we get the asymptotes algebraically, too. 

Furthermore the original inequality shows there is symmetry inx and y, that is, in the h e y  = 
x. Therefore, in Inequality (1) of Solution I above, replace the inequality by equality, interchangex and 
y, and apply the quadratic formula to get that 

which reduces to 

When lx 1 is large, then the quantity in the radical is approximately 119, so the solution becomes 

that is, 



These are not the equations of the asymptotes! What is wrong? Why does the application of the 
quadratic-formula show incorrect asymptotes? 

When a problem is most paradoxical, 
Then don? let it become cardiotdcal. 

You just say it aloud 
To the P M E crowd. 

And the answer you'll get from some foxy gal. 

Also solved by WILLIAM CHAU, New York, NY, MARK EVANS, Louisville, KY, RICHARD 
I. HESS, Rancho Palos Verdes, CA, and the PROPOSER Two other solvers sent in a pair of faulty 
solutions and a partikal solution. 

752. [Spring 19911 Proposed by the late Charles W Triggl San Diego, California. 
Martin Gardner ("Mathematical Games," Scientific American, April 1964, page 135) has shown 

that the minimum sum of three 3-digit primes that contain the nine non-zero digits is 999. Bind a set 
of three such primes that sums to another multiple of 37. 

Solution by William Chan, New York, New York. 
Let S be the sum of the three primes. The units digit of each prime is one of 1,3,7, and 9, so 

the units digit of S will be 1,3,7, or 9 according as 9,7,3, or 1 is not used as the units digit of one of 
the primes. The maximum value of S is 100(6 + 8 + 9) + 10(2 + 4 + 5) + (1 + 3 + 7) = 2421 < 
&37 and the minimum value is 999. 

Each prime is congruent to the sum of its digits modulo 9. Therefore S = 1 + 2 + 3 + ... + 
9 = 45 = 0 (mod 9), so S is a multiple of 9-37 = 333. The only multiple of 333 between 999 and 2421 
that terminates in 1,3,7, or 9 is 2331, so S = 2331 and the units digits of the primes are I ,  3, and 7. 
For S to be that large, the hundreds digits of the primes must be 9,8, and 4 or 5 or 6. Since their tens 
digits are then 2, and two of 4 and 5 and 6, the tens column produces a carry of exactly 1 to the 
hundreds column, so the hundreds digits of the primes are 9,8, and 5. The tens digits are thus 2,4, and 
6. From a table of primes we see that there are just 12 primes that meet the requirements for the 
addends: 521,523,541,547,563,821,823,827,863,941,947, and 967. It is easy now to find that there 
are exactly the four solutions {521,863,947}, {541,823,967}, {563,821,947}, and {563,827, 941}. 

Also solved by CHARLES ASHBACHER, Hiawatha, IA, MARK EVANS, Louisville, KY, 
VICTOR G. FESER, University of Mary, Bismarck, ND, DAWN M. GALAYDA, St. Bonaventure 
University, NY, STEPHEN I. GENDLER, Clarion University of Pennsylvania, RICHARD I.  HESS, 
Rancho Palm Verdes, C.4, HENRY S. LIEBERMAN, Waban, MA, BOB PRIELIPP, University of 
Wsconsin-Oshkosh, KENNETH M. WILKE, Topeka, KS, REX H. WU, New York, NY, and the 
PROPOSER.Ashbacher, Evans, Lieberman, and Wu each found the solution to the originalproblem 149 
+ 263 + 587 = 999. 

753. [Spring 19911 Proposed by R. S. Luthar, University of Wisconsin Center at Janesville, 
Janem7le, Wisconsin. 

Solve simultaneously 
e* + e* = 82 and ex - 8 = 2 

Solution by George P. Evanovich, Saint Peter's College, Jersey City, New Jersey. 
Let e" = u + v and 8 = u - v. From the second given equation, v - 1, so we have 

. 

and hence u = Â± or Â±idlo Then (ex, 4 = (3, I), (-1, -3), (1 + iq10, -1 + i$lO), or (1 - i$1@ -1 - 
iq10). Now (x,y) = (In 3,O) (the only real solution), (in + 2 d ,  In 3 + ZnId), or (In $11 + i(tanm1&T0) 
+ Ink), In $11 + i(tan-'(~$10) + Zn*)), where k is an integer. 

Also solved by JOHN T. ANNUUS, University of Arkansas-Monticello, CHARLES 
ASHBACHER, Hiawatha, L4, SEUNG-JIN BANG, Seoul, Korea, FRANK P. BATTLES, Massachusetts 
ManMne Academy, Buzzor& Bay, DIETER BENNEWITZ, Koblenz, Germany, SCOTT H. BROWN, 
Stuart Middle School, FL, BARRY BRUNSON, Western Kentucky University, Bowling Green, JAMES 
E. CAMPBELL, Indiana University at Bloonzinglon, CAVELAND MATH GROUP, Western Kentucky 
University, Bowling Grew, JEAN CHAPMAN, Creston, IA, WILLIAM CHAU, New York. NY, 
PATRICK COSTELLO, Eastern Kentucky University, Richmond, CHARLES R. DIMINNIE, St. 
Bonaventure University, NY, ROBERT 0. DOWNES, Long Beach, CA, RUSSELL EULER, Northwest 
Missouri State University, Mwyville, MARK EVANS, Louisville. KY, VICTOR G. FESER, University of 
Mary, Bismarck, ND, HOWARD FORMAN, Parsippany, NJ, DAWN M. GALAYDA, St. Bonaventure 
University, NY. ROBERT C. GEBHARDT, Hopatcong, NJ, STEPHEN I. GENDLER, Clarion University 
of Pennsylvania, RICHARD A. GIBES, Fort Lewis College, Dwango, CO, STAN HARTZLER, Messiah 
College, Grantham, PA, RICHARD I. HESS, Rancho Palos Verdes, CA, NATHAN JASPEN, Stevens 
Institute of Technology, Hoboken, NJ, HENRY S. UEBERMAN, Waban, AM, PETER A. 
LINDSTROM, North Lake College, Irving, TX, LOWELL F. LYNDE, JR., University of Arkansas at 
Monticello, G. MAVRIGIAN, Youngstown State University, OH, YOSHINOBU MURAYOSHI, Eugene, 
OR, WILLIAM H. PEIRCE, Stoninglon, CT, BOB PRIEUPP, University of Wsconsin-Oshkosh, 
GEORGE W. RAINEY, Los Angela, CA, PARUSH SAXENA, Massachusetts Maritime Academy, 
Buzzards Bay, MOHAMMAD P. SHAIKH, Western Michigan University, Kalamazoo, WADE H. 
SHERARD,Fuman University, Greenville, SC, KENNETH M. WILKE, Topeka, KS, REX H. WU, New 
York. NY, DAVID YAVENDITTI, Alma, MI. and the PROPOSER. 

754. [Spring 19911 Proposed by Seung-Jin Bang, Seoul, Korea. 
Let a, = a, = 1, a, = 2, and a,̂  = a, - a*, + a,.; for n > 3. Show that 

I. Solution by the Proposer. 
It suffices to show that 

an+. an 
an+1 an an-1 
an an-1 an-2 

= -3 . 

To that end, we have 



and hence 

Since the two matrices on the right side of this last equation have determinants 1 and -3 respectively, 
the determinant of the matrix on the left side is -3. 

II. Solution by Murray S. Klarnkin, University of Alberta, Edmonton, Alberta, Canada. 
As stated, a, is not determined, so that the given equation is not necessarily true for n = 3. If 

the recursion formula is valid for n 2 3, then a, = a, - a, + a, = 2 and as = 1. Since we now have a,,+, 
= a*, for n 2 3, it suffices to check the desired equation for n = 3, 4, 5, and 6, for which values it is 
true. 

m. Solution by Rex H. Wu, New York, New York 
To express am in terms of n, let an = A. Then 

An+l = A" - AÂ¡- + A*', so that A3 = A2 - A + 1, 

(A - 1)(A2 + 1) = 0, and finally A = 1, Â±i 

Any linear combination of solutions is also a solution, so we have that 

for some complex constants a, p, and y. By hypothesis we must have 

which we solve simultaneously to get that 

3 i - 1 a = -  p = -  i + 1 
2 ' 4i , and y = - 

d i  . 
Therefore, 

It follows immediately that a,+, = a,. By tedious but straightforward algebra one can show that 
a. .a,,+, = 2 and that a; + = 5. Now we have 

Since a* = 1 if n s 1 or 2 (mod 4) and an = 2 if n s 0 or 3 (mod 4), we need verify only that the last 
displayed line is zero for a*-, = 1 and a, = 2, and for a*; = 2 and a, = 1, which is easily accomplished. 

Editor's comment. Only Klamkin spotted the omission, which was my error. The proposer had 
stated only the defining equations; I added the inequality. So I shall do my penance at least n > 3 times. 

Also solved by CHARLES ASHBACHER, Hiawatha, IA, SCOTT H. BROWN, Stuart Middle 
SchMl, FL, JAMES E. CAMPBELL,Indiana University at Bloomington, CAVELAND MATH GROUP, 
Western Kentucky University, Bowling Green, WILLIAM CHAU, New York, NY, RUSSELL EULER, 
Northwest Missouri State University, Mayville, MARK EVANS, Louisville, KY, VICTOR G. FESER, 
University of M q ,  Bismarck, ND, HOWARD FORMAN, Parsippany, NJ, ROBERT C. GEBHARDT, 
Hopatcong W, RICHARD I. HESS, Rancho Palos Verdes, CA, HENRYS. LIEBERMAN, Waban, MA, 
WILUAM H. PEIRCE, Stonington, CT, MOHAMMAD P. SHAIKH, Western Michigan University, 
Kalamazoo, KENNETH M. WILKE, Topeka, KS, and DAVID YAVENDITTI, Alma, MI. 

755. [Spring 19911 Proposed by Stanley Rabinowitz, Alliant Computer Systems Corp., Littleton, 
Massachusetts. 

In triangle ABC, a circle of radiusp is inscribed in the wedge bounded by sides AB and BC and 
the incircle (I) of the triangle. A drcle of radius q is inscribed in the wedge bounded by sides AC and 
BC and the incircle. If p = q, prove that AB = AC. 

I. Solution by Richard I. Hess, Rancho Palos Verdes, California. 
Let the incircle (7) touch BC at X. If the two side circles have the same radius, then a reflection 

about the line DC leaves the picture unchanged, whence AB = AC. 



11. Solution by Murray S. Klamkin, University of Alberta, Edmonton, Alberta, Canada. 
Draw the angle bisector BI of angle B and let r denote the inradius. Let the parallel to BC 

through the center P of the circle of radiusp cut IX at Y Then IY = r - p and ZP = r t p, and it now 
follows easily that 

B C r - q  sin - = and similarly sin - = - 
2 r + p  2 r +  q .  

Finally,p = q implies that sin (BIZ) = sin (C/2) and hence that AB = AC. 

Also solved by SEUNG-JIN BANG, Seoul, Korea, DIETER BENNEWITZ, Koblenz, Germany, 
SCOTT H. BROWN, Stuart Middle School, FL, WILLIAM CHAU, New York, NY, STEPHEN I. 
GENDLER, Clarion University of Pennsylvania, HENRY S. LIEBERMAN, Waban, MA, T. R. K. 
PAPPU, Occidental College, Los Angeles, CA, MOHAMMAD P. SHAIKH, Western Michigan University, 
Kalamazoo, WADE H. SHERARD, Funnan University, Greenville, SC, REX H. WU, New York, NY, 
DAVID YAVENDITTI, Alma, MI, and the PROPOSER. 

756. [Spring 19911 Proposed by Basil Rennie, Bumside, South Australia. 
Consider covering the unit interval [0,1] with n measurable subsets, under the constraint that 

all n subsets must have the same centroid. The centroid m of a set E may be defined by Jc(x - m )  dx 
= 0. How can you choose then sets to minimize m? 

For example, if n = 4, it is possible to make m = 7/20 by choosing the four sets 
[0,2/%~[9/10,11, [0,l/5Iu[4/5,9/101, [l/20,l/41u[7/10,4/51, and [0,7/101. 

Solution by the Proposer. 
The smallest value of m is 1/(1 t rfn), which we denote by c. For, let E, (for r = 1, 2, ..., n )  

consist of the union of the two intervals [O, c] and [c t cV(r - I), c + crfr]. Each E, has centroid c and 
together they cover the interval. 

TO show this value c is best possible, take n sets E, covering the interval and with centroids at 
m. Divide each set into E', to the left of m and E", to the right of m. The first moments of the two 
subsets about m must add to zero, and therefore the moment of E", about m can be no more thanm2/2, 
but the sum of all these moments over then sets is at least (1  - m)' /2  Hence, nm2 a (1 - m)', or 
[m(fn  + 1) - l][m(rfn - 1) + 11 a 0, which is true whenever the quantity in the first brackets is 
nonnegative; that is, when m z c. 

757. [Spring 19911 Proposed by Paul Anthony Courtney, graduate student, Sun Diego State 
University, Sun Diego, California. 

Find the overall height of the pyramid formed from four spherical balls of radius r. Student 
solutions are especially solicited. 

Solution by David Ymenditti, high school student, Alma, Michigan. 
Consider instead the pyramid formed by n triangular stacks of spheres, each of radius r. Let h 

be the overall height and let A, B, C, D be the centers of the four comer spheres, which determine a 
regular tetrahedron of edge 2r(n - I), as shown in the accompanying figure. We must find the length of 
the altitude BO of the tetrahedron, 0 being the center of the equilateral triangle ACD. Then OM is 
perpendicular to AC and triangle AOM is a 3O0-60" right triangle, so A 0  = 2?(n - 1)/^3. Since ABO 
is a right triangle, then BO = 2r(n - 1)f6/3, and the overall height is given by 

The case we seek is n = 2, soh  = W\. + f6/3). 

Also solved by CHARLES ASHBACHER, Hiawatha, IA, MARTIN B A m ,  7 1 < ~ 0 n ,  A z  
WILLIAM CHAU, New Yo& NY, ROB DOWNES. Beach, C 4  RUSSELL EULER, Northwest 

Missouri Stale University, Ma~yville, MARK EVANS, Louisville, KY, RICHARD I. HESS, RanchoPolos 
Verdes, CA, HENRY S. LIEBERMAN, Waban, MA. LOWELL F. LYNDE, JR., University oJArkansas 
at Monticello, MOHAMMAD P. SHAIKH, Western Michigan University, Kalarnazoo, REX H. WU, New 
York, NY, and the PROPOSER. 

MESSAGE FROM T H E  SECRETARY-TREASURER 

Copies of the new, revised Constitution and Bylaws are now available. The prices are: $1.50 
for each of the first four copies and $1 for each copy thereafter. 1.e.. $(l.50 n )  for n < 4 and $(n+2) 
for n > 4. 

The videotape of Professor Joseph A. Gallian's AMS-MAA-PME Invited Address, "The Mathe- 
matics of Identification Numbers," given as part of PME's 75th Anniversary Celebration at Boulder, 
CO, in August, 1989, is also still available. The tape may be borrowed free of charge by PME chap- 
ters, and by others upon an advance payment of $10. Please contact my office if you desire to borrow 
the tape, telling me the date on which you would like to use it. I prefer to mail the tape directly to 
faculty advisors, and expect them to take responsibility for returning it to my office. Please submit 
your request in writing and include a phone number and a time that I might reach you if there are 
problems. Robert M. Woodside, Secretary-Treasurer, Department of Mathematics, East Carolina 
University, Greenville, NC 27858. 



U P C O M I N G  PI M U  EPSILON 1992 NATIONAL M E E T I N G  

The-national meeting for Pi Mu Epsilon this year will be very special. Usually, the national 
meet iwis  held in conjunction with the national meetings of the American Mathematical Society 
and the Mathematical Association of America. In 1992, however, the International Congress of 
Mathematics Educators (ICME) will hold its annual meeting in Quebec City, in Canada. It has 
been the policy of the AMS and MAA that in order to avoid a conflict in scheduling, summer 
meetings are not held in years when an international mathematics meeting (e.g., ICME or the 
International Congress of Mathematicians) takes place in North America. For this reason, there will 
be no AMS-MAA national meeting this summer. 

Because of these special circumstances, Pi Mu Epsilon will hold its summer meeting in conjunc- 
tion with the meeting of the MAA Student Chapters. The meeting will take place August 5-8, a t  
Miami University in Oxford, Ohio. 

The meeting will begin on the evening of Wednesday, August 5, with a Student Pizza Party and 
Reception. (Registration and room check-in will begin in the afternoon and continue throughout 
the evening.) 

Highlights of Thursday's program (August 6) will include the MAA Invited Lecture, by Peter 
Hilton; a reception for Professor Hilton; sessions for contributed papers by PME and MAA student 
chapter members; presentations by the MAA Modeling Contest winners; meetings of the PME 
Council and the MAA Student Chapter Committee; and an excursion to  the nearby King's Island 
Theme Park. 

The program on Friday, August 7, will feature more student presentations; a choice of two 
minicourses (open to students and faculty); a panel discussion and display on careers; the Pi Mu 
Epsilon Banquet; and, finally, the J. Sutherland Frame lecture. This year's Frame lecturer will 
be Underwood Dudley. The Pi Mu Epsilon portion of the meetings will conclude with informal 
gatherings after the Frame Lecture. 

The meeting will conclude on Saturday, August 8, with the final session of MAA student papers 
and a choice of two minicourses. 

TRAVEL S U P P O R T  F O R  T H E  S U M M E R  M E E T I N G  

Pi Mu Epsilon will provide travel  suppor t  for one student speaker from each chapter. If 
a chapter is not represented by a student speaker, Pi Mu Epsilon will provide one-half support 
for a student delegate. Full support is defined to be full round-trip air fare (including ground 
transportation) from the student's school or home to Oxford, Ohio, up to a maximum of $600. 
(Delegates will receive up to $300.) A student who chooses to drive will receive 25 cents per mile 
for the round trip from school or home to Oxford, up to  $600. (Delegates will receive 121 cents 
per mile, up to $300. Travel support will be provided for only one student per chapter. However, if 
several students from the same chapter wish to attend, they may share the travel support, if they 
choose to  do so. (Special discounted group airline tickets are available on Delta Airlines through 
Travel Unlimited, the official travel agency for the conference: 1-800-466-7555.) 

For further information about the meeting and the travel support: 

SEE YOUR PI M U  EPSILON ADVISOR 

G L E A N I N G S  F R O M  T H E  C H A P T E R  R E P O R T S  

CONNECTICUT GAMMA (Fairfield University) During the fall semester the chapter sponsored the 
second annual Math Bowl Contest. Eight teams of four students competed in a "GE College Bowln 

type of competition, in which all the questions were mathematical. In the spring, members of Pi Mu 
Epsilon assisted the Mathematics Department in coordinating the activities for Math Counts,,w%ieh 
is a mathematics contest for junior high school students. At the annual spring initiation ceremony 
thirty-two new members were inducted. "Biostatistics: Who, What, Why, and When?" by Kerr ie  
Eileen Boyle of the Research Triangle Institute was the title of the Pi Mu Epsilon Lecture during 
the induction ceremony. Dr. Boyle, a 1974 graduate of Fairfield, was also inducted. During the 
Annual Arts and Sciences Awards Ceremony, two members, Thomas  Lipka and Francis Maurais 
received recognition for their outstanding performance in mathematics. Each was given a Pi Mu 
Epsilon certificate of achievement, a book each selected in an area of mathematics, and a one-year 
membership in the Mathematical Association of America. 

INDIANA GAMMA (Rose-Hulman Institute of Technology) In the fall of 1990, six students attended 
the Miami University Conference, with John O'Bryan, Jeff Dierckman, and O m a r  Zaidi pre- 
senting papers. 

The chapter helped administer the RHIT-St. Mary of the Woods Mathematics Competition 
(for area high school students) and the 2nd Annual Alfred R. Schmidt Freshmen Mathematics Com- 
petition a t  Rose-Hulman. M a r k  Roseberry took first place and J o n a t h a n  Atkins took second. 
Our chapter helped the Rose-Hulman Mathematics Department stage the Annual Rose-Hulman Un- 
dergraduate Mathematics Conference, which involved over 80 participants and 25 papers. Seven of 
our students gave papers: J o h n  O'Bryan, Jeff Dierckman, O m a r  Zaidi, M a r k  Roseberry,  
Jonathan Atkins, B e n  Nicholson, and Tony Hinrichs. Five teams of three members each par- 
ticipated in the Indiana College Mathematics Competition, with the RHIT team of J o h n  O'Bryan, 
M a r k  Roseberry,  and Jona than  Atkins taking first place. 

On April 24,32 new members were initiated into the Indiana Gamma Chapter. It was the 25th 
anniversary of the founding of the Chapter. The speaker at our initiation banquet was Dr. David 
Ballew, President of Pi Mu Epsilon and Chairman of the Computer Science Department at  Western 
Illinois University. 

KANSAS GAMMA (The Wichita State University) The chapter had a number of speakers during 
the year. The speakers were: Joseph  Stafford, "Tilings," A b d e l m d e k  Kemmou,  "Fuzzy Set 
Theory & the Logic of the Continuum;" Ming Liu "Design of Experiment;" Raj iv  Bagai, "Formal 
Logic as a Programming Language;" Dewi Saleh, "Some Mathematical Puzzles." Members of the 
chapter held free help sessions for undergraduate courses. One of the members, Abdelmalek 
Kemmou,  gave a talk at  the joint meetings of the Kansas Section of the MAA and the Kansas 
Association of Teachers in Mathematics, held at  Southwestern College in April, 1991. The chapter 
also started a publication, called ALEPH TWO. The publication is intended to contain mathematical 
investigations, mostly by students. 

MINNESOTA ZETA (St. Mary's College) The Chapter conducted a number of mathematics col- 
loquia and several chapter-wide business meetings. The Chapter celebrated Math Awareness Week 
in April with two main activities: Professor K e n  Kasin, of St. Mary's presented a talk entitled 
"Elementary Concepts of Mathematical Chaos"; and eleven new members were initiated into the 
chapter. 



OHIO ZETA (University of Dayton) The chapter continued to be active this year. Among other 
activities, the members presented several talks a t  various meetings and conferences. Fiye students 
presented talks at  the Pi Mu Epsilon Meeting in Columbus, Ohio, ip August. Four of them presented 
the results of the research they conducted in the program "Research Experiences for Undergraduates 
in Algebraic Graph Theory at  the University of Dayton." This program was sponsored by the NSF 
and Professors Higgins and Mushenheim conducted the program during the summer of 1990. 
All of these five students also gave talks a t  the Pi Mu Epsilon Regional Conference held at  Miami 
University, Oxford, Ohio, in September, 1990. These students are Marjorie August ,  David 
Gebhard ,  T o m  Bohman, Chicako Mese, and Colleen Hoover. David G e b h a r d  and David 
K a a s  presented talks at  the Spring Meeting of the Ohio Section of the MAA held at  Bowling Green, 
Ohio, in April, 1991. 

Chicako Mese, T o m  Bohman, and Colleen Hoover jointly received UD's Faculty Award for 
Excellence in Mathematics, while Kristen Toft and Krist ine Fromm shared this year's Sophomore 
Class Award. 

VIRGINIA ALPHA (University of Richmond) In the fall, in addition to an initiation ceremony, 
the Chapter co-sponsored a Math/Computer Science Department colloquium on October 22. The 
speaker, Professor J i m  Kuzmanovich, from Wake Forest University, spoke on "The Lore of 
Infinity." In the spring, the Chapter held a research forum where four student members, who were 
engaged in independent research projects, gave 15-minute talks on their projects and how they got 
started. The speakers were Fran  Centofante, Jeff Michel, J o h n  Murphy,  and David Flader. 
David Flader presented his paper on Game Theory and Pseudo-Boolean Functions at  the National 
Pi Mu Epsilon Meeting in Orono, Maine, in August. The final event of the year was the annual 
Pi Mu Epsilon picnic (co-sponsored with the Computer Science Club). At this picnic, Jeff Michel 
was presented with the award for Outstanding Computer Science Student and David Flader was 
presented with the award for Outstanding Mathematics Student. Freshman. Kelly Donnellon, 
was presented with the Pi Mu Epsilon Book Award for outstanding work in Calculus I and 11. 

WISCONSIN DELTA (St. Norbert College) In August, 1990, three students attended the Pi Mu 
Epsilon National Conference in Columbus, Ohio. A m y  Krebsbach,  Mike Lang, and Dave  01- 
s o n  were in attendance, with Mike Lang presenting a paper. In April, 1991, A m y  Krebsbach 
presented a paper at the St. John's University Regional Math Conference. Also in attendance were 
Dawn Boyung, Chris  Cypcar ,  Amy Gerrits, Mike Lang, and Mike Zittlow. 

SNC was host to several speakers during the year. Dr.  Bill Shay (UW-Green Bay) spoke on 
"Cyclic Redundancy Check - Error Detection Using Polynomial Division." Other speakers were: Dr. 
Alan Parks  (Lawrence University) on "Genetic Assembly Line Balancing" and Richard Witalka 
and J o h n  Towne (Schneider National Corporation) on 'The C Programming Language." 

Perhaps the biggest event of the year for the chapter was hosting the Fifth Annual Pi Mu 
Epsilon Regional Conference in November. The featured speaker was Dr. J e a n n e  LaDuke, of 
DePaul University, who spoke about the role of women in American mathematics. Laura  Donzelli 
of SNC presented one of the 14 student papers at the conference. 

Other significant events included the Ninth Annual SNC High School Math Meet held in con- 
junction with SNC's math club, Sigma Nu Delta. The annual Brenda Roebke Volleyball Tournament 
was also held in cooperation with Sigma Nu Delta. Part of the proceeds from this tournament go 
toward a scholarship fund for SNC students majoring in mathematics. This year's winner was Linda 
Mueller. 

John T. O'Bryan, the president of the Indiana Gamma Chapter of Pi Mu Epsilon, at  we- 
Hulman Institute of Technology, died December 16, 1991, as a result of injuries he received in -a. car 
accident. 

John was one of the most active and productive members the Indiana Gamma Chapter has ever 
had. Between AprilJ990, and September, 1991, he presented five different papers at six different 
conferences and meetings. John's most outstanding work resulted from his participation in an NSF- 
funded RED project at Rose-Hulman, which he attended between his sophomore and junior years. 
His paper "Maximal Order Three-Rewriteable Subgroups of Symmetric Groups" became the initial 
Rose-Hulman Institute of lechnology Technical Report. John also presented this paper a t  a special 
session during the 1991 Winter Meeting of the MAA held in San R-ancisco. 

John's REU experience also led to a paper titled "Large 'Almost Abelian' Subgroups of the 
Symmetric Group," which he presented at  the 17th Annual Regional Pi Mu Epsilon Meeting held 
at  Miami University, Oxford, Ohio. This paper became part of a joint paper written with Dr. Gary 
Sherman, of Rose-Hulman, titled "Undergraduates, CALEY, and Mathematics," which has been 
submitted to the Journal of Technology in Mathematics. 

But John's work wasn't limited to pure mathematics. During the summer between his junior 
and senior year, John worked as a summer researcher, in applied mathematics, as a member of the 
Outstanding Student Summer Program sponsored by Sandia National Laboratories in New Mexico. 
This experience led to his paper "Parallelization of a Parameter Identification Problem," which he 
gave at  the 18th Annual Pi Mu Epsilon Conference at  Miami University, in September, 1991. This 
was to be John's final Pi Mu Epsilon paper. 

As a mathematics/physics double major at  Rose-Hulman, John participated in many math- 
ematics competitions as a leading member of the Rose-Hulman team. As a scholar, he received 
numerous awards, including the top freshman mathematics award, the top freshman student award, 
the top sophomore student award, and the top junior student award. This spring he will be awarded, 
posthumously, the Clarence P. Sousley Award as "a graduating mathematics major who has demon- 
strated exceptional performance in his field.' 

John truly lived by the Pi Mu Epsilon pledge " ... I will exert my best efforts to promote true 
scholarship, particularly in mathematics; and that I will support the objectives of the Pi  Mu Epsilon 
Society." 

(Elton Graves, RHIT Mathematics Department) 



NINETEENTH ANNUAL 
PI MU EPSILON 

STUDENT CONFERENCE 
MIAMI UNIVERSITY 

OXFORD, OHIO 

Call for student papers and guests 
Friday and Saturday 

October 2 - 3, 1992 

Held in conjunction with 
The Conference on History of Mathematics 

featuring 

Judith Grabiner, WaSam Dmham, Victor Katz, Fredrick Rickey 

We invite you to join us. There will be sessions of the 
student conference on Friday evening and Saturday afternoon. 
Free overnight lodging for all students will be arranged with 

Miami students. Each student should bring a sleeping bag. All 
student guests are invited to a free Friday evening pizza party 
supper, and speakers will be treated to a Saturday noon picnic 

lunch. Talks may be on any topic related to mathematics, 
statistics or computing. We welcome items ranging from 
expository to research, interesting applications, problems, 
summer employment, etc. Presentation time should be 

fifteen or thirty minutes. 

We need our title, presentation time (15 or 30 min.), 
preferred date ( ~ r i .  or Sat.) and a 50 (approx.) word abstract by 

September 25, 1992. Please send to 

Professor Milton D. Cox 
Department of Mathematics and Statistics 

Miami University 
Oxford, Ohio 45056 

The History of Mathematics Conference 

begins 

Friday afternoon, October 2. 

Contact us for more details. 

St. Norbert College 

Seventh Annual 

PI MU EPSILON 

Regional Undergraduate Math Conference 

October 30-31. 1992 

Featured Speaker: Jim Kasum 

Cardinal Stritch College 

Sponsored by: St. Norbert College Chapter of nME 
and 

St. Norbert College SNA Math Club 

The conference will begin on Friday evening and continue through Saturday noon. 
Highlights of the conference will include sessions for student papers and two 
presentations by Professor Kasum, one on Friday evening and one on Saturday 
morning. Anyone interested In undergraduate mathematics is welcome to attend. 
There is no registration fee. 

For information, contact: 
Rick Poss, St. Norbert College 
De Pere, WI 541 15 
(414) 337-31 98 
e-mail: poss@sncac.snc.edu Z N A  



Win a Free* Trip to Miami! 

Participate in the Joint Meeting of 

PI MU EPSILON 

with the 

MAA STUDENT CHAPTERS 

Miami University 
Oxford, Ohio 

August 5-8, 1992 

* See page 414 for farther details. 
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